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Photonic band gaps in three-dimensional network structures with short-range order
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We present a systematic study of photonic band gaps (PBGs) in three-dimensional (3D) photonic amorphous
structures (PASs) with short-range order. From calculations of the density of optical states (DOS) for PASs with
different topologies, we find that tetrahedrally connected dielectric networks produce the largest isotropic PBGs.
Local uniformity and tetrahedral order are essential to the formation of PBGs in PASs, in addition to short-range
geometric order. This work demonstrates that it is possible to create broad, isotropic PBGs for vector light fields
in 3D PASs without long-range order.
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I. INTRODUCTION

A photonic band gap (PBG) describes a frequency range
within which light propagation is prohibited due to depletion
of optical states. The most-well-known structures having PBGs
are photonic crystals (PhCs) with periodic modulations of
dielectric constant [1]. Since PhCs are anisotropic, PBGs
vary with directions. To have a complete PBG, the gaps in
all directions must overlap in frequency. This condition is
difficult to achieve for many PhCs, for example, simple cubic
lattices. It is therefore easier to produce complete PBGs in
more isotropic structures, for example, photonic quasicrystals
that possess higher rotational symmetry (but no translational
symmetry) [2,3]. Photonic amorphous structures (PASs) are
mostly isotropic, due to the absence of long-range translational
or rotational order. Recent studies demonstrate that PBGs can
be formed in two-dimensional (2D) and three-dimensional
(3D) PASs with short-range order [4–10]. However, the exact
physical mechanism or condition for the PBG formation
in PAS is not well understood. An improved fundamental
understanding of PBG formation would allow researchers
to design photonic amorphous materials with optimized and
tunable PBGs.

In addition to geometric order, structural topology plays
an important role in forming a PBG. For composite dielectric
materials consisting of two components with different refrac-
tive indices, there are two cases regarding the topology of
the high-index component: (i) cermet topology, in which the
high-index material consists of isolated inclusions, each of
which is completely surrounded by the low-index material,
and (ii) network topology, in which the high-index material is
connected and forms a continuous network running through the
whole composite. Previous studies of periodic structures have
indicated that the cermet topology is more favorable for the
PBG formation of a scalar wave, while the network topology
is more favorable for a vector field [11]. Such conclusions
also apply to PASs. For example, in 2D PASs, PBGs for the
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transverse magnetic (TM) polarization (electric field out of
plane) are easily obtained with isolated islands of high-index
materials, because the electric field has the same polarization
direction everywhere and can be regarded as a scalar wave.
For the transverse electric (TE) polarization (electric field in
plane), the electric field has varying polarization direction and
behaves like a vector field; thus it is easier to produce PBGs in
connected dielectric networks [12]. It has been proposed that a
hybrid structure with a mixture of both topologies can possess
a full PBG for both TE and TM polarizations [8].

It is much more difficult to form complete PBGs in 3D
structures. Substantial reductions in the density of optical
states (DOS) have been demonstrated in PASs composed of
randomly packed dielectric spheres of uniform size [7], as
a result of evanescent coupling of the Mie resonances of
individual spheres. Dielectric network structures, for exam-
ple, the photonic amorphous diamond (PAD), exhibit much
stronger depletion of the DOS [6,9]. It was conjectured that
the tetrahedral bonding configuration in the PAD plays an
important role in the formation of isotropic PBGs. However,
the PAD is constructed from a “continuous random network”
(CRN) originally developed for modeling of amorphous Si or
Ge [13]; thus it is difficult to separate the relative contributions
of tetrahedral bonding and local geometric order to the PBG
formation. Identifying the key parameters that determine when
a PBG will form in a PAS is important not only for developing
novel photonic glasses [14] but also for understanding color
generation in nature [15]. Both cermet and network topologies
have been found in color-producing PASs of many animal
species [16,17]. It is also conjectured that pseudo-PBGs may
be formed and responsible for noniridescent coloration of
many PASs [18].

