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While the absorption of light is ubiquitous in nature and in applications, the question remains how absorption
modifies the transmission channels in random media. We present a numerical study on the effects of optical
absorption on the maximal transmission and minimal reflection channels in a two-dimensional disordered
waveguide. In the weak absorption regime, where the system length is less than the diffusive absorption length,
the maximal transmission channel is dominated by diffusive transport and it is equivalent to the minimal
reflection channel. Its frequency bandwidth is determined by the underlying quasimode width. However, when
the absorption is strong, light transport in the maximal transmission channel undergoes a sharp transition and
exhibits ballistic-like transport. Its frequency bandwidth increases with absorption, and the exact scaling varies
with the sample’s realization. The minimal reflection channel becomes different from the maximal transmission
channel and becomes dominated by absorption. Counterintuitively, we observe in some samples that the minimum
reflection eigenvalue increases with absorption. Our results show that strong absorption turns open channels in
random media from diffusive to ballistic-like transport.
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I. INTRODUCTION

In mesoscopic transport, wave interference plays an es-
sential role, giving rise to well-known phenomena such as
enhanced backscattering, Anderson localization, and universal
conductance fluctuations [1–6]. Recently, another striking
interference effect has caught much attention, that is, the
existence of highly transmitting channels, termed “open
channel” in a random system [7–14]. These open channels,
which enable an optimally prepared coherent input beam
to transmit through a strong scattering medium with order
unity efficiency, were predicted initially for electrons [15–18].
However, they have not been directly observed in mesoscopic
electronics due to the extreme difficulty of controlling the
input electron states. In contrast, it is much easier to prepare
the input states of classical waves, such as electromagnetic
waves or acoustic waves. Recent developments of adaptive
wavefront shaping and phase recording techniques in optics
have enabled experimental studies of open channels [19–22].
The open channels greatly enhance light penetration into
scattering media, which will have a profound impact in a
wide range of applications from biomedical imaging and
laser surgery to photovoltaics and energy-efficient ambient
lighting [22–24].

The transmission channels are eigenvectors of the matrix
t†t , where t is the field transmission matrix of the system.
The eigenvalues τ are the transmittance of the corresponding
eigenchannels. In the lossless diffusion regime, the density
of eigenvalues τ has a bimodal distribution, with one peak at
τ � 0 that corresponds to closed channels, and a peak at τ � 1
that corresponds to open channels [15–18]. The diffusion
process is dominated by the open channels, and the average
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transmittance is proportional to the ratio of the number of open
channels by the total number of propagating channels [15,16].
At the transition to localization, the number of open channels
is reduced to one, and the open channels disappear in the
localization regime. The conductance of a localized system
is dominated by the single highest transmitting channel. In
the past few years, wavefront shaping has been utilized to
increase the coupling of the incident light to the open channels
of random media [7,11,12,14,25,26]. Numerical simulations
reveal that the open channels enhance the energy stored
inside the disordered medium [9]. In the diffusion regime,
the field energy of an open channel is spread over the entire
transverse extent of a sample, while in the localization regime
the maximal transmission channel becomes confined in the
transverse direction normal to the transmission direction [10].

In addition to the transmission channels, the transport
can also be interpreted in terms of resonances, which are
referred to as “levels” for electrons and “modes” for classical
waves [27,28]. For an open system, one can define the
quasinormal modes. These are eigenfunctions of the Maxwell
equations with complex frequency that satisfy the boundary
conditions of the outgoing wave. They describe states that have
stationary normalized spatial profiles and amplitudes decaying
in time due to radiative losses. These quasinormal modes
play an important role in transport, e.g., in the localization
regime energy is transported either by tunneling through a
localized mode in the middle of the sample or by hopping
over a necklace state that is formed via coupling of several
localized modes [29–34]. If the input beam is coupled to
multiple modes, the interference of these modes at the output
end determines the total transmission [27]. Transmission
channels and resonant modes complement each other as
approaches to describe transport phenomena [28]. At any
frequency, the transmission eigenchannels can be expressed as
a frequency-dependent superposition of resonant modes with
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specific resonance frequencies and widths. In the localization
regime, the maximal transmission channel can typically be
identified with a single resonant mode [28].

Absorption of radiation is usually assumed to suppress
interference effects such as the occurrence of open channels.
Most studies on transmission eigenchannels have considered
lossless random media where absorption is negligible. In
reality absorption exists in any material system, and could
have a significant impact on diffusion and localization [35,36].
In the microwave regime, for instance, absorption is particu-
larly difficult to avoid and leads to a significant reduction
of the transmission through disordered waveguides [11,37].
Absorption does not destroy the phase coherence of scattered
waves, but it attenuates the longer scattering paths more than
the shorter paths, thus modifying the interference patterns.
Since the open channels penetrate deeper into the random
medium than the closed channels, they would experience
more absorption. In other words, absorption should have
a stronger effect on the open channels than on the closed
channels. However, it is not clear how absorption would
modify the open channels. Moreover, it has been shown
lately that light absorption in strongly scattering media can
be greatly enhanced or inhibited by coherent effects [38–
40]. Thus the interplay between absorption and interference
determines not only the amount of energy being transmitted,
but also the amount of energy being deposited in the random
media. The investigation of strongly scattering systems with
absorption is therefore not only important to the fundamental
study of mesoscopic transport, but also relevant for applica-
tions in imaging, light harvesting, and lighting technology
[22–24,41,42].

