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Quantum statistical theory of fluorescence of low density Frenkel excitons in a crystal slab
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The fluorescence of Frenkel excitons in low density regime is studied without the aid of rotating wave
approximation and Markov approximation. The evolution of the emitted field is derived in terms of its initial
conditions. It is found that the usual interaction Hamiltonian @fgc)P- A type leads to unreasonable char-
acteristic equation for decay rates. Only when the teefi2tnc?)A? is added to thed/mc)P- A, the result
becomes reasonable. The case of single lattice layer is studied in detail. Different features of statistical
properties of the superfluorescence are shown as compared with that of atom aggregate. Double and triple
lattice-layer cases are also studied to show the effect of coupling between the excitons of different wave
vectors.

[. INTRODUCTION action, so that the stationary state is also a phase coherently
superposed excited state over all the latfidenis feature is
The spontaneous emission of low density excitdiMan-  reflected in the proportionality of exciton-photon coupling
nier or Frenkelis of collective character even if there is only constantG to N+ in low density regime, wher&l; is the
one exciton. The reason is that each exciton migrates ovaotal number of atoms in the crystal. Nevertheless, this does
the whole quantum wellor crystal slabcoherently when the not mean that the superradiant rétewill tend to infinity as
exciton density is lowso that overlapping can be negledgted N;— . The value ofl” will be limited by two effects: one is
leading to a collective transition dipole moment to interactthe reduction of the available photon states which restrains
with the electromagnetic field. But the fluorescence of suchhe value ofl" for large lateral crystal extension, another is
an exciton may have different features as compared with théhe reabsorption of the emitted photon, which restrairfer
usual superfluorescence of fully population-inverted atomarge longitudinal crystal extension. The first effect will be
aggregate. In the latter case the atoms radiate independentigmonstrated in Sec. V, the second effect is related to the
with each other in the initial stage, they become cooperativgormation of a new stationary state, polariton, as longitudinal
only after a time decay, resulting in an intense pulse of peakxtension tens to infinity.
shape. The emitted field will show different statistical prop-  In the literaturé® the authors usually devote themselves
erties in the initial stage and later on stages. We shall see thas deduce the radiant rate The simplest way to this aim is
the fluorescence of low density excitons are quite differentto calculatel’ by the perturbation theory, namely in terms of
In general the exciton may have many eigenmodes. For thoeermi golden rule. This approach has ignored reabsorption
eigenmodes which are phase matching or nearby matchingnd stimulation effect so that it cannot be applied to thick
with the emitted light, the exciton fluorescence is superradicrystal slab. Hanamura presented a different approach, he
ant, and this superfluorescence will exhibit identical statisti-deduced a characteristic equation foffor the superfluores-
cal character during the whole process as will be demoneence of Wannier excitoAsn a two-dimensional quantum
strated in this paper. well with thickness of exciton diameter. But his characteris-
Another different feature between superfluorescences dfc equation, as we will see later, suffers the problem of
excitons and of atom aggregate lies in that the cooperation a#xisting a superfluous unphysical root which will lead to
atom aggregate is limited by a finite length, the so callecunreasonable temporal evolution of the field. Knoester pro-
cooperation lengthsince the atoms come into phase coher-posed a general formulation for fluorescence of Frenkel
ently correlated state through the radiation field itself whichexcitons and gave a correct characteristic equation for the
has a finite extent, while the exciton of low density is aN=1 case, which is free from the above-mentioned unphysi-
coherent excitation over the whole crystal, provided the careal pole. He also studied the crossover from the superradiant
rier quantum well or crystal slab is ide@lo trapping effect excitons to bulk polaritons. However, no detailed derivation
occurg. For Wannier exciton, this feature is obvious since itis given for the effective coupling functiof, () and for
is a pair of free electron and free hole bound together, stilthe character equation therein. Actually these results in Ref.
movable freely as a whole. Frenkel exciton is usually an5 cannot be derived from simple coupling of form
excitation of lattice aton(moleculaj in the crystal. How- (e/mc)P-A, as will be seen in the following paragraphs.
ever, the excitation will not be located at a fixed lattice, but In addition, one cannot limit oneself just to deriving the
transfer from one lattice to another due to atom-atom interfadiant rate. The photon field operatand exciton field op-
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erato) also deserves investigation. It not only exhibits thewave vectors is taken into account. We see that only one
dynamics of the radiation process, but also allows people tenode is superradiant. Section VII presents a brief summary.
study the statistical properties of the emitted light. We note

that no such statistical properties were investigated in Hana- 1l. BASIC FORMULATION WITH P -A COUPLING

mura:s pape3r7and Knoest_ers papér. . o As mentioned in Sec. |, we consider a simple model of
, BjO!’k etal.” have studied the time evolution of radiation fluorescence of Frenkel excitons in a plane crystal slab which
intensity based upon the work of Rehler and Ebgrip, _ has ideal cubic lattice witN layers. The wave vectors of the
which each atom is assumed in a pure state and the timg,citons and light fields are all assumed perpendicular to the
variation of the total atomic energw(t) is derived by a gjap. The density of excitons is assumed low, so that the
relation which connect#/(t) and radiation powek(t). Thus  space filling effect and exciton-exciton direct coupling
their results could not give any information with regard toterms? can be neglected. This model is similar to that of
the statistical properties of the emitted light field. Moreover,Ref. 3 and should be the same as adopted by Ref. 5.

the stimulated emission and absorption are also neglected in g (e/mcd)P-A coupling, theH;,, between the photon

their treatment. and lattice atomstwo leve) is of the form
Tobihiro et al. have investigated the superfluorescence of

a highly excited linear mesoscopic chain of molecutdrs. ~ ot A iglas ateyasiql
N . . U i = - + 48]+ H.c.
They even take the static dipole-dipole interaction into ac- Hind(1) ﬁq% g(a)by;(Dag(t)e (e ItHe,
count. But still no statistical properties of emitted light are D
reported. wherea, anda; are the annihilation and creation operators

In this paper, we shall limit to the case of low exciton q q N -

i pap i i f the photon with wave vectay, respectivelyb;; and b
regime and also to the case in which the wave vectors of ' T lj o
excitons are perpendicular to the crystal slab. In this casélenote the creation and annihilation operator for an excita-
only the light modes propagating perpendicular to the crystaiion of the two-level atom ajth lattice site in théth layer.a
slab need be taken into account, and hence the coupl notes the lattice constant. The effective atom-photon cou-

Heisenberg equations for exciton-photon system can bBIING constang(q) is taken as real with the expression

solved without Born-Markov as well as rotating wave ap- \/W
imation. =N
proximation a(q) Vﬁ|q|cd' 2

In Sec. Il, we present the basic formulation with interac-
tion Hamiltonian of €/mc)P-A type which is usually where() denotes the electronic transition frequency of the
adopted in studying radiation problem. A closed expressionsolated lattice atomd represents its transition dipole mo-
of the functionF . (w) which measures the coupling of ex- ment, which is assumed real and its direction lying in the
citons with different wave vectors mediated by photons isslab plane.V is the normalization volume for the photon.
derived for arbitrary number of lattice layeXs One sees that Note that no rotating wave approximation is made in E&g.
Eq. (1) of Ref. 5 is of the same form with our result, but the In the low density excitation regiob;; andb/, are bosonic
functionF . is different from that in our derivation, apart a operators, satisfying the commutation relation
phase factor, by a substantial factof(}.

