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Density of resonant states and a manifestation of photonic band structure in small clusters
of spherical particles
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We introduce a numerical recipe for calculating the density of the resonant states of the clusters of dielectric
spheres. Using truncated multipole expansions~generalized multisphere Mie solution! we obtain the scattering
matrix of the problem. By introducing an infinitesimal absorption in the spheres we express the dwell time of
the electromagnetic wave in terms of the elements of the scattering matrix. Using the parameters in recent light
localization experiments@Phys. Rev. Lett.87, 153901~2001!#, we demonstrate that the density of the resonant
states, related to the dwell time, shows the formation of the photonic band structure in small clusters of
dielectric spheres as the small as five particles. Density of resonant states of a cluster of 32 spheres exhibits a
well defined structure similar to the density of electromagnetic states of the infinite photonic crystal. Our
results suggest that, due to the formation of small ordered clusters, a significant modification of the density of
electromagnetic states can occur in a random collection of monodisperse spheres.
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The idea of employing photonic crystals, structures wit
periodically modulated dielectric constant, to manipulate
density of states~DOS! of electromagnetic~EM! waves1,2 led
to an explosion of interest, both academic and practical.3,4 In
a photonic crystal, in a given crystallographic direction, lig
can propagate only for frequencies within photonic ban
described by a dispersion relationv5v~k!, similar to elec-
tron de Broglie waves in crystals. If the gaps between
bands overlap for all directions in the crystal, the photo
crystals possesses a complete photonic band gap.5 For fre-
quencies inside the complete gap, the density of EM st
turns to zero, which leads to new phenomena such as
suppression of spontaneous emission, light localizat
zero-threshold lasers, all-optical transistors and circuitry,
anomalous nonlinear properties.1–4,6 For theoretical consid-
erations, the size of the crystal is usually assumed infinite
practice, however, one always deals with finite structur
Naturally, a question arises. How large should a photo
crystal be, in order to exhibit photonic band structure? In t
paper, we show that the modification of the density of E
states may begin for a cluster of five spheres. This sugg
that scattering of light by ordered aggregates of spheres
be important in the problem of light propagation in den
random media. Indeed, an ensemble of monodispersed
nant scatterers~e.g., spheres! is considered one of the mos
favorable7 for satisfying Ioffe-Regel criterion for Anderso
localizationklscat&1,6–11 wherek is the wave number in the
medium andl scatis the scattering length. Closely packed fa
centered cubic~fcc! arrangement often appear in se
assembled structures and it is shown to have lowest
energy. This fact points to a high probability of formation
ordered clusters in a collection of spheres. Even though
complete photonic gap can never be realized in an fcc st
ture of dielectric spheres in air, for some parameters, the t
density of EM states can be significantly suppressed in
tain frequency regions. Our results suggest that such supp
sion can occur due to the presence of the clusters even w
out long range order.

Treatment of photonic structures, with all three dime
0163-1829/2003/68~8!/085111~5!/$20.00 68 0851
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sions of the order of the wavelength has been a challen
When the distance between scatterers is comparable to
size, analytical methods, such as single scattering appr
mation, dipole approximation become invalid.7 Numerical
methods tailored for calculation of transmission through
slab12,13cannot be applied because it requires the lateral
of the slab to be larger than all characteristic lengths. T
finite difference time domain~FDTD! method is used exten
sively in photonics design.14 Obtaining the density of state
with the FDTD-based ONYX method13 requires a time-
dependent solution. Combined with densel/20 spacial grids,
it makes the problem computationally demanding in 3
even for the smallest structure considered in this paper.

For small truncated photonic crystal structures, scatter
language becomes appropriate. It has been proposed to
multipole expansions as a means of simplifying the num
cal solution of the electromagnetic problem.15–17 In Ref. 17,
2D Green’s function was calculated in terms of multipo
coefficients, which, in turn, allowed the calculation of th
local DOS. In our paper we calculate the total density
resonant states~DORS! of the entire cluster in 3D, with the
help of the generalized multisphere Mie~GMM! solution.18

The obtained quantity corresponds to the local density of
states integrated over the volume of all scatterers. First,
obtain the elements of the scattering matrix for the collect
of dielectric spheres. Then, the density of resonant EM st
of the cluster is expressed in terms of the scattering ma
Within this approach, one only needs to evaluate vec
spherical-function expansion coefficients, there is no need
in the FDTD method, to find EM fields at every spaci
point. The method requires considerably less memory
computation time. An important class of photonic crysta
opals, can be treated in this framework as an example.
should note that the maximum number of particles, wh
can be treated numerically decreases with the increase o
size parameterx5k•r and refractive index. Herek denotes
the wave number andr is the sphere radius.

