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Quantum statistical theory of fluorescence of low density Frenkel excitons in a crystal slab
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The fluorescence of Frenkel excitons in low density regime is studied without the aid of rotating wave
approximation and Markov approximation. The evolution of the emitted field is derived in terms of its initial
conditions. It is found that the usual interaction Hamiltonian of (e/mc)P•A type leads to unreasonable char-
acteristic equation for decay rates. Only when the term (e2/2mc2)A2 is added to the (e/mc)P•A, the result
becomes reasonable. The case of single lattice layer is studied in detail. Different features of statistical
properties of the superfluorescence are shown as compared with that of atom aggregate. Double and triple
lattice-layer cases are also studied to show the effect of coupling between the excitons of different wave
vectors.
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I. INTRODUCTION

The spontaneous emission of low density excitons~Wan-
nier or Frenkel! is of collective character even if there is on
one exciton. The reason is that each exciton migrates o
the whole quantum well~or crystal slab! coherently when the
exciton density is low~so that overlapping can be neglected!,
leading to a collective transition dipole moment to intera
with the electromagnetic field. But the fluorescence of su
an exciton may have different features as compared with
usual superfluorescence of fully population-inverted at
aggregate. In the latter case the atoms radiate independ
with each other in the initial stage, they become coopera
only after a time decay, resulting in an intense pulse of p
shape. The emitted field will show different statistical pro
erties in the initial stage and later on stages. We shall see
the fluorescence of low density excitons are quite differe
In general the exciton may have many eigenmodes. For th
eigenmodes which are phase matching or nearby matc
with the emitted light, the exciton fluorescence is superra
ant, and this superfluorescence will exhibit identical stati
cal character during the whole process as will be dem
strated in this paper.

Another different feature between superfluorescence
excitons and of atom aggregate lies in that the cooperatio
atom aggregate is limited by a finite length, the so cal
cooperation length1 since the atoms come into phase coh
ently correlated state through the radiation field itself wh
has a finite extent, while the exciton of low density is
coherent excitation over the whole crystal, provided the c
rier quantum well or crystal slab is ideal~no trapping effect
occurs!. For Wannier exciton, this feature is obvious since
is a pair of free electron and free hole bound together,
movable freely as a whole. Frenkel exciton is usually
excitation of lattice atom~molecular! in the crystal. How-
ever, the excitation will not be located at a fixed lattice, b
transfer from one lattice to another due to atom-atom in
PRB 620163-1829/2000/62~24!/16453~21!/$15.00
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action, so that the stationary state is also a phase coher
superposed excited state over all the lattice.2 This feature is
reflected in the proportionality of exciton-photon couplin
constantG to ANT in low density regime, whereNT is the
total number of atoms in the crystal. Nevertheless, this d
not mean that the superradiant rateG will tend to infinity as
NT→`. The value ofG will be limited by two effects: one is
the reduction of the available photon states which restra
the value ofG for large lateral crystal extension, another
the reabsorption of the emitted photon, which restrainsG for
large longitudinal crystal extension. The first effect will b
demonstrated in Sec. V, the second effect is related to
formation of a new stationary state, polariton, as longitudi
extension tens to infinity.

In the literature3–8 the authors usually devote themselv
to deduce the radiant rateG. The simplest way to this aim is
to calculateG by the perturbation theory, namely in terms
Fermi golden rule. This approach has ignored reabsorp
and stimulation effect so that it cannot be applied to th
crystal slab. Hanamura presented a different approach
deduced a characteristic equation forG for the superfluores-
cence of Wannier excitons3 in a two-dimensional quantum
well with thickness of exciton diameter. But his character
tic equation, as we will see later, suffers the problem
existing a superfluous unphysical root which will lead
unreasonable temporal evolution of the field. Knoester p
posed a general formulation for fluorescence of Fren
excitons5 and gave a correct characteristic equation for
N51 case, which is free from the above-mentioned unphy
cal pole. He also studied the crossover from the superrad
excitons to bulk polaritons. However, no detailed derivati
is given for the effective coupling functionFkk8(v) and for
the character equation therein. Actually these results in R
5 cannot be derived from simple coupling of for
(e/mc)P•A, as will be seen in the following paragraphs.

In addition, one cannot limit oneself just to deriving th
radiant rate. The photon field operator~and exciton field op-
16 453 ©2000 The American Physical Society
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erator! also deserves investigation. It not only exhibits t
dynamics of the radiation process, but also allows peopl
study the statistical properties of the emitted light. We n
that no such statistical properties were investigated in Ha
mura’s paper3 and Knoester’s paper.5

Bjork et al.7 have studied the time evolution of radiatio
intensity based upon the work of Rehler and Eberly,9 in
which each atom is assumed in a pure state and the
variation of the total atomic energyW(t) is derived by a
relation which connectsW(t) and radiation powerI (t). Thus
their results could not give any information with regard
the statistical properties of the emitted light field. Moreov
the stimulated emission and absorption are also neglecte
their treatment.

Tobihiro et al. have investigated the superfluorescence
a highly excited linear mesoscopic chain of moleculars.10,11

They even take the static dipole-dipole interaction into
count. But still no statistical properties of emitted light a
reported.

In this paper, we shall limit to the case of low excito
regime and also to the case in which the wave vectors
excitons are perpendicular to the crystal slab. In this ca
only the light modes propagating perpendicular to the cry
slab need be taken into account, and hence the cou
Heisenberg equations for exciton-photon system can
solved without Born-Markov as well as rotating wave a
proximation.

In Sec. II, we present the basic formulation with intera
tion Hamiltonian of (e/mc)P•A type which is usually
adopted in studying radiation problem. A closed express
of the functionFkk8(v) which measures the coupling of ex
citons with different wave vectors mediated by photons
derived for arbitrary number of lattice layersN. One sees tha
Eq. ~1! of Ref. 5 is of the same form with our result, but th
functionFkk8 is different from that in our derivation, apart
phase factor, by a substantial factorv/V.

In Sec. III, the result obtained in the Sec. II is analyzed
the case of single lattice layer. We find that a root of t
characteristic equation lies in the upper half of complexv
plane, which corresponds to negative value ofG and hence
leads to unphysical evolution of field operators. Change
the interaction of2E•d type, another problem emerges i
stead: a large real term appears in the characteristic equ
which also makes its root unreasonable. Section IV de
with interaction Hamiltonian with (e2/2mc2)A2 term added
to the (e/mc)P•A. A modified reduced dynamical equatio
for exciton operator is obtained.

In Sec. V the single lattice-layer case is examined in
tail on the basis of the modified reduced dynamical equa
given in Sec. IV. The characteristic equation now becom
reasonable. The evolution of electric field is derived in ter
of initial state of exciton. The superradiance character of
fluorescence in this case is analyzed, with the reduction
tor due to photon states contraction derived explicitly. T
light intensity as well as the first- and second-order degre
coherence are calculated to show the new features of
exciton fluorescence. Some striking results concerning
light intensity and degrees of coherence are presented.
tion VI deals the cases of double lattice layers and tri
lattice layers. The coupling between excitons with differe
to
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wave vectors is taken into account. We see that only
mode is superradiant. Section VII presents a brief summ

II. BASIC FORMULATION WITH P "A COUPLING

As mentioned in Sec. I, we consider a simple model
fluorescence of Frenkel excitons in a plane crystal slab wh
has ideal cubic lattice withN layers. The wave vectors of th
excitons and light fields are all assumed perpendicular to
slab. The density of excitons is assumed low, so that
space filling effect and exciton-exciton direct couplin
terms12 can be neglected. This model is similar to that
Ref. 3 and should be the same as adopted by Ref. 5.

For (e/mc)P•A coupling, theĤ int between the photon
and lattice atoms~two level! is of the form

Ĥ int~ t !5\ (
q; l ; j

g~q!b̂l j
† ~ t !@ âq~ t !eiqla1âq

†~ t !e2 iqla#1H.c.,

~1!

whereâq and âq
† are the annihilation and creation operato

of the photon with wave vectorq, respectively,b̂l j and b̂l j
†

denote the creation and annihilation operator for an exc
tion of the two-level atom atj th lattice site in thel th layer.a
denotes the lattice constant. The effective atom-photon c
pling constantg(q) is taken as real with the expression

g~q!5A 2pV2

V\uquc
d, ~2!

whereV denotes the electronic transition frequency of t
isolated lattice atom,d represents its transition dipole mo
ment, which is assumed real and its direction lying in t
slab plane.V is the normalization volume for the photon
Note that no rotating wave approximation is made in Eq.~1!.
In the low density excitation regionb̂l j and b̂l j

† are bosonic
operators, satisfying the commutation relation

@ b̂l j ~ t !,b̂l 8 j 8
†

~ t !#5d l l 8d j j 8 . ~3!

Define the collective operator for thel th layer as

B̂l
†~ t !5

1

ANL
(

j
b̂l j

† ~ t !, B̂l~ t !5
1

ANL
(

j
b̂l j ~ t !, ~4!

where NL is the total lattices sites within each layer. Ev
dently we have

@B̂l~ t !,B̂l 8
†

~ t !#5d l l 8 .