In this paper, we address the following questions: how does
absorption modify the open channels? How does the channel
bandwidth vary with absorption? What is the correlation
between a transmission and a reflection channel in the
presence of absorption? In weak absorption, when the ballistic
absorption length la is much larger than the average path
length lp = 2L2/lt (lt is the transport mean free path), most
scattering paths are not affected by absorption. However,
when ballistic absorption length becomes smaller than the
average path length la < lp, attenuation of long scattering
paths significantly affects the transport through the system. To
study the change of light transport, we compute the spatial
field distribution inside the random medium. The spectral
width of the maximal transmission channel is important to
many of the aforementioned applications, for instance, a broad
spectral width is desired for light harvesting. To address
this question, we calculate the frequency bandwidth of input
wavefront corresponding to the maximal transmission channel
and its scaling with absorption. Experimental studies of the
transmission channels rely on the access to both sides of the
scattering media. It is, however, often more convenient and
less invasive to work in a reflection configuration, where all
measurements are on the input side of the sample. For example,
without absorption, the total transmission is maximized by
finding the minimal reflection channel [43]. In the presence
of absorption, the relation between the maximal transmission
channels and the minimal reflection channels is not known.
Therefore, we investigate the correlation between these two
channels as a function of absorption.

This paper is organized as follows. In Sec. II, we present
our numerical model of two-dimensional (2D) disordered
waveguides. In Sec. III we show how absorption modifies the
maximal transmission channel and we illustrate its correlation
with the quasinormal modes. In Sec. IV, we investigate the
minimal reflection channel in the absorbing random media.
Section V is the conclusion.

II. NUMERICAL MODEL

We consider a 2D disordered waveguide, shown schemati-
cally in Fig. 1. Dielectric cylinders with refractive index n =
2.5 and radius rc = 0.098λ are randomly positioned inside the
waveguide with perfectly reflecting sidewalls. The dielectric
cylinders occupy an area fraction of 0.04 corresponding to
an average distance between cylinders of a = 0.87λ. We
select to work at the wavelength of input light that avoids
the Mie resonances of individual dielectric cylinders. This
frequency is in the photonic regime above the first band gap
of a triangular lattice with the same area fraction [44]. Light
enters the waveguide from the left open end and is scattered
by the cylinders. Light transmitted through or reflected from
the random array is absorbed by the perfectly matched layers
placed at both ends of the waveguide. We consider transverse-
magnetic (TM) polarized light, whose electric field is parallel
to the cylinder axis (z axis). The width of the waveguide
is W = 10.3λ; the number of guided modes in the empty
waveguide is N = 2W/λ = 20. The length of the random array
of cylinders is L = 20.2λ.

To calculate the electromagnetic field inside the random
waveguide, we solve Maxwell’s equations using the finite-
difference frequency-domain method [45]. The intensity is
averaged over a cross section of the waveguide to obtain
the evolution I (x) along the waveguide in the x direction.
The ensemble-averaged I (x) exhibits the well-known linear
decay, from which we extract the transport mean free path
lt = 0.073L [46]. Since lt � L, light experiences multiple
scattering. The localization length is ξ = (π/2)Nlt = 2.3L.
The system is in the diffusion regime, as confirmed from
the linear decay of intensity but it is close to the localization
regime. The reason we chose this regime is as follows. In the

FIG. 1. (Color online) Schematic of the 2D disordered waveg-
uide used in our numerical simulation. Dielectric cylinders are
placed randomly in a waveguide with perfect-reflecting sidewalls.
The waveguide width is W , and the length of the disordered region is
L. A light field E(m)

in is launched from the left end of the waveguide,
and scattered by the cylinders. The transmitted light field E

(m)
t is

probed at the right end, and the reflected light field E(m)
r at the left

end. Perfectly matched layers are placed at both open ends to absorb
the transmitted and reflected waves.
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localization regime, the maximal transmission eigenchannel is
composed of only one or two quasinormal modes [28]. In the
diffusion regime (ξ � L), many overlapping modes contribute
to the maximal transmission channel, making the analysis
complicated. Since our system is in the diffusive regime,
close to the localization transition, the maximal transmission
channel consists of a few quasinormal modes. In this regime
the transport displays a large fluctuation from one realization
to another. Within the same statistical ensemble there are
random realizations that are closer to or further away from the
localization transition. We can therefore study a wide range of
behavior in the same ensemble.

