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Noise properties of coherent perfect absorbers and critically coupled resonators
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The performance of a coherent perfect absorber (time-reversed laser) is limited by quantum and thermal
noise. At zero temperature, the quantum shot noise dominates the signal for frequencies close to the resonance
frequency and both vanish exactly at the resonance frequency. We compute the sensitivity of the absorbing cavity
as a background-free detector, limited by finite signal or detector bandwidth.
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In recent work, the authors and collaborators have proposed
[1] and demonstrated [2] the phenomenon of coherent perfect
absorption, or “time-reversed lasing.” Applying the time-
reversal operation to the classical electromagnetic equations
yields the following statement: If a cavity containing a gain
medium reaches the lasing threshold at frequency ω0 for a
certain amplifying refractive index n(�r) = n1(�r) − in2(�r), then
a cavity containing a dissipative refractive index n∗(�r) will
perfectly absorb an input mode at ω0 corresponding to the
time-reverse of the lasing mode. We refer to such a lossy
cavity as a coherent perfect absorber (CPA). Assuming the
input signal is perfectly monochromatic, the above “CPA
theorem” is rigorously true within classical electromagnetic
theory, where the effects of quantum and thermal noise are
neglected. The CPA is a generalization to arbitrary geometries
and arbitrary numbers of input channels of the well-known
concept of a critically coupled resonator (CCR) [3], an optical
device which can be used for switching, modulation, enhanced
photodetection, and sensing [4,5] and which may be regarded
as the single channel limit of a CPA. Because a CPA is
associated with a vanishing output signal in the classical
zero-temperature limit, a CPA (or CCR) can function as
a background-free detector or interferometer, similar to a
Mach-Zehnder interferometer (MZ). The fundamental limits
to its effectiveness in this role are determined by quantum and
thermal noise, which are the subjects of the present paper.

Quantum fluctuations, such as spontaneous emission, break
the symmetry between emission and absorption. Hence, noise
processes in a CPA (or CCR) differ from those in a laser
or amplifier. Within semiclassical theory, the laser has zero
linewidth; by including quantum fluctuations, one obtains
the Schawlow-Townes (ST) linewidth [6], which decreases
inversely with the output power well above threshold. As is
well-known, the ST linewidth arises from the dephasing of
the above-threshold laser field due to quantum noise (usually
characterized as “one noise photon per relaxation time per
mode”). Because a CPA does not contain an inverted medium
like a laser, the spontaneous emission in the absence of the
input field vanishes at low temperature, and there is no direct
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analog of the ST linewidth in a CPA. At zero temperature,
the frequency characteristics of the output are determined
entirely by the input, and the CPA absorption resonance
has approximately twice the passive cavity linewidth, as
expected for critical coupling. However, this linewidth is
further modified by an analog of the Petermann factor [7,8];
this effect has not, to our knowledge, been recognized in
absorbing systems.

In principle, even when the CPA is at zero temperature,
there may be some output noise arising from spontaneous
emission (fluorescence) from atoms in the absorbing medium
which are excited by the coherent input [9]. However, in the
solid state systems which are used for CCR’s and CPA’s,
there are typically many nonradiative degrees of freedom
into which the absorbed energy can decay. For instance, in a
semiconductor material such as silicon (used in Ref. [2] as an
experimental demonstration of a CPA), most of the absorbed
energy is eventually converted to heat and drawn out to a
thermal bath. Throughout this paper, we will assume that the
energy absorbed by the CPA flows into nonradiative degrees
of freedom, instead of producing spontaneous emission at the
input frequency. Hence, we are studying a lower bound on
the CPA output noise, but one that is relevant to practical
implementations.