Equation~1! may be rewritten as

Ĥ int~ t !5(
q,l

ANLg~q!B̂l
†~ t !@ âq~ t !1â2q

† ~ t !#eiqla1H.c.;

~5!

no static dipole moment is taken into account for simplici
Transform to Frenkel exciton annihilation operator wi

wave vectork,

B̂k~ t !5
1

AN
(

l
e2 iklaB̂l~ t !, ~6!

whereN is the total number of layers, and
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k5
2pm

Na
, ~7a!

in which m’s are taken as symmetrical to zero:

m52 1
2 ~N21!,2 1

2 ~N23!, . . . ,1
2 ~N21!, ~7b!

since the values ofk are assumed such that to eachk there is
a corresponding2k. The values ofl in Eq. ~6! will be the
same asm. It is easy to show that the exciton operato
satisfy the following bosonic commutation relation

@B̂k~ t !,B̂k8~ t !#5dk,k8 . ~8!

We get therefore the interaction Hamiltonian between
Frenkel excitons and photons as

Ĥ int5\(
q,k

G~q!O~k1q!@B̂k~ t !1B̂2k
† ~ t !#@ âq~ t !1â2q

† ~ t !#

~9!

in which

O~k1q!5
1

N (
l 52(1/2)(N21)

(1/2)(N21)

ei (k1q) la5
1

N

sin 1
2 N~k1q!a

sin1
2 ~k1q!a

,

~10a!

G2~q!5NTg2~q!5NT

2pV2

V\uquc
d2, ~10b!

where NT5NNL , representing the total number of lattic
sites within the crystal slab as mentioned in Sec. I.O(k
1q) may be called as wave-vector matching factor@notice
that ourO(k1q) is defined somewhat differently from tha
in Ref. 5, apart from a phase factore2(1/2)i (k1q)(N11)a, by a
factor 1/AN]. In our definition, it is real and equals to 1 fo
k1q50, andO(k1q),1, for k1qÞ0.

It is well known that the exciton in a bulk crystal does n
radiate, but forms polariton instead. This shows that a g
eral treatment of exciton radiation should take the reabs
tion effect into account, and one should calculate the rad
rate by solving dynamical equation3,5 not simply by utilizing
Fermi golden rule.

The Heisenberg equations for exciton and photon op
tors can be easily got fromĤ int(t), with the results

i
]

]t
âq~ t !5uqucâq~ t !1G~q!(

k
O~k2q!@B̂k~ t !1B̂2k

† ~ t !#,

~11a!

i
]

]t
â2q

† ~ t !52uqucâ2q
† ~ t !2G~q!(

k
O~k2q!

3@B̂k~ t !1B̂2k
† ~ t !#, ~11b!

i
]

]t
B̂k~ t !5VB̂k~ t !1(

q
G~q!O~q2k!@ âq~ t !1â2q

† ~ t !#,

~11c!
e

n-
p-
nt

a-

i
]

]t
B̂2k

† ~ t !52VB̂2k
† ~ t !2(

q
G~q!O~q2k!

3@ âq~ t !1â2q
† ~ t !#. ~11d!

Define the half side Fourier transformation as

âq~v!5E
0

`

âq~ t !eivtdt, ~12a!

â2q
† ~v!5E

0

`

â2q
† ~ t !eivtdt, ~12b!

and the similar forB̂k(v) and B̂2k
† (v) @note thatâ2q

† (v)

5â2q(2v)†], Eqs. ~11! are then transformed to the alge
braic equations

~v2uquc!âq~v!5G~q!(
k

O~k2q!@B̂k~v!1B̂2k
† ~v!#

1 i âq~0!, ~13a!

~v1uquc!â2q
† ~v!52G~q!(

k
O~k2q!@B̂k~v!1B̂2k

† ~v!#

1 i â2q~0!, ~13b!

~v2V!B̂k~v!5(
q

G~q!O~q2k!@ âq~v!1â2q
† ~v!#

1 iB̂k~0!, ~13c!

~v1V!B̂2k
† ~v!52(

q
G~q!O~q2k!@ âq~v!1â2q

† ~v!#

1 iB̂2k
† ~0!, ~13d!

in which âq(0) and B̂k(0) meansâq(t)u t50 and B̂k(t)u t50,
etc.

To ensure convergence, thev in Eqs. ~12! is actually
attached to an infinitesimal positive imaginary parte, namely
v stands forv1 i e. The inverse transformation of Eqs.~12!
is readily seen to be

âq~ t !5
1

2pE2`1 i e

`1 i e

âq~v!e2 ivtdv,

â2q
† ~ t !5

1

2pE2`1 i e

`1 i e

â2q
† ~v!e2 ivtdv. ~14!

From Eqs.~13a! and ~13b!, one gets

~v22q2c2!@ âq~v!1â2q
† ~v!#

52uqucG~q!(
k

O~k2q!

3@B̂k~v!1B̂2k
† ~v!#1 i @~v1uquc!âq~0!

1~v2uquc!â2q
† ~0!#. ~15!
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Substituting Eq.~15! into Eq. ~13c! yields

~v2V!B̂k~v!5(
k8

Fkk8~v!@B̂k8~v!1B̂2k8
†

~v!#

1(
q

G~q!O~q2k!

3F 1

v2uquc
âq~0!1

1

v1uqucG1 iB̂k~0!

~16!

in which

Fkk8~v!5(
q

2uqucG2~q!O~k2q!O~q2k8!

v22q2c2
~17!

measuring the coupling of excitons with different wave ve
tors mediated by photons of variousq. We take the photon
normalization volumeV to beAL whereA is the area of the
crystal slab, and let the slab located at the middle of
volume. WhenL is sufficient large, the summation in Eq
~17! may be converted to integration to give

Fkk8~v!52
NaV f 2

4pc2 E
2`

1`

dq
O~k2q!O~q2k8!

q22
v2

c2

, ~18!

where

f 25
8pVd2

\a3
, ~19!

a coupling parameter which is independent of photon m
mentum and photon normalization volume. Its dimension
the same asG2(q).

For comparing Eq.~16! with Eqs. ~1! and ~2! of Ref. 5,
we momentarily neglect the terms proportional toâq(0) and
â2q

† (0) in the former and letJ50 in the latter. After this
abridgement, these two equations have the same form.
actually they are different, because ourFkk8(v) differs from
Eq. ~2! of Ref. 5, apart from a phase factor, by a substan
factorV/v. We note that the coupling in Ref. 5 is also tak
asP•A type.

Knoester further proposed5 that Fkk8(v) is strongly
peaked aroundk5k8 and may be taken asFkk(v)dkk8 to a
good approximation. This proposition of course holds e
actly for N51 andN5`, since forN51 there is only one
value ofk namelyk50 and forN5` it corresponds to con
servation ofk. It may possibly be a good approximatio
whenN is large but will not be valid in general, as alread
doubted by Andreani,13 and also will be seen directly in Sec
VI. Thus a closed expression ofFkk8(v) for kÞk8 is desir-
able.

Substituting Eq.~10a! into Eq. ~18!, and carrying out the
integration, we get
-

e

-
s

ut

l

-

Fkk8~v!52
a f2V

8Ncv F sin
1

2 S k81
v

c DNa

sin
1

2 S k81
v

c Da

e( i /2)(k1v/c)Na

sin
1

2 S k1
v

c Da

2

sin
1

2 S k82
v

c DNa

sin
1

2 S k82
v

c Da

e2( i /2)(k2v/c)Na

sin
1

2 S k2
v

c Da

1

sin
1

2
~k2k8!Na

sin
1

2
~k2k8!a

3

sin
v

c
a

Fsin
1

2 S k1
v

c DaGFsin
1

2 S k2
v

c DaGG . ~20!

for the details, see Appendix A. WhenN→`, the first two
terms tend to zero,5 hence

lim
N→`

Fkk8~v!

52
a f2V

8cv

sin
v

c
a

Fsin
1

2 S k1
v

c DaGFsin
1

2 S k2
v

c DaG dkk8 ,

~21!

consistent with the conservation ofk.
To deduce âq(v), we need first to evaluateB̂k(v)

1B̂2k
† (v). From Eq.~16! and its Hermitian conjugate, we

get a closed equation forB̂k(v)1B̂2k
† (v) as follows:

(
k8

@~v22V2!dkk822VFkk8~v!#@B̂k8~v!1B̂2k8
†

~v!#

5 i @~v1V!B̂k~0!1~v2V!B̂2k
† ~0!#

12iV(
q

G~q!O~q2k!

3F 1

v2uquc
âq~0!1

1

v1uquc
â2q

† ~0!G . ~22!

This is what we call reduced dynamical equation for excit
operator in Sec. I. Having the expression ofFkk8(v), in prin-
ciple this equation may be solved forB̂k(v)1B̂2k

† (v) for

arbitrary N. Substituting the result ofB̂k(v)1B̂2k
† (v) into

Eqs. ~13a! and ~13b! to get âq(v) and â2q
† (v), the time

evolution of photon field operator is then derived by t
inverse Fourier transformation

Ê~z,t !5
1

2pE2`1 i e

`1 i e

Ê~z,v!e2 ivtdv, ~23!
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where thez axis is taken perpendicular to the crystal sl
surface, andÊ(z,v) is given by

Ê~z,v!5 i(
q
A2puquc\

V
@ âq~v!2â2q

† ~v!#eiqz

5 i E
2`

1`Auquc\L

2pA
@ âq~v!2â2q

† ~v!#eiqzdq

~24!

for sufficient largeL.