Usually, absorption exists either inside the scattering parti-
cles, in the waveguide wall or in the background material that
hosts the particles. The concomitant contrast in the imaginary
part of the refractive index causes additional scattering, which
modifies the resonant modes [47]. In this paper we prefer to
avoid this additional scattering effect by introducing a spatially
homogeneous imaginary refractive index γ to both scatterers
and background, so that mode wave functions do not change
and we can focus on the effects of absorption and energy
loss. The ballistic absorption length is la = 1/(2kγ ), where
the wave vector is k = 2π/λ. When the ballistic absorption
length la reaches the average path length of light in a 2D
diffusive system lp = 2L2/lt , the diffusive absorption length
ξa = √

lt la/2 becomes equal to the system length ξa = L.

To construct the transmission matrix t of the disordered
waveguide, we use the guided modes or propagation channels
in the empty waveguide as the basis. We launch a guided
mode E(m)

in from the input end, calculate the transmitted wave,
and decompose it by the empty waveguide modes at the output
end, E(m)

t = ∑N
n=1 tnmE(m)

in . The coefficient tnm relates the field
transmission from an input channel m to an output channel n.
After repeating this procedure for m = 1,2, . . . N , we obtain
all the elements tnm for the transmission matrix t . Similarly,
the reflection matrix is constructed by computing the reflected
waves E(m)

r at the input end.

III. MAXIMAL TRANSMISSION CHANNEL

A singular value decomposition of the transmission matrix
t gives

t = U � V †, (1)

where � is a diagonal matrix with non-negative real numbers,
σn = √

τn, τn is the eigenvalue of t†t , τ1 > τ2 > τ3 . . . > τN .
U and V are N × N unitary matrix, V maps input channels
of the empty waveguide to eigenchannels of the disordered
waveguide, and U maps eigenchannels to output channels. The
column vectors in V (U ) are orthonormal and are called input
(output) singular vectors. The value τn represents the trans-
mittance of the nth transmission channel. The input singular

FIG. 2. (Color) Evolution of maximal transmission channel with absorption. Calculated electric field amplitude |Ez| (a), normalized
Poynting vector amplitude | �S ′(x,y)| in gray scale (b), and histogram of the weighted Poynting vector direction P (θs) (c) of the maximal
transmission channel inside the disordered waveguide as absorption L/ξa increases from top to bottom. In (a), the maximal transmission
channel remains robust against absorption with a nearly identical field pattern up to L = ξa and changes significantly beyond that point. In (b)
the winding paths of light are illustrated inside the random structure in the weak absorption regime L/ξa < 1, and more straight “snake-like”
paths in the strong absorption regime L/ξa > 1. A “loop” in the energy flow is circled in red. In (c), the angle θs from the Poynting vector to
the x axis is widely spread between −π and π when L/ξa < 1, but concentrates close to 0 when L/ξa > 1. The variance of θs , indicated above
each panel, decreases with increasing L/ξa
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vector corresponding to the highest transmission eigenvalue
τ1 gives the maximal transmission eigenchannel; its elements
represent the complex coefficients of the waveguide modes
that combine to achieve maximum transmission through the
random medium.

A. Effects of absorption on spatial field distribution and energy
flow of the maximal transmission channel

We inject light into the maximal transmission channel
and investigate the field profile inside the random medium.
In Fig. 2(a) we plot the spatial distribution of the electric
field amplitude |Ez| inside the disordered waveguide with
increasing L/ξa . To map the energy flow inside the disor-
dered medium, we compute the Poynting vector �S(x,y) =
1
2 Re[ �E(x,y) × �H ∗(x,y)]. Its projection onto the propagation
direction (x axis) is Sx(x,y) = �S(x,y) · �ex , where �ex is the
unit vector along the x axis. The net flow over a cross
section of the disordered waveguide is F (x) = ∫ W

0 Sx(x,y)dy.
Without absorption, the net flow is a constant, F (x) = F (0).
In the presence of absorption, F (x) decays exponentially
along x. For a clear visualization of the energy flow deep
inside the random structure, we normalize the Poynting vector
�S(x,y) by F (x) to compensate the energy decay such that
�S ′(x,y) = �S(x,y)/F (x). Figure 2(b) plots the magnitude of
the normalized Poynting vector | �S ′(x,y)|. For a quantitative
analysis of the light propagation direction, we compute the
angle of the Poynting vector �S(x,y) with respect to the x axis,
θs(x,y) = tan−1[(�S(x,y) · �ey)/(�S(x,y) · �ex)] where �ey is the
unit vector along the y axis. In Fig. 2(c), we plot the histogram
of θs weighted by the relative amplitude of the Poynting vector,
P (θs) = ∫ | �S ′(x,y)|δ(θs − θs(x,y))dxdy.