Under these assumptions, the only remaining source of
quantum noise at zero temperature is the partition or shot noise
of the photons. At the perfect absorption resonance, there is no
partitioning of the input photons and hence both the average
output and its variance vanish for a truly monochromatic
input on resonance. In practice, however, the unavoidable
linewidth of the input field �in combines with quantum shot
noise to generate a finite noise floor even at the resonance
frequency. The noise dominates the signal within an interval
δωx ∝ √

�in/Pin around the resonance frequency, where Pin

is the power of the input signal. This behavior is similar to a
MZ, with the absorption into an external reservoir playing the
role of an unobserved MZ output port. However, in contrast
to the MZ, the resonant frequency response of the cavity can
give rise to parametrically better signal-to-noise ratio in the
vicinity of the background-free point [10]. For T �= 0, the CPA
also emits thermal radiation; at the absorption resonance, the
thermal emissivity takes the black-body value for a one-port
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system (CCR), but the emission can be significantly reduced
in a multiport CPA.

We can analyze the noise properties of the CPA using the
standard input-output framework of quantum optics [11,12].
Input and output photon operators are connected by the
classical electromagnetic scattering matrix Sij (ω), where j =
1,2, . . . ,N denote the scattering channels. The S matrix for
a CPA is subunitary due to the presence of an absorbing
reservoir; it describes a “gray body” which elastically scatters
some fraction of incident photons and absorbs the rest.
The scattering channels denote different spatial states in the
asymptotic region which suffice to represent an arbitrary
incoming or outgoing field at ω, e.g., incoming and outgoing
angular momentum channels in a two-dimensional scattering
geometry. The input photon operators are denoted by aj , and
the output photon operators by bj . The special case of a single
scattering channel (N = 1) corresponds to a standard CCR. We
assume that the CPA is coupled to an ideal external reservoir,
so that the absorption of light produces negligible heating
and hence negligible change in the output noise. The photon
operators are related by an input-output relation [11–13]

bi(ω) =
∑

j

Sij (ω) aj (ω) +
∑

ν

Uiν(ω) cν(ω), (1)

where the cν’s are ladder operators for reservoir quanta. Here
we have assumed a coupling to the reservoir which adds the
minimum amount of quantum noise [14]. The requirement
that a, b, and c obey canonical commutation relations,
e.g., [ai(ω),a†

j (ω′)] = δij δ(ω − ω′), yields the fluctuation-
dissipation relation [12]

SS† + UU † = 1, (2)

where 1 is the N × N identity matrix. Equation (2) generalizes
the unitarity relation of the lossless system and implies that the
eigenvalues of the S matrix generically have magnitude smaller
than unity [15].

We are interested in the shot noise in the output field, for
a coherent input at some frequency ω. To work with equal-
frequency correlators, it is convenient to rescale the continuum
operators {ai,bi,cν} to discrete operators {âi ,b̂i ,ĉν}, which are
normalized so that the equal-frequency commutator is unity,
e.g., [âi(ω),â†

j (ω)] = δij . Here and in the following, we omit
the ω dependence from the notation. Next, the input photon
operator can be rewritten using a displacement transformation
[14,16]

âi = αi + â′
i , (3)

where αi is a coherent state amplitude and â′
i is an operator

accounting for fluctuations around the coherent state, which
likewise obeys the canonical commutation relation [â′

i ,â
′†
j ] =

δij . Hence,

b̂i =
∑

j

Sij (α̂j + â′
j ) +

∑
ν

Uiν ĉν . (4)

The operator Ni ≡ b̂
†
i b̂i gives the output photon flux per

unit frequency (at frequency ω) in channel i. (Correspondingly,
Ii = h̄ω0Ni describes the spectral density.) Using (4), we can
calculate the expectation value and correlation function for
Ni , using standard Gaussian n-point operator correlators [16].