III. THE PROBLEM FOR P "A COUPLING

Although the (e/mc)P•A interaction Hamiltonian is com
monly used in treating emission and absorption problem,
find a serious problem in the above formulation. Let us
the simplest case,N51. Now the only allowable value ofk
is zero. As mentioned in Appendix A, whenN51 the inte-
gral on the right-hand side of Eq.~18! is just equal top ic/v,
hence

F00~v!52 i
a f2V

4cv
52 i

Vh

2v
~25!

with

h5
a f2

2c
. ~26!

After neglecting the terms proportional toâq(0) andâ2q
† (0)

as did in Ref. 5, Eq.~22! is reduced to

B̂0~v!1B̂0
†~v!5

i

v22V21 ih
V2

v

@~v1V!B̂0~0!

1~v2V!B̂0
†~0!#. ~27!

The roots of the characteristic equation

v22V21 ih
V2

v
50 ~28!

will determine the poles ofB̂0(v)1B̂0
†(v) which turn out to

be the decay rates and frequency shifts of the excitons.
above characteristic equation is a third-order algebraic eq
tion:

v32V2v1 ihV250. ~29!

Sinceh/V!1, the roots of Eq.~29! are given approximately
by

v1,2,3>V2 1
2 ih, 2V2 1

2 ih, ih. ~30!

The rootv3> ih in the upper halfv plane is an unphysi-
cal pole ofB̂0(v)1B̂0

†(v). When we use Eqs.~27! and~13a!

and~13b! to evaluateÊ(z,t) according to Eqs.~25! and~26!,
the result will contain an unphysical term contributed by t
root v3, which gives^Ê(z,t)&Þ0 for spacelike internaluzu
.ct ~see Sec. V!. Changing the integration path ofv to line
e
e

he
a-

2`1 i (h1e)→1`1 i (h1e) may eliminate this problem
but another problem arises: there will be a growing te
;eht. Both results are unacceptable.

We note that even if we remove a factorV/v from right-
hand side of Eq.~25! to make ourF00(v) coincide with that
of Knoester, the characteristic equation is still different fro
Eq. ~3! of Ref. 5 and remains to give unphysical root.
addition, we note that the Eq.~12! of Ref. 3 for zero trans-
verse wave vector is the same as our Eq.~29!, hence it also
suffers from the problem of existing an unphysical ro
Change to2E•d coupling, the only alteration isG2(q) be-
ing modified toNT(2puquc/V\)d2, so the functionF00(v)
for N51 becomes, instead of Eq.~25!,

F00~v!52h
c

2pVE
2`

1`

dq
q2

q22
v2

c2

. ~31!

Writing the integrand as 11(v2/c2)@1/(q22v2/c2)# and re-
membering thatv has an infinitesimal positive imaginar
part, the second term can be easily integrated out, resu
in

F00~v!52 ih
v

V
2h

c

2pVE
2`

1`

dq. ~32!

The real part of the aboveF00(v) now tends to minus infin-
ity. Even if we cut off the integration range atqM;1/a on
account of our dipole approximation, (22V ReF00) is still
of order 8d2V/\a3;8e2V/\a. Such large value of
(22V ReF00) will make the characteristic equation

v21 ihv2V222V ReF0050 ~33!

unreasonable, since its roots should have zero real p
which means the eigenfrequency drops down to zero.

IV. THE FORMULATION WITH P "A PLUS A2 COUPLING

It is seen from last section thate/mcP•A coupling leads
to unphysical result and2E•d coupling also results in un
reasonable characteristic equation. We remind that a t
photon coupling term (e2/2mc2)A2 has been neglected in th
(e/mc)P•A formulation. Now this term will be taken into
account, which changes Eq.~9! to

Ĥ int~ t !5\(
q,k

G~q!O~k1q!@B̂k~ t !1B̂2k
† ~ t !#

3@ âq~ t !1â2q~ t !#1\ (
q,q8,l

f ~q,q8!

3@ âq~ t !1â2q
† ~ t !#@ âq8~ t !1â2q8

†
~ t !#ei (q1q8) la,

~34!

G2(q) is still given by Eq.~10b!, and

f ~q,q8!5
NLpe2

mcVAuqq8u
. ~35!

We remind that two-level atom is only a working hypot
esis, it does not meet the basic condition that the total lev
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of atom form a complete set, so sometimes one needs t
some additional handling.14 In f (q,q8), originally there is a
factor el•el8 and summation overl and l8, whereel de-
notes polarization vectors of the photon withl51,2. For an
atom with a complete set of eigenstatesun&, we have

el•el85^1uel•el8u1&

5
2 i

\ (
n

@^1uel•xun&^nuel8•pu1&2^1uel8•pun&

3^nuel•xu1&#

5
m

\ (
n

Vn1@^1uel•xun&^nuel8•xu1&1^1uel8•xun&

3^nuel•xu1&#

5
m

\e2 (
n

Vn1@~el•d1n!~el8•dn1!1~el8•d1n!

3~el•dn1!#. ~36!

In the two-level approximation, Eq.~36! reduces to

el•el8>
2mV

\e2
~el•d!~el8•d!, ~37!

whereV stands forV21 and d5d215d12. Taking el such
that

e1•d5d, e2•d50,

Eq. ~37! reduces to

el .el8>
2mVd2

\e2
dl1dl8l . ~38!

Adding (l,l8el•el8 in Eq. ~35! and utilizing Eq.~38!, we get

f ~q,q8!5
2pNLVd2

c\VAuqq8u
5

1

NV
G~q!G~q8!. ~39!

This is the desired modification. We note in passing that
physical implication of Eq.~38! is

mVux12u25x12up12u5
\

2
.

Substituting Eq.~39! into Eq. ~34! and making use of

(
l

ei (q1q8) la5N(
k

O~q82k!O~k1q!, ~40!

we get the amendedĤ int(t) as

Ĥ int~ t !5\(
q,k

G~q!O~k1q!@B̂k~ t !1B̂2k
† ~ t !#

3@ âq~ t !1â2q~ t !#1\ (
q,q8k

1

V
G~q!G~q8!

3O~q82k!O~k1q!@ âq~ t !1â2q
† ~ t !#

3@ âq8~ t !1â2q8
†

~ t !#. ~41!
do

e

The equations forB̂k(t) and B̂2k
† (t) remain unaltered,

while the equations forâq(t) and â2q
† (t) have an additional

term:

i
]

]t
âq~ t !5uqucâq~ t !1G~q!(

k
O~k2q!@B̂k~ t !1B̂2k

† ~ t !#

1
2

V (
q8,k

G~q!G~q8!O~q82k!O~k2q!

3@ âq8~ t !1â2q8
†

~ t !#, ~42a!

i
]

]t
â2q

† ~ t !52uqucâ2q
† ~ t !2G~q!(

k
O~k2q!

3@B̂k~ t !1B̂2k
† ~ t !#

2
2

V (
q8,k

G~q!G~q8!O~q82k!O~k2q!

3@ âq8~ t !1â2q8
†

~ t !#. ~42b!

Performing the half side Fourier transformation of Eqs.~42!

as before, and eliminate(q8G(q8)O(q82k)3@ âq8(v)
1â2q8

† (v)# therein by use of Eqs.~13c! and ~13d!, we get

~v2uquc!âq~v!5G~q!(
k

1

V
O~k2q!$v@B̂k~v!

2B̂2k
† ~v!#2 i @B̂k~0!2B̂2k

† ~0!#%

1 i âq~0!, ~43a!

~v1uquc!â2q
† ~v!52G~q!(

k

1

V
O~k2q!$v@B̂k~v!

2B̂2k
† #2 i @B̂k~0!2B̂2k

† ~0!#%

1 i â2q
† ~0! ~43b!

to replace Eqs.~13a! and ~13b!. Equations~13c! and ~13d!
together with Eqs.~43a! and ~43b! form our revised simul-
taneous equations. Eliminatingâq(v) and â2q

† from these
equations, we get, instead of Eq.~22!, a revised dynamica
equation for exciton operator:

(
k8

F ~v22V2!dkk82
2v2

V
Fkk8~v!G@B̂k8~v!2B̂2k8

†
~v!#

522i
v

V (
k8

Fkk8~v!@B̂k8~0!2B̂2k8
†

~0!#

1 i @~v1V!B̂k~0!2~v2V!B̂2k
† ~0!#

12iv(
q

G~q!O~k2q!F 1

v2uquc
âq~0!

1
1

v1uquc
â2q

† ~0!G , ~44!

whereFkk8(v) is the same as that in Sec. II. Comparing E
~44! with Eq. ~22!, we see that in the left-hand sideFkk8(v)
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is replaced by (v2/V2)Fkk8(v) and B̂k8(v)1B̂2k8
† (v) is

changed toB̂k8(v)2B̂2k8
† (v). The right-hand side is also

altered. These modifications will lead to reasonable val
for decay rate and frequency shift, as we see in the n
sections.

Solving Eq.~44! for B̂k(v)2B̂2k
† (v) and substituting it

into Eqs.~43a! and ~43b! to get

âq~v!2â2q
† ~v!5

2v

V2~v22q2c2!
G~q!(

k
O~k2q!

3$v@B̂k~v!2B̂2k
† ~v!#

2 i @B̂k~0!2B̂2k
† ~0!#%

1
i

v2uquc
âq~0!2

i

v1uquc
â2q

† ~0!,

~45!

the time evolution of electromagnetic~e.m.! field operators
may be derived still by Eqs.~23! and~24!. We note that both
the stimulated emission and reabsorption effects have
ready been taken into account.