Let us now discuss the results in Figs. 2(a)–2(c). When
absorption is weak (L/ξa < 1), the maximal transmission
channel has nearly the same field pattern as the channel without
absorption. The energy flow inside the random structure
resembles meandering random paths that are intertwined, and
many “loops” are seen. The multiply scattered light propagates
in many directions, and the distribution of the Poynting vector’s
angle P (θs) is broad and has a large variance. Once L/ξa

exceeds 1, the spatial profile evolves. At L/ξa = 4, a noticeable
change of the field pattern is observed: The loops gradually
disappear, and the creeks become straighter. This behavior
occurs because the longer scattering paths that involve more
windings are strongly attenuated by absorption. To maximize
the transmission through the random system, light takes a
shorter and more straight path to minimize absorption. As a
result, the distribution of the Poynting vector’s angle P (θs)
becomes narrow and its variance decreases. When absorption
becomes very strong (L/ξa = 9), the maximal transmission
channel bears no resemblance to the one with weak absorption.
All meandering creeks eventually merge into a single stream
with few windings and light propagates mostly in the forward
direction.

For a quantitative characterization of the change of the
maximal transmission channel by absorption, we compute the
correlation of its input singular vector v1 with the one without
absorption v0:

CT = |(v0,v1)|, (2)

FIG. 3. (Color online) Maximal transmission eigenvalue and
eigenvector vs absorption. Solid squares connected by solid line
represent the ensemble-averaged highest transmission eigenvalue 〈τ1〉
as a function of absorption (bottom axis L/ξa , top axis lt / la). Open
circles connected by dashed line represent the correlation of the input
singular vector with absorption to the one without absorption CT . The
maximal transmission eigenchannel changes at a higher absorption
level compared to its eigenvalue.

where (v0,v1) = v0
†v1 is the inner product of the normalized

singular vectors v1 and v0. Figure 3 plots the channel’s
correlation CT , averaged over 40 random realizations, as a
function of L/ξa . Its value stays close to 1 when the system
length is smaller than the diffusive absorption length L < ξa ,
and it drops abruptly as L > ξa . In the same figure, we also plot
the ensemble-averaged highest transmission eigenvalue 〈τ1〉
vs L/ξa . Due to the small number of input channels (N = 20)
in the waveguide, the highest transmission eigenvalue 〈τ1〉
does not reach 1 even without absorption (L/ξa = 0). As the
absorption L/ξa increases, the highest transmission eigenvalue
〈τ1〉 decreases much earlier than the channel’s correlation
CT . For example, at L/ξa = 2.2, the highest transmission
eigenvalue 〈τ1〉 is already reduced by a factor of 4, while
the correlation CT remains more than 0.9. Thus in the
weak absorption regime, the maximal transmission eigenvalue
decreases while the eigenvector remains almost the same. This
means that interference remains strong, and absorption merely
reduces the amount of energy reaching the output end, but does
not change the interference pattern. However, in the strong
absorption regime, the number of significant scattering paths
is greatly reduced, and the interference effects are weakened.
Consequently, the maximal transmission channel starts to
change dramatically and becomes “ballistic-like” as we have
seen in Fig. 2.

B. Correlation of the maximal transmission channel with
quasinormal modes

To understand how the maximal transmission channel is
formed and how it is modified by absorption, we investigate the
related quasinormal modes. Unlike the input or output singular
vectors of the transmission matrix, the quasinormal modes of
an open random system are not orthogonal [48–50], thus it is
difficult to decompose the 2D field pattern of a transmission
eigenchannel by the quasinormal modes. Alternatively, we
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FIG. 4. (Color online) Quasinormal modes contributing to the
maximal transmission channel. (a) Spatial distribution of electric
field amplitude (|Ez|) for the six quasinormal modes with the highest
degree of correlation with the maximal transmission channel in Fig. 2.
The normalized center frequency δkrL = (kr − ko)L and linewidth
kiL of each mode are given on top of each panel within parentheses
(δkrL, kiL), where (kr + iki)c = ωr + iωi is the complex frequency
of the quasimode at zero absorption. (b) A typical transmission
spectrum for a random input field. The arrows mark the center
frequency of the modes (i)–(vi). (c) Correlation of the six quasimodes,
labeled (i)–(vi) in (a), with the maximal transmission channel CM as a
function of L/ξa . Modes that contribute the most at low absorption are
closest to the channel frequency but spatially confined in the random
structure so maximal transmission is facilitated through resonances
hopping.

compute the degree of correlation between each quasimode
and the eigenchannel to identify the modes that contribute
significantly to the transmission channel. We used the com-
mercial program COMSOL to compute the complex frequency
(ω = ωr + iωi) and field pattern of each quasinormal mode
in the disordered waveguide. The imaginary part ωi of the
complex frequency gives the decay rate or spectral width of the
resonance, and the ratio of ωr to ωi is proportional to the quality
factor. The contribution of a mode to the maximal transmission
channel is reflected in the correlation of their spatial field
profiles, CM = | ∫ E∗

q (x,y)Ec(x,y)dxdy|, where Eq(x,y) and
Ec(x,y) represent the normalized spatial distribution of the
electric field Ez for the mode and the channel, respectively.