In Sec. Ill, the result obtained in the Sec. Il is analyzed in [B”(t),B,T,j,(t)]: S Bijr - )
the case of single lattice layer. We find that a root of the . .
characteristic equation lies in the upper half of complex Define the collective operator for théh layer as

plane, which corresponds to negative valud'oénd hence
leads to unphysical evolution of field operators. Change to Aty — i z nt B (1) —

. . . B/ (1) >, bjj(t), By(t)
the interaction of—E-d type, another problem emerges in- \/N_L ]
stead: a large real term appears in the characteristic equatio
which also makes its root unreasonable. Section IV deal
with interaction Hamiltonian with €%/2mc?)A? term added
to the @/ mc)P-A. A modified reduced dynamical equation [B,() B (t)]= 6
for exciton operator is obtained. "= -

In Sec. V the single lattice-layer case is examined in deEquation(1) may be rewritten as

tail on the basis of the modified reduced dynamical equation
given in Sec. IV. The characteristic equation now becomes ()= \/N_Lg(q)BF(t)[éq(t)+éf_q(t)]eiq'a+H.c.;
reasonable. The evolution of electric field is derived in terms a.l
of initial state of exciton. The superradiance character of the (5)

fluorescence in this case is analyzed, with the reduction fagyg static dipole moment is taken into account for simplicity.
tor due to photon states contraction derived explicitly. The  Transform to Frenkel exciton annihilation operator with
light intensity as well as the first- and second-order degree qf,ayve vectork

coherence are calculated to show the new features of the

exciton fluorescence. Some striking results concerning the . 1 o

light intensity and degrees of coherence are presented. Sec- Bu(t)=— > e MaB,(1), (6)
tion VI deals the cases of double lattice layers and triple ‘/N !

lattice layers. The coupling between excitons with differentwhereN is the total number of layers, and

1
NL

vhere N, is the total lattices sites within each layer. Evi-
ently we have

; bj(t), (@
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2mm 0y At
k=g " (7a =Bl =—0BL()-2 G(a)0(g—k)
q
in which m’s are taken as symmetrical to zero: x[aq(t)+é’[q(t)]_ (119
m=—1(N=1),—~3(N=3), ... 2(N=1),  (7b Define the half side Fourier transformation as
since the values df are assumed such that to edctinere is éq(w): fwéq(t)ei “dt, (124
a corresponding-k. The values of in Eqg. (6) will be the 0

same asm. It is easy to show that the exciton operators

satisfy the following bosonic commutation relation étq(w):J éjq(t)eiwtdt, (12b
0

Bi(t),Br (1)]= S s - 8 . . -
[B() B (1)]= S ® and the similar forBy(w) and Bik(w) [note thatafq(w)
We get therefore the interaction Hamiltonian between the= éfq(—w)T], Egs. (11) are then transformed to the alge-

Frenkel excitons and photons as braic equations
A=Y, G(@O(K+ QB0 +BT (D30 +aT (0] (@~ lal0)ag(@)=G(@) 2 O(k=q)[Byw)+B(w)]
q,k
© +iay(0), (139
in which
aN-1 1 siniN(k+q)a (@+]ale)aly(@)==G() % Ok=a)[By(w)+BL(w)]
Ok+q=g >  elrdt=g———0
N 1=— (@) N-1) N sini(k+q)a +ia_4(0), (13b)
(109
2702 (0=Q)By(0)=2 G(q)0(q-K)[ag(w)+a! ()]
Gz(Q)ZNng(Q)ZNTWdzy (10b q

+iB(0), (139
where Nt=NN_, representing the total number of lattice
sites within the crystal slab as mentioned in SecO(k - . ~+
+q) may be called as wave-vector matching fadwotice (@ + Q)BT (0)==2> G(q)O(q—k)[aq(w)+a’ 4(w)]
that ourO(k+q) is defined somewhat differently from that 4
in Ref. 5, apart from a phase facter (V2 (kTaO(N+1)a py 5 +iB1 (0), (13d)
factor 1A/N]. In our definition, it is real and equals to 1 for . A . A
k+q=0, andO(k+q)<1, fork+q#0. in which a,(0) andB(0) meansaq(t)|;—o and By(t)|i—o,

It is well known that the exciton in a bulk crystal does not etc.

radiate, but forms polariton instead. This shows that a gen- To ensure convergence, the in Egs. (12) is actually
eral treatment of exciton radiation should take the reabsorpattached to an infinitesimal positive imaginary parnamely
tion effect into account, and one should calculate the radiand stands forw+ie. The inverse transformation of Eq4.2)
rate by solving dynamical equatidbnnot simply by utilizing s readily seen to be
Fermi golden rule.

The Heisenberg equations for exciton and photon opera- 5.(0)= ijome A ()it
tors can be easily got from;,,(t), with the results a 27 ) i @

A ~ ~ ~t ~ 1 (oetie .
|an(t)=|q|caq(t)+G(q)E O(k=a)[Bk(t) +B_(1)], a_q(t)=2—f 4 a_q(w)e_""tdw- (14)
k TJ)—c+ie

(11a
From Egs.(139 and(13b), one gets
0. - R -
Iﬁaiq(t)=—Iqlcafq(t)—G(q)Ek O(k—q) (02— q2cA)[ag(@) +a ()]
X[Bu(t)+BL ()], (11b) =2|alcG(a) 2 O(k-a)

BU0=0B,0+ S G(a)0(a—KLAg(0)+3! (0], X[Bule)+BLL@]Fil(wF]ale)aq(0)

(110 +(w—|glc)a’ 4(0)]. (15)
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Substituting Eq(15) into Eq. (130 yields 1 ®
af2q | S k’*‘g Na i) (k+ wlc)Na
R . . Frw(w)=—
(0= Q)By(®) =2 Fige(@)[Bo(w) +By(w)] BNco | 0 @ aint (ke 2la
k 2 c 2 c
_ 1 o
+2q‘, G(q)0(q—k) Slni(k — ¢ /Na k- wlNa
~ . a . 1<k’ ) ) 1(k )
_— — | +i sins| k'——|a sing|k——|a
X w—|q|caq(o)+w+|q|c +iB(0) > P > P
(16) 1 ,
S|n§(k—k )Na
in which + -
sinz(k—k’)a
2|q|cG*(q)O(k—q)O(q—k’)
Fie(0)=2 —— 17 "
q ®w"—Qq°C sinEa
. . . L X (20
measuring the coupling of excitons with different wave vec- 1 ® 1 o)
tors mediated by photons of variogs We take the photon siny | k+ < ]a| siny| k—]a

normalization volumé/ to be AL whereA is the area of the

crystal slab, and let the slab located at the middle of thdor the details, see Appendix A. Whei—, the first two
volume. WhenL is sufficient large, the summation in Eq. terms tend to zerd hence

(17) may be converted to integration to give

||m Fkkr((x))
N—oo
NaQf2 f+= O(k—q)O(q—k’)
Frw(w)=— zf dqg > , (189 sinZa
amet I - a0 c )
c? "~ 8co [ 1 1] @) | Ok
sinz| k+—Ja||sinz| k——]a
2 2 c
where
(21)
) 870 d? consistent with the conservation kf
f= PRCEE (19 To deduceay(w), we need first to evaluatd,(w)

+IA3T_k(w). From Eq.(16) and its Hermitian conjugate, we

a coupling parameter which is independent of photon moget a closed equation fdi(w)+B" () as follows:
mentum and photon normalization volume. Its dimension is

the same a&2(q). 2 A2 _ 5 ot
For comparing Eq(16) with Egs. (1) and (2) of Ref. 5, % [(07= Q%) e = 20F e (0) 1B (@) + B ()]

we momentarily neglect the terms proportionaﬁ;g(O) and

éT_q(O) in the former and letl=0 in the latter. After this
abridgement, these two equations have the same form. But

=i[(0+Q)B(0)+(0— Q)BT (0)]

actually they are different, because @ (w) differs from +2i02, G(q)0(q—k)

Eq. (2) of Ref. 5, apart from a phase factor, by a substantial a

factor )/ w. We note that the coupling in Ref. 5 is also taken 1 . ~y

asP-A type. X (1)—|C]|Caq(0)+ w+|Q|Ca_q(0) : (22

Knoester further proposedthat Fy(w) is strongly
peaked arountt=k’ and may be taken a8y, (w)d to a  This is what we call reduced dynamical equation for exciton
good approximation. This proposition of course holds ex-operator in Sec. I. Having the expressiorFf (), in prin-
actly for N=1 andN=, since forN=1 there is only one ciple this equation may be solved f&(w)+B" () for

value ofk namelyk=0 and forN== it corresponds to con- ; - o ot .
servation ofk. It may possibly be a good approximation arbitrary N. Substituting the result oBy() +B-(w) into

- " .
whenN is large but will not be valid in general, as already EdS- (138 and (13b) to getay(w) anda_q(w), the time
doubted by Andreari? and also will be seen directly in Sec. €volution of photon field operator is then derived by the
VI. Thus a closed expression By (w) for k#k' is desir-  Inverse Fourier transformation

able. _
Substituting Eq(10g into Eq. (18), and carrying out the E(zt)= ifwﬂe E(z,w)e “'dw (23)
integration, we get V2w ) —wsie '
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where thez axis is taken perpendicular to the crystal slab—o+i(7+¢€)— +w+i(7+€) may eliminate this problem

surface, and(z,w) is given by

E(z,w)zi% W[éq(w)—éiq(w)]eiqz

+ o
=i
—®

for sufficient largeL.

lalchl
27A

[ag(w)—a'  (w)]e'%dq

(24

Ill. THE PROBLEM FOR P -A COUPLING

but another problem arises: there will be a growing term
~e™. Both results are unacceptable.

