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Probing long-range intensity correlations inside disordered photonic nanostructures
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We report the direct observation of the development of long-range spatial intensity correlation and the growth of
intensity fluctuations inside random media. We fabricated quasi-two-dimensional disordered photonic structures
and probed light transport from a third dimension. Good agreement between experiment and theory is obtained.
We were able to manipulate the long-range intensity correlation and intensity fluctuations inside the disordered
waveguides by simply varying the waveguide geometry.
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I. INTRODUCTION

Light propagation in disordered media has been a topic of
intense studies for nearly three decades [1–3]. In analogy with
electronic transport in disordered metals, fundamental issues
related to diffusion and localization have been addressed [4,5].
One interesting example is long-range intensity correlation
[6], which characterizes mesoscopic transport of both classical
and quantum waves, and reflects the closeness to the Anderson
localization threshold [7]. Experimentally, correlations in time,
space, frequency, angle, and polarization have been investi-
gated, but most measurements are performed on transmitted
or reflected light outside the random media [8–16]. It would
be interesting to probe correlation inside the random media
and to monitor how long-range correlation builds up as
light propagates through the random medium. However, it
is very difficult to probe transport inside three-dimensional
(3D) random media. Only in a microwave experiment was a
detector (antenna) inserted into the random media to measure
the intensity inside [8]. Alternatively we design and fabricate
quasi-two-dimensional (2D) disordered waveguides to probe
light transport inside from the third dimension [17]. This
approach will allow us to directly measure intensity correlation
and fluctuations inside random structures. Furthermore, we
vary the degree of long-range intensity correlation by changing
the waveguide geometry.

The intensity-intensity correlation function C consists of
three terms, short-range C1, long-range C2, and an infinite-
range C3 correlation. Intuitively, interferences between waves
scattered along independent paths give rise to C1, one crossing
of paths generates C2, and two crossings cause C3 [18,19].
The spatial correlation term C1 decays exponentially with
increasing distance and vanishes beyond the transport mean
free path �. C2 also decays but much more slowly, while C3 has
a constant contribution. The long-range correlation dominates
fluctuations of total transmission Ta ≡ ∑

b Tab, where Tab is
the transmission from an incoming wave mode a to an outgoing
mode b. The magnitude of C2 is on the order of 1/g, and C3

of 1/g2, where g ≡ ∑
a Ta is the conductance [12,20]. When

g � 1, C is dominated by C1. To measure C2, the spatial
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distance must exceed the transport mean free path so that C1

dies out. Alternatively, C2 can be measured by collecting all
transmitted light using an integrating sphere. This method,
however, cannot be used to measure C2 inside the sample.
Instead, we integrate light intensity over the waveguide cross
section to average out the short-range fluctuation, and directly
measure the long-range correlation inside the disordered
planar waveguide. The conductance of the waveguide is
g = (π/2)N�/L, where N = 2W/(λ/ne) is the number of
propagating modes in the waveguide. L is the waveguide
length, W is the waveguide width, λ is the light wavelength
in vacuum, and ne is the effective index of refraction of the
random medium [21]. Hence, by decreasing W , we are able to
reduce g and enhance the magnitude of C2 without modifying
the structural disorder.

This paper is organized as follows. In Sec. II, we describe
the design and fabrication of 2D disordered waveguides as well
as the optical measurement of intensity correlation inside the
waveguide. Section III contains the calculation of long-range
correlation inside the disordered waveguides and the formula
for the physical quantities that are measured experimentally.
Section IV presents the experimental data and comparison to
the theory. Finally we conclude in Sec. V.

II. 2D DISORDERED PHOTONIC STRUCTURES

The 2D disordered waveguides were fabricated in a silicon-
on-insulator (SOI) wafer with a 220 nm silicon layer on
top of a 3 μm buried oxide (Fig. 1). The patterns were
written by electron beam lithography and etched in an
inductively coupled-plasma (ICP) reactive-ion etcher (RIE).
Each waveguide contained a 2D random array of air holes
that scattered light. The air hole diameters were 100 nm and
the average (center-to-center) distance of adjacent holes was
390 nm. The waveguide walls were made of photonic crystals
(triangle lattice of air holes, the lattice constant = 440 nm, the
hole radius = 154 nm) that had a complete 2D band gap for
in-plane confinement of light. However, light was scattered out
of plane, and this leakage allowed us to observe light transport
inside the disordered waveguide from the vertical direction.

