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Numerical study of amplified spontaneous emission and lasing in random media
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We simulate the transition from amplified spontaneous emission (ASE) to lasing in random systems with
varying degrees of mode overlap. This is accomplished by solving the stochastic Maxwell-Bloch equations with
the finite-difference time-domain method. Below lasing threshold, the continuous emission spectra are narrowed
by frequency-dependent amplification. Our simulations reproduce the stochastic emission spikes in the spectra.
Well-defined peaks, corresponding to the system resonances, emerge at higher pumping and are narrowed by
stimulated emission before lasing takes place. Noise tends to distribute pump energy over many modes, resulting
in multimode operation. Well above the lasing threshold, the effects of noise lessen and results become similar
to those without noise. By comparing systems of different scattering strength, we find that weaker scattering
extends the transition region from ASE to lasing, where the effects of noise are most significant.
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I. INTRODUCTION

A random laser has two elements: an active material that
spontaneously emits light and amplifies it via stimulated
emission, and a disordered medium that partially traps light
by multiple scattering. Lasing occurs when the loss owing to
absorption and leakage of light through open boundaries is
compensated by light emission and amplification inside the
medium. Stronger scattering increases the trap time of light
and lowers the leakage loss. Letokhov discussed the diffusion
process with gain that can lead to lasing with nonresonant
feedback in the 1960’s [1]. Early experiments, e.g., on dye
solutions containing microparticles [2], showed a dramatic
narrowing of the emission spectrum and a rapid increase
of emission intensity at the frequencies at approximately
the maximal gain, where the threshold condition is met. In
contrast to the smooth and relatively broad lasing spectra, later
experiments illustrated multiple sharp peaks of laser emission
from semiconductor powder and disordered polymers [3,4].
Further experimental and theoretical studies revealed those
spectral peaks result from interference of scattered light in the
random media [5]. Although interference is not required for
lasing action, it reduces light leakage at certain frequencies
[6] and facilitates lasing by lowering the threshold (gain =
loss). Thus lasing occurs at those frequencies, producing
emission with high first-order coherence (narrow spectral
width) and second-order coherence (suppression of photon
number fluctuations in single modes) [7]. In addition to the
reproducible lasing peaks, stochastic spikes were observed in
single-shot emission spectra with pulsed excitation [8–11].
These spikes are completely different in frequency from
shot to shot, and are attributed to strong amplification of
spontaneously emitted photons along long paths.

The rich phenomena of random lasers have not been
well understood so far. The diffusion model including gain
can describe the narrowing of broad emission spectra [1],
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but not the appearance of discrete lasing peaks even if the
interference effect is included by the renormalization of the
diffusion equation [12]. Semiclassical laser theory, based
on Maxwell’s equations, can predict the lasing peaks that
result from interference effects [13,14] but not the stochastic
emission spikes because it does not take spontaneous emission
into account. The spectral width of lasing modes cannot be
calculated either without spontaneous emission. We do not
know how the laser linewidth compares to the frequency
spacing of lasing modes. If the former is larger than the
latter, the lasing peaks are indistinguishable no matter how
fine the spectral resolution is. A diffusive or ballistic system,
especially with higher dimensionality, contains a huge number
of resonances that overlap spatially and spectrally. Although
these resonances have similar lasing thresholds, they cannot
all lase simultaneously because of gain depletion [15,16]. A
large fluctuation of lasing spectra have been observed experi-
mentally [8,9,17–23]. The lasing modes are sensitive to small
perturbations and noise, e.g., fluctuation of pump pulse energy,
spatial variation of pump intensity, etc. [16]. In addition to the
extrinsic noise, the number of spontaneously emitted photons
participating in the buildup of laser emission in any mode
may fluctuate from shot to shot, leading to variations of lasing
peak height [22,24]. Such intrinsic fluctuations are missed by
semiclassical laser theory. Because random laser thresholds
are usually higher than conventional laser thresholds owing
to weaker optical confinement, stronger pumping is required,
making the amplified spontaneous emission (ASE) stronger.
Semiclassical laser theory, which neglects ASE, cannot capture
the transition from the amplification of spontaneous emission
to lasing oscillation that has been observed experimentally
[25].