V. SINGLE LATTICE-LAYER CASE: ELECTRIC FIELD,
LIGHT INTENSITY, COHERENCE, AND STATISTICS

PROPERTIES

In this section, the case of monolayer (N51) will be
studied in detail. The characteristic equation for decay ra
and frequency shifts now becomes

v22V22
2v2

V
F00~v!50. ~46a!

Substituting Eq.~25! in it yields

v21 ihv2V250 ~46b!

which just have two physical roots given by

v1,252
1

2
ih6V0 , V05AV22

1

4
h2>VS 12

h2

8V2D .

~46c!

Thus the problems which arises in the coupli
(e/mc)P•A and coupling2E•d are eliminated.

The term (e2/2mc2)A2 is usually regarded as unimporta
in treating the emission process, however, in our problem
see it is not so. We also see that in our problem the
interactions (e/mc)P•A1(e2/2mc2)A2 and 2E•d are not
equivalent to each other. As pointed out by many author15

in the full quantum theory although one can use an unit
transformation to transform the (e/mc)P•A1(e22mc2)A2

interaction to2d•Ê interaction plus a term*P'
2 dt, but in

the new basis, the operatorÊ actually has the meaning o
electric displacement, not the electric field, and satisfie
different dynamical equation. It is easy to see that if a fac
v2/q2c2 is added in the integrand ofFkk8(v) for 2d•Ê
interaction, the corresponding characteristic equation will
come the same as that for (e/mc)P•Â1(e2/2mc2)Â2. We
s
xt

l-

s

e
o

y

a
r

-

note that the factorv2/q2c2 also expresses the differenc
between the right-hand sides of Eqs.~2.12! and~2.14! in the
first paper of Ref. 15.

To see the photon field generated by exciton fluoresce
we drop the terms proportional toâq(0) or â2q

† (0) in Eqs.
~44! and ~45!, and hence get

B̂0~v!2B̂0
†~v!

5 i
~v1V1 ih!B̂0~0!2~v2V1 ih!B̂0

†~0!

v21 ihv2V2
.

~47!

It gives in turn that

âq~v!2â2q
† ~v!

5
2ivG~q!

v22q2c2

~v1V!B̂0~0!1~v2V!B̂0
†~0!

v21 ihv2V2
.

~48!

In the regionz.0 outside the layer, the integral in Eq
~24! can be evaluated by adding an infinite half circle in t
upper complexq plane. Substituting Eq.~48! into it yields

Ê~z,v!

5 iAp\Vh

cA

~v1V!B̂0~0!1~v2V!B̂0
†~0!

v21 ihv2V2
ei (v/c)z.

~49!

We remind thatA is the area of the layer, it is also the cro
area of the normalization volume for the photon.

The electric fieldÊ(z,t) in the z.0 region generated by
the exciton is then calculated by Eq.~23!. For the casez
2ct.0(,0), one may add an infinite upper~lower! half
circle in thev plane to form a closed contour. The results
obtained are given by

Ê~z,t !50, for z2ct.0, ~50a!

Ê~z,t !5 Ê(1)~z,t !1H.c. for z2ct,0 ~50b!

in which

Ê (1)~z,t !5Ap\Vh

4cA F S 11
V

V0
2

i

2

h

V0
D B̂0~0!

1S 12
V

V0
2

i

2

h

V0
D B̂0

†~0!G
3e2 iV0(t2z/c)2(1/2)h(t2z/c), ~51!

andV02V stands for the frequency shift.
Equation~50a! is the consequence of the result that all t

roots of the characteristic equation are in the lower half pla
of complex variablev. The previous characteristic equatio
@Eq. ~29!# has a root in the upper halfv plane, hence it
violates the requirement that emitted field should be zero
spacelike interval.
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Equations~50b! and~51! show the exciton-generated electric field inz.0 region behaves like a damped wave propagat
in forward direction as required. No peak develops. The decay is of exponential type, demonstrating the cooper
radiation is from beginning to the end.

For reference, we write down the neglected part inÊ(z,t), which is proportional toâq(0) and âq
†(0), as Ê8(z,t)

1Ê(0)(z,t):

Ê8~z,t !5(
q
A p\h2

2VuqucF S S V02
i

2
h D 2

e2 iV0(t2z/c)2(1/2)h(t2z/c)

V0S V02uquc2
1

2
ih D 2

2uqu2c2e2 i uquc(t2z/c)

S V02uquc2
i

2
h D S V01uquc1

i

2
h D D âq~0!

1

S V02
i

2
h D 2

e2 iV0(t2z/c)2(1/2)h(t2z/c)

V0S V01uquc2
1

2
ih D âq

†~0!G1H.c. ~52a!
f
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for z2ct.0, andÊ8(z,t) equals zero forz2ct,0, while

Ê(0)~z,t !5 i(
q
A2p\uquc

V
âq~0!eiqz2 i uquct1H.c.,

~52b!

it is just the free varying photon field. We note thatÊ8(z,t)
is proportional toh namely proportional to the square o
coupling constant.

Ê(z,t) in z,0 region can be derived similarly. The resu
is a damped wave propagating in the backwardz direction
instead. The polarization vector of electric field is along t
transition dipole momentd which is assumed lying in the
plane of slab.

The magnetic field can be derived from the electric fie
through Maxwell equations. One sees that the energy fluŜ
is directed outward from the crystal film, both inz.0 and in
z,0 sides. We note that the above solution is free fr
Markov approximation and also free from rotating wave a
proximation.

The decay rate of emission intensity equals toh, which
can be reexpressed by

h53S p|2

a2 D g, ~53!

whereg is the EinsteinA coefficient of an isolated lattice
atom,| denotes the reduced wavelength, namelyc/V. Out-
wardly, only a number of 3(p|2/a2) atoms, i.e., number o
lattice sites in an area 3(p|2), are involved in cooperation
Nevertheless, it is not the true physics. From Eqs.~9! and
~10! it is seen that for N51, G5ANLg, and B̂k

5(1/ANL)( j b̂ j , hence all atoms in the layer are involved
cooperation, they interact with photon collectively. The fa
tor 3(p|2/a2) actually comes from the reduction of ava
able photon states in our one-dimension model as comp
with that of isolated atom, which will be explained in th
following.
e

-

-

ed

In one-dimension model, the number of photon sta
within the rangedk is 2(L/2p)dk, the factor 2 counts the
two sides of the slab, while in the three-dimension case
corresponding number of photon states is (L/2p)34pk2dk.
The reduction factor is then

a52S L

2p D Y S L

2p D 3

4pk25
2p

k2L2
~54!

which equals 2(p|2/L2) at the frequencyV. Thus the en-
hancement factor,a times the number of cooperation, turn
out to be

aNT5a
L2

a2
52S p|2

a2 D . ~55!

There is still a factor2
3 of difference, which is due to ou

assumption that the dipole moment lies in the plane of
crystal film.

We now study the coherence and statistical propertie
well as the evolution of intensity of the emitted e.m. fiel
From Eqs.~50b! and ~51!,

^Ê~z,t !&5Ap\Vh

4cA F S 11
V

V0
2

i

2

h

V0
D ^B̂0~0!&

1S 12
V

V0
2

i

2

h

V0
D

3^B̂0
†~0!&Ge2 iV0(t2z/c)2(h/2)(t2z/c)1c.c.,~56!

hence if initially the exciton is in chaotic state, number sta
or in general a state with density matrix diagonal in Fo
representation,̂ Ê(z,t)& will be zero for all times, which
means no coherent part will develop in the emitted~e.m.!
field, even though the radiation is cooperative. When
exciton is initially in coherent state, a coherence part of em



c
f
a

i-

-

y
in

cy.

PRB 62 16 461QUANTUM STATISTICAL THEORY OF FLUORESCENCE . . .
ted field results consequently. However, the emitted field
not exactly in a coherent state as we shall see below Eq.~59!.

It seems that the ‘‘Ê(1)(z,t) part’’ of Ê(z,t) for z2ct

,0 is justÊ(1)(z,t) defined by Eq.~51!, since it is a damped
wave with positive frequency. However, this is not true a
cording to the original definition. The original definition o
Ê(1)(z,t) is the part consisting of photon annihilation oper
tors:

Ê(1)~z,t !5
i

2pE2`

1`

dqE
2`1 i e

1`1 i e

dvAuquc\L

2pA
âq~v!

3ei (qz2vt)

5
21

2p E
2`

1`

dqE
2`1 i e

1`1 i e

dv

3AV\ch

4pA

1

v2uquc

3
~v1V!B̂0~0!1~v2V!B̂0

†~0!

v21 ihv2V2
ei (qz2vt).

~57!

The integration respect toq cannot be carried out analyt
cally because of the factor 1/(v2uquc). We can only arrive
at the following results:

Ê(1)~z,t !50 ~58a!

for t,0, and

Ê(1)~z,t !5ApV\h

4Ac
@F1~z,t !B̂0~0!1F2~z,t !B̂0

†~0!#

~58b!

for t.0, in which
is

-

-

F1~z,t !5
i

pE0

vM
dvqF 2~vq1V!e2 ivqt

S vq2V01
i

2
h D S vq1V01

i

2
h D

2

S V01V2
i

2
h De2 iV0t2(1/2)ht

V0S vq2V01
i

2
h D

2

S V02V1
i

2
h DeiV0t2(1/2)ht

V0S vq1V01
i

2
h D G cosS vq

z

cD ,

~58c!