In this article, we present a detailed numerical study of
the DOS and PBGs in a 3D PAS. We vary the topology,
short-range geometric order, refractive index contrast, and
filling fraction to maximize the depletion of DOS and the
strength of PBG in the absence of long-range structural order.
This study allows us to identify the essential elements for
the formation of PBGs in PASs. We organize the manuscript
as follows. In Sec. II, we describe the methods used to
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generate PASs numerically and analyze their structural and
topological properties. The calculated DOS for both cermet
and network topologies are presented in Sec. III, together
with interpretations of the results. In Sec. IV, we explore
dielectric networks with different degrees of structural order
to maximize the reduction in the DOS. We then conclude in
Sec. V.

II. STRUCTURE GENERATION AND
CHARACTERIZATION

A. Sphere packings

We first study dielectric composites with the cermet
topology—high-index dielectric spheres embedded within
a low-index host material (air). We employ a two-stage
numerical protocol to generate “just-touching,” jammed sphere
packings in a cubic simulation cell with varying positional
order [19,20]. First, liquid states of monodisperse spheres
are cooled at fixed packing fraction φ = 0.60 from an initial
high temperature T0 to zero temperature at different rates.
In the second step, each zero-temperature configuration is
compressed in steps of �φ = 10−3 followed by minimization
of the total energy until a static packing with infinitesimal
particle overlaps is obtained. By varying the cooling rate, we
are able to create static packings with a range of positional
order and packing fractions from random close packing at
φ = 0.64 to the face-centered cubic (fcc) structure at φ = 0.74.
In general, the slowly cooled samples can be compressed
to higher packing fractions. Figure 1(a) shows a cluster of
50 spheres from the interior of a jammed sphere packing
containing 1000 spheres at φ = 0.64. For comparison, we
generate completely disordered configurations by placing
spheres randomly in the cubic box with no overlaps at
φ = 0.35.

B. Dielectric network

We also generate structures with network topologies,
where the high-index dielectric material forms the continuous
network, using two methods. For the first method, we invert
the cermet structure of jammed dielectric spheres in air.
The inverse structure consists of low-index (air) spherical
inclusions in a continuous high-index dielectric network. By
adjusting the radius R of the spheres (but fixing their positions),
we can vary the air fraction γ in the inverse structure. An
inverse structure with γ = 0.8 is shown in Fig. 1(b). At this γ ,

FIG. 1. Three examples of photonic amorphous structures:
(a) jammed packing of dielectric spheres at φ = 0.64, (b) inverse
structure of (a) with air fraction γ = 0.8, and (c) tetrahedral
network of dielectric rods with γ = 0.8 obtained from the Delaunay
tessellation of (a).

adjacent air spheres begin to overlap and the dielectric material
exhibits an irregular topology.

The second method, which is based on an algorithm
described in Refs. [8] and [21], produces more uniform
network topologies than those from the first method. In
this method, a 3D Delaunay tessellation is performed on
the sphere centers from the cermet structures in Sec. II A.
Each tetrahedron of the tessellation has four facets shared
with four neighbors. We then calculate the center of mass of
each tetrahedron and connect the centers of mass of nearest
neighbors by a dielectric rod. This creates a tetrahedrally
connected dielectric network, where each junction (vertex) has
four dielectric bonds. All dielectric rods have the same radius
W but different lengths d. By changing W , we can vary the
air fraction γ . A tetrahedral network with γ = 0.8 is shown in
Fig. 1(c).

C. Structural characterization

We now calculate the density autocorrelation function and
spatial Fourier spectra of the cermet and network structures
described above. Since the dielectric spheres embedded in
air and the corresponding inverted structure possess identical
geometrical properties, we focus only on the air spheres and
tetrahedral network structures below.

As shown in the inset to Fig. 2(a), the 3D spatial Fourier
transform of the tetrahedral network structures displays con-
centric spherical shells without discrete Bragg peaks, which
reflects structural isotropy and a lack of long-range order. The
radii of the shells provide the characteristic spatial modulation
frequencies of the structures. Similar results are obtained for
the tetrahedral networks generated from the jammed sphere
packings. The angle-averaged power spectra for both sphere
and network structures are plotted in Fig. 2(a). The main peak
represents the dominant spatial frequency, and its width is
inversely proportional to the average size of ordered domains
[22]. The sphere and network structures have similar peak
widths and thus comparable domain sizes.