Note that spontaneous emission only contributes to part
of the intrinsic noise, which also includes the fluctuations
induced by atomic dephasing, pumping, optical leakage, etc.
Because intrinsic noise plays an essential role in random
lasing behavior, it must be treated properly. There have been
significant advances in theoretical studies on photon statistics
of random lasers and amplifiers [26–30]. Most of them are
based on full quantum treatments of noise in the modal
description. For a random system, the mode structures are
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complex and unknown a priori. Thus it is desirable to introduce
noise without prior knowledge of modes. Some previous
studies based on light diffusion and random walks [31] do
not need mode information, but they ignore light interference
that is essential to the formation of resonant lasing modes.

In this paper we incorporate intrinsic noise into the
numerical simulation of random lasers. The numerical method
is based on the finite-difference time-domain (FDTD) formu-
lation we recently developed to study the effects of noise
on light-atom interaction in complex systems without prior
knowledge of resonances [32,33]. The interference effects
and the openness of the system are fully accounted for
with Maxwell’s equations and absorbing boundary conditions
[34,35]. The incorporation of the Bloch equations describes the
evolution of the density matrix for two-level atoms and their
interaction with light [36]. In the many-atom and many-photon
limit the quantum fluctuations can be simulated by classical
noise terms [37]. Based on the fluctuation-dissipation theorem,
we consider noise associated with three dissipation mecha-
nisms for atoms (described in detail in Ref. [33]): (i) dephasing
events, (ii) excited state decay, and (iii) incoherent pumping
(from ground state to excited state). Noise related to field decay
is negligible because the photon energy at visible frequencies
is much larger than the thermal energy at room temperature. At
higher temperatures or longer wavelengths, where this noise
becomes significant, it can be incorporated into the FDTD
algorithm following the approach we developed in Ref. [32].

Here we study the effects of intrinsic noise on the steady-
state properties of random lasers in one dimension (1D).
Results from systems of different scattering strengths are
presented that probe varying degrees of light leakiness and
spectral mode overlap. We are able to simulate the transition
from ASE to lasing by using the stochastic Maxwell-Bloch
(MB) equations. Stochastic emission spikes are reproduced
with similar statistics to the experimental data reported
previously [10,11]. The spectral width of the broad ASE
peak is calculated as a function of pumping rate. It displays
a dramatic decrease with increasing pump level, as seen
experimentally [2]. The linewidths of individual lasing modes
are also computed and compared to the Schawlow-Townes
linewidth of single-mode lasers. A comparison of the results
of simulations with noise to the simulations of the same active
system without noise illustrates that noise effects are strongest
in the transition regime from ASE to lasing.

This paper is organized as follows. In Sec. II, information
on the random systems studied here is provided. An analysis
of resonances in these systems without gain is carried out in
Sec. III. In Sec. IV, the FDTD formulation for the stochastic
MB equations is given, and some numerical issues related
to noise are discussed. Results of calculations using the MB
equations both with and without noise are presented for
random systems with spectrally overlapping resonances in
Sec. V and with nonoverlapping resonances in Sec. VI. Our
main conclusions are drawn in Sec. VII.

II. RANDOM SYSTEMS

Two 1D random systems are considered here with different
degrees of spectral overlap of resonances. Both consist of
N = 41 layers. The dielectric layers with index of refraction

n1 > 1 alternate with air gaps (n2 = 1), resulting in a spatially
modulated index of refraction n(x). The scattering strength
is varied by adjusting the index contrast �n = n1/n2 − 1.
The system is randomized by specifying different thicknesses
for each of the layers as d1,2 = 〈d1,2〉(1 + ηζ ), where 〈d1〉
and 〈d2〉 are the average thicknesses of the layers, 0 < η < 1
represents the degree of randomness, and ζ is a random number
uniformly distributed in (−1,1). The average thicknesses are
〈d1〉 = 100 nm and 〈d2〉 = 200 nm, giving a total average
length of 〈L〉 = 6100 nm. The grid origin x = 0 is at the
left boundary of the structure, and the length of the random
structure L is normalized to 〈L〉. The degree of randomness is
set to η = 0.9 and the index of refraction outside the random
media is n0 = 1.