F2~z,t !5
i

pE0

vM
dvqF 2~vq2V!e2 ivqt

S vq2V01
i

2
h D S vq1V01

i

2
h D

2

S V02V2
i

2
h De2 iV0t2(1/2)ht

V0S vq2V01
i

2
h D

2

S V01V1
i

2
h DeiV0t2(1/2)ht

V0S vq1V01
i

2
h D G cosS vq

z

cD ,

~58d!

wherevq[uquc, vM is the cutoff frequency due to our di
pole approximation with the valuevM;c/a. Actually one
may write the upper limit of integration as̀, since it is
convergent whenvM→`, and c/a is already sufficiently
large. All the integrals in Eqs.~58! can be expressed b
complex Si and Ci functions. We see that the third terms
the square brackets are components of negative frequen

The operatorâq(t) may also be calculated by Eqs.~43a!
and ~47! with the result
erg state
âq~ t !5G~q!F ~vq1V!B̂0~0!1~vq2V!B̂0
†~0!

S vq2V01
i

2
h D S vq1V01

i

2
h D e2 ivqt2

S V01V2
i

2
h D B̂0~0!1S V02V2

i

2
h D B̂0

†~0!

2V0S vq2V01
i

2
h D

3e2 iV0t2(h/2)t2

S V02V1
i

2
h D B̂0~0!1S V01V1

i

2
h D B̂0

†~0!

2V0S V01vq1
i

2
h D eiV0t2(h/2)tG . ~59!

This equation shows that the eigenstate ofB̂0(0) is not just the eigenstate ofâq(t) because of the terms proportional toB̂0
†(0),

confirming that the emitted field is not exactly in a coherent state as mentioned below Eq.~56!.
Since electromagnetic interaction is weak, we shall not take account of dressing effect. For example, the Heisenb
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in which initially there is one physical exciton is just taken asB̂0
†(0)u0&, whereu0& is the bare vacuum state. The light intens

of a stateu& is now defined as

I ~z,t !5
c

2p
^u:Ê(2)~z,t !Ê(1)~z,t !:u&5

c

2p
@^uÊ(2)~z,t !Ê(1)~z,t !u&2^0uÊ(2)~z,t !Ê(1)~z,t !u0&#. ~60!

where the symbol :: means the normal product according toB̂0(0) andB̂0
†(0). Similarly, the first-order degree of coherence

emitted field is given by

g(1)~z,t;z,t1t!5
^uÊ(2)~z,t !Ê(1)~z,t1t!u&2^0uÊ(2)~z,t !Ê(1)~z,t1t!u0&

2p

c
AI ~z,t !I ~z,t1t!

. ~61!

When the exciton initially is in a state with density matrix diagonal in Fock representation~including chaotic state and numbe
state!, we have

g(1)~z,t;z,t1t!5
F1* ~z,t !F1~z,t1t!1F2* ~z,t !F2~z,t1t!

@F1* ~z,t !F1~z,t !1F2* ~z,t !F2~z,t !#1/2@F1* ~z,t1t!F1~z,t1t!1F2* ~z,t1t!F2~z,t1t!#1/2
. ~62!
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For initial exciton in coherent stateua&, g(1)(z,t;z,t1t)
may be obtained by following formulas:

^auÊ(2)~z,t !Ê(1)~z,t1t!ua&

2^0uÊ(2)~z,t !Ê(1)~z,t1t!u0&

5
V\h

4pAc
@ uau2F1* ~z,t !F1~z,t1t!

1uau2F2* ~z,t !F2~z,t1t!1a2F2* ~z,t !F1~z,t1t!

1a*
2
F1* ~z,t !F2~z,t1t!# ~63!

and similar expression forI (z,t) and I (z,t1t) in its de-
nominator, wherea is the eigenvalue ofB̂0(0), namely
B̂0(0)ua&5aua&.

We note that in case the antirotating terms inÊ(1)(z,t),
which include the term proportional toF2(z,t) as well as the
negative frequency term inF1(z,t), are dropped, the
g(1)(z,t;z,t1t) will be independent of the initial condition
of the excitons. However, numerical calculation shows t
F2(z,t) is not negligible as compared withF1(z,t). As to the
negative frequency term inF1(z,t), it is indeed negligibly
small. Numerical calculation also shows thatÊ(1)(z,t) is

quite different fromÊ(1)(z,t). The magnitude of the coeffi

cient of B̂0(0) in Ê(1) is less than that inÊ(1)(z,t) while the
magnitude of the coefficient ofB̂0

1(0) in Ê(1) is much larger

than that inÊ(1)(z,t).
A striking result is that theI (z,t) defined by Eq.~60!

oscillates rapidly with frequencyV0 and soon afterwards
quivers irregularly with time, contrary to what people usua
expect. In Fig. 1 some numerical curves are given to sh
this time evolution. For comparison we also plot the cur

for I(z,t) defined byÊ(1) as
t

w
e

I~z,t !5
c

2p
^u: Ê(2)~z,t !Ê(1)~z,t !:u&. ~64!

The values ofI(z,t) are obtained by substituting@11V/V0
2( i /2)h/V0#e2 iV0(t2z/c)2(1/2)h(t2z/c) for F1(z,t) and sub-
stituting @12V/V02( i /2)h/V0#e2 iV0(t2z/c)2(1/2)h(t2z/c)

for F2(z,t) in Eqs. ~62! and ~63!. We see from Fig. 1 tha
I(z,t) is slightly below the smoothedI (z,t).

I(z,t) also has its own meaning. It is just the cycle ave
age of the expectation value of energy flux operatorŜ(z,t)
5(c/4p):Ê(z,t)2:. The role of cycle average is to eliminat

the rapid oscillating terms (c/4p)^u: Ê(2)(z,t)2:u& and

(c/4p)^u: Ê(1)(z,t)2:u&.
Another striking result is thatI (z,t) does not vanish im-

mediately asuzu goes beyondct(t.0) to enter the spacelike
region but gradually drops down as shown in Fig. 2. T
result may be regarded as an exhibition thatÊ(1)(z,t) does
not have the meaning of annihilating a photon at positionz.
As a contrast,Ê(z,t) does vanish immediately asuzu goes
beyondct @see Eq.~50a!# which is a natural result from the
retarded solution.

The absolute values ofg(1) are shown in Fig. 3, togethe

with the absolute values ofG (1), in which theÊ(6) are used
to substituteÊ(6). The curves foruG (1)u are all straight lines
with height always equal to 1, no matter the initial excito
state is coherent or with density matrix diagonal in Fo
representation. The curves forug(1)u are different. In the case
that the density matrix of the initial exciton state is diagon
in Fock representation,ug(1)u first oscillates rapidly and soon
afterwards quivers irregularly around a nearly straight l
with height ug(1)u50.8. A striking result is that for coheren
initial exciton state theug(1)u keeps equal to 1 without an
vibration. It is also independent ofu, the phase ofa.

The second degree of coherenceg(2)(z,t;z,t1t) is now
defined by
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FIG. 1. Time evolution of light intensitiesI (z,t) at point z
52pc/V. I is in units of 1

8 ^n&\V(h/A), where^n& is the initial
mean number of excitons.t is in units of 1/V. h/2V51022. The
dashed lines representI(z,t). ~a! The case that the density matrix o
initial exciton state is diagonal in Fock representation, including
chaotic state and number state.~b!–~d! The cases that the initia
exciton state is coherent state with eigenvaluea5uaueiu.
g(2)~z,t;z,t1t!

5
^uÊ(2)~z,t !Ê(2)~z,t1t!Ê(1)~z,t1t!Ê(1)~z,t !u&

4p2

c2
I ~z,t !I ~z,t1t!

2
^0uÊ(2)~z,t !Ê(2)~z,t1t!Ê(1)~z,t1t!Ê(1)~z,t !u0&

4p2

c2
I ~z,t !I ~z,t1t!

.

~65!

For comparison we also plot the curves ofuG (2)(z,t;z,t

1t)u by substitutingÊ(6) for Ê(6) in Eq. ~65!.
The results for chaotic initial exciton states are shown

Fig. 4. We see thatuG (2)u is always equal to 2 and does n

e

FIG. 2. Space distribution of intensityI (z,t). ~a! t52p/V, ~b!
t53p/v, ~c! t55p/v. I is in units of 1

8 ^n&\Vh/A, z2ct is in
units of c/V, h/V51022. The dashed line representsI(z,t). The
initial exciton is in chaotic state or number state.
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drop down when time difference becomes large, whileug(2)u
fluctuates around about 1.2 and shows only small differen
for different values of̂ n&. These results mean that desp
superradiance, the light generated by such excitons is bu
ing, but not serious. For initial number exciton states,uG (2)u
is almost given by 121/n as can be seen from Fig. 5, whi
ug(2)u shows less dependence onn. Whenn550, it still vi-
brates around 0.6, hence quite evident antibunching rema

The ug(2)u and uG (2)u for coherent initial states are show
in Fig. 6. All curves foruG (2)u are equal to 1, independent o
^n& and u where^n& (1/2)eiu5a. However, the situation for
ug(2)u is quite different. For small̂n& such aŝ n&51, ug(2)u
is relatively high, vibrating around the horizontal line 2.1 f
u50 andu5p/4, and around the horizontal line 3.3 foru
5p/2. When^n& becomes larger, such as 5,ug(2)u ’s mean
values decrease to the range 1.2–1.5, depending on the
u. For still larger value of̂ n&, say 50, the mean values o
ug(2)u further decrease to 1.04 foru50 andp/4, and about
1.22 for u5p/2. Another notable feature is whenu keeps
fixed and^n& becomes larger, the amplitude of fluctuatio
becomes smaller, while for fixed̂n& the fluctuation is larger
in the case ofu5p/2 than those ofu50 andu5p/4.