Recently, the propagation of microwaves through a c
lection of spherical scatterers was studied in Ref. 9, wh
©2003 The American Physical Society11-1
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light localization has been observed. To illustrate our
proach we will use the parameters from this reference.
demonstrate that in the considered system:~i! the signatures
of the photonic band structure can appear for aggregate
small as five particles,~ii ! in a cluster of 32 particles the
density of~resonant! states can show strong resemblance
that of an infinite structure, with a pronounced depletion
the region of pseudogap,~iii ! the photonic band structure o
the finite clusters is tolerable to a certain degree of rand
displacements of the particles off their lattice sites, and~iv!
the region with depleted density of states coincides with
region where the light localization in Ref. 9 was observ
The latter suggests that the localization may have been
cilitated by the photonic bandgap effect due to short ra
ordering in the collection of spherical scatterers.

The cluster is an open system that does not support st
modes, quasistates of the EM field are leaky, and the den
of the states cannot be specified. For the related problem
electrons19 in a stochastic cavity with an opening the Wign
delay time

t̂w~E!52 i\
] ln~detŜ!

]E
52 i\ tr Ŝ1

]Ŝ

]E
, ~1!

expressed in terms of scattering matrixŜ, can be shown to be
proportional to the density of resonant modes19–21

tw~E!}(
j

g j /2

~E2Ej !
21~g j /2!2

, ~2!

whereEj andg j are the energy and the linewidth of thej th
resonance. tr in Eq.~1! represents the trace operation. For
infinite system, the poles of the scattering matrixŜ approach
the real energy axis and the stationary modes are formedg j
becomes zero.19 Then one can define a mode counting fun
tion N(E1 ,E2)5*E1

E2tw(E)dE, which represents the integra

density of states in the energy interval (E1 ,E2). Analytic
property of the scattering matrix allows one to obtain a c
venient expression for the delay time in Eq.~1!.7,19,22,23Fol-
lowing Ref. 23 we introduce a weak absorptiona in the
scattering region, then perturbatively

Ŝ~E1 ia!.Ŝ~E!S 11 iaŜ1
]Ŝ

]E
D . ~3!

This leads to a simple expression for the time delay mat

t̂w~E!52 i\ lim
a→`

tr Ŝ1
Im Ŝ~E1 ia!

a
, ~4!

which does not contain the energy derivative.
Implementing the above procedure for a chaotic cavity

straightforward.23 However, it is not so for the ensemble o
scatterers we would like to consider. At this point we retu
to the original expression in Eq.~1!. For EM waves, one can
define dwell timetd which closely follows EM version of
the Wigner time, giving asymptotically the same result
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the resonances.7 Dwell time corresponding to the time spe
inside the scatterers can be readily found in terms of sca
ing coefficients as follows:

td~v!5

(
i

N E
Si

W~r ,v!dV

csscat~v!
, ~5!

whereW(r ,v)5n2(r ,v)E2(r ,v)/E0
2 is electromagnetic en

ergy density normalized so that it is 1 for the incident pla
wave ~in vacuum!, sscat is the total scattering cross sectio
andc is speed of light. The integral in Eq.~5! is taken over
the volume of each scattererSi . The nominator of the above
expression fortd has dimensionality of the volume, so th
the total expression has a unit ofr /c. When multiplied by the
frequencyv the time given by Eq.~5! at the position of a
resonance coincides with its quality factorQ. The expression
for the dwell time can be understood physically as a ra
between the energy stored in a scatterer divided by outgo
energy current.

Strictly speaking the time measured by Eq.~5! is the time
spent inside scatterers comprising the cluster. In genera
multipole solution of the scattering problem would allow o
to obtain the energy density even in between the scatte
This, however, is not possible for the computer code18 that
we used in our numerical simulations. The dwell time giv
by Eq. ~5! is nevertheless of direct physical importance f
the random lasers with gain concentrated in the particles24

The dwell time defined by Eq.~5! can be found by using
the trick used in Eq.~4!. Indeed*Si

W(r ,v)dr can be found
by introducing an infinitesimally small absorption in the r
fractive index of the spheresn1 ik7

E
Si

W~r ,v!.S 4p

3
r i

3D3

8
n lim

k→0

Qabsi

xik
, ~6!

whereQabsi5sabsi /(pr i
2) is the absorption efficiency, an

xi52pr i /l is size parameter of thei th sphere. This ap-
proach is similar to using the ‘‘nonunitary clock’’22 to mea-
sure the time spent by the light inside a one-dimensio
chain. The problem of finding DORS for the finite size
cluster is now reduced to finding the absorption and scat
ing cross sectionssabsi ,sscat. This step can be done b
evaluating the expansion series of GMM solution.18 The ob-
tained dwell times depends on the particular orientation
the cluster with respect to the incident plane wave. To obt
a measure of the total density of resonant statestd

tot , expres-
sion ~5! has to be averaged over different orientations.