The degree of mode overlap is adjusted by the refractive
index n1 of the dielectric layers. The Thouless number g, which
reveals the amount of spectral overlap of resonances of these
random systems, is given by the ratio of the average resonance
decay rate to the average frequency spacing g = 〈ki〉/〈�k〉.
In the first case, n1 = 1.05 (�n = 0.05), g = 1.0, and the
resonances overlap in frequency. In the second case, n1 = 1.25
(�n = 0.25), g = 0.5, and the resonances are fairly well
separated. The localization length ξ is calculated from the
dependence of ensemble-averaged transmittance T on the sys-
tem lengths L as ξ−1 = −d〈ln T 〉/dL and averaged over the
wavelength range of interest (400–1200 nm). For the first case,
〈ξ 〉 = 340 µm and for the second case, 〈ξ 〉 = 13 µm. Because
〈ξ 〉 is much larger than the system length L, both systems
are far from the localization threshold. Figure 1(a) shows the
transmission spectra T (k) of both systems. Resonance peaks
are clearly narrower and better separated for the second system
with g = 0.5.

III. RESONANCES OF THE PASSIVE SYSTEM

We calculate the resonances of the two systems in the
absence of gain or absorption by using the transfer-matrix
method. Because the system is open, light can escape through
the boundaries. To satisfy the conditions that there are only
outgoing waves through the boundaries, the wave vectors must
be complex numbers, k̃ = k + iki . The real part k corresponds
to the mode frequency ω, k = ω/c, where c is the speed of
light in vacuum. The imaginary part ki < 0; its amplitude is
proportional to the decay rate γ of the mode owing to light
leakage. The resulting field distributions associated with the
solutions for these boundary conditions are the quasimodes of
the passive system. Figure 1(b) plots the electric-field-intensity
distributions of representative quasimodes in the two systems
studied here. With g = 0.5 the spatial distribution of electric-
field intensity is more concentrated inside the system than
with g = 1.0, where intensity distribution is concentrated on
the boundaries of the system.

Figure 2 shows all quasimodes of the two systems in the
complex-k̃ plane within the wavelength range of interest. For
g = 1.0 the separation of decay rates between neighboring
modes is quite small, leading to significant spectral overlap
of modes. With gain included, the lasing thresholds of most
modes should be very similar. However, the simulations of
lasing in the following sections include a frequency-dependent
gain curve centered at ka (shown as the vertical line in Fig. 2).
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FIG. 1. (a) Transmission spectra T (k) of passive random systems
with g = 0.5 (solid line) and g = 1.0 (dashed line). The gain curve
(dotted line) for the MB simulations is also shown. (b) Intensity
distribution of a representative quasimode in a random system with
g = 0.5 (solid line) and g = 1.0 (dashed line).

A balance of lower decay rate (smaller amplitude of ki) and
higher gain (k closer to ka) selects the modes that are amplified
the most, e.g., the two modes circled in Fig. 2.

For the system with g = 0.5 in Fig. 2, the resonances have
smaller amplitudes of ki and thus lower decay rates. This is
a result of greater confinement of light owing to the higher
index contrast. Furthermore, decay rates are more separated in
general. As suggested by the narrow peaks at approximately
k = 10.5 µm−1 in the transmission spectrum in Fig. 1(a), the
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FIG. 2. Frequencies k and decay rates ki of quasimodes in two
random systems with g = 1.0 (+) and g = 0.5 (×). The vertical
dashed gray line marks the atomic transition frequency ka in the MB
simulations. The two strongest lasing modes found in the following
section are bounded by (circles) for g = 1.0 and (squares) for
g = 0.5. The circled modes have smaller decay rates than the modes
nearest ka .

two modes nearest ka have relatively small decay rates. They
are also fairly well separated from neighboring modes. Thus,
these two modes should have the lowest lasing thresholds.