We take 〈â′
i〉 = 〈ĉν〉 = 0, and 〈â′†

i â′
j 〉 = 0 (zero net fluctuation

around the specified coherent input amplitude), and 〈ĉ†μĉν〉 =
δμν f (T ) where f (T ) = [exp(h̄ω/kBT ) − 1]−1 and T is the
temperature of the reservoir. The result for 〈Ni〉 is

〈Ni〉 = |(Sα)i |2 + [1 − (SS†)ii] f (T ). (5)

Thus the total output is

〈N 〉 =
∑

i

〈Ni〉 = |Sα|2 + f (T ) Tr(1 − SS†), (6)

and the noise is

〈δN 2〉 ≡
∑
ij

[〈Ni Nj 〉 − 〈Ni〉〈Nj 〉]

= |Sα|2 + f (T ) {2|Sα|2 − 2|S†Sα|2 + Tr(1 − SS†)}
+ [f (T )]2 Tr[(1 − SS†)2]. (7)

For T → 0,f (T ) → 0, (6) and (7) reduce to the Poissonian
result

〈N 〉 = 〈δN 2〉 = |Sα|2. (8)

The CPA condition is achieved when the index of refraction of
the cavity n(�r) is chosen such that there exists an eigenvector of
the S matrix with eigenvalue zero at a specific input frequency
ω0. If α is chosen to be this eigenvector, then we see from
Eq. (8) that the mean outgoing photon flux vanishes (as it
should be from the classical CPA theorem) and so does its
variance (the shot noise). This confirms the statement that
the CPA effect is unaffected by quantum fluctuations at zero
temperature for a purely monochromatic input.

For T > 0, 〈N 〉 and 〈δN 2〉 are unequal, and differ by a
term arising from the beating between the thermal emission
and the scattered flux:

〈δN 2〉 − 〈N 〉 = f (T )[2|Sα|2 − 2|S†Sα|2] + O(f 2). (9)

This difference can be shown to be strictly positive for any
input field. The term linear in f (T ) vanishes when the input
field α corresponds to the zero eigenvector, so thermal noise
in the CPA is very small for T � h̄ω0/kB . We will discuss the
T > 0 case further at the end of the paper.

To estimate the sensitivity of a CPA as a detector, we
study its behavior for frequencies near the perfect absorption
resonance ω0. For now, we consider T = 0. In the absence of
loss, the S matrix has a sequence of resonances, associated
with poles in the lower half of the complex ω plane and
symmetrically placed zeros in the upper half plane [1], at
discrete frequencies ω = ω0 ∓ iγc/2. Near ω0, one of the
S-matrix eigenvalues takes the following approximate form
[17]:

s(ω) ≈ eiϕ(ω) ω − ω0 − iγc/2

ω − ω0 + iγc/2
, (10)

where ϕ is an irrelevant phase factor and γc is the cavity
lifetime. Equation (10) is a “single-resonance approximation”
which ignores the presence of other nearby poles and zeros. It
satisfies the requirements that |s| = 1 when ω ∈ R (the lossless
S matrix has unimodular eigenvalues), and that s goes to zero
and infinity at ω = ω0 ± iγc/2. Adding absorption pushes the
zero and pole down in the complex frequency plane, as shown
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FIG. 1. (Color online) Scattering properties of a one-port coher-
ent perfect absorber (critically coupled resonator) consisting of a one-
dimensional uniform dielectric slab of length L, with a perfect mirror
on one side and vacuum on the other. (a) Location of poles (squares)
and zeros (circles) in the complex frequency plane. Open symbols
show the poles and zeros for the passive cavity with refractive index
n = 3, and filled symbols for an absorbing cavity with refractive index
n = 3 + 0.005i. The dashed and dotted lines are guides to the eye for
the geometric interpretation of the Petermann factor given in Eq. (15).
Without absorption, |ω − ωz| = |ω − ωp|, where ω ∈ R and ωz and
ωp are the frequencies of a neighboring pair of zeros and poles (green
dots). With very narrow band absorption, near a CPA resonance (in
this case ω ≈ 70.1c/L), this remains approximately true. However,
for broadband absorption, |ω − ωz| < |ω − ωp| (blue dashes). (b)
Plot of |s(ω)|2, where s(ω) is the eigenvalue of the scattering matrix
(i.e., in this one-port case the reflection coefficient). The red circles
show exact numeric results obtained by the transfer matrix method,
while the solid blue curve shows Eq. (15), with the product taken over
the 20 pairs of poles and zeros nearest to ω = 70L/c. The dashed
curve shows the single-resonance approximation, Eq. (11), using the
pole and zero nearest to ω = 70L/c.