For the maximal transmission channel in Fig. 2, we identify
six quasimodes with the highest degrees of correlation, and
present their field patterns in Fig. 4 (a). The first three
modes, labeled (i)–(iii), have the dominant contributions to
the maximal transmission channel at zero absorption. Mode
(i) is a tightly confined mode, which is visible in the field
profile of the eigenchannel [Fig. 2(a)]. Modes (ii) and (iii)
are more extended, but they are not spread over the entire
system, instead mode (ii) concentrates in the left half of the
disordered waveguide, and mode (iii) in the right half. Their

field patterns can be recognized in that of the eigenchannel. In
contrast, modes (iv)–(vi) are spatially extended over an entire
disordered waveguide, and their linewidths (decay rates) are
larger than those of modes (i)–(iii). Figure 4(b) plots a typical
transmission spectrum for a random input field. Modes (i)–(iii)
are closest to the probe frequency and they have the largest
contributions to the maximal transmission channel. Since
these modes have little spatial overlap, optimum transport of
energy is facilitated by hopping through them. Hence, the
maximal transmission channel can be regarded as a necklace
of resonances strung from one side of the system to the other.
It is similar to the necklace state that dominates the transport in
the localization regime [30], except that it is not a single state
(quasinormal mode) but an eigenchannel of the transmission
matrix. Although the total transmission at the center frequency
of mode (ii) is lower than that of mode (v), mode (v) is
spectrally farther away from the probe frequency than modes
(ii), and its contribution to the maximal transmission channel
is much smaller. We note that if the probe frequency shifts
to the vicinity of the center frequency of mode (v), this
mode will dominate the highest transmission channel, and the
maximal energy transport occurs via an extended mode. Thus
the necklace-like channels of maximal transmission exist only
at certain probe frequencies.

Figure 4(c) shows how the correlation between the maximal
transmission channel and the quasinormal modes change with
absorption. In the regime of weak absorption (L < ξa), the
correlation with each mode remains nearly constant, thus the
field pattern of the transmission channel hardly changes. Note
that the absorption is uniform and does not modify the spatial
profile of individual quasimodes. When the absorption is
strong (L > ξa), the correlation with modes (i)–(iii) decreases
while the correlation with modes (v) and (vi) increases. These
modes, unlike modes (i)–(iii), are extended over the entire
system, and their contributions to the maximal transmission
channel increase with absorption. With a further increase of
absorption to L/ξa = 9, the maximal transmission channel
has contributions from all the quasimodes that have spectral
overlap with the channel. The interference of these modes leads
to the formation of the ballistic-like channel with maximal
transmission.

C. Scaling of spectral width of maximal transmission
channel with absorption

The profile of the maximal transmission channel changes
with frequency. Its spectral width gives the frequency interval
over which a fixed input wavefront, optimized at a single
frequency, still leads to strongly enhanced transmission. A
previous study on light focusing through lossless turbid media
shows that the frequency bandwidth of a wavefront optimized
for a single focus is equal to the width of the speckle correlation
function D/L2, where D is the diffusion coefficient [51].
In this section, we investigate how absorption modifies the
frequency bandwidth of the maximal transmission channel.

To compute the bandwidth, we first input monochromatic
light at frequency k0 with the wavefront corresponding to the
input singular vector of the maximal transmission channel,
and calculate the total transmission T (k0) at the output end.
Then, we scan the input light frequency k while keeping the

224202-5



LIEW, POPOFF, CAO, MOSK, AND VOS PHYSICAL REVIEW B 89, 224202 (2014)

same wavefront and calculate the new transmission value T (k).
As the frequency k is detuned from k0, the total transmission
T decreases. The bandwidth of the transmission channel is
defined by the full width at half maximum (FWHM) as �k =
k2 − k1, where T (k1) = T (k2) = T (k0)/2, k1 < k0 < k2. With
the introduction of absorption, �k increases.

We observe varying scaling of �k with lt / la for various
disorder configurations. Figure 5 (a) shows three types of
behavior where the bandwidth increases linearly for realization
A (blue dashed line), sublinearly for realization B (green solid
line), and superlinearly for realization C (red dotted line) with
lt / la . In contrast, all the quasinormal modes exhibit the same
linear increase of their spectral width with absorption. The
average spectral width of quasimodes is shown by the black
dash-dotted line in Fig. 5(a).