We note that even if we remove a fact@fw from right-
hand side of Eq(25) to make ourF i w) coincide with that
of Knoester, the characteristic equation is still different from
Eq. (3) of Ref. 5 and remains to give unphysical root. In
addition, we note that the Eq12) of Ref. 3 for zero trans-
verse wave vector is the same as our 89), hence it also
suffers from the problem of existing an unphysical root.
Change to— E- d coupling, the only alteration i&2(q) be-
ing modified toN(2|q|c/V#)d?, so the functionF oo w)
for N=1 becomes, instead of E(R5),

c [(*= 2
Although the €/mc)P- A interaction Hamiltonian is com- Fooflw)=— ”ﬁj dq a 5 (31
monly used in treating emission and absorption problem, we TRES e 2 W
find a serious problem in the above formulation. Let us see q c2

the simplest casé\l=1. Now the only allowable value &
is zero. As mentioned in Appendix A, whéxi=1 the inte-
gral on the right-hand side of E¢L8) is just equal torric/ w,
hence

o __afe Qg e
oolw)=—1i 1co - 2 (25
with
_af2 o6
=55 (26)

After neglecting the terms proportional &(0) anda’ ,(0)
as did in Ref. 5, Eq(22) is reduced to

Bo(w)+Bj(w) = qzl(0+Q2)B(0)

2_0%+in—
w n o

+(0—Q)BJ(0)]. (27)
The roots of the characteristic equation
QZ
wz—Qz—Hn::O (28

will determine the poles dBy(w) + B{(w) which turn out to

Writing the integrand as + (w?/c?)[1/(9%>— »?/c?)] and re-
membering thatw has an infinitesimal positive imaginary
part, the second term can be easily integrated out, resulting
in

Fof(®)=—i7— © f T 32

ol@)=~ing-n5—5| da. (32)

The real part of the abovigyy(w) now tends to minus infin-
ity. Even if we cut off the integration range gt,~1/a on
account of our dipole approximation;-RQ ReF ) is still
of order &?O/ha*~8e’Q/ha. Such large value of
(—2Q ReF(g) will make the characteristic equation

w’+inw—0%—20 ReFy=0 (33

unreasonable, since its roots should have zero real parts,
which means the eigenfrequency drops down to zero.

IV. THE FORMULATION WITH P -A PLUS A? COUPLING

It is seen from last section thatmcP- A coupling leads
to unphysical result ane-E-d coupling also results in un-
reasonable characteristic equation. We remind that a two-
photon coupling termg?/2mc?) A? has been neglected in the
(e/mc)P- A formulation. Now this term will be taken into
account, which changes E) to

be the decay rates and frequency shifts of the excitons. The _ . A
above characteristic equation is a third-order algebraic equa-H;,(t) =ﬁ2 G(q)O(k+q)[By(t)+ Bik(t)]

tion:

03— Q%w+in0?=0. (29

Sincen/2<1, the roots of Eq(29) are given approximately

by

w12=0—3in —Q-3in iy (30

The rootws=i 7 in the upper haliw plane is an unphysi-

cal pole ofBy(w) + Bj(w). When we use Eq$27) and(133
and(13b) to evaluatefE(z,t) according to Eqs25) and(26),

the result will contain an unphysical term contributed by the

root w3, which gives(E(z,t))#0 for spacelike internalz|
>ct (see Sec. Y. Changing the integration path afto line

g,k

X[ag(t)+a_q(]+% > f(a,q")

a.q’.l
><[éq(t)+5iq(t)][éq,(t)+éiq,(t)]ei(q+q’)la,
(34
G?(q) is still given by Eq.(10b), and
f(q,9") N e” (35)
qvq = .
mcWlaq'|

We remind that two-level atom is only a working hypoth-
esis, it does not meet the basic condition that the total levels
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of atom form a complete set, so sometimes one needs to do The equations foB,(t) and BT (t) remain unaltered,

some additional handlint.In f(q,q’), originally there is a

factor e, - ,» and summation ovex and\’, wheree, de-
notes polarization vectors of the photon witk-1,2. For an
atom with a complete set of eigenstata$, we have

e-ev=(1le-e[1)
_ % S [¢1le, xini(nles pl1)—(1ley -pln)
X(nley-x|1)]
m
== 2 Quil(1e,-xIn)(nle, x| 1)+(1]e, - x|n)
X(nley-x/1)]

m
= 2 Qual (e -di) (e -dny) + (&, - dyp)

X(&,-dn1) . (36)
In the two-level approximation, E¢36) reduces to
2mQ
=g (ex-d)(ey-d), (37

where () stands forQ),; andd=d,;=d;,. Takinge, such
that

e,-d=d, e,-d=0,

Eq. (37) reduces to
~ 2mQd?
N T

Adding =, )&, - e, in Eq.(35) and utilizing Eq.(38), we get

S\10\/ - (39

27N Qd* 1

f(q,q')= = 39
(@0)= U iaqT MO (39)

G(a)G(q").

while the equations foa,(t) anda’ ,(t) have an additional
term:

L - - -
I Zr2a(D=lalcay(t) + G(a) 2 O(k—aq)[B(D) +BL(1)]

2
+q 2 G(a)G(q)0(a’ ~k)O(k—q)
q’k

X[ag /() +a' (1], (429

J A ~
iZalq(0=—lalcal ()~ G(a) % Ok—a)
X[By(t)+ BT (1)]
2

q = G(@)G(a)0(g’' ~kO(k-aq)

q' .k

x[ag(t)+a’ (1], (42b)
Performing the half side Fourier transformation of E@)
as before, and eIiminatezq,G(q’)O(q’—k)x[éq,(w)
+étq,(w)] therein by use of Eqg13¢ and(13d), we get

- 1 .
(0=[ale)ag(w)=G(a) 2 GOk=a){w[By(w)

—B (0)]—i[B(0)—B" (0)]}

+iay(0), (439

- 1 R
(o +]ale)aly(@)=~G(a) % 5 Ok-a){w[Bw)

—B" 1-i[B(0)—B" (0)]}

+ia' ,(0) (43b

This is the desired modification. We note in passing that thd0 replace Eqs(13a8 and (13b). Equations(13¢) and (13d

physical implication of Eq(39) is

) f
MQ X1/ *=X12 P12 = 2

Substituting Eq(39) into Eg. (34) and making use of

D ei<q+q’>'a:N2k 0(q' —k)O(k+q), (40)

we get the amendeld,,(t) as

ﬂim<t>=ﬁq2k G(q)O(k+q)[B(H)+ BT (1]

- ~ 1
X[ag(h)+a_q(h)]+4 X 5G(@)G(q)
9.9k

X 0(q' —K)O(k+g)[ag(t) +a’ 4(1)]

x[ag(H+a' (1], (4D

together with Eqs(43a and (43b) form our revised simul-

taneous equations. Eliminatingy(w) anda’, from these
equations, we get, instead of E@2), a revised dynamical
equation for exciton operator:

2w? . -
S | (0702840~ 5-Fuae(@) | [Bio(@) =BT ()]

k/
=2 = > Fue(@)[Bo(0)~B',,(0)]
k!
+il(0+Q)B(0)— (0—Q)B' (0)]

: 2 1 .
+2iw - G(g)O(k—q) w_—|q|caq(0)

1

é*.ﬂO)}

whereF () is the same as that in Sec. Il. Comparing Eq.
(44) with Eqg. (22), we see that in the left-hand sifg, (w)
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is replaced by ©2/Q2)F () and By (w)+B', (w) is  note that the factow?/q?c? also expresses the difference

A _at - o between the right-hand sides of E¢®.12 and(2.14) in the
changed toBy/(w)—B_,,(w). The right-hand side is also first paper of Ref. 15.

altered. These modifications will _Iead to reasona_lble values To see the photon field generated by exciton fluorescence,
for decay rate and frequency shift, as we see in the next : ~ ~y .
sections. we drop the terms proportional &,(0) ora’,(0) in Egs.

Solving Eq.(44) for By(w)— B! (v) and substituting it (*# and(45), and hence get

into Egs.(439 and(43b) to get Bo(w)_ Bg(w)

g‘q(w)_éiq(w):%e(q)z ok—q) (0t Q+in)By(0)~ (0—Q+in)BYO)
Q%(w°—g°c) K ! w’+ino—Q? .
x{w[Bi(w) =Bl y(w)] 47
—i[B(0)-BT (0]} It gives in turn that
2 ot
i [ a —al
+ ———2,(0)— ———a’ ,(0), alw) = aglw)
w—[g[c™™ w+[glcT A . . ot
45 _ 2i0G(q) (0+Q)Bg(0)+ (0—Q)Bg(0)
) ) ) 49 w?—q%c? w’+inw—02? .
the time evolution of electromagnetie.m) field operators
may be derived still by Eq$23) and(24). We note that both (48)

the stimulated emission and reabsorption effects have al-

ready been taken into account, In the regionz>0 outside the layer, the integral in Eq.