As was already mentioned we used the parameters of
9 to illustrate our approach. We considered the clusters o
and 32 spheres, with diameter 0.95 cm and refractive in
n53.14. For both clusters we assumed fcc ordering with
distance between nearest neighbors of 1.9 cm. Smaller c
ter is comprised of three planar layers perpendicular to
111 direction, with 1, 3, and 1 sphere in each layer as sho
on Fig. 1~a!. In the larger cluster, particles were arranged
5 layers with 3, 7, 12, 7, and 3 spheres in each layer, with
same stacking as in the first cluster@Fig. 1~b!#. The system
1-2
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DENSITY OF RESONANT STATES AND A . . . PHYSICAL REVIEW B68, 085111 ~2003!
considered here should be contrasted from the slab geom
~infinite planes!, which has a quasi-1D nature.

The choice of these clusters was motivated for the follo
ing reasons. The shape of the clusters was chosen t
spherical. Such clusters have the smallest ‘‘surface’’ area~as
compared, e.g., to the particles arranged in a planar lay!,
and it would correspond to the least free energy~the highest
packing! configuration of the particles in a random mediu
Moreover, to fully demonstrate the flexibility of our metho
we will consider the effect of disorder on the optical prop
ties of the clusters. As mentioned above, to determine
density of resonant states one needs to average over an
orientations of the clusters. When the size of the cluster
creases the angular size of a resonance should bec
smaller, which will require more orientations to be taken
the average. When performing the angular average for
ordered cluster one can take advantage of the symmetr
the cluster. For the chosen clusters nine symmetrically n
equivalent orientations~altogether 108 directions, accountin
for symmetry! sufficed to get the convergence. Such symm
try reduction is not possible however in for disordered cl
ters, so one needs to take all 108 orientations into acco
Since we also take average over 10 disorder realizations
computation time limited the maximum size of the cluster
32 spheres.

One characteristic property of a photonic crystal is spa
dispersionv(k). On Fig. 2 we compare dispersion curves
the infinite photonic crystal, obtained using MIT photon
bands code,25 to the dwell times for two clusters, describe
above, calculated for two different incident angles cor
sponding toX and L crystallographic directions. It can b
easily seen that even for smaller cluster of five particlestd
shows the formation of the resonant modes at the posit
of photonic modes in theL direction. For the cluster of 32
particles, a well defined mode structure appears in both

FIG. 1. The arrangement of spheres in~a! 5- and~b! 32-particle
ordered clusters.
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rections. However, it is more pronounced for theL direction,
where six resonant states between 12 and 16 GHz ca
traced toL modes of the infinite photonic crystal. The shift o
modes can be ascribed to the coupling between diffe
modes owing to the finite size of the system. Indeed, in
infinite structure the conservation of momentum of E
wave, due to periodicity, would decoupleL modes, whereas
the finite coupling in truncated crystal leads to the shift a
widening of the resonances. Based on symmetry consi
ations, we can understand the strongerL modes as compare
to X modes. The former are formed due to Bragg reflectio
from 3 or 5~for the smaller and larger clusters, respective!
layers formed by adjacent~nearest! neighbors in the 111 di-
rection, while in theX direction, Bragg planes are forme
only by next-nearest neighbors, which would make th
more susceptible to the truncation.

We note that our calculation scheme does not allow us
compare the relative values of the peaks. It gives only
contribution to DOS that comes from the scatterers. Nev
theless we can clearly identify the modes of the clusters w
the modes of the infinite structure. Moreover this allows o
to find the dispersion curves similar to Fig. 2~b! but in finite
clusters.

td
tot and angularly averagedsscat in the region of the first

two single sphere Mie resonances are shown in Figs. 3~b!,
3~c!. For comparison we included DOS@Fig. 3~a!# calculated
for the infinite crystal using the method described in Ref.
Judging from scattering cross section only, one cannot c
pare a finite cluster to the infinite structure, whiletd

tot allows
a straightforward comparison with DOS of the photon
crystal.