IV. FDTD SIMULATION OF STOCHASTIC
MAXWELL-BLOCH EQUATIONS

We consider two-level atoms uniformly distributed over
the entire random system to avoid additional light scattering
caused by the spatial inhomogeneity of gain. Although it does
not correspond to common experimental situations where gain
atoms are incorporated only in the dielectric layers, it is still
possible to have gain atoms in the gas phase distributed in the
air gaps. The two-level model of atoms is a simplified approach
that can be applied to actual lasers based on three-level atoms
such as ruby and erbium lasers, as the population in the third
level is negligibly small [38]. The atomic transition frequency
is set to ka = 10.5 µm−1, and the corresponding wavelength is
λa = 600 nm. The lifetime of atoms in the excited state T1 and
the dephasing time T2 are included in the Bloch equations. The
spectral width of the gain regime is given by �ka = (1/T1 +
2/T2)/c [39]. We set T1 = 1.0 ps. The values of T2 are chosen
such that the gain spectrum spans ten quasimodes of the passive
system, i.e., �ka = 10〈�k〉. The average frequency spacing
〈�k〉 is slightly different for the two cases studied. For g = 0.5,
T2 = 1.4 fs and �ka = 4.7 µm−1. For g = 1.0, T2 = 1.3 fs
and �ka = 5.0 µm−1, as shown by the dotted line in Fig. 1(a).
We also include incoherent pumping of atoms from level 1
to level 2. The rate of atoms being pumped is proportional to
the population of atoms in level 1 ρ11, and the proportionality
coefficient Pr is called the pumping rate.

To introduce noise to the Bloch equations, we used the
stochastic c-number equations that are derived from the quan-
tum Langevin equations in the many-atom limit [37]. The noise
sources in these equations are from both the dissipation of the
system and the nonlinearity in the Hamiltonian. The latter
represents the nonclassical component of noise, giving rise to
nonclassical statistical behavior. Because we are interested in
the classical behavior of macroscopic systems, such as ASE
and lasing, we neglect the nonclassical noise in our simulation.
The classical noise results from the decay, dephasing, and
pumping of atoms, as dictated by the fluctuation-dissipation
theorem. The amplitude of classical noise accompanying the
field decay is proportional to the square root of the thermal
photon number. At room temperature the number of thermal
photons at visible frequencies is negligible, thus the noise
related to the field decay is ignored here.

The stochastic simulations solve for the atomic population
of the excited states ρ22 and the atomic polarization ρ1 =
ρ12 + ρ21 and ρ2 = i(ρ12 − ρ21), which couple to Maxwell’s
equations. The stochastic equations solved at each grid point
in space are

dρ1(x,t)

dt
= ckaρ2(x,t) − 1

T2
ρ1(x,t) + 	1(x,t),

dρ2(x,t)

dt
= −ckaρ1(x,t) + 2|γ |

h̄
Ez(x,t)[2ρ22(x,t) − Ns]

− 1

T2
ρ2(x,t) + 	2(x,t), (1)
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dρ22(x,t)

dt
= −|γ |

h̄
Ez(x,t)ρ2(x,t) − 1

T1
ρ22(x,t)

+ Pr

T1
[Ns − ρ22(x,t)] + 	22(x,t),

where Ez is the electric field, γ is the dipole coupling term,
Ns is the number of atoms per grid cell, and the noise terms

	1(x,t) = 2ξ1(t)
√

γpρ22(x,t),

	2(x,t) = −2ξ2(t)
√

γpρ22(x,t), (2)

	22(x,t) = ξ3(t)
√

ρ22(x,t)/T1 + Prρ11(x,t)/T1,

where γp = 1/T2 − 1/2T1. The ξj terms are real, Gaussian,
random variables with zero mean and the following correlation
relation:

〈ξj (t)ξk(t ′)〉 = δjkδ(t − t ′), (3)

where j,k = 1,2,3. We assume T2 � T1, and the pump
fluctuations in 	1 and 	2 are neglected because they are orders
of magnitude smaller than the noise owing to dephasing. The
resulting MB equations are solved through a parallel FDTD
implementation with a spatial grid step �x = 1.0 nm and
a temporal step �t = 1.7 × 10−18 s. Absorbing boundary
conditions in 1D are exact and easily implemented owing to
the absence of sources outside the grid space and the fact that
fields at the edge of the grid only propagate outward [35]. In
cases where noise is not included, the system is excited by
a Gaussian-sinusoidal pulse of center frequency k0 = ka and
spectral width �k0 = �ka .

An issue concerning the simulation with noise arises when
ρ11 or ρ22 is close to zero. To keep the atomic populations
in both levels positive for a large range of pumping rates,
we set the system initially at the transparency point, i.e.,
ρ3(t = 0) = ρ22 − ρ11 = 0. Moreover, we assume the atomic
density is large, Natom/V = 4.3 × 1017 cm−3 [40]. Small
variations to the initial population do not affect the final steady-
state results. Furthermore, the high-frequency components
of the noise excite the modes resonating within single air
gaps sandwiched between dielectric layers of index n1 > 1.
These high-frequency contributions are ignored completely
by considering only the electromagnetic fields within the
wavelength range 400 nm < λ < 1200 nm.

With noise terms included in the MB equations, all
quantities fluctuate in time. Eventually their values averaged
over small time windows are nearly constant. By comparing
the spectra of output light taken over different temporal ranges
up to t = 267 ps, we find a steady state is reached by 16.6 ps for
all pumping rates considered here. Hence, the output spectra
obtained after 16.6 ps represent the steady-state behavior. The
output field is sampled at the grid point x = L at the right
boundary of the random system. The results from this point
are identical in character to those from any point outside the
system and before the absorbing boundary.

V. ASE AND LASING IN A SYSTEM WITH
OVERLAPPING RESONANCES

A. Input-output relation

Starting from the random system with g = 1.0, we investi-
gate the transition from spontaneous emission to ASE and to
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FIG. 3. (Color online) Average steady-state emission intensity Io

(black ×) vs pumping rate Pr for a random system with g = 1.0. Both
Io and Pr are plotted on log10 scales to clearly show the regions of
spontaneous emission (SE), amplified spontaneous emission (ASE),
and laser emission (LE). A red solid line and a blue dotted line are
linear fits to the intensities of SE (with nearly constant reabsorption
at Pr < 0.1) and LE (well above the lasing threshold at Pr > 10),
respectively. The slopes, written next to the lines, are equal to one,
reflecting linear increase of Io with Pr . The intensity of ASE increases
superlinearly with (Pr )p .

laser emission by examining the dependence of the steady-state
output intensity Io on the pumping rate Pr . To avoid erroneous
contributions from high frequency components (mentioned in
Sec. II), Io is found by a spectral integration,

Io =
∫ ku

kl

|E(k′)|2dk′, (4)

where kl = ka − �ka = 2π/1.2 µm−1 and ku = ka + �ka =
2π/0.4 µm−1.