(24) can be evaluated by adding an infinite half circle in the

upper comple lane. Substituting Eq48) into it yields
V. SINGLE LATTICE-LAYER CASE: ELECTRIC FIELD, PP plexap 9 C( ) y

LIGHT INTENSITY, COHERENCE, AND STATISTICS

E(Z,w)
PROPERTIES
A At

In this section, the case of monolayeX1) will be i [7h Q7 (0+Q)Bo(0)+(0—)Bo(0) qi(w/0)z

studied in detail. The characteristic equation for decay rates cA w’+inw—0? '
and frequency shifts now becomes

(49

2w? . . .
2_02_"" F —0. 4 We remind thatA is the area of the layer, it is also the cross
@ o Fol@)=0 (463 area of the normalization volume for the photon.
Substituting Eq(25) in it yields The electric fieldE(z,t) in the z>0 region generated by
the exciton is then calculated by E(R3). For the case
w’+ingo—0%=0 (46h  —ct>0(<0), one may add an infinite uppélower) half

circle in thew plane to form a closed contour. The results so
obtained are given by

1 1 7° = - -
w12~ = 517% 00, Qo= \192—27]2%9(1—@) E(z,1)=0, for z—ct>0, (503

(460) E(z,t)=&1)(z,t)+H.c. for z—ct<0 (50b)
Thus the problems which arises in the couplingin which
(e/mc)P-A and coupling— E-d are eliminated.

The term €%/2mc®)A? is usually regarded as unimportant i Q7
£N@0=\ A

which just have two physical roots given by

in treating the emission process, however, in our problem we
see it is not so. We also see that in our problem the two

( Q i n)A
T, 20, Bo(0)

interactions é/mc)P-A+ (e?/2mc®)A? and —E-d are not Q i g\

equivalent to each other. As pointed out by many autfors, +(1— a2 Q—) 83(0)}

in the full quantum theory although one can use an unitary 0 0

transformation to transform thee{mc)P- A+ (e22mc?)A? X @~ 100(t=2/) = (112)(t=2/c) (51)

interaction to—d- E interaction plus a ternf P?dr, but in
the new basis, the operatér actually has the meaning of

e!ectrlc dlsplace_zment, not the _electnc field, and s_atlsﬁes Poots of the characteristic equation are in the lower half plane
different dynamical equation. It is easy to see that if a factorof complex variablew. The previous characteristic equation

’/g?c® is added in the integrand df,«(w) for —d-E  [Eq. (29)] has a root in the upper halb plane, hence it
interaction, the corresponding characteristic equation will beyjolates the requirement that emitted field should be zero in
come the same as that foe/(nc)P- A+ (e*/2mc®)A%. We  spacelike interval.

and(,— ) stands for the frequency shift.
Equation(503 is the consequence of the result that all the
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Equationg50b) and(51) show the exciton-generated electric fieldzin O region behaves like a damped wave propagating
in forward direction as required. No peak develops. The decay is of exponential type, demonstrating the cooperation of
radiation is from beginning to the end.

For reference, we write down the neglected partfie,t), which is proportional toaq(0) and aj(0), asE’'(zt)
+EO)(z,1):

H 2
: —iQq(t—2z/c)—(1/2)n(t—12zlc)

-~ 7Tﬁ77 (90_577) € 2|q|ZCZefi\q\c(t—z/c) R
E'20=2 Vv I - — | 2(0)

q . i
0] 0~ [ale- Jin| [ 20-lale- 9 ( 0o+lale+ 3
i ’ Qo(t=2z/c)—(1/2)n(t—2/c)
N —iQq(t—2z/c)—(1/2)n(t—2z/c
QO 2 7]) e -
+ 1 a4(0) | +H.c. (523
Qo Qo+|Q|C_§i77)
|
for z—ct>0, andE’(z,t) equals zero foz—ct<0, while In one-dimension model, the number of photon states
within the rangedk is 2(L/27)dk, the factor 2 counts the
R 2mhlqc.. o two sides of the slab, while in the three-dimension case the
EO(zt)=i), Taq(O)e'qZ*”q'CtJr H.c., corresponding number of photon states lig2r) 34 wk2dk.
q The reduction factor is then
(52b
it is just the free varying photon field. We note th#t(z,t) _, L L ’ e 2m (54)
is proportional ton namely proportional to the square of R R 2 CK2L2

coupling constant.

E(z,t) in z<O0 region can be derived similarly. The result which equals 2¢x?/L?) at the frequency. Thus the en-
is a damped wave propagating in the backwardirection = hancement factorg times the number of cooperation, turns
instead. The polarization vector of electric field is along theout to be
transition dipole momentl which is assumed lying in the

plane of slab. L2 (777(2>

The magnetic field can be derived from the electric field aNr=a—=2

- (55)

2

a a

through Maxwell equations. One sees that the energy3lux
is directed outward from the crystal film, bothZe» 0 and in S~ 2 , Co
z<0 sides. We note that the above solution is free fromThere s still a factory of difference, which is due to our

oo . assumption that the dipole moment lies in the plane of the
Markov approximation and also free from rotating wave ap- crystal film

pro%(;]n;ac;[f:é rate of emission intensity equalsrowhich We now study the coherence and statistical properties as
can be reexyressed b y equalsr well as the evolution of intensity of the emitted e.m. field.
P y From Egs.(50b) and(51),

wx? .
=3 — . Th Q) Q i A
! 3( 22 )7’ 9 (Ez0)= 4cAn[<l+Q_o_§Qlo)<BO(o)>

where y is the EinsteinA coefficient of an isolated lattice Q iy
atom, X denotes the reduced wavelength, nanw@). Out- +Hil-5""5 —)
wardly, only a number of 3£x%/a?) atoms, i.e., number of
lattice sites in an area &(?), are involved in cooperation. .
Nevertheless, it is not the true physics. From E@§.and X(Bo(0))
(10) it is seen that for N=1,G=N,g, and B,

:(1/\/N_L)Ej6j , hence all atoms in the layer are involved in hence if initially the exciton is in chaotic state, number state
cooperation, they interact with photon collectively. The fac-Or in general a state with density matrix diagonal in Fock
tor 3(wx?/a?) actually comes from the reduction of avail- representation{E(z,t)) will be zero for all times, which
able photon states in our one-dimension model as comparadeans no coherent part will develop in the emittedm)
with that of isolated atom, which will be explained in the field, even though the radiation is cooperative. When the
following. exciton is initially in coherent state, a coherence part of emit-

g~ iQo(t=2/0)~(n2)(t-2¢) | ¢ ¢(56)



PRB 62 QUANTUM STATISTICAL THEORY OF FLUORESCENE . .. 16 461

ted field results consequently. However, the emitted field is

not exactly in a coherent state as we shall see below3=y;. 2(wq+Q)eiwdt
q

- - i (oM
It seems that the E(*)(z,t) part” of E(zt) for z—ct Fi(z,t)= ;jo dwg : :
<0 is just&{*)(z,t) defined by Eq(51), since it is a damped (wq_QO+ 57| @t Qot 5 77)
wave with positive frequency. However, this is not true ac- _
(Eo:dlng t(? the original de-zflr.ntlon. The orlglnalll -defmltlon of (QO+Q— r 7]) o190t (12)7t
E(*)(z,t) is the part consisting of photon annihilation opera-
tors: i
Qo( C()q_ Qo+ E n
£ () i +o0 +ootie |q|ChL,\ i ‘
E (Z,t)zz wdq 7oc+iedw M—Aaq(w) (QO_Q+E77 eIQOt—(lIZ)nt i
i (a2 a) B i €0 ”QE»
QO wq+Qo+ E n

+00+Ie
2w
—® 700+|5
% [QﬁCﬂ 1 i om z(wq_Q)e—iwqt
4aA w— |q|c FZ(Z,t)=;j0 dawg ( -

: .
. . wg— Qo+ = wq+ Qo+ )
(0+Q)Bg(0)+(w—Q)Bl(0) ot " 0T 57 0 27]
X : ettiem el :
w’+inw—02? (QO_Q_'En)e—mot—(uz)nt
(57) :
i
Qo( wq_Qo+
The integration respect wpcannot be carried out analyti-
cally because of the factor 16— |g|c). We can only arrive i o
at the following results: QotQ+ 57 Ch .
i CcO qu),
EC)(zt)=0 (589 Qo| wg+Qot 57
(58d)
for t<0, and wherew,=|q|c, wy, is the cutoff frequency due to our di-
q

pole approximation with the value,,~c/a. Actually one
may write the upper limit of integration as, since it is
convergent whenwy,—, and c/a is already sufficiently