To interpret these results, we again consider the quasi-
normal modes underlying the transmission eigenchannel. We
calculate the mode participation number defined as Meff ≡
(
∑

CM )2/(
∑

C2
M ). The summation includes modes within

a fixed frequency range of |k − k0|L < 0.62. Modes with a
frequency beyond this range have a negligible contribution as
they are spectrally located far outside the bandwidth of the
maximal transmission channel. Figure 5(b) plots the mode
participation number vs absorption for the three realizations
A, B, and C. For A (linear scaling of �k with lt / la), Meff

increases slightly with lt / la , whereas for B (sublinear scaling
of �k with lt / la), Meff decreases. In contrast, C, which features
a superlinear scaling of �k with lt / la , exhibits a rapid increase
in Meff as absorption increases. These results indicate that the
bandwidth of the maximal transmission channel is related to
the number of quasimodes contributing to the transmission.
Figures 5(c) and 5(d) show the total transmission for the
input vector that gives the maximal transmission at k0 vs
the frequency detuning of input light k − k0 at lt / la = 0 and
0.016 for realizations B and C, respectively. We note that
without absorption, the transmission of B that possesses a
higher mode participation number, has a broader bandwidth
than C. This is explained by the fact that more modes
at different frequencies contribute to the total transmission.
The dramatic increase in the mode participation number for
C adds to the absorption-induced broadening, leading to a
superlinear increase of the channel bandwidth. Conversely,
for B the broadening due to the increase of absorption is
partially compensated by the reduction in the number of
modes participating in the transmission, resulting in a sublinear
behavior.

We have calculated many realizations, and found the
behavior of A and C to be more common. To explain the
trend of B in Fig. 5(b), we plot in Fig. 5(e) the correlations
of the maximal transmission channel with six quasimodes,
labeled (i)–(vi), in the disordered waveguide B. These modes
have the highest correlations with the maximal transmission
channel at zero absorption. The center frequencies of these
modes are marked by arrows in Fig. 5(c), and their linewidths
are given in Fig. 5(e). With increasing absorption, mode (vi)
quickly de-correlates with the maximal transmission channel,
indicating its contribution to the channel decreases rapidly.
This mode is located close to the probe frequency and its
linewidth is small without absorption. As shown schematically
in Fig. 5(f), absorption spectrally broadens this mode, and

FIG. 5. (Color online) Dependence of the spectral width of the
maximal transmission channel on absorption. (a) Spectral width of
the maximal transmission channel �k with absorption (bottom axis
lt / la , top axis L/ξa) for three waveguide realizations A, B, and C.
The increase is linear for realization A (open squares connected by
blue dashed line), sublinear for B (solid circles connected by green
solid line), and superlinear for C (solid diamonds with red dotted
line). Black dash-dotted line represents the average linewidth for the
quasimodes. (b) Mode participation number Meff vs absorption, it
increases slightly for A, decreases for B, and increases dramatically
for C. (c) and (d) Total transmission for the input vector that gives
the maximal transmission at k0 as a function of frequency detuning
of input light k − k0 at lt / la = 0 (dashed line) and 0.016 (solid line)
for realizations B and C. (e) Correlation of six quasimodes, labeled
(i)–(vi), with the maximal transmission channel as a function of lt / la .
The normalized center frequency of each mode is marked by an
arrow in (c), and the normalized linewidth kiL at zero absorption is
given next to the panel. (f) Schematic of the transmission spectrum
having two quasimodes in the absence of absorption (dashed line) and
with absorption (solid line). It shows how the spectral broadening
by absorption modifies the contributions of these two modes to
the transmission channel at k0. For the mode centered at k0, its
contribution to the channel decreases rapidly. For the mode farther
away from the probe frequency, its contribution increases when
absorption becomes strong.

its spectral overlap with the channel decreases, leading to
a reduction in its contribution to the maximal transmission
channel. Another mode (v) which has narrower linewidth
than mode (vi) is detuned from the probe frequency, and
its spectral overlap with the channel is lower. Consequently
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its contribution only decreases slightly with absorption. All
other modes have broader linewidth at zero absorption, and the
absorption-induced broadening is relatively weak. Thus their
contributions to the maximal transmission channel change
more slowly with absorption. Therefore, the decrease of mode
participation number with absorption is due to rapid reduction
in contributions from the long-lived modes that are almost
in resonance with the channel. With a further increase of
absorption, the modes, initially having little overlap with the
probe frequency, are spectrally broadened enough to contribute
to the maximal transmission channel at the probe frequency,
leading to an increase of the mode participation number.

Even though there appears to be different scaling behavior
from one disorder realization to another, the ensemble-
averaged bandwidth of the maximal transmission channel
increases linearly with absorption. This result echoes the
finding reported in Ref. [40] where the linewidth of the perfect
absorption channel exhibits a linear scaling with absorption.

IV. MINIMAL REFLECTION CHANNEL

In lossless random media, the maximal transmission chan-
nel is equivalent to the minimal reflection channel; the only
way of reducing reflection is to enhance transmission. In an
absorbing medium, this is no longer true: Reflection may
be reduced by enhancing absorption instead of transmission.
In this section, we study the relations between the maximal
transmission channel, the minimal reflection channel, and the
maximal absorption channel in absorbing random media.

The reflection eigenchannels are obtained by singular value
decomposition of the field reflection matrix r . The input
singular vector corresponding to the lowest singular value
gives the minimal reflectance. We compute the correlation
between the input singular vector for maximal transmission
and that for minimal reflection using the same definition as
in Eq. (2) and present the result in Fig. 6 (blue solid line).
The correlation is almost one in the weak absorption regime
(L < ξa), but drops quickly once in the strong absorption
regime (L > ξa). When the absorption is weak, the lowest
reflection is still achieved by maximizing transmission. With
strong absorption, light that is not reflected can be either
transmitted or absorbed. Hence, reflection is reduced by
enhancing both transmission and absorption.