Figure 3 plots log10 Io vs log10 Pr . The total pumping
rate is normalized such that at Pr = 1 (log10 Pr = 0), the
system without noise reaches the transparency point in the
steady state (〈ρ3(x)〉x = 0). With noise, Pr = 1 is just below
the transparency point (〈ρ3(x)〉x <∼ 0), because the atomic
population in level 2 (ρ22) is reduced by spontaneous emission.
The spontaneous emission intensity is linearly proportional to
ρ22. However, when ρ22 < ρ11, the spontaneously emitted light
can be reabsorbed. The amount of reabsorption is determined
by ρ11 − ρ22, which varies with Pr . At very low pumping
(Pr < 0.1), ρ11 � ρ22, thus ρ11 − ρ22 � 1, and the amount of
reabsorption is almost constant. As ρ22 increases linearly with
Pr , the output intensity of spontaneous emission grows linearly
with Pr . At higher pumping 0.1 < Pr < 1, the decrease of
ρ11 leads to a significant reduction in reabsorption. In fact,
the amount of reabsorption decreases nonlinearly with Pr ,
resulting in a superlinear increase of Io with Pr . Once the
pumping rate is large enough to induce a population inversion
(ρ11 < ρ22), the spontaneously emitted light experiences a net
amplification. The ASE intensity increases superlinearly with
Pr , as seen in Fig. 3. Even with the existence of population
inversion, the rate of light amplification may be less than
the leakage rate, and there is no lasing oscillation. Once the
pump exceeds a threshold, light leakage is compensated by
amplification, and lasing oscillation occurs. Well above the
lasing threshold, the optical gain is saturated and the growth
of Io with Pr becomes linear again.
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FIG. 4. (Color online) Steady-state emission spectra |E(k)|2 with
noise (upper black line in each panel) compared to those without noise
(lower red line and circles in the same panel) at the same pumping rate
Pr for a random system with g = 1.0. The values of Pr are written in
each panel.

To ensure these results are not limited to the particular
configuration considered here, the simulations are repeated
with another random seed (to initialize the noise terms) and
another realization of a random structure with the same g. The
results are qualitatively similar. Slight differences arise owing
to stochasticity.

B. ASE spectra

We Fourier transform the output fields to obtain the
emission spectra. Figure 4 shows the steady-state emission
spectra with noise |E(k)|2 in comparison to those without
noise for increasing pumping rates. At Pr = 1.00 [Fig. 4(a)],
there is no net gain. Without noise, the initial seed pulse dies
away, and there is no signal at the steady state. With noise,
the steady-state emission spectrum has a broad peak. It is
centered at the atomic transition frequency ka = 10.5 µm−1,
resembling the spontaneous emission spectrum. On top of
it there are many fine spikes whose frequencies change
chaotically from one time window of the Fourier transform
to the next. They result from the stochastic emission process
with their spectral width determined by the temporal length
of the Fourier transform. Above the transparency point at
Pr = 1.02 [Fig. 4(b)], the broad emission peak grows and
narrows spectrally. This behavior is typical of ASE. Because
the optical gain is frequency dependent, the emission intensity
closer to ka is amplified more than that away from ka , leading
to a spectral narrowing. The stochastic emission spikes are
also amplified, especially those closer to ka in frequency. As
the pumping rate increases more [e.g., Pr = 1.04 in Fig. 4(c)],
the broad peak grows and narrows further. Without noise, the
emission spectra are blank, because ASE is neglected. When
Pr = 1.06 [Fig. 4(d)], a single peak appears in the emission
spectrum without noise. This peak is a delta function with its

“linewidth” merely determined by the integration time of the
Fourier transformation. Thus, only one or two data points exist
above the full width at half maximum (FWHM). The spectrum
shows lasing occurs in a single mode, which corresponds to
the resonance of the passive system at k = 11.6 µm−1 in
Fig. 2. The lasing frequency is pulled toward ka at which
gain is maximal. A further increase of Pr to 1.08 leads to
lasing in a second mode that corresponds to the resonance
at k = 9.6 µm−1. Frequency pulling is also seen here. In
the absence of noise, single-mode lasing can be achieved
by carefully adjusting Pr . This is no longer the case when
noise is introduced. The emission spectra with noise look
very different. There is clearly no single-mode lasing at any
pumping rate. Intensity of the broad emission spectrum is
modulated, as seen in Figs. 4(d)–4(g). The emission intensities
are enhanced not only at the frequencies of lasing peaks
without noise, but also at some other frequencies. Optical
amplification is stronger at the resonant frequencies of the
system and narrows the resonance peaks that overlap spectrally
without gain. Reduced overlap of resonance peaks with gain
results in a spectral modulation of emission intensity. For
Pr = 1.10 [Fig. 4(g)], it is possible to associate the three
lasing peaks for the case without noise to resonance peaks
with noise. Additional resonance peaks are also discernible
for the case with noise. Unlike the stochastic emission spikes,
the frequencies of resonance peaks are stable in time, although
their heights may vary from one time window of the Fourier
transform to the next. Their spectral widths are notably
larger than those of the stochastic emission spikes.