EM(zt)= [Fl(Zt)BO(0)+F2(Zt) B5(0)] large. All the integrals in Eqs(58) can be expressed by
(58b) complex Si and Ci functions. We see that the third terms in
the square brackets are components of negative frequency.
The operatoéq(t) may also be calculated by Eq¥33
for t>0, in which and (47) with the result
i \. i \.
R R __ 00— — t
. (0t QB0+ (wg-WBY0) [ P0T273 ”)BO(O)*(“O 2732 ”)80(0)
aq(t)=G(q) : e :
(wq—ﬂo+§77 wq+QO+§7] ZQO(wq—QO+§77
i\. i \.
Qo=+ 57|Bo(0)+| Qo+ Q-+ 5 7|BY(0)
w @~ 190t = (7/2)t _ _ el Qot—(72)t | (59)
i
ZQO Qo+ wq-l- E n

This equation shows that the eigenstat®gf0) is not just the eigenstate ég(t) because of the terms proportionalﬁé(O),
confirming that the emitted field is not exactly in a coherent state as mentioned beld®6Eq.
Since electromagnetic interaction is weak, we shall not take account of dressing effect. For example, the Heisenberg state
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in which initially there is one physical exciton is just taker%$0)|0), where|0) is the bare vacuum state. The light intensity
of a state]) is now defined as

l(z,t)= %d:E<*><z,t>é<+><z,t):l>= %RIE<*><z,t)é<*><z,t>|>—<0|E<*>(z,t>é<*><z,t>|0>]- (60)

where the symbol :: means the normal product accordirigh(0) andég(O). Similarly, the first-order degree of coherence of
emitted field is given by

(E(Z,)ED (z,t+ 1)) —(0|ED)(2,) EM(z,t+ 7)|0)
2T7Tx/l(z,t)l(z,t+ 7)

When the exciton initially is in a state with density matrix diagonal in Fock representatidnding chaotic state and number
statg, we have

gP(zt:zt+7)=

(61)

FI(zZ,O)F(z,t+7)+F5(z,t)Fo(z,t+7)
gP(zt;zt+7)= - (62
[FY(z,O)F1(z,) + F5(ZO)F (2.0 1Y FY (z,t+ 1 F1(z,t+ 1)+ F3 (2, t+ 7)F(z,t+ 1) ]2

For initial exciton in coherent statir), g)(z,t;z,t+7)

. - ¢ o(—) o(+)
may be obtained by following formulas: Uz = E(kg( () EN(zZ,0):]). (64)
(a|ECNZ, ) ED(z,t+ 7)| @) The values ofZ(z,t) are obtained by substitutind.+Q/Q,
- =) —(i12)n/ Qe Polt=2/)=(1/2)7(t=2) for F,(z,t) and sub-
—(0[E'(z,)E M (z,t+ 7)[0) stituting  [1—Q/Qo— (i/2)7/Q e Qolt=ZO)~(12)n(t-2c)
iy for F,(z,t) in Egs.(62) and(63). We see from Fig. 1 that
= [|a|?F%(z,t)Fi(z,t+7) I(z,t) is slightly below the smoothel(z,t).
4mAcC 1I(z,t) also has its own meaning. It is just the cycle aver-
+|al?F% (2, Fo(z,t+ 1)+ a®F3 (2,0 F (2, t+ 7) age of the expectation value of energy flux oper&f,t)
) =(c/4w):E(z,t)2:. The role of cycle average is to eliminate
+a* Fi(z,t)Fy(z,t+7)] (63

the rapid oscillating terms c(47r)(|:é(‘)(z,t)2:|) and
. . o (cldm)(]: &) (z,1)%:)).
and similar expression fok(z,t) and [(zt+7) in its de- Another striking result is thalt(z,t) does not vanish im-
nominator, wherea is the eigenvalue oB,(0), namely  mediately agz| goes beyondt(t>0) to enter the spacelike
Bo(0)| @)= a|a). region but gradually drops down as shown in Fig. 2. This
We note that in case the antirotating terms&ifi)(z,t), result may be regarded as an exhibition th4t)(z,t) does
which include the term proportional #,(z,t) as well as the not have the meaning of annihilating a photon at posiion
negative frequency term inFy(zt), are dropped, the As a contrastE(zt) does vanish immediately dg| goes
9W(z,t;z,t+ 7) will be independent of the initial condition beyondct [see Eq(50a] which is a natural result from the
of the excitons. However, numerical calculation shows thatetarded solution.
F2(z,1) is not negligible as compared wiffy(z,t). As to the The absolute values af*) are shown in Fig. 3, together
negative frequency term ify(z,t), it is indeed negligibly .y the ansolute values @, in which the&(™) are used

i : B (21) | N
small. Numerical calculation also shows tHat")(2,1) is 5 g pstitutel(*). The curves fotG™M)| are all straight lines

quite different from&'*)(z,t). The magnitude of the coeffi- with height always equal to 1, no matter the initial exciton
cient of B,(0) in E*) is less than that i&(”(z,t) while the  State is coherent or with density matrix diagonal in Fock
. . ~ i ~ ) - 1) -
magnitude of the coefficient & (0) in E(+) is much larger representaﬂqn. The curves f@( _ |_ are dl_fferent. In_the.case
A that the density matrix of the initial exciton state is diagonal
than that in&(*)(z,t).

L ] ) in Fock representationg(®)| first oscillates rapidly and soon
A striking result is that thel (z,t) defined by Eq.(60)  afterwards quivers irregularly around a nearly straight line
oscillates rapidly with frequency), and soon afterwards \yith height|g™)|=0.8. A striking result is that for coherent

quivers irreg_ularly with time, cqntrary to what pe_ople usually initial exciton state thdg| keeps equal to 1 without any
expect. In Fig. 1 some numerical curves are given to shoWipration. It is also independent @, the phase ofx.

this time evolution. For comparison we also plot the curve The second degree of cohererg®(z,t;z,t+ 7) is now
for Z(z,t) defined by&™) as defined by
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a
4 (a) 5| (a)
3 4r
<., O
o L

20 40 60 80 100 120 140

FIG. 2. Space distribution of intensityz,t). (a) t=2u/Q, (b)
t=3mlw, (¢) t=57/w. | is in units of 3(nN)2Q5/A, z—ct is in
units ofc/Q, 7/Q=10"2. The dashed line represerifz,t). The
initial exciton is in chaotic state or number state.

g@(zt;z,t+7)

1)

{(EDZHEO (zt+ ED(z,t+ nEM(Z,1)])
B 4772

—Zl(z,t)l(z,H 7)

C

L

20 40 60 80 100 120 140 (OED(ZHEC zt+ NED(zt+ EM(z,1)]0)

t 477
—Zl(z,t)l(z,t+ 7)
c

FIG. 1. Time evolution of light intensitie$(z,t) at point z
=2mc/Q. | is in units of%(n)fiﬂ(n/A), where(n) is the initial (65)
mean number of excitons.is in units of 10). 7/20=102. The
dashed lines representz,t). (a) The case that the density matrix of R R
initial exciton state is diagonal in Fock representation, including the+ 7)| by substitutings™) for E*) in Eq. (65).
chaotic state and number state)—(d) The cases that the initial The results for chaotic initial exciton states are shown in
exciton state is coherent state with eigenvaiue|a|e'’. Fig. 4. We see thdig(?)| is always equal to 2 and does not

For comparison we also plot the curves |6f?)(z,t;z,t
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~(a) <n>=1
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31 (o) <n>=50
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FIG. 3. The absolute value of first-order degree of coherence WWWWMWMWMMMWN
g®(z,t;z,t+7) as a function ofr.z=2, t=27. t and 7 are in Tr
units of 10} andz is in units ofc/Q. 5/20=102. (a) The case ’
that the density matrix of initial exciton state is diagonal in Fock 0.5
representation. The dashed line represégtd)(z,t;z,t+7)|. (b) o | t ‘ | } ‘
The cas_e _that the |n(|1t|)al exciton state is coheretﬁt(. (z,t;z,t 0 20 40 60 80 100 120
+ 7)| coincides with|gM(z,t;z,t+ 7)]. T
drop down when time difference becomes large, whjfé)| FIG. 4. The absolute value of second-order degree of coherence

fluctuates around about 1.2 and shows only small difference@?(z.t;z,t+7) as a function ofr for chaotic initial exciton states.
for different values of(n). These results mean that despite 2= 27, t=27. tandr are in units of 102 andzis in units ofc/{}.
superradiance, the light generated by such excitons is buncf/22=10"% The dashed lines represef#®(z,t;zt+7)|. (@
ing, but not serious. For initial number exciton staﬂ@,2)| The mean initial exciton number=1. (b) The casen=5. (c) The
is almost given by * 1/n as can be seen from Fig. 5, while ¢35€n=50.