in Fig. 1(a); to lowest order, they move down by equal amounts.
To achieve the CPA condition, exactly enough absorption is
added to push the zero down to the real ω axis. Then the
eigenvalue of the absorbing cavity is

s(ω) ≈ eiϕ(ω) ω − ω0 + i δγ

ω − ω0 + iγc

, (11)

where the parameter δγ � γc represents a small detuning of
the material loss from the perfect absorption resonance. Note
that the resonance of the absorbing cavity has twice the width
of the passive cavity resonance (γc/2 → γc). This is due to
the “critical coupling” condition that the absorption loss rate
is equal to the scattering loss rate.

In this case, if the input mode α corresponds to the zero
eigenvector of the S matrix, then (at T = 0)

〈N 〉 = 〈δN 2〉 ≈ (ω − ω0)2 + δγ 2

(ω − ω0)2 + γ 2
c

Pin(ω)

h̄ω�in
. (12)
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FIG. 2. (Color online) Plot mean output power (N ) and shot
noise power (

√
δN 2) as a function of frequency near a CPA zero,

for T = 0. The cavity is a two-sided uniform dielectric slab with
refractive index 3 + 0.005i and length L (see schematic). For this
case the CPA eigenmodes are simply incoming coherent plane waves
of equal amplitude from each direction, with either even or odd parity.
Results for an even CPA mode at frequency ω ≈ 138.23 c/L are
shown. We have chosen the input intensity |α|2 = 25. The solid curves
are obtained from Eq. (8), using the transfer matrix method to find
S(ω). The dashed curves are obtained by averaging these values over
a bandwidth �in = 0.1 c/L, corresponding to a finite spectrometer
resolution. Inset: schematic of the system.

Here we have expressed the input photon flux per unit
frequency |α|2 in terms of the input power

Pin(ω) = |α(ω)|2h̄ω�in. (13)

This power is averaged over some bandwidth �in(ω), which
is taken to be the frequency resolution of either the input state
or the output detector-spectrometer, whichever is smaller; ω is
the center frequency of the bandwidth window.

According to Eq. (12), as δγ → 0 and ω → ω0, the mean
and variance of the photon flux behave as

〈N 〉 = 〈δN 2〉 ≈ (ω − ω0)2

γ 2
c

Pin(ω)

h̄ω�in
. (14)

The CPA resonance has a quadratic zero at ω0 (Fig. 2), and
in the single-resonance approximation, its width is γc, the
critically coupled cavity linewidth. (We assume that γc is much
less than the free spectral range of the resonator).

However, adding a lossy medium to the resonator affects
the S-matrix eigenvalue beyond the single-resonance approx-
imation, and the corrections to this approximation generically
increase the width. This is the exact analog of the Petermann
factor in lasers, which increases the ST linewidth [7,8]. This
is most easily seen in the one-port case, where we can express
the S-matrix eigenvalue with a zero on the real axis as

s(ω) = eiϕ(ω) ω − ω0

ω − ω0 + iγc

∏
n

ω − ωz
n

ω − ω
p
n

, (15)

where n indexes the other pairs of zeros and poles, which have
frequencies ωz

n and ω
p
n , respectively. This ansatz agrees very
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well with exact numerical calculations of s(ω), as shown in
Fig. 1(b). Due to time-reversal symmetry, in the absence of
loss, each factor in the product would be unimodular, since
the zeros and poles are symmetrically distributed around the
real axis. The introduction of loss breaks this symmetry for
all the poles and zeros, not just the zero at ω0; this causes the
zeros to move toward the real axis and the poles away, so that
|ω − ωz

n| < |ω − ω
p
n | for any real ω, as shown in Fig. 1(a).