The monochromatic light from a tunable cw laser source
(HP 8168F) was coupled by an objective lens of numerical
aperture (NA) = 0.4 into the empty waveguide. To ensure
efficient confinement inside the waveguide, the light was
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FIG. 1. Top-view scanning electron microscope (SEM) image of
a quasi-2D disordered photonic waveguide. Light is injected from the
left end of the empty waveguide and incident onto the random array
of air holes. The waveguide wall is made of a triangle lattice of air
holes which forms a 2D photonic band gap to confine light inside the
waveguide.

transverse-electric (TE) polarized (electric field in the plane of
the waveguide). The light was subsequently incident onto the
random array of air holes inside the waveguide and underwent
multiple scattering [Fig. 2(a)]. The near-field optical image
of the spatial distribution of light intensity across the structure
was taken by collecting light scattered out of plane using a 50×
objective lens (NA = 0.42) and recorded by an InGaAs camera
(Xeva 1.7-320). The spatial resolution was limited by the NA
of the objective lens, and estimated to be ∼2 μm. Figure 2(b) is

FIG. 2. (Color online) (a) A schematic of the optical measure-
ment setup. One objective lens (NA = 0.4) couples the light from
a tunable laser source to the waveguide, and another objective
lens (50×, NA = 0.42) collects the light scattered by the air holes
out of the waveguide plane and images onto a camera. (b) A
near-field optical image of the intensity of scattered light from the
disordered waveguide. The wavelength of the probe light is 1510
nm. The intensity distribution exhibits short-range fluctuations. z1

and z2 represent the axial positions of two cross sections inside the
disordered waveguide.

a typical near-field image, which exhibits short-range intensity
fluctuations.

The 2D intensity distribution inside the waveguide I (y,z)
was extracted from the near-field image [Fig. 2(b)]. I (y,z)
was then integrated along the cross section of the waveguide
(y direction) to give the variation along the waveguide axis
(z direction) I (z). The spatial intensity correlation C̃(z1,z2)
was then computed from I (z) as

C̃(z1,z2) = 〈I (z1)I (z2)〉
〈I (z1)〉〈I (z2)〉 − 1, (1)

where 〈· · · 〉 represents an ensemble average. C̃(z1,z2) was
measured for various combinations of z1 and z2 inside the
disordered waveguides. The ensemble averaging was done
over ten random configurations of air holes and 25 input
wavelengths equally spaced between 1500 and 1510 nm. The
wavelength spacing was chosen to produce different intensity
distributions. Further averaging was done by generating
different intensity distributions by slightly moving the input
coupling spot along the transverse direction y. Nevertheless,
since long-range correlation depends on the size and shape of
the input beam [22], we ensured that the random array of air
holes was illuminated uniformly along the y direction, so that
diffusion occurs only along the z direction.

The relevant parameters for light propagation in the
disordered waveguide are the transport mean free path � and
the diffusive dissipation length ξa . The transport mean free
path � depends on the size and density of the air holes. The
dissipation mostly comes from out-of-plane scattering since
the silicon absorption at the probe wavelength is negligible.
As shown in our previous work [17], this vertical leakage
of light can be treated as absorption and described by the
diffusive dissipation length ξa = √

Dτa , where τa is the
ballistic absorption time and D is the diffusion coefficient
For the disordered waveguides in Fig. 1, we found ξa = 30 μm
and � = 2.2 μm by fitting the measured I (z) with the diffusion
equation. A detailed description of this procedure is given in
Ref. [17]. The waveguide length is 80 μm, and the width varies
from 10 to 60 μm. Thus the conductance g is between 1.6 and
9.9.

III. THEORY OF LONG-RANGE INTENSITY
CORRELATION

Spatial intensity correlation defined by Eq. (1) involve
intensities integrated over the cross section of the waveguide.
Such integration suppresses the contribution from the short-
range correlation C1 so that only C2 and C3 remain. At the
output end of the disordered waveguide (z1 = z2 = L), these
two contributions reduce to the normalized variance of total
transmission and the normalized variance of conductance,
respectively [5,14]. C2 and C3 in lossy systems, such as
those in our experiment, have been investigated before [7,23].
Although the expressions for C2 and C3 in Refs. [7,23] have
been derived for diffusive samples (g > 1), they have been
shown to also apply to the localized samples (g � 1) [24].
For the disordered waveguides in our experiment, C2 is much
larger than C3. Thus we ignore C3 and assume C̃ � C2.