|g®| shows less dependence bnWhenn=50, it still vi-

brates around 0.6, hence quite evident antibunching remains. 1he above results indicate explicitly that despite the in-
The |g®| and|G@| for coherent initial states are shown vestigated exciton superfluorescence is totally collective, its

in Fig. 6. All curves for|G®)| are equal to 1, independent of coherence and statistics still have diverse possibilities.
(n) and # where(n)M?e'’= o, However, the situation for

|g'?)| is quite different. For smalin) such agn)=1,[g®®|  vi. CASE OF DOUBLE AND TRIPLE LATTICE LAYERS

is relatively high, vibrating around the horizontal line 2.1 for

=0 and #= /4, and around the horizontal line 3.3 fér We have studied the single lattice layer case in some de-
=m/2. When(n) becomes larger, such as [§?)|'s mean tail. In this s_ecti(_)n we will turn to study_the fluorescence of
values decrease to the range 1.2—1.5, depending on the valfienkel exciton in double and triple lattice layers. For lsmall
6. For still larger value ofn), say 50, the mean values of values ofN, it is more convenient to use the sugqe' "'
|g®)| further decrease to 1.04 fat=0 andx/4, and about instead of[sinzN(k+q)a]/[sin(k+q)a] for O(k+q) in
1.22 for 6= /2. Another notable feature is whehkeeps the integrand of Eq(18) and then evaluate the integral by
fixed and(n) becomes larger, the amplitude of fluctuation contour integration directly. All eigendecay rates, frequency
becomes smaller, while for fixegh) the fluctuation is larger shifts as well as the time evolution of fields are obtained
in the case o= m/2 than those oH=0 and = /4. consequently.
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ate the integrals in Eq18) by substitutingz[e (Y2 k-a)a

+ el (M2 k=93] for O(k—q). The results are given by

/Y
Fii(w)=F__(w)=—I o

a
F+,(w):F,+(w):—i%e"”a’°. (66)

One sees that the nondiagonal elemefts ( andF_ )
is of the same order as the diagonal elemerits ( and
F_o).

The coupled Eq(44) now becomes

(0®+i0n—02)[B,(0)-B" ()]
+iwne ¥ [B_(w)—B' (0)]=Ayw),
(67a
iwne B, (w)—B' (0)]+ (0’ +iwn—Q?)
X[B_(0)—Bl(0)]=—Al(-w), (67b
where
Ag(w)=i[(w+Q+in)B, (0)—(0—Q+in)B'(0)]

— 7€l ¥ [B_(0)—B%(0)]

+2\Ewi2 G(q)cos(Z— %‘
q

a’ (0)
w+|qlc

( %(0) , (670

w—|qlc

FIG. 5. The absolute value of second-order degree of coherence Al(—w)=i[(0—Q+in)BL(0)—(w+Q+inB_(0)]

g®(z,t;z,t+ 7) as a function ofr for excitons initially in number
statesz=2mw, t=2. t and 7 are in units of 10}, z is in units of
c/Q. p/20=10"2. The dashed lines represddt®(z,t;z,t+ 7)|.

(a) The casen=1. n is the initial exciton numbertb) The casen

=5. (c) The casen=50.

First, we consider the special case-2. The values ofm
in Eqg. (8) now take —1/2 and 1/2 corresponding tk
==+ /2a, respectively We shall usg . ,(w),F__(w) to
represent ;2a + r2a( @), F — 7120, - m2a( @), €tc. and evalu-

— 7€l ¥ B (0)-B,(0)]

T ga

—2\2wi 2, G —+ —
fwl% (q)cos(4+2’

B.(w)—Bl(w)=

. ot
a,0) a',(0)
X . 67
(w—|q|c wt[qlc (679
Equations(67) are easily solved to get
(0*+ion—0%)Ay)w)+ione *Y°Al(—w) 683
(w2+iw7]792+iw7yei“’a/c)(w2+iwn*QZ*iwnei‘”a/c)’

i wne' “Y°A () + (0 +iwn— QAN — o)

T 7 0 (68b)

B_(0)—Bl(w)=—

(0’ +iwn—Q%+iwne Y% (w+inn—Q%—iwne “¥¢)’
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The roots of characteristic equations 01=0,—1T1, w3=—Q,—iT,
o’ +tionp—Q%+ione*¥=0 (699 w,=0,—iT,, w,=—Q,—iT, (70)
and in which
2
24 2_; iwalc _ n na
o tiong—Q—iwne'*¥°=0 (69b leﬂ(l—?+z v 1=,

will determine the eigendecay rates and corresponding fre-

guency shifts. All roots of Eqs(69) will have negative na 1 02a?
imaginary part, since two necessary conditions can be de- Qo= 1= o], To=g7——. (72)
duced for this equation to have root of positive imaginary ¢
part: In the following we will omit the terms proportional to
a4(0),a!(0), since here we just study the fluorescence of
7>20 and ’7_a>277' excitons. Substituting E¢68) and
c
.. . ~ ~ w\/N
and both of these conditions are untenable. Similarly, Eq. aq(w)—a,q(w)=WG(q); O(k—q)
w—g°c

(69b cannot have root of positive imaginary part either.
These results mean the basic physics laws will not be vio- A _at
lated as in the case of monolayer. X{o[Br(w) =B y(w)]

Assuming the physical roots; of Egs.(69) are not far —irB.0)=BT (0 79
away from =) (hence|w;|a/c<1), we expand the factor . [BW(0) =B )]Tf _ (72
e'“3/® up to second order aba/c. By this way four physical into Eq.(24) and carrying out the contour integration, we get
roots of Eqs.(69) are obtained as follows: E(z,w) in the positivez region outside the crystal slab as

B2,y 270 wa (0+0)[B,(0)+B_(0)]+(0—0)[BL(0)+B'(0)]
(@)= acyA “%2¢ w’+iwn—Q%+iwne @

wa (0+Q)[B,(0)-B_(0)]-(0—Q)[BL(0)-BT(0)]
+sin-— el

iw/C)Z’ (73)
2¢c w’+ionp—Q0%—iwne

iwalc

whereA is the area of each layer, it is also the cross area of the normalization volume for the photon as mentioned above.
The electric fieldE(z,t) in this region is calculated by E@23), with the results given by

E(z,t)=0, for z—ct>0, (749

E(z,H)=EM)(z,t)(z,t)+H.c., for z—ct<O, (74b)

where

n Q Fl) (Ql_|rl)a Ql_Q_|F1

oo, COS—|[B+(O)+B(O)]+ a

E (2t _f [mhQa .
ZV=5NV"38A 2¢ Ol
. . . f |[mhQa
T T —iQq(t—2z/c)-Tq(t—2z/c) 4 _
><[B+(0)+B(0)]]e 1 1 + c A 1+

Q Ty} (Qy-ilpa
Q_Z_IQ_Z SI“—ZC

o=

N N Q,-Q-il', . R ,
% [B+(O)_B(0)]_\QZT_:FE[BK(O)_BT(O)]]e—l!)z(t—Z/C)—Fz(t—ﬂC)_ (75)

Like the caseN=1, we see that these are small componentdarly, with the resultant waves propagating in backward

of BL(0)xB"(0) mixed with B,(0)xB_(0) in the direction as expected. i

EM)(z,1), which is caused by antirotating interaction. There are two eigendecay rates appeared inEf®gt):
The electric field in the<0 region can be derived simi- I'; andI’,. The corresponding eigenmodes are linear combi-
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FIG. 6. The absolute value of second-order degree of cohetéfi¢e,t;z,t+ ) as a function ofr for excitons initially in coherent state
with eigenvaluea=|a|e'’. z=27, t=2a. t and 7 are in units of 10, z is in units ofc/Q. 7/2Q0=10"2. The dashed lines represent
|G(z,t;z,t+7)|. (@ The casgn)=|a|?=1,0=0. (b) The case(n)=|a|?=1,0=m/4. (c) The casen)=|a|?=1,0=m/2. (d) The case
(nY=|a|?=5,0=0. (e) The cas€n)=|«|?=5,0=n/4. (f) The casgn)=|a|?=5,0= /2. (g) The casdn)=|a|?=50,=0. (h) The case
(n)=|a|?=50,6=7/4. (i) The casgn)=|a|?=50,0=7/2.