FIG. 3. The absolute value of first-order degree of cohere
g(1)(z,t;z,t1t) as a function oft.z52p, t52p. t and t are in
units of 1/V and z is in units of c/V. h/2V51022. ~a! The case
that the density matrix of initial exciton state is diagonal in Fo
representation. The dashed line representsuG (1)(z,t;z,t1t)u. ~b!
The case that the initial exciton state is coherent.uG (1)(z,t;z,t
1t)u coincides withug(1)(z,t;z,t1t)u.
es

h-

s.

lue

The above results indicate explicitly that despite the
vestigated exciton superfluorescence is totally collective,
coherence and statistics still have diverse possibilities.

VI. CASE OF DOUBLE AND TRIPLE LATTICE LAYERS

We have studied the single lattice layer case in some
tail. In this section we will turn to study the fluorescence
Frenkel exciton in double and triple lattice layers. For sm
values ofN, it is more convenient to use the sum( le

i (k1q) la

instead of@sin1
2 N(k1q)a#/@sin1

2 (k1q)a# for O(k1q) in
the integrand of Eq.~18! and then evaluate the integral b
contour integration directly. All eigendecay rates, frequen
shifts as well as the time evolution of fields are obtain
consequently.

e

FIG. 4. The absolute value of second-order degree of cohere
g(2)(z,t;z,t1t) as a function oft for chaotic initial exciton states
z52p, t52p. t andt are in units of 1/V andz is in units ofc/V.
h/2V51022. The dashed lines representuG (2)(z,t;z,t1t)u. ~a!
The mean initial exciton numbern51. ~b! The casen55. ~c! The
casen550.
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First, we consider the special caseN52. The values ofm
in Eq. ~8! now take 21/2 and 1/2 corresponding tok
56p/2a, respectively We shall useF11(v),F22(v) to
representF1p/2a,1p/2a(v),F2p/2a,2p/2a(v), etc. and evalu-

FIG. 5. The absolute value of second-order degree of coher
g(2)(z,t;z,t1t) as a function oft for excitons initially in number
states.z52p, t52p. t andt are in units of 1/V, z is in units of
c/V. h/2V51022. The dashed lines representuG (2)(z,t;z,t1t)u.
~a! The casen51. n is the initial exciton number.~b! The casen
55. ~c! The casen550.
ate the integrals in Eq.~18! by substituting1
2 @e2 i (1/2)(k2q)a

1ei (1/2)(k2q)a# for O(k2q). The results are given by

F11~v!5F22~v!52 i
hV

v
,

F12~v!5F21~v!52 i
hV

v
eiva/c. ~66!

One sees that the nondiagonal elements (F12 andF21)
is of the same order as the diagonal elements (F11 and
F22).

The coupled Eq.~44! now becomes

~v21 ivh2V2!@B̂1~v!2B̂2
† ~v!#

1 ivheiva/c@B̂2~v!2B̂1
† ~v!#5Â0~w!,

~67a!

ivheiva/c@B̂1~v!2B̂2
† ~v!#1~v21 ivh2V2!

3@B̂2~v!2B̂1
† ~v!#52Â0

†~2v!, ~67b!

where

Â0~v!5 i @~v1V1 ih!B̂1~0!2~v2V1 ih!B̂2
† ~0!#

2heiva/c@B̂2~0!2B̂1
† ~0!#

12A2v i(
q

G~q!cosS p

4
2

qa

2 D
3S âq~0!

v2uquc
1

â2q
† ~0!

v1uqucD , ~67c!

Â0
†~2v!5 i @~v2V1 ih!B̂1

† ~0!2~v1V1 ih!B̂2~0!#

2heiva/c@B̂2
† ~0!2B̂1~0!#

22A2v i(
q

G~q!cosS p

4
1

qa

2 D
3S âq~0!

v2uquc
1

â2q
† ~0!

v1uqucD . ~67d!

Equations~67! are easily solved to get

ce
B̂1~v!2B̂2
† ~v!5

~v21 ivh2V2!Â0~v!1 ivheiva/cÂ0
†~2v!

~v21 ivh2V21 ivheiva/c!~v21 ivh2V22 ivheiva/c!
, ~68a!

B̂2~v!2B̂1
† ~v!52

ivheiva/cÂ0~v!1~v21 ivh2V2!Â0
†~2v!

~v21 ivh2V21 ivheiva/c!~v21 ivh2V22 ivheiva/c!
. ~68b!
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The roots of characteristic equations

v21 ivh2V21 ivheiva/c50 ~69a!

and

v21 ivh2V22 ivheiva/c50 ~69b!

will determine the eigendecay rates and corresponding
quency shifts. All roots of Eqs.~69! will have negative
imaginary part, since two necessary conditions can be
duced for this equation to have root of positive imagina
part:

h.2V and
ha

c
.2p,

and both of these conditions are untenable. Similarly,
~69b! cannot have root of positive imaginary part eithe
These results mean the basic physics laws will not be
lated as in the case of monolayer.

Assuming the physical rootsv j of Eqs. ~69! are not far
away from6V ~henceuv j ua/c!1), we expand the facto
eiva/c up to second order ofva/c. By this way four physical
roots of Eqs.~69! are obtained as follows:
n

-

e-

e-

.
.
-

v15V12 iG1 , v352V12 iG1 ,

v25V22 iG2 , v452V22 iG2 ~70!

in which

V1>VS 12
h2

2V2
1

ha

2c D , G1>h,

V2>VS 12
ha

2c D , G2>
1

4
h

V2a2

c2
. ~71!

In the following we will omit the terms proportional to
âq(0),âq

†(0), since here we just study the fluorescence
excitons. Substituting Eq.~68! and

âq~v!2â2q
† ~v!5

2vAN

V~v22q2c2!
G~q!(

k
O~k2q!

3$v@B̂k~v!2B̂2k
† ~v!#

2 i @B̂k~0!2B̂2k
† ~0!#% ~72!

into Eq.~24! and carrying out the contour integration, we g
Ê(z,v) in the positivez region outside the crystal slab as
above.
Ê~z,v!5 i
2pVd

acAA
S cos

va

2c

~v1V!@B̂1~0!1B̂2~0!#1~v2V!@B̂1
† ~0!1B̂2

† ~0!#

v21 ivh2V21 ivheiva/c

1sin
va

2c

~v1V!@B̂1~0!2B̂2~0!#2~v2V!@B̂1
† ~0!2B̂2

† ~0!#

v21 ivh2V22 ivheiva/c D e~ iv/c!z, ~73!

whereA is the area of each layer, it is also the cross area of the normalization volume for the photon as mentioned
The electric fieldÊ(z,t) in this region is calculated by Eq.~23!, with the results given by

Ê~z,t !50, for z2ct.0, ~74a!

Ê~z,t !5 Ê(1)~z,t !~z,t !1H.c., for z2ct,0, ~74b!

where

Ê (1)~z,t !5
f

c
Ap\Va

8A S 11
V

V1
2 i

G1

V1
D cos

~V12 iG1!a

2c H @B̂1~0!1B̂2~0!#1
V12V2 iG1

V11V2 iG1

3@B̂1
† ~0!1B̂2

† ~0!#J e2 iV1(t2z/c)2G1(t2z/c)1
f

c
Ap\Va

8A S 11
V

V2
2 i

G2

V2
D sin

~V22 iG2!a

2c

3H @B̂1~0!2B̂2~0!#2
V22V2 iG2

V21V2 iG2
@B̂1

† ~0!2B̂2
† ~0!#J e2 iV2(t2z/c)2G2(t2z/c). ~75!
bi-
Like the caseN51, we see that these are small compone

of B̂1
† (0)6B̂2

† (0) mixed with B̂1(0)6B̂2(0) in the
Ê(1)(z,t), which is caused by antirotating interaction.

The electric field in thez,0 region can be derived simi
tslarly, with the resultant waves propagating in backwardz
direction as expected.

There are two eigendecay rates appeared in theÊ(z,t):
G1 andG2. The corresponding eigenmodes are linear com
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FIG. 6. The absolute value of second-order degree of coherenceg(2)(z,t;z,t1t) as a function oft for excitons initially in coherent state
with eigenvaluea5uaueiu. z52p, t52p. t and t are in units of 1/V, z is in units of c/V. h/2V51022. The dashed lines represen
uG (2)(z,t;z,t1t)u. ~a! The casê n&5uau251,u50. ~b! The casê n&5uau251,u5p/4. ~c! The casê n&5uau251,u5p/2. ~d! The case
^n&5uau255,u50. ~e! The casê n&5uau255,u5p/4. ~f! The casê n&5uau255,u5p/2. ~g! The casê n&5uau2550,u50. ~h! The case
^n&5uau2550,u5p/4. ~i! The casê n&5uau2550,u5p/2.
th
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val-
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t

nation of the two modes ofm5 1
2 and m52 1

2 . As can be-
seen from Eq.~75!, these two eigenmodes correspond to
operators (1/A2)@B̂1(0)1B̂2(0)# and (1/A2)@B̂1(0)
2B̂2(0)#, respectively. Hence they correspond to modes
m50 (k50) andm51 (k5p/a) with the operators

B̂0~ t !5
1

A2
@B̂l 521/2~ t !1B̂l 51/2~ t !#5

1

A2
@B̂1~ t !1B̂2~ t !#,

~76!