To find the maximal absorption channel, we introduce the
matrix h that links light incident from one end of the waveguide
to the transmitted and reflected fields:

h =
(

r

t

)
, (3)

where r and t are the field reflection and transmission
matrices. An eigenvalue of h†h represents the sum of the
reflectance and the transmittance of its associated input
singular vector. The singular vector of h with the smallest
singular value corresponds to the maximal absorption channel.
The correlation coefficient between the minimal reflection and
maximal absorption channels is plotted as a function of the
absorption in Fig. 6 (black dashed line). As the correlation
between the minimal reflection channel and the maximal trans-
mission channel decreases, the correlation between the mini-
mal reflection channel and the maximal absorption channel

FIG. 6. (Color online) Absorption-induced change of minimal
reflection channel. Solid circles connected by solid line represent
the correlation between the minimal reflection channel and the
maximal transmission channel. Open squares connected by dashed
line represent the correlation between the minimal reflection channel
and the maximal absorption channel. The minimal reflection channel
is the same as the maximal transmission channel when absorption is
weak L < ξa , but it approaches the maximal absorption channel as
absorption is strong L > ξa .

increases. Eventually, in the strong absorption regime, the
minimal reflection channel becomes identical to the maximal
absorption channel, indicating that the minimal reflection is
achieved by maximizing absorption instead of transmission.

Intuitively one expects all reflection eigenvalues to decrease
with increasing absorption. Indeed, we show in Fig. 7(a),
the ensemble-averaged minimal reflection eigenvalue de-
creases with absorption. Strikingly, in a significant number
of realizations we have observed the opposite behavior, a
counterintuitive increase of reflection caused by absorption.
In Fig. 7(a) we show the minimal reflectance of a selected
realization. The minimal reflectance (eigenvalue of r†r) first
decreases slightly as L/ξa increases from 0 to 1, then rises
rapidly by a factor of 3 before dropping again at larger
absorption. In Figs. 7(b) and 7(c) we show the electric field
patterns inside the random waveguide corresponding to the
minimal reflectance without absorption and at L/ξa = 3 where
the lowest reflection eigenvalule reaches a local maximum.
In the absence of absorption, light penetrates deep into the
random medium with the field maxima close to the center of
the sample. However, at L/ξa = 3, the penetration depth is
greatly reduced and the field maxima shift to the input end of
the random system. The field pattern close to the input surface
of the same is also strongly modified.

To understand this counterintuitive behavior, we investigate
the quasimodes that contribute to the minimal reflection
channel. Figure 7(d) plots the degree of correlation between
the minimal reflection channel and two quasimodes (labeled
1 and 2) that have the highest contributions, and Figs. 7(e)
and 7(f) show their field patterns. Without absorption, the least
reflection channel is dominated by mode 1 that is located
near the center of the sample. Destructive interference of
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FIG. 7. (Color online) Example of increasing minimal re-
flectance with absorption. (a) Open circles connected by dashed
line represent the ensemble-averaged lowest reflection eigenvalue
as a function of absorption. Solid squares connected by solid line
represent the lowest reflection eigenvalue of a selected realization
that increases with absorption. (b)–(g) are for the selected realization.
(b) and (c) Spatial distribution of the electric field amplitude |Ez(x,y)|
inside the random waveguide at L/ξa = 0 and 3, respectively. The
lowest reflection eigenvalue reaches a local maximum at L/ξ = 3.
(d) Correlation of the minimal reflection channel with quasimodes 1
and 2. (e) and (f) Electric field patterns of mode 1 and 2. (g) Solid
circles connected by solid line (open diamonds connected by dashed
line) represent the reflectance of a fixed input wavefront E1(E2) that
corresponds to the input singular vector of the minimal reflection
channel at L/ξa = 0 (L/ξa = 3).

various scattering paths of light in the disordered waveguide
minimizes the reflectance. This explains the low minimal
reflectance value of the selected realization compared to the
ensemble-averaged one. With the introduction of absorption
to the system, relative amplitudes of these paths are changed,
the longer paths are attenuated more than the shorter paths,
thus the destructive interference is weakened, leading to an
increase of the reflectance as shown in Fig. 7(a). When the
minimal reflectance has a maximum at L/ξa = 3, the field
pattern of the minimal reflection channel shown in Fig. 7(c),
resembles that of mode 2 in the left half of the waveguide.
At this strong absorption level, the contribution of mode 1 to
the minimal reflection channel is negligible, whereas mode 2
becomes dominant, which is a mode with a larger overlap with
the input light into the disordered waveguide. Therefore, the
interference in the bulk of the sample—which is the cause of
open transmission channels—is suppressed, which leads to an
increased reflectance.