nation of the two modes ah=3% andm=—1%. As can be- We see from Eq(71) thatm=0 mode is the superradiant
seen from Eq(75), these two eigenmodes correspond to themode andn=1 mode is the subradiant mode. The dipoles of

operators (1Y2)[B.(0)+B_(0)] and (142)[B,(0) the two layers have the same phase for the former and have
—B_(0)], respectively. Hence they correspond to modes oPPPOSite phase for the latter. By E&3), the decay raté’,

m=0 (k=0) andm=1 (k=/a) with the operators of subradiant mode is still as large asr/d times vy, the
decay rate of a single atofmoleculaj, because the atoms in

each layer are still cooperated. The decay ratk-00 mode

1 1 . ; )
B _ A A _ A A is nearly twice that of monolayer, which is just the character
B =—[B_-_ +B,= =—|B +B_
ot) \/2[ =220 T Bi=1V)] \/E[ +() M1 superfluorescence. The above result also shows: when val-

(76)  ues ofk are taken as symmetrical det = 7/2a, which are
required by our mathematical formation, the coupling be-
i 1 tween two exciton modes is most important. But for unsym-
By(t)= —=[B__ 1) =B 1(t)]= —=[B.()—B_(1)]. metrical sek=0 andk=1 there is no coupling between two
V2 V2 corresponding modes.
(77 As discussed in last section, even for the superradiant
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for z>0 andt—z/c>0. Similar results may be obtained for

z<0t+2z/c>0. E(zt) is equal to zero if £>0t—z/c<0)
or (z<0t+2z/c<0).

We already have seen irregular behaviors of the usual
intensity operator in the single layer case, here only the en-
ergy flux operator is studied. The energy flux is defined by

S(zt)= %:E(z,t)xé(z,t):. (79)

It readily shows thaf is always directed outward from the
crystal film. So we rewrit& asnS, in whichn is unit vector

directing the outer space from lattice layers af&{z,t))
may be evaluated from E¢78). After neglecting oscillating
terms and higher-order terms gf() andQa/c, we have

. RO in .
<S(z,t)>=%((BE(O)Bo(O)H;—g@S(O))

_ |_77 RT2 27(zlc—t)

!

n'hQ)
A

. V' hQ

A

+ (B1(0)B,(0))e?”' @V

(<B$<0>Bl<0>>+<BI<0>BO<0>>
in . N

+ 5q (B1(0)Bo(0)

—zi—g<é1<0)é$<0>>>e<"+"’><2’°“>, (80a

with

0%a?

4c?

n'=n (80b)

mode in which the emission is totally collective, the emitted We see from Eqg80) that the energy flux decays in three
light still may have different statistics and coherence properdifferent rates. The first term, which is contributed by the
ties according to the initial exciton state. For example, fromexciton of the short lifetime, plays an important part at the

Eq. (75) the coherent part of the electric fie{é(z,t)) will

beginning time. The second term contributed by the exciton

be nonzero when the initial state of the exciton is a cohererf the long lifetime becomes dominant at the latter time of

diagonal in Fock representatiofincluding number state,
chaotic statg the coherent part o(fE(z,t)) will be zero.

Up to the first order ofQa/c and 7/Q, the E(z,t) is
expressed by the superradiant mode operﬁgﬁﬂ) and the
subradiant mode operat8,(0) as follows:

810)

£ 27 phQ)
ZO=N"ca 20
X e 10(t=2/6)~T(t-2/c) | /27777hQ
CA

X B,(0)e ™ 1Q2(t=2/0)~To(t=2/) 4 1y ¢

Bo(0)—

Qa
2c

(79

diate stage.

Now we turn to the case of triple lattice layers. The cases
of odd N and evenN have a qualitative difference in the
mvalue series—1/2(N—1), ...3(N—1). In the former
case,m containszero, while in the latter, it does notN
=3 is the simplest case of the former, apart from the trivial
caseN=1. Now F, . (w)’s compose a &3 matrix F(w)
which will be written as

Flw)=— ﬂD(w).

60 (81

In terms ofD, ,,, couple equations now take the form
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A A 1 Di(w)
2 0?)[B(w)- BT 2 = 1
("= 05)[Br(w) =BLy(w)]+ 370 T(0)D()T(0)= Do(w)

o D_y(0)
%3, Dy (@) By (@) B (0] T

In terms of Ty, and Dy, The result for By (w)

=i[(0+0Q)By(0)~ (0~ Q)BT (0)] —B" (w) is expressed by

Gi
— Q%+ 3 pwD

+ 573 Doy (@)[Br(0)-BT ,(0)] (823

Br(®) =B (@)= T m—
m’ [

with

X[(@+Q+ 3 7Dm) Bi(,0)

m,m’'=-1,0,1. (82b)

B - ~(@=Q+ 57D ) BEN(0,0)]
In Egs. (82), terms proportional ta,(0) and aT,q(O) are 2T Em
neglected as we do below E(}1). From the simultaneous (883
Egs.(82), we get the characteristic equation as in which

(w2—92)3+%nw(u+2u)(w2—(22)2+%7]2w2 R 1 ~
Bi(0.0=5 X Tnw(w)Br (0),
X (2uv +u?—s?—2r?)(w?—0?) m’

+ % pP[(UP—sP)v+2r¥(s—u)]=0, (83 (880

u 1 R
_ _ BR(0,0=5 2 Tum(@)BL,(0).
whereu, v, r, ands are matrix elements db(w), defined m’

by Substituting Eqs(88) into Eqs.(72) to get the expression for
ag(w)—a’ 4(w), then E(z,w) is obtained by carrying out
the integration oveq in Eq. (24). Finally we get the solution
D(w)=| M) v(w) r(e)]. (84 for E(zt) by Eq.(23):

S(w) 1(w) u(w)

. 3myh{) z J
For the mathematical detail, see Appendix B. Equat®® BzU=\——a 9(t— E)% ape” On(t=2O " m(t=2/0)
can be solved approximately to get the eigendecay rates and

U(w) r(w) s(o)

frequency shifts, six roots are obtained as follows: +H.c. (893
01=0,—i, 0=—0;—iT}, for z>0t—z/c>0, where
- 1 2mm’  wpa
wo=Q—il', wj=—Qq—ily, (85) am=9—2 2c0§ 35—~ | T1|Tam(om)
m m’
w_1=Q_—il_;, 0 =—Q_,—il_,; X[(Q+ 0m B (0m0) — (Q— 0m) B2 (wm0)].
with (89b)
- The mode corresponding te, is superradiant, its decay rate
- _na _i a is three times of that of monolayer. The other two corre-
Ql—Q 1 y Fl_ n > (86@ i ~ X ~
3c 277 ¢ sponding toa . are subradiant modes. The,'s can be de-
rived approximately(cf. Appendix B, to the leading term,
a0l 97, 4na - 3 o6 they are given by
0= "0z T ac | L= (86b) . Qa. )
=15 -[B1(0)+B_1(0)],
B na 0%’ o
O=[1-—]. Ti=7 o (860 ay=B(0), (90)
We see that all the roots are in the lower half plan of com- -~ Da . .
plex w as they should be. a= E[Bl(o)—B—l(oﬂ-
The direct way to solve foB,(w)—B' (w) from Eq.
(82) is to diagonalize the matri® (w). The required trans- We see that the two exciton modes correspondimg
formation matrix is denoted by (w) which satisfies the re- ==x1 are not of eigendecay rates. On the contrary, the

quirement eigenmodes are nearly the maximum mixture of these two
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modes. This means for the two subradiant modes, the cou-
pling between modes of differelktis important. As to the

superradiant mode, only small componentsef =1 modes
are mixed to th&k=0 mode[cf. Eq. (B5) of Appendix B].

In terms of the operators for annihilation on excitation in
thelth layerB, , the annihilation operator for the three eigen-

modes are approximately expressed by

1 . N
E[Bmzl(o)"' Bm:—l(o)]

1

V6

[—Bi-1(0)+2B,_¢(0)-B_ ],

(91a

A 1 . A A
Bm=O=_3[BI=1(O)+ Bi—o(0)+B,-—_1(0)], (91b

=
1

V2

[ém=1<0>—ém=1<0>]=é[é|=1<0>—é|=1<0>].
(919

We see that in the superradiant moaef{0) the three
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VIl. BRIEF SUMMARY

In this paper we investigate the fluorescence of low den-
sity Frenkel excitons in a plane crystal slab. The excitons are
assumed to be ideal bosons. The coupled Heisenberg equa-
tions of exciton operator and photon operators for arbitrary
number of lattice layers are studied without Markov approxi-
mation and rotating wave approximation. The simplest case
of single layer is first studied. When the interaction Hamil-
tonian is of type é/mc)P- A, the characteristic equation for
the decay rate and frequency shift will have an unphysical
root with negative decay rate. Change to the interaction of
—E-d type, another unphysical result appears: the eigenfre-
quency drops down to zero. Only when the two-photon cou-
pling term ©@%/2mc®)A? is complemented tog/mc)P-A,
the characteristic equation becomes reasonable. No unphysi-
cal root appears.