Figure 3~b! shows twofold decrease ofsscat at Mie reso-
nances in the cluster. This suppression of the scattering

FIG. 2. The photonic crystal band structure~middle! is com-
pared to the dwell times obtained for scattering from a single sph
~bold solid line!, a cluster of five spheres~dashed line!, and a cluster
of 32 spheres~thin solid line!. The upper graph corresponds to E
plane wave incoming in the 100~X! direction, and the lower graph
to the—111~L! crystallographic direction.
1-3
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ALEXEY YAMILOV AND HUI CAO PHYSICAL REVIEW B 68, 085111 ~2003!
ciency can be attributed to the hybridization of the sin
particle resonances27 due to multiple scattering. The dwe
time is closely related to the nearfield7 inside the clusters
where formation of the Bragg standing modes leads to s
stantial modification of the spectrum@Fig. 3~c!#. For a 32-
sphere cluster one can see a strong resemblance betwee
density of the resonant modes expressed bytd

tot and the DOS
in the photonic crystal@Fig. 3~a!#. It is interesting to compare
our results to the 1D case considered in Ref. 28. For a s
of periodically arranged quantum wells it was argued t
with an increase in the system size, the subradiant EM mo
formed stable modes of the photonic pass band with la
lifetimes, similar to our result for dwell times in the finite 3
clusters.

To assess the sensitivity of our results to disorder in
cluster, we performed the calculations ofsscatandtd

tot , Figs.
3~d!, 3~e!, for the cluster of 32 spheres displaced by the h
of the particle radius in random directions~dashed lines! off
their initial positions and the cluster of 32 spheres where
spheres are replaced by defect spheres of a different diam
~0.85 cm! ~solid lines!. One can see that these two types
disorder had different effects on the spectra. While positio
~topological! disorder led only to smearing of only sha
resonances, the defect spheres also introduced a numb

FIG. 3. ~a! Density of EM states in the infinite photonic crysta
~b! Normalized scattering cross section for a single sphere~dotted!,
and clusters of five~dashed! and 32~solid! spheres.~c! Normalized
dwell time for the same as in~b!. ~d! Normalized scattering cros
section for a cluster of 32 spheres, displaced by a half radius
random direction off their lattice position~dashed line!, and a clus-
ter of 32 spheres, where 5 spheres were replaced by the sm
0.85 cm diameter, spheres~solid line!. ~e! Delay time for the same
as in ~d!.
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new peaks. The later effect can be related to the new re
nances introduced by the defect spheres. The effect of
topological disorder on photonic bandgaps was studied
~finite but comprised of large number of particles! 2D ~Refs.
29,30! and infinite 3D photonic crystals.31,32 Our conclusion
on stability of the band structure to the topological disord
seems to be in line with Refs. 29,31. However, contrary
our case of small clusters, in large systems there may e
long-range on-average periodicity.

It is worth noting that fcc opal structures are not usua
considered as a good candidate for potential applicati
connected to complete photonic bandgap.33 However, as it
can be seen from our example, for some parameters, D
can be significantly suppressed in a wide spectral reg
Figure 3 also suggests that such structures can be tolera
strong topological disorder.

As was already mentioned in the Introduction, our resu
are relevant for the problem of light propagation in a den
random media made of particles with a narrow size distri
tion. Topological disorder does not prevent the occurrence
ordered clusters. In Ref. 9, random displacement of scatte
off their lattice positions did not have a significant effect
the density of EM states. Our calculations performed for
clusters with similar random displacements@Figs. 3~d!, 3~e!#,
confirm small effects on the formation of the photonic ba
structure. This also suggests that the light localization
served in Ref. 9 may have been facilitated by depletion
the density of electromagnetic states due to the presenc
the pseudogap.

The presence of clusters may significantly reduce the s
tering lengthl scat. Indeed, the scattering inside the clusters
dominated by the Bragg mechanism, whilel Bragg can be as
small as a few lattice constants for high index contrast str
tures. Furthermore, in Ref. 34 it was shown that the peri
icity of a photonic crystal may also exhibit itself in cohere
back-scattering effects. The modification of coherent ba
scattering due to the presence of ordered clusters is an i
esting problem that deserves a detailed consideration.

In conclusion, we calculated the scattering cross sec
and density of resonant states in small 3D ordered aggreg
of dielectric spheres within the framework of the rigoro
GMM solution. In contrast with previous studies we made
assumptions about the strength, size, or separation betw
scatterers. All multiple scattering effects were automatica
retained in the solution. The results suggest that the phot
band structure of the infinite crystal can show up for clust
as small as five particles. The density of resonant state
significantly perturbed compared to single particle case
the considered example, a cluster of 32 particles the den
of resonant states can show a close resemblance to the
of the infinite system.
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