We also calculated the real-space density autocorrelation
function C(�r) averaged over all angles for the sphere and

FIG. 2. (Color online) Structural characterization of photonic
amorphous structures. (a) Angle-averaged power spectra of the
spatially Fourier transformed density for jammed sphere packings
(dashed line) and tetrahedral networks (solid line) vs qa/2π , where
q is the spatial frequency and a is the mean spacing between spheres.
The inset shows a cross section of the 3D power spectrum for the
tetrahedral network. (b) Angle-averaged density autocorrelation for
the sphere packing and network structures. The inset shows the
amplitudes of the oscillatory peaks of C(�r) for sphere packings
(circles) and tetrahedral networks (crosses).
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network structures [22]. As shown in Fig. 2(b), both structures
display highly damped oscillations of C(�r). The first peak
away from �r = 0 is located at the average spacing a

between nearest neighbors. We find that the amplitudes of
the oscillatory peaks decay exponentially [inset to Fig. 2(b)]
with a decay length (excluding the first peak) ξr ≈ 0.9a for the
sphere packings and 1.1a for the tetrahedral networks. Hence,
there are weak spatial correlations and short-range order in
these PASs.

III. DOS OF PAS WITH CERMET AND
NETWORK TOPOLOGIES

In this section, we describe calculations of the DOS for
jammed dielectric spheres in air, the inverse structure, and
the tetrahedral networks of dielectric rods using the order-N
method [23]. We choose a cubic supercell with size 8.7a

containing 1000 spheres and refractive indices n = 3.6 and
1 for the high- and low-index materials, respectively. We
find that the optimal air fraction that yields the largest
reduction of the DOS is γ = 0.75 for the dielectric sphere
packings and 0.80 for both the inverse structure and tetrahedral
network. The DOS was ensemble averaged over five distinct
configurations at the optimal γ for each topology and then
normalized by the DOS of a “homogeneous” medium with the
same γ . The latter structure is generated by placing cubic
dielectric voxels (with lateral dimension 0.043a, which is
much smaller than the wavelength of light λ) randomly in the
supercell.

As shown in Fig. 3, the maximal DOS reduction occurs
in the tetrahedral network structure, which is two orders of
magnitude larger than that for the dielectric spheres and inverse
structures. For the tetrahedral networks, the PBG is formed
at normalized frequency d/λ ≈ 0.22, where d is the average
length of dielectric rods and d/a = 0.39. The width of the
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FIG. 3. (Color online) DOS for (a) jammed dielectric spheres
in air with γ = 0.75, (b) inverted structures with γ = 0.8, and
(c) tetrahedral networks with γ = 0.8. The wavelength λ is normal-
ized by the mean spacing between spheres a (average bond length d)
on the top (bottom) scale.

PBG normalized by the gap center frequency is ∼5.5%. The
modest reduction in the DOS at a/λ ≈ 0.41 for the dielectric
spheres stems from Mie resonances of individual spheres [7].
The uniformity of the dielectric spheres allows the coupling
of their Mie resonances, which of the lowest order for isolated
dielectric spheres in air occurs at a/λ ≈ 0.41. In contrast, the
air sphere structures have only a small reduction of the DOS
in the frequency range where the tetrahedral networks show
a pronounced PBG, despite the fact that both structures have
dielectric network topologies and similar degrees of spatial
correlation. It is clear that the dramatic difference in the
DOS cannot be explained by the small differences in spatial
correlations.

Our studies of jammed dielectric sphere packings show
that uniformity in the size of dielectric spheres leads to strong
coupling of Mie resonances that result in a depletion of
the DOS. In the inverse structure of air spheres, the basic
scattering unit is the dielectric filling between air spheres. For
the tetrahedral network structure, the basic scattering unit is
centered at each junction where four dielectric rods meet. Note
that in the network topology, the adjacent scattering units are
connected, in contrast with the cermet topology. To compare
the uniformity of local scattering units in dielectric networks,
we calculate the average refractive index near the center of
each unit. For the tetrahedral network structure, we calculate
the mean refractive index n̄ within a sphere of radius r whose
center coincides with the center of each junction. We then
compute the average 〈n̄(r)〉 and its variance V (r) over all
junctions. For the air spheres, the dielectric junction center is
set at the center of refractive index distribution within each
tetrahedron obtained from the 3D Delaunay tessellation of
the sphere centers. Similarly, we calculate the mean refractive
index n̄ around each junction center, 〈n̄(r)〉, and V (r) averaged
over all junctions.