The superfluorescence of excitons in the case of single
lattice layer is studied in detail. Some different features are
shown as compared with the superfluorescence of atom ag-
gregate:

(i) Actually, all the lattice atoms in the layer are involved
in the cooperative radiation. That the decay ratdoes not
go infinite with increasing of number of lattice atoms is due
to the reduction of the available photon states.

B/’s are added constructively, hence the emission is totally (i) The cooperation of radiation exists almost from the
cooperative. However, as in the previous cases, the statisticBeginning to the end, except at the very beginning.

properties of the light of this mode still may have different

(iii) The fluorescence intensity shows irregular quivers.

varieties, depending on the initial state of the excitons. As talhese fluctuations are thought generated by the antirotating
the two subradiant modes, the operators of three layers aterms. We know that in the simple case where atom interacts
superposed destructively, resulting in a long time emissionwith a single-mode light field, the antirotating term already

For thez>a region, the energy flux is given by
Bz t)=(5:(z ) +(5(z.), (92

where(S,(z,t)) is the main part, it is expressed by

(Si(z,t))= ﬁél—An 9(B{(0)By(0))e3n(t-20)

20%a? . ,
t g (BHOIB . (o)er B

2,52

+ (BT (0)B_(0))e 87 (-2

C2

(933

with B.. (0)=(1/y2)[B1(0)=B_,(0)] and(5,(z,t)) is ap-
proximated by

A hQ . ~ ~ ~
(Sy(z,t))=—i mm'usuomo(m—B$<0>B+<0>>

+i33(B (0)B,(0)

—BJ(0)B_(0))]e~@2n(t=2/c), (93b)

induce additional rapid oscillatiort§ it is imaginable that in
the case where atoms interact with multimode light field,
these rapid oscillations of different frequencies will turn to
irregular quivers.

(iv) The (E(z,t)) is identical to zero outside the light
cone (z|—ct>0), but the intensityt (z,t) is not so. It pen-
etrates outside the light cone to a small distance. This situa-
tion reminds us of the similar behavior of the photon propa-
gator (0| TA(x,t)A(0,0)|0) in the interaction picture, which
is also not identical to zero in the spacelike regionct
>0 (for t>0). This result shows that an atom may detect a

photon in the region wheréE) is zero.

(v) Despite the fluorescence is of cooperative nature, the
coherent and statistical properties of the emitted light still
have various possibilities depending on the exciton initial
conditions. The degrees of coheremt® andg® also show
irregular fluctuations.

The cases of double and triple lattice layers are studied
subsequently also by the interactione/fic)P-A
+ (e?/2mc@)A2. Similarly no unphysical root of the charac-
teristic equation is found. When the valuekab taken as the
symmetrical set given by Eq$8), in general the coupling
between the modes of differektcannot be neglected. In the
double lattice-layer case, both the superradiant mode and
subradiant mode are mixture b * 7/2a modes with equal
weights. In the triple lattice layer case, the two subradiant

<§2(z,t)> only appears when the initial exciton density ma- modes are basically mixtures kf = 7v/a modes with equal

trix in Fock representation has nondiagonal elements.

weights, but the superradiant mode is mainly klkeO mode.
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APPENDIX A: DERIVATION OF Fy/(w)
To derive Eq.(20), we first substitute Eq.10a into Eq. (18), yielding

1 1 ,
S|n§(k—q)NaS|n§(q—k)Na 1

Fuw(w)=—

2 o]
af<Q) f 1 (AD)

47c? —mdqﬁ . K 1 K' 5 w?
smz( —Q)a smi(q— )a q _?

As mentioned abovey has an infinitesimal positive imaginary part; this determines how the integration path gets around the
poles. It is easy to see th& (w)=F(w) and F(w)=F_y _ (). Expressing sif(q—k’)Na as difference of two
exponentials, the corresponding two parts of integrand in(&f) vanish on the infinite half circles in the lower haliplane

and upper halfy plane, respectively. Note thad/2) (k—q)=n are not poles of the original unseparated integrand, so we
may take the integration path below these points or above these points by arbitrary choice. Contour integration gives the
integral in Eq.(Al) as

1 o 1/ o
ac | S k o INa Likroina SNy k — o /Na k- wioNa
2Nw| 1 w 1 o\ 1 w 1 w
sie| k'+—]a sinz| k+—]a sinz|k'——|a sinz|k——|a
2 c 2 C 2 c 2 c
i k—k’)N
27 SNy (K=K')Na 2”: 1
m 1 , n=—ow w2 2nr 2
smi(k—k )a ——(k+ _)
CZ

In order to evaluat&” 1/ w?/c®>— (k+ 2n/a)?], we note that above result holds for arbitré&k’ and positiveN. Take
N=1, the integral in Eq(A1) can be easily calculated with the reswalitc/ w. Through comparison we get

L w
1 ca (o]

2" 4o

1 (A2)

Slnz

w

2nar ke 2
C

k+—
a

a a

_1k 1)
Slnz E

In the extend @/c)a<1 andka<1, the right-hand side of EqA2) may be approximated by [{w?/c?—k?) + a?], the
second term stands for the small correction by the umklapp process, namelyra# eheerms in the summation. Substituting
the above results into EgAL), yields a closed expression Bf,(w) for arbitrary N, which is just Eq.(20).

APPENDIX B: DERIVATION OF EIGENMODES AND DECAY RATES IN THE CASE OF TRIPLE LATTICE LAYERS

We substitute

O(k—q)= 3[e k-2t 14 gllk-aa) (B1)

into Eq. (18) and evaluate the integral term by term, we get the matrix composég,hy(w) as

0 —x?—2x+3 —x%+x 2x%2—2x 0
F(w):—i—n —x?>+x  2x’+4x+3 —X?+X E——nD(w) (B2)
6w 6w
2x%—2x —x%4+x  —x?—2x+3

with x=e'®¥¢_ Writing the matrix elements db(w) as Eq.(84), the characteric equation is given by



16 472 CHANG-QI CAO, HUI CAO, AND YI-XI LIU PRB 62

®?= Q%+ 3 nou(w) Fnor (o) 3nws(w)
L pwr(w) 0’— 0%+ I pwv(w) L por(w) =0 (B3)
1 pos(w) tpor(w) 0?>— Q%+ pou(w)

which is just Eq.(83) in the text.

1 J2rm 1
The rootsw; of Eq. (83) are assumed not far from (2, — - —M
hence|w;la/c<1. We may expand the facta'“¥° into V2 v-u-s 2
series. Up to second order abé/c)?, the result is given by rM rM
T(w)= M ;
v—u-—s v—u-—s
wa | [(wa 2 wa
u(w)—4?+|3 ?) , vV(w)=9i— 8——|6 i 0 _i
J2 2
wa 3[wa\? wa  [wa)\? where (B53
rw)= c +|2 c) , S(w)= 20 i3
(B4) 1
M(w)= , (B5b
We see that absolute values wfr,s are small, only|v| is 2r3(w)
large. Substituting Eq.B4) into Eq. (83), one gets an alge- 1+

[v(w)—u(w)—s(w)]?

being of order 1. After solving Eq(88), we getay(w)

braic equation of sixth order, its solution can be derived ap-
proximately. Results are those given by E5).
The diagonalization of matri® can be realized by two

_at
steps. First, use matrix aq() by Eq.(72),
ag(0)—3! o(0) = — 2 —G(q)
ag(w)—a' J(w)=————
E q q w?— 22 q
V2 2
m
0 1 0 XE 2005{T—qa +1
1 0 1 T
= S M mrm
2 2 X
\/— \/— w?— Q%+ %nme,
to transformD into [(Q-I—w),B(l)(w,O)
U(w)+s(w) V2r(w) 0 (0= 0) B (0,0]. (B6)
V2r (w) v(w) 0 , Then carrying out the integral in E¢4) yields
0 0 UWw)—v(w) R f lenhQ
E(zo)= P
then find a 2<2 matrix to diagonalize
iTmm

2mm wa
X|2co0§ —————|+1
3 c

U(w)+s(®) 2r(w)

0?’— 0%+ oDy,
J2r (o) v(w)

X[(Q+0) B3 (0,0~ (- 0) (0,01 B
By this way, we finally get which in turn leads to Eq<89).
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