B̂1~ t !5
i

A2
@B̂l 521/2~ t !2B̂l 51/2~ t !#5

1

A2
@B̂1~ t !2B̂2~ t !#.

~77!
e

f

We see from Eq.~71! thatm50 mode is the superradian
mode andm51 mode is the subradiant mode. The dipoles
the two layers have the same phase for the former and h
opposite phase for the latter. By Eq.~53!, the decay rateG2
of subradiant mode is still as large as 3p/4 times g, the
decay rate of a single atom~molecular!, because the atoms i
each layer are still cooperated. The decay rate ofk50 mode
is nearly twice that of monolayer, which is just the charac
of superfluorescence. The above result also shows: when
ues ofk are taken as symmetrical setk56p/2a, which are
required by our mathematical formation, the coupling b
tween two exciton modes is most important. But for unsy
metrical setk50 andk51 there is no coupling between tw
corresponding modes.

As discussed in last section, even for the superradian
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mode in which the emission is totally collective, the emitt
light still may have different statistics and coherence prop
ties according to the initial exciton state. For example, fr
Eq. ~75! the coherent part of the electric field^Ê(z,t)& will
be nonzero when the initial state of the exciton is a cohe
state, and when the initial density matrix of the exciton
diagonal in Fock representation~including number state
chaotic state!, the coherent part of̂Ê(z,t)& will be zero.

Up to the first order ofVa/c and h/V, the Ê(z,t) is
expressed by the superradiant mode operatorB̂0(0) and the
subradiant mode operatorB̂1(0) as follows:

Ê~z,t !5A2ph\V

cA S B̂0~0!2
ih

2V
B̂0

†~0! D
3e2 iV1(t2z/c)2G1(t2z/c)1A2ph\V

cA S Va

2c D
3B̂1~0!e2 iV2(t2z/c)2G2(t2z/c)1H.c. ~78!

FIG. 6. ~Continued!.
r-

nt

for z.0 andt2z/c.0. Similar results may be obtained fo
z,0,t1z/c.0. Ê(z,t) is equal to zero if (z.0,t2z/c,0)
or (z,0,t1z/c,0).

We already have seen irregular behaviors of the us
intensity operator in the single layer case, here only the
ergy flux operator is studied. The energy flux is defined b

Ŝ~z,t !5
c

4p
:Ê~z,t !3B̂~z,t !:. ~79!

It readily shows thatŜ is always directed outward from th
crystal film. So we rewriteŜ asnŜ, in which n is unit vector
directing the outer space from lattice layers and^Ŝ(z,t)&
may be evaluated from Eq.~78!. After neglecting oscillating
terms and higher-order terms ofh/V andVa/c, we have

^Ŝ~z,t !&5
h\V

A S ^B̂0
†~0!B̂0~0!&1

ih

2V
^B̂0

2~0!&

2
ih

2V
^B̂0

†2~0!& De2h(z/c2t)

1
h8\V

A
^B̂1

†~0!B̂1~0!&e2h8(z/c2t)

1
Ahh8\V

A S ^B̂0
†~0!B̂1~0!&1^B̂1

†~0!B̂0~0!&

1
ih

2V
^B̂1~0!B̂0~0!&

2
ih

2V
^B̂1

†~0!B̂0
†~0!& De(h1h8)(z/c2t), ~80a!

with

h85h
V2a2

4c2
. ~80b!

We see from Eqs.~80! that the energy flux decays in thre
different rates. The first term, which is contributed by t
exciton of the short lifetime, plays an important part at t
beginning time. The second term contributed by the exci
of the long lifetime becomes dominant at the latter time
the process. The third term will exhibit itself in the interm
diate stage.

Now we turn to the case of triple lattice layers. The cas
of odd N and evenN have a qualitative difference in th

m-value series21/2(N21), . . . 1
2 (N21). In the former

case,m containszero, while in the latter, it does not.N
53 is the simplest case of the former, apart from the triv
caseN51. Now Fm,m8(v)’s compose a 333 matrix F(v)
which will be written as

F~v!52
hV

6v
D~v!. ~81!

In terms ofDm,m8 , couple equations now take the form
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~v22V2!@B̂m~v!2B̂2m
† ~v!#1

1

3
hv

3(
m8

Dmm8~v!@B̂m8~v!2B̂2m8
†

~v!#

5 i @~v1V!B̂m~0!2~v2V!B̂2m
† ~0!#

1
i

3
h(

m8
Dmm8~v!@B̂m8~0!2B̂2m8

†
~0!# ~82a!

with

m,m8521,0,1. ~82b!

In Eqs. ~82!, terms proportional toâq(0) and â2q
† (0) are

neglected as we do below Eq.~71!. From the simultaneous
Eqs.~82!, we get the characteristic equation as

~v22V2!31 1
3 hv~v12u!~v22V2!21 1

9 h2v2

3~2uv1u22s222r 2!~v22V2!

1 1
27 h3v3@~u22s2!v12r 2~s2u!#50, ~83!

whereu, v, r , ands are matrix elements ofD(v), defined
by

D~v!5S u~v! r ~v! s~v!

r ~v! v~v! r ~v!

s~v! r ~v! u~v!
D . ~84!

For the mathematical detail, see Appendix B. Equation~83!
can be solved approximately to get the eigendecay rates
frequency shifts, six roots are obtained as follows:

v15V12 iG1 , v1852V12 iG1 ,

v05V2 iG, v0852V02 iG0 , ~85!

v215V212 iG21 , v218 52V212 iG21

with

V1>VS 12
ha

3c D , G15
1

27
h

V2a2

c2
, ~86a!

V0>VS 12
9h2

8V2
1

4ha

3c D , G05
3

2
h, ~86b!

V215S 12
ha

c D , G215h
V2a2

c2
. ~86c!

We see that all the roots are in the lower half plan of co
plex v as they should be.

The direct way to solve forB̂m(v)2B̂2m
† (v) from Eq.

~82! is to diagonalize the matrixD(v). The required trans-
formation matrix is denoted byT(v) which satisfies the re
quirement
nd

-

T~v!D~v!T̃~v!5S D1~v!

D0~v!

D21~v!
D .

~87!

In terms of Tm,m8 and Dm,m8 The result for B̂m(v)
2B̂2m

† (v) is expressed by

B̂m~v!2B̂2m
† ~v!5(

m8
Tm8,m

6i

v22V21 1
3 hvDm8

3@~v1V1 1
3 hDm8!b̂m8

(1)
~v,0!

2~v2V1 1
3 hDm8!b̂m8

(2)
~v,0!#

~88a!

in which

b̂m
(1)~v,0!5

1

6 (
m8

Tmm8~v!B̂m8~0!,

~88b!

b̂m
(2)~v,0!5

1

6 (
m8

Tmm8~v!B̂2m8
†

~0!.

Substituting Eqs.~88! into Eqs.~72! to get the expression fo
âq(v)2â2q

† (v), then Ê(z,v) is obtained by carrying ou
the integration overq in Eq. ~24!. Finally we get the solution
for Ê(z,t) by Eq. ~23!:

Ê~z,t !5A3ph\V

cA
uS t2

z

cD(
m

âme2 iVm(t2z/c)2Gm(t2z/c)

1H.c. ~89a!

for z.0,t2z/c.0, where

âm5
1

Vm
(
m8

F2 cosS 2pm8

3
2

vma

c D11GTmm8~vm!

3@~V1vm!b̂m
(1)~vm,0!2~V2vm!b̂m

(2)~vm,0!#.

~89b!

The mode corresponding toâ0 is superradiant, its decay rat
is three times of that of monolayer. The other two cor
sponding toâ6 are subradiant modes. Theâm’s can be de-
rived approximately~cf. Appendix B!, to the leading term,
they are given by

â1> i
Va

9c
@B̂1~0!1B̂21~0!#,

â0>B̂0~0!, ~90!

â21>
Va

A3c
@B̂1~0!2B̂21~0!#.

We see that the two exciton modes correspondingm
561 are not of eigendecay rates. On the contrary,
eigenmodes are nearly the maximum mixture of these
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modes. This means for the two subradiant modes, the
pling between modes of differentk is important. As to the
superradiant mode, only small components ofm561 modes
are mixed to thek50 mode@cf. Eq. ~B5! of Appendix B#.

In terms of the operators for annihilation on excitation
the lth layerB̂l , the annihilation operator for the three eige
modes are approximately expressed by

1

A2
@B̂m51~0!1B̂m521~0!#

5
1

A6
@2B̂l 51~0!12B̂l 50~0!2B̂l 521

† #,

~91a!

B̂m505
1

A3
@B̂l 51~0!1B̂l 50~0!1B̂l 521~0!#, ~91b!