In Fig. 4(a) we show that on average the tetrahedral network
and air spheres’ structures have similar distributions of the
mean refractive index 〈n̄(r)〉 around each dielectric junction.
In addition, the average refractive index for both networks
approaches the same value at large r since the air fraction γ

is the same for both structures. However, the variance V (r) of
n̄ for the two network structures shows marked differences
for all r as shown in Fig. 4(b). The tetrahedral network
possesses much smaller fluctuations in n̄ from one junction

FIG. 4. (Color online) Uniformity of the local scattering environ-
ment for the dielectric networks of tetrahedral bonding (solid line)
and air spheres (dashed line). (a) Mean index of refraction 〈n̄(r)〉
and (b) variance V (r) within a distance r from the dielectric junction
center; r is normalized by the mean spacing of spheres a (average
bond length d) on the top (bottom) scales.
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FIG. 5. (Color online) DOS of tetrahedral networks for different
values of the air fraction γ and refractive index n. (a) n = 3.6 and (i)
γ = 0.85, (ii) γ = 0.72, and (iii) γ = 0.6. (b) (i) n = 3.2, γ = 0.77,
(ii) n = 3.0, γ = 0.74, and (iii) n = 2.8, γ = 0.72.

to another. Thus, the scattering units are much more uniform
for the tetrahedral network than those in the air spheres. The
uniformity of local refractive index distribution ensures similar
scattering characteristic of individual dielectric junctions and
facilitates their coupling, which leads to a dramatic depletion
of the DOS.

The formation of a PBG in the tetrahedral network structure
also depends on the air fraction γ and the refractive index of
the dielectric material n. In Fig. 5(a), we show the variation
of the PBG for different values of γ while keeping n at 3.6.
Reducing the air fraction below 0.8 leads to a decrease in the
PBG. A reduction in γ increases the average refractive index
of the structure, thus reducing the ratio of the index difference
(n − 1) to the average refractive index. It leads to a decrease of
the overall scattering strength and a weakening of the PBG. In
contrast, if γ is increased to above 0.8, there is an insufficient
amount of high-index material to scatter light. Thus, there
exists an optimal air fraction γ at which the scattering strength
is maximal and the PBG is the largest. The optimal value
of γ varies with the refractive index contrast. As shown in
Fig. 5(b), as n decreases, the maximal DOS reduction shifts to
smaller γ value. In addition, the DOS dip becomes shallower,
reflecting that the PBG effect is weaker at lower refractive
index contrast. While the depth of DOS reduction changes
slightly when n varies from 3.6 to 3.2, it drops by nearly two

orders of magnitude with a further reduction of n from 3.2 to
2.8. This threshold behavior indicates there is a cutoff value of
n for the PBG formation in the tetrahedral network structure.

IV. EFFECT OF SHORT-RANGE ORDER

In addition to the factors studied above, short-range posi-
tional order and tetrahedral bond order play important roles in
the formation of PBGs in PAS. In this section, we focus on
the dielectric network of tetrahedral bonding, which yields the
largest PBGs, and vary the amount of positional and tetrahedral
bond order. In particular, we tune the positional order of the
original sphere packings from which the tetrahedral networks
are formed. The degree of positional order increases with the
volume fraction of spheres φ, which varies from 0.35 to 0.69.
We label the tetrahedral networks [Figs. 6(a)–6(c)] generated
from the sphere packings at φ = 0.35, 0.64, and 0.69 as A, B,
and C. The 2D cross sections of the 3D spatial Fourier spectra
for these structures are presented in Figs. 6(d)–6(f). The power
spectra of networks A and B consist of concentric shells, but
the shell width is notably larger for A. Thus both A and B

are isotropic structures, but B possesses more positional order
than A. In contrast to A and B, network C features discrete
diffraction peaks in the Fourier spectrum, and the structure is
no longer isotropic.