This effect is neglected in the single-resonance approximation
of Eq. (14). Including it leads to

〈N 〉 = 〈δN 2〉 ≈ (ω − ω0)2

Kγ 2
c

Pin(ω)

h̄ω�in
, (16)

where K = ∏
n |(ω − ω

p
n )/(ω − ωz

n)| > 1 for the one-channel
case. Calculating the Petermann factor for the time-reversed
counterpart of this cavity, which contains gain instead of
loss and sits at the first lasing threshold, would yield exactly
the same value of K [18]. This equivalence follows from the
properties of the S-matrix under time-reversal, as does the
CPA effect itself. For a more complex, multichannel cavity,
the explicit calculation of the S-matrix eigenvalues is more
complicated, but the symmetry that leads to the factor 1/K in
the eigenvalue still holds. In other words, adding loss to the
cavity so as to reach the CPA condition increases the critically
coupled cavity resonance linewidth from γc → √

Kγc.
In calculating this broadening effect, one could assume that

the loss of the cavity is broadband, affecting all relevant poles
and zeros equally; a similar assumption of broadband gain is
made in standard calculations of the Petermann factor. When
this is not the case, both for CPA’s and lasers the Petermann
correction is reduced and needs to be calculated using the
frequency-dependent refractive index of the cavity [18]. For
the subsequent analysis, we will assume that the K occurring
in Eq. (16) is a given parameter.

Exactly at ω0, both signal and noise vanish; since the the
shot noise [〈δN 2〉]1/2 is the square root of the signal 〈N 〉, the
noise will dominate the signal when 〈N 〉 = 1, which will occur
at a crossover frequency near ω0. The crossover frequency
scale is

δωx ∼
√

Kγc

|α(ω0)| =
[
h̄ω0�in

Pin

]1/2 √
K γc. (17)

The measured values of the signal and noise must, however,
be obtained by averaging (16) over the bandwidth �in at each
frequency, as indicated by the dashed curves in Fig. 2. These
averaged values do not vanish at ω = ω0. Up to a factor of order
unity depending on the averaging procedure, their residual
values are

〈N t〉ω0
= 〈δN 2〉ω0

≈ Pin(ω0) �in

12h̄ω0Kγ 2
c

∼
[

�in

δωx

]2

. (18)

In particular, we can regard [〈δN 2〉ω0
]1/2 as the effective shot

noise level at the absorption resonance. It dominates over the
bandwidth-averaged signal if �in � δωx.

The crossover frequency scale δωx is related to the
sensitivity of the output to the loss detuning parameter δγ .
From Eq. (12), the change in the output signal at ω = ω0

FIG. 3. (Color online) (a) Schematic of a one-channel absorbing
cavity, where the output amplitude b is a superposition of the input
amplitude a and the reservoir operator c. (b) The corresponding
Mach-Zehnder interferometer, with a and c entering in the two input
ports and b being one of the outputs.

resulting from δγ �= 0 is

〈�N 〉 =
[

δγ

δωx

]2

. (19)

(To lowest order, this quantity is unaffected by bandwidth-
averaging.) The sensitivity of the CPA as a low-background
detector is given by the minimum δγ for which 〈�N 〉 is
distinguishable from the effective noise level. Comparing (19)
to (18), we obtain the result

|δγ | �
√

δωx�in. (20)

Since a CPA can serve as an absorbing interferometer-
detector, it is useful to compare it to a lossless interferometer
such as a Mach-Zehnder interferometer. As shown in Fig. 3,
an analogy can be made between a CCR (single-channel CPA)
and a MZ. The input photon operator a and the reservoir
operator c, from the one-channel version of Eq. (1), map onto
two input photon operators for the MZ; meanwhile the output
photon operator b maps onto one of the MZ outputs. The
fluctuation-dissipation relation Eq. (2) is equivalent to the
relation for transmission into the observed port of the MZ,
Sb (which follows from the unitary scattering matrix for both
ports):