1

A2
@B̂m51~0!2B̂m521~0!#5

i

A2
@B̂l 51~0!2B̂l 521~0!#.

~91c!

We see that in the superradiant mode(m50) the three
B̂l ’s are added constructively, hence the emission is tot
cooperative. However, as in the previous cases, the statis
properties of the light of this mode still may have differe
varieties, depending on the initial state of the excitons. As
the two subradiant modes, the operators of three layers
superposed destructively, resulting in a long time emissi

For thez.a region, the energy flux is given by

^Ŝ~z,t !&5^Ŝ1~z,t !&1^Ŝ2~z,t !&, ~92!

where^Ŝ1(z,t)& is the main part, it is expressed by

^Ŝ1~z,t !&5
\Vh

6A H 9^B̂0
†~0!B̂0~0!&e23h(t2z/c)

1
2V2a2

9c2
^B̂1

† ~0!B̂1~0!&e2~8h8/27!(t2z/c)

1
6V2a2

c2
^~B̂2

† ~0!B̂2~0!&e28h8(t2z/c)%

~93a!

with B̂6(0)5(1/A2)@B̂1(0)6B̂21(0)# and ^Ŝ2(z,t)& is ap-
proximated by

^Ŝ2~z,t !&52 i
\V

3A3A
Ahh8@^B̂1

† ~0!B̂0~0!2B̂0
†~0!B̂1~0!&

1 i3A3^B̂2
† ~0!B̂0~0!

2B̂0
†~0!B̂2~0!&#e2~3/2!h(t2Z/c). ~93b!

^Ŝ2(z,t)& only appears when the initial exciton density m
trix in Fock representation has nondiagonal elements.
u-

ly
cal

o
re
.

VII. BRIEF SUMMARY

In this paper we investigate the fluorescence of low d
sity Frenkel excitons in a plane crystal slab. The excitons
assumed to be ideal bosons. The coupled Heisenberg e
tions of exciton operator and photon operators for arbitr
number of lattice layers are studied without Markov appro
mation and rotating wave approximation. The simplest c
of single layer is first studied. When the interaction Ham
tonian is of type (e/mc)P•A, the characteristic equation fo
the decay rate and frequency shift will have an unphys
root with negative decay rate. Change to the interaction
2E•d type, another unphysical result appears: the eigen
quency drops down to zero. Only when the two-photon c
pling term (e2/2mc2)A2 is complemented to (e/mc)P•A,
the characteristic equation becomes reasonable. No unp
cal root appears.

The superfluorescence of excitons in the case of sin
lattice layer is studied in detail. Some different features
shown as compared with the superfluorescence of atom
gregate:

~i! Actually, all the lattice atoms in the layer are involve
in the cooperative radiation. That the decay rateh does not
go infinite with increasing of number of lattice atoms is d
to the reduction of the available photon states.

~ii ! The cooperation of radiation exists almost from t
beginning to the end, except at the very beginning.

~iii ! The fluorescence intensity shows irregular quive
These fluctuations are thought generated by the antirota
terms. We know that in the simple case where atom intera
with a single-mode light field, the antirotating term alrea
induce additional rapid oscillations,16 it is imaginable that in
the case where atoms interact with multimode light fie
these rapid oscillations of different frequencies will turn
irregular quivers.

~iv! The ^Ê(z,t)& is identical to zero outside the ligh
cone (uzu2ct.0), but the intensityI (z,t) is not so. It pen-
etrates outside the light cone to a small distance. This si
tion reminds us of the similar behavior of the photon prop

gator ^0uTÂ(x,t)Â(0,0)u0& in the interaction picture, which
is also not identical to zero in the spacelike regionr 2ct
.0 ~for t.0). This result shows that an atom may detec

photon in the region wherêÊ& is zero.
~v! Despite the fluorescence is of cooperative nature,

coherent and statistical properties of the emitted light s
have various possibilities depending on the exciton ini
conditions. The degrees of coherenceg(1) andg(2) also show
irregular fluctuations.

The cases of double and triple lattice layers are stud
subsequently also by the interaction (e/mc)P•A
1(e2/2mc2)A2. Similarly no unphysical root of the charac
teristic equation is found. When the value ofk is taken as the
symmetrical set given by Eqs.~8!, in general the coupling
between the modes of differentk cannot be neglected. In th
double lattice-layer case, both the superradiant mode
subradiant mode are mixture ofk56p/2a modes with equal
weights. In the triple lattice layer case, the two subradi
modes are basically mixtures ofk56p/a modes with equal
weights, but the superradiant mode is mainly thek50 mode.
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APPENDIX A: DERIVATION OF F kk8„v…

To derive Eq.~20!, we first substitute Eq.~10a! into Eq. ~18!, yielding

Fkk8~v!52
a f2V

4pc2E2`

`

dq
1

N

sin
1

2
~k2q!Na

sin
1

2
~k2q!a

sin
1

2
~q2k8!Na

sin
1

2
~q2k8!a

1

q22
v2

c2

. ~A1!

As mentioned above,v has an infinitesimal positive imaginary part; this determines how the integration path gets arou

poles. It is easy to see thatFkk8(v)5Fk8k(v) and Fkk8(v)5F2k,2k8(v). Expressing sin12(q2k8)Na as difference of two
exponentials, the corresponding two parts of integrand in Eq.~A1! vanish on the infinite half circles in the lower halfq plane
and upper halfq plane, respectively. Note that (a/2)(k2q)5np are not poles of the original unseparated integrand, so
may take the integration path below these points or above these points by arbitrary choice. Contour integration g
integral in Eq.~A1! as

pc

2Nv F sin
1

2 S k81
v

c DNa

sin
1

2 S k81
v

c Da

e( i /2)(k1v/c)Na

sin
1

2 S k1
v

c Da

2

sin
1

2 S k82
v

c DNa

sin
1

2 S k82
v

c Da

e2( i /2)(k2v/c)Na

sin
1

2 S k2
v

c Da
G

2
2p

Na

sin
1

2
~k2k8!Na

sin
1

2
~k2k8!a

(
n52`

`
1

v2

c2
2S k1

2np

a D 2
.

In order to evaluate(2`
` 1/@v2/c22(k12np/a)2#, we note that above result holds for arbitraryk,k8 and positiveN. Take

N51, the integral in Eq.~A1! can be easily calculated with the resultp ic/v. Through comparison we get

(
n52`

`
1

v2

c2
2S k1

2np

a D 2
52

ca

4v

sin
v

c
a

Fsin
1

2 S k1
v

c DaGFsin
1

2 S k2
v

c DaG . ~A2!

In the extend (v/c)a!1 andka!1, the right-hand side of Eq.~A2! may be approximated by 1/@(v2/c22k2)1 1
12 a2#, the

second term stands for the small correction by the umklapp process, namely all thenÞ0 terms in the summation. Substitutin
the above results into Eq.~A1!, yields a closed expression ofFkk8(v) for arbitraryN, which is just Eq.~20!.

APPENDIX B: DERIVATION OF EIGENMODES AND DECAY RATES IN THE CASE OF TRIPLE LATTICE LAYERS

We substitute

O~k2q!5 1
3 @e2 i (k2q)a111ei (k2q)a# ~B1!

into Eq. ~18! and evaluate the integral term by term, we get the matrix composed byFm,m8(v) as

F~v!52 i
Vh

6v S 2x222x13 2x21x 2x222x

2x21x 2x214x13 2x21x

2x222x 2x21x 2x222x13
D [2

Vh

6v
D~v! ~B2!

with x5eiva/c. Writing the matrix elements ofD(v) as Eq.~84!, the characteric equation is given by
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Uv22V21 1
3 hvu~v! 1

3 hvr ~v! 1
3 hvs~v!

1
3 hvr ~v! v22V21 1

3 hvv~v! 1
3 hvr ~v!

1
3 hvs~v! 1

3 hvr ~v! v22V21 1
3 hvu~v!

U50 ~B3!
-
ap

ty
un.

. B
which is just Eq.~83! in the text.
The rootsv j of Eq. ~83! are assumed not far from6V,

hence uv j ua/c!1. We may expand the factoreiva/c into
series. Up to second order of (va/c)2, the result is given by

u~v!54
va

c
1 i3S va

c D 2

, v~v!59i 28
va

c
2 i6S va

c D 2

,

r ~v!5
va

c
1 i

3

2 S va

c D 2

, s~v!522
va

c
2 i3S va

c D 2

.

~B4!

We see that absolute values ofu,r ,s are small, onlyuvu is
large. Substituting Eq.~B4! into Eq. ~83!, one gets an alge
braic equation of sixth order, its solution can be derived
proximately. Results are those given by Eqs.~86!.

The diagonalization of matrixD can be realized by two
steps. First, use matrix

S 1

A2
0

1

A2

0 1 0

1

A2
0 2

1

A2

D
to transformD into

S u~v!1s~v! A2r ~v! 0

A2r ~v! v~v! 0

0 0 u~v!2v~v!
D ,

then find a 232 matrix to diagonalize

S u~v!1s~v! A2r ~v!

A2r ~v! v~v!
D .

By this way, we finally get
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T~v!5S 1

A2
M 2

A2rM

v2u2s
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M

rM
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M
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1
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0 2
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where

M ~v!5
1

A11
2r 2~v!

@v~v!2u~v!2s~v!#2

, ~B5b!

being of order 1. After solving Eq.~88!, we get âq(v)
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