Next we obtain an expression for C2(z1,z2) which can be
compared to the spatial correlation function defined in Eq. (1).
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Such an expression has been derived using the Langevin
approach in Refs. [10,25–27]. For a waveguide geometry we
obtain

C2(z1,z2) = 2

gL

∫ L

0
∂K(z1,z

′)
∂z′

∂K(z2,z
′)

∂z′ 〈I (z′)〉2dz′

〈I (z1)〉〈I (z2)〉 , (2)

where K(z,z′) is the solution of

∂2K(z,z′)
∂z2

− K(z,z′)
ξ 2
a

= −δ(z − z′), (3)

with boundary conditions K(0,z′) = K(L,z′) = 0. Such a
boundary condition neglects surface effects which can also
lead to additional terms in Eq. (2). They are significant at 0 <

z � �, L − � � z < L [27], particularly for the large index
mismatch between inside and outside of the random medium.
However, in our system of air holes in the dielectric, the ef-
fective refractive index of the random medium is less than that
outside. In this case surface reflections are not pronounced [3].

Hence our choice of boundary conditions is reasonable for our
samples with � 
 L.

The solution to Eq. (3) is

K(z,z′) = sinh ζ< sinh(L − ζ>)

ξ−1
a sinhL

, (4)

where L = L/ξa , ζ< = min[z,z′]/ξa , and ζ> = max[z,z′]/ξa .
In the same approximation, 〈I (z)〉 ∝ sinh(L − ζ )/ sinhL.
Substituting this expression as well as Eq. (4) into Eq. (2)
we get C2(z1,z2). The final expression is cumbersome in the
presence of loss, so we only list several limiting cases.

Case 1: Vanishing loss. In this case we take the limit
ξa → ∞ and get

C2(z1,z2) = 2z1

3gL2

(2L − z1)(L − z1) + (L − z2)2

L − z1
, (5)

which reduces to a well known result C2(L,L) = 2/3g at the
output end.

Case 2: z2 = L. This corresponds to correlating the in-
tensity at the output surface with an intensity inside random
medium. We get

C2(z1,L) = −8ζ1 + 4ζ1 cosh 2L + 3(sinh 2L − sinh 2ζ1) − 3 sinh 2(L − ζ1) + 4(L − ζ1) coshL csch(L − ζ1) sinh ζ1

16gL sinh2 L
, (6)

where ζ1 = z1/ξa . In a lossless random medium the above
expression reduces to C2(z1,L) = 2(2L − z1)z1/(g L2), in
agreement with the expression in Refs. [25,28].

Case 3: z1 = z2 ≡ z. Under this condition we obtain the
normalized variance of the cross-section integrated intensity
inside the waveguide,

C2(z,z) = {4ζ cosh 2L + 5 sinh 2L
− sinh 2(L − 2ζ ) + csch2(L− ζ )[−4(L− ζ )

+ sinh 4(L− ζ )] sinh2 ζ − 4[2ζ + sinh 2(L − ζ )

+ sinh 2ζ ]}[16gL sinh2 L]. (7)

In the limit z = L this quantity reduces to the normalized
variance of the total transmission. In lossless medium Eq. (7)
reduces to a compact expression C2(z,z) = (2z/gL)(1 −
2z/3L). We note that this function takes the maximum value
(9/8)C2(L,L) at z = 3L/4, for any L.

In the following section we will compare the above
theoretical predictions to the experimental data obtained
for 2D disordered waveguides. Because of their reduced
dimensionality, the waveguides are always localized in the
L → ∞ limit. The extent of the localization effects can be
controlled by varying the ratio between system length L and
the localization length ξ = (π/2)N�. Since N scales linearly
with W , ξ can be easily tuned by varying the waveguide
width without changing the transport mean free path and,
hence, maintaining constant diffusive absorption length ξa .
Therefore, by changing the waveguide geometry (e.g., L or W ),
we can reach both the diffusion regime (� < L < ξ ) and the
localization regime (ξ < L) [17]. In this work we concentrate
on the diffusion regime. We note that, although there is no
mobility edge in the waveguide geometry, it is not essential

for our goal of observing the development of spatial correlation
inside random media of finite size.