We extract the width of the broad emission spectrum in
Fig. 4 at different pumping rates. Because of the noisiness of
the spectrum, we use a “Lorentz error function” to objectively
obtain the spectral width. Several smoothing and fitting
procedures were attempted on the noisy data directly, but
the following procedure proved to be the most consistent. A
Lorentzian function L(k) describes the spectrum

L(k) =
(

2Al

π

)
(δk/2)2

(k − k0)2 + (δk/2)2
, (5)

where Al is the amplitude, k0 is the center frequency,
and δk is the FWHM. The Lorentz error function, given
analytically by

LEF(k) ≡
∫ k

k0

L(k′) dk′

=
(

Alδk

π

)
tan−1

(
2(k − k0)

δk

)
, (6)

is used to fit the numerical data because a typical laser line has
a Lorentzian shape [39]. The frequency range of the integration
over k′ is limited to kl = ka − �ka = 2π/1.2 µm−1 and
ku = ka + �ka = 2π/0.4 µm−1. Because of the preferential
amplification of light with frequencies closer to ka , the
emission spectrum is narrowed at approximately ka . Thus, the
center frequency is fixed at k0 = ka and not adjusted during
the fitting [41] of Eq. (6) to the data. Al and δk are the fitting
parameters.

The values of δk and Al obtained from the fitting are
plotted against the pumping rate in Fig. 5. As Pr increases
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FIG. 5. (Color online) Spectral width δk (black squares) and
amplitude Al (red circles) of the broad emission peak vs pumping
rate Pr .

from 1.00 to 1.10, δk first decreases rapidly then decreases
more slowly. Al displays a superlinear increase with Pr .
Amplification allows the emission intensity to build up quickly
at approximately the atomic transition frequency. This increase
results in a rapid narrowing of the emission spectrum. Such
behavior has been seen experimentally [2]. Recent studies
reveal that the spectral narrowing resembles a condensation
process, as it can be predicted by a nonlinear differential
equation identical to that governing the ultracold atoms
[42,43].

The stochastic emission spikes have also been observed
experimentally in the ASE spectra [8–11]. They are attributed
to single spontaneous emission events that happen to take
long open paths inside the amplifying random medium and
pick up large gain. The emergence of these spikes does not
rely on resonant feedback or coherent interference. Their
spectral width is determined by the temporal duration of the
emission pulse. In principle, our classical noise model does not
account for spontaneous emission on the single-photon level.
However, millions of photons are emitted and amplified in
the macroscopic random media with gain. Thus the quantum
nature of photons can be ignored. We found the stochastic
spikes in the emission spectra of our simulation bear similar
characteristics to the ASE spikes measured experimentally. An
example of the stochastic spikes is shown in Fig. 6(a), which is
an enlargement of the emission spectrum in Fig. 4(a). We find
that the spectral width of the stochastic spikes is determined by
the integration time of the Fourier transformation TF . Because
of the long TF , the spikes are usually much narrower than the
lasing peaks, as long as the pumping rate is not too high. In the
emission spectrum the intensity is calculated at the frequency
step δkn that is determined by TF . If the intensity at k is larger
than those at k ± δkn, a spike is found at k. By using this three-
point peak-finding method, we extract the frequencies of spikes
from the calculated spectra as shown in Fig. 6(a), and compute
the frequency spacing of adjacent spikes. Figure 6(b) plots the
statistical distribution P (δkn) of frequency spacing between
adjacent stochastic spikes for Pr = 1.00 and Pr = 2.00. The
two distributions coincide, revealing P (δkn) is independent of
Pr . As evident from the log-linear plot in the inset of Fig. 6(b),
P (δkn) decays exponentially at large δkn. This behavior is
identical in character to the experimental result [10,11]. Note
that the leveling off of P (δkn) at smaller δkn is an artifact of
limited spectral resolution.
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FIG. 6. (Color online) (a) Steady-state emission spectra |E(k)|2
with noise over a small frequency range illustrating stochastic
emission spikes. Crosses mark the wavelengths at which the emission
intensities are obtained by the Fourier transform. Arrows mark
spikes identified by a three-point peak-finding method. (b) Statistical
distribution of frequency spacing of spikes P (δkn) at Pr = 1.00 (+)
and Pr = 2.00 (×), plotted on the linear scale (main panel) and
logarithmic scale (inset). An exponential fit is marked in the inset
by a straight red line.