Let us now consider the input wavefront E1, which
corresponds to the minimal reflection channel (or maximal
transmission channel) without absorption. E1 couples most
of the input energy into mode 1. Figure 7(g) shows the
reflectance associated with input wavefront E1 as a function
of absorption L/ξa . When absorption becomes significant
(L > ξa), the reflectance increases rapidly, up to 5 times its
value at L/ξa = 0. Another input wavefront E2, corresponding
to the minimal reflection channel at L/ξa = 3, couples most of
the energy into mode 2. In Fig. 7(g), we show the evolution of
the reflection value associated to this wavefront with absorp-
tion. As expected, the reflectance decreases with increasing
absorption. Once the reflectance with input wavefront E2

becomes lower than that associated with E1, mode 2 becomes
dominant in the minimal reflection channel. This illustrates
that with increasing absorption, the mechanism that produces
the minimal reflection channel changes from transmission to
bulk absorption. Moreover, it shows the significant role played
by interference of scattered waves up to the point where the
absorption becomes dominant.

V. DISCUSSION

It has been suggested that the change in transport be-
havior of the maximal transmission channel with increasing
absorption bears similarity to the change found recently in the
dynamic transport of localized samples [52]. There ballistic
transport was observed at early times after a pulsed excitation,
which involved all excited quasimodes. At later times, the
modes with shorter lifetimes dissipate, and only the modes
with longer lifetimes survive and dominate transmission. In the
case of strong absorption, long optical paths are eliminated and
only short paths survive, making the transport ballistic-like.
The maximal transmission channel consists of both long-lived
and short-lived modes, similar to the dynamic transport at
early times. In the long time limit, the transmission of a
localized sample is dominated by a single quasimode with the
longest lifetime, however, the maximal transmission channel
in a diffusive sample with weak or no absorption consists of
multiple long-lived modes as shown in Sec. III.

It is worth noting that such necklace-like transport due to
hopping of several spatially confined modes is unlikely to
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exist if the width of the disordered waveguide is increased
significantly. This is because the localization length, which
increases linearly with the waveguide width, will become
much larger than the system length. Hence the system moves
farther away from the localization regime; most quasimodes
are spatially extended over the random media. In addition,
the mode density increases with the system size. No matter
what the probe frequency is, there are always extended modes
nearby which contribute significantly to the transmission
channel. Thus the maximal transmission channel is expected
to consist of many extended modes whose interference
leads to the highest transmission. Only in the diffusive system
close to localization transition, some of the quasimodes
become spatially confined, and the maximal transmission
channel can be necklace-like.

The ballistic-like maximal transmission channel, found
here in the presence of strong absorption, may enable new
modes of imaging that are specific to absorbing media. To
check whether such ballistic-like transmission channels also
exist without absorption, we examine all transmission channels
in the nonabsorbing disordered waveguides. We compute the
histogram of the Poynting vector direction P (θs) for every
transmission eigenchannel in three random realizations. The
variance of P (θs) remains large for all transmission eigen-
channels, including those with low transmission eigenvalues.
Hence, the ballistic-like transmission channel does not seem
to exist in our systems without absorption. Nevertheless, it
is important to introduce a physical quantitative that measures
how “ballistic” a transmission channel is. One possibility is the
average transmission time [53], which merits further study.

VI. CONCLUSION

We have performed a detailed numerical study to under-
stand how absorption modifies transport in a 2D disordered
waveguide, with emphasis on the maximum transmission
channel. The maximal transmission channel is relatively robust
against absorption compared to the transmittance. Its input
wavefront remains nearly unchanged up to L ≈ ξa , but changes
rapidly beyond that point. In the maximal transmission

channel, light propagates through the random structure along
winding paths when absorption is weak (L < ξa), and takes
more straight routes once absorption is significant (L > ξa).
We investigate the correlations between the quasinormal
modes and the maximal transmission channel to illustrate
the mechanism of enhanced transmission in both weak and
strong absorption regimes. Maximal transmission is facilitated
by hopping through localized modes when absorption is
weak, and is dominated by more extended modes when
absorption is strong. We observe distinct scaling behavior for
the spectral width of the maximal transmission channel in
different random configurations. Such differences result from
the absorption-induced change in the number of quasimodes
that participate in the maximal transmission channel. The
channel spectral width increases linearly with absorption, if the
mode participation number Meff remains almost constant; the
width increases sublinearly if Meff decreases, and superlinearly
if Meff increases.

In the absence of absorption, minimal reflection corre-
sponds to maximal transmission, but this correspondence no
longer holds in the regime of strong absorption (L > ξa),
where minimal reflection corresponds to enhanced absorption.
In some instances, we have observed the surprising feature that
the minimal reflection eigenvalue increases with absorption,
which can be explained by the reduction of destructive interfer-
ence. The numerical study presented here provides a physical
understanding of the effects of absorption on transmission
and reflection eigenchannels at the relevant mesoscopic scale,
which will hopefully serve in the interpretation of experimental
work, and in the design of practical applications.
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