Sb = 1
2 (eiθ − 1), |U 2| = 1 − |Sb|2, (21)

where θ is the phase difference between the two arms of the
interferometer. Perfect absorption in the cavity corresponds to
θ = 0, so that the a input is directed entirely into the second,
unmonitored output port, leaving the b port empty. Quantum
fluctuations in the empty c input contribute to the shot noise.
Note that in the CCR, the single-input beam interferes with
itself and it does not function as an optical interferometer, i.e.,
it does not measure the relative phase of two input beams. The
multichannel CPA does, however, act as an interferometer. In
the simplest case of two input channels and a cavity with parity
symmetry, the two S-matrix eigenmodes have even and odd
symmetry, respectively, and only one of these are perfectly
absorbed at a given absorption resonance. The interferometry
is performed by making small phase changes between the
two input beams, moving the system slightly away from the
eigenchannel. For N > 2 and/or absent parity symmetry, both
the magnitude and phase of each input amplitude must be
tuned in order to reach perfect absorption; this is analogous to
a multi-input MZ-like interferometer whose input amplitudes
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and phases may be tuned to send all the output into a single
port, playing the role of the absorbing channel.

The main difference between the CPA and the MZ lies in
the frequency dependence. For the latter, Sb varies sinusoidally
in frequency with free spectral range ∼ c/L, where L is the
dimension of the system. Absorbing cavities, however, are
described by Eq. (11), and for high-Q cavities the absorption
resonances are much narrower than c/L. Since the signal-to-
noise ratio depends inversely on γc,1/L in the two cases, for a
given value of ω − ω0, the CPA would have a better signal to
noise ratio. This resonant enhancement of the sensitivity of a
CCR has been pointed out in a different context in Ref. [10].
A similar effect could be achieved in a MZ by adding resonant
cavities along each arm to effectively increase the optical path
length.

Finally, we make some comments about the T > 0 case.
In Eq. (6), we see that 〈N 〉 is written as the sum of the
classical scattered flux and the gray-body thermal emission,
f (T ) N [1 − σ̄ ], σ̄ being the mean scattering strength per
channel [12]. For a CCR (one-channel CPA), σ̄ = 0 at the
operating frequency of the absorption resonance, so the
thermal emission has the black-body value. In the MZ analogy,
Fig. 3(b), this is equivalent to connecting the c input port to
a black-body source. Since the MZ is tuned so that the a

input is completely directed into the unmonitored output port,
the black-body emission into c is directed into the monitored
output port b.

For a multichannel CPA, the thermal emissivity is less
than the black-body value, even at the operating frequency
of the absorption resonance. This is because only one of the
N scattering strengths vanishes; the other N − 1 scattering
strengths are nonzero, so that σ̄ > 0. From Eq. (9), the same
is true of the thermal contribution to the output noise 〈N 2〉.

Furthermore, for N � 1 a “hidden black” scenario is possible,
in which the CPA perfectly absorbs the input field α, but emits a
negligible amount of thermal radiation [19]. More specifically,
for a weakly absorbing system it is possible that the mean
albedo (reflectivity) can be large, σ̄ → 1, indicating an almost
white body, and implying that the thermal contributions to 〈N 〉
and 〈N 2〉 vanish, while nonetheless the system is perfectly
absorbing (down to the quantum noise floor) if the correct
input field is supplied. Elsewhere, two of the authors have
shown that this effect can be generalized beyond the case of a
perfect CPA at resonance, to a disordered scattering medium
with weak absorption over a large range of frequency and
absorptivity [19].

The presence of thermal noise also affects the sensitivity of
the CPA as a detector. From Eq. (7), the noise level at ω = ω0

in the thermal noise dominated limit is

〈δN 2〉thermal
ω0

≡ g(T ) ≈ f (T ) Tr(1 − SS†). (22)

Comparing this to the signal (19), we obtain the sensitivity
limit

|δγ | � g(T )1/4 δωx. (23)

The crossover between the bandwidth-dominated and thermal-
dominated noise regimes occurs at

g(T ) ∼
[

�in

δωx

]2

. (24)
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