In Fig. 7, we compare the DOS of the tetrahedral networks
A, B, and C, with the refractive index of the dielectric rods
set to n = 3.6. By adjusting the dielectric rod radius W , we
find that the optimal air fraction for all three structures is
γ = 0.8. As expected, network A, with the least positional
order, possesses the smallest depletion in the DOS. However,
network C with the strongest degree of positional order has a
smaller DOS depletion than network B. This result contrasts
with recent findings for 2D PAS with air cylinders embedded in
dielectric materials that show increasing positional order leads
to stronger DOS depletion [22]. To understand these results, we
must also compare the uniformity of the local refractive index
distribution and the structural topology of the three network
structures at fixed radius W of the dielectric rods. We find
that networks B and C have comparable fluctuations in n̄ over

FIG. 6. Tetrahedral dielectric networks generated from sphere
packings with packing fractions (a) φ = 0.35, (b) 0.64, and
(c) 0.69. The 2D cross sections of the 3D spatial Fourier spectra
of the corresponding tetrahedral networks are shown in (d), (e),
and (f).
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FIG. 7. (Color online) The DOS for three tetrahedral dielectric
networks (a) A, (b) B, and (c) C with positional order increasing
from A to C.

all the junctions. Thus, local uniformity does not explain the
difference in the depletion of the DOS for networks B and C.

To investigate the effects of local topology on the de-
pletion of the DOS, we compute the tetrahedral order

FIG. 8. (Color online) Characterization of the local topology for
networks A, B, and C. (a) The distribution of angles ψjk between
dielectric rods j and k at each tetrahedral junction. The vertical
dashed line indicates the angle for the periodic diamond structure,
ψjk = 109.5◦. (b) Distribution of the tetrahedral order parameters ζ

at each junction. The average ψ̄jk and ζ̄ and standard deviations sψ

and sζ are also provided.

parameter [8,9]

ζ = 1 − 3

8

3∑
j=1

4∑
k=j+1

(
cos ψjk + 1

3

)2

, (1)

where ψjk is the angle between two dielectric rods joined
at a junction in the tetrahedral network [24]. For a periodic
diamond network, ψjk = 109.5◦, cos(ψjk) = −1/3 for all
j and k, and thus ζ = 1 at each junction. If the dielectric
rods are randomly orientated, 〈ζ 〉 = 0. In Fig. 8, we plot the
distributions of ψjk and ζ for the A, B, and C networks and
provide the mean values (ψ̄jk or ζ̄ ) and standard deviations sψ

and sζ .
Network A possesses the widest distributions for both

ψjk and ζ , which indicates that the local topology varies
significantly from one junction to another and that the bond
angles within each junction are not uniform. The distributions
of ψjk and ζ are narrower for network B and are peaked at
ψjk = 114◦ and ζ = 0.95, which indicates that most of the
junctions have topology similar to that in a diamond lattice.
In contrast, network C displays multimodal distributions for
ψjk and ζ . For example, the ζ distribution possesses peaks
at ζ = 0.95, 0.72, and 0.5. The first peak reveals that there
are many junctions with strong tetrahedral order, while the
second and third peaks reflect the existence of many “defect”
junctions with low ζ . Such defect junctions are likely located
at domain boundaries and introduce irregularity in the local
configuration of scattering units. Figures 7 and 8 show that
photonic amorphous networks with strong tetrahedral order
and few defect junctions have broad PBGs.

V. CONCLUSION

In this paper, we calculate the DOS in 3D photonic
amorphous structures with cermet and network topologies. We
find that interconnected networks of high-index material with
uniform dielectric junctions and tetrahedral bonding give rise
to large isotropic PBGs. Further, reduced fluctuations in the
refractive index around each junction and strong tetrahedral
order for the angles between the dielectric rods that form
the junctions enhance isotropic PBGs. High refractive index
contrast and a low fraction of high-index material are also
important to PBG formation. We have thus identified several
parameters that can be tuned to create broad isotropic PBGs
in photonic amorphous structures in the absence of long-range
structural order.
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