IV. EXPERIMENTAL RESULTS AND
COMPARISON TO THEORY

Figure 3 shows the measured C̃(z1,z2) for a disordered
waveguide of L = 80 μm, W = 60 μm, ξa = 30 μm, and
� = 2.2 μm. z1 is varied between 0 and L while z2 is fixed
at L or L/2. As the distance between z1 and z2 increases,
C̃(z1,z2) decays gradually. Even when the distance becomes
much larger than the transport mean free path, the intensity
correlation does not vanish. The correlation builds up further
into the sample. As shown in the inset of Fig. 3, for a fixed
distance 
z = z2 − z1 = 10 μm, C̃ grows as z2 moves from
L/4 to L. The experimentally observed long-range correlation
inside the random system agrees well with the theoretical
predictions represented by the solid lines in Fig. 3.

Next we demonstrate the ability to manipulate the long-
range correlation by adjusting the width W of the waveguide
while keeping the length L and the degree of disorder the same.
Figure 4 compares C̃(z1,z2) for two disordered waveguides of
length L = 80 μm and W = 10 and 60 μm. z1 is moved from
0 and L while z2 is set at L. The localization length ξ falls
from 788 μm for W = 60 μm to 131 μm for W = 10 μm.
Hence, the former is in the diffusion regime (� 
 L 
 ξ ),
while the latter approaches the localization regime (L ∼ ξ ).
The conductance g, which is proportional to W , drops by a
factor of 6 from 9.85 to 1.64. The probability for two scattering
paths crossing, which scales as 1/g, is thus enhanced by a
factor of 6. This leads to a sixfold increase of the long-range
intensity correlation, as indeed observed experimentally and
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FIG. 3. Long-range intensity correlation C̃(z1,z2) in a disordered
waveguide of L = 80 μm, W = 60 μm, ξa = 30 μm, and � =
2.2 μm. z1 is varied between 0 and L while z2 is fixed at L or
L/2. Solid circles are experimental data and solid lines represent
the theoretical predictions of Eqs. (2) and (6). The dashed line
corresponds to the background taken outside the waveguide. The inset
shows C̃(z1,z2) for 
z = z2 − z1 = 10 μm and z2 = L,L/2,L/4.
Solid circles are experimental data and the solid line represents the
theoretical prediction of Eq. (2). For a fixed 
z, C̃(z1,z2) increases
when moving deeper into the sample.

in agreement with the theory in Sec. III. We note that the
enhancement of long-range correlation is caused purely by the
change of waveguide geometry with no modification of the
scattering strength.

Finally, we measured the variance of the cross-section-
integrated intensity I (z) inside the disordered waveg-
uides. As mentioned above, the normalized variance,
var[I (z)]/〈I (z)〉2 = C̃(z1 = z,z2 = z), becomes equal to the
normalized variance of total transmission when z = L.

FIG. 4. Long-range intensity correlation C̃(z1,z2) for two waveg-
uides with the same length L = 80 μm and the degree of disorder
(k� = 26) but different widths W = 60 and 10 μm. z1 is moved from
0 to L and z2 is set at L. Solid circles are experimental data and
solid lines represent the theoretical predictions of Eq. (6). The dashed
line corresponds to the background taken outside the waveguide.
The six-times reduction of the waveguide width results in a sixfold
increase in the magnitude of the intensity correlation.

FIG. 5. Normalized variance of the cross-section integrated inten-
sity I (z), var[I (z)]/〈I (z)〉2, for two waveguides with the same length
L = 80 μm and degree of disorder (k� = 26) but different widths
W = 60 and 10 μm. z is changed from 0 to L. The solid circles are
experimental data and solid lines represent the theoretical predictions
of Eq. (7). The dashed line corresponds to the background taken
outside the waveguide. The six-times reduction of the waveguide
width results in a sixfold increase in the magnitude of the intensity
fluctuations.

Figure 5 shows the measured variance inside two disordered
waveguides of width W = 10 and 60 μm. The other parameters
are the same as in Fig. 4. z is changed from 0 to L. The
fluctuations of I (z) grow with the depth of the random system.
In a narrower waveguide, the fluctuation is larger due to the
more pronounced localization effect (smaller conductance).

V. CONCLUSION

In summary, we directly measured the long-range spatial
intensity correlation inside the quasi-two-dimensional disor-
dered waveguides. Light scattered out of the waveguide plane
allowed us to probe the internal transport from the third
dimension. The long-range intensity correlation gradually
builds up as light propagates through the random system.
The fluctuations of cross-section integrated intensity also
grow with the depth into the disordered waveguide. Good
agreements between experiment and theory are obtained.
By reducing the waveguide width, we are able to enhance
the long-range intensity correlation and the relative intensity
fluctuations, without modifying the degree of disorder. This
provides an approach for the manipulation of long-range
spatial correlation of light intensity inside random media.
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