C. Lasing modes

The resonance peaks, which are hardly seen in the emission
spectra for Pr � 1.10 (Fig. 4), grow rapidly as Pr increases
further above 1.10 (Fig. 7). They become narrower and well
separated, surpassing the stochastic emission spikes. There
are clearly more peaks in the emission spectra with noise than
those without noise at the same pumping level. This is because
all modes are constantly excited by the noise and subsequently
amplified in the presence of population inversion. Hence, the
pump energy is distributed over more peaks. Nevertheless, all
the lasing peaks without noise correspond to strong emission
peaks with noise. We enumerate six major peaks in Fig. 7(d),
with 1 being the strongest. For Pr � 2.00 [Figs. 7(f) and 7(g)],
the difference between the emission spectra with noise and
those without noise is reduced.

We compare the intensities and frequencies of the lasing
modes with noise to those without noise. In both cases, the
strongest peaks are 1 and 2 (Fig. 7). We plot their intensities
versus Pr in Fig. 8(a). In the absence of noise, there is a clear
threshold for lasing. For example, mode 1 has zero intensity for
Pr < 1.06. Once Pr exceeds 1.06, its intensity rises quickly.
The sharp turn-on at Pr = 1.06 marks the lasing threshold for
mode 1. Mode 2 reaches its lasing threshold by Pr = 1.08
and its intensity increases almost linearly with Pr . Although
modes 1 and 2 display notable frequency pulling just above
the lasing threshold, their frequencies do not shift significantly
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FIG. 7. (Color online) Steady-state emission spectra |E(k)|2 with
noise (upper black line in each panel) compared to those without noise
(lower red line and circles in the same panel) at the same pumping rate
Pr for a random system with g = 1.0. The values of Pr are written in
each panel.

as Pr increases further above the threshold. This is owing to
gain saturation. At Pr > 1.10, the center frequencies of lasing
peaks with noise are almost identical to those without noise.
Thus noise does not affect the frequencies of lasing modes.
Because each lasing peak has a finite width, we integrate
the emission intensity over a spectral range set by the mid
frequencies between adjacent peaks. As shown in Fig. 8(a),
the intensities of modes 1 and 2 increase gradually with Pr .
The soft turn-on makes it difficult to pinpoint the exact value
of the lasing thresholds. Because of ASE, the modal intensity
is nonzero below the lasing threshold. Above the threshold
pumping rate for lasing without noise, the intensity with noise
is notably lower than that without noise because some pump
energy is diverted to other modes via ASE. The superlinear
increase of modal intensity at approximately the threshold is
caused by ASE. It is evident that noise almost equalizes the
intensities of modes 1 and 2, despite the fact that mode 1 is
clearly stronger than mode 2 without noise.

Figure 8(b) shows the intensity of modes 3 and 4
[enumerated in Fig. 7(d)] with and without noise as Pr

increases. Without noise, mode 3 reaches its lasing threshold at
Pr = 1.08. Mode 4 has a similar lasing threshold, but its
amplitude remains small until Pr = 1.22 [Fig. 7(b)]. With
noise, the intensities of both modes start rising from zero at
Pr < 1.08. They increase superlinearly with Pr and are greater
than the intensities without noise even about the threshold
for a small range of pumping rates [inset of Fig. 8(b)]. This
is most noticeable for mode 4 in the range Pr < 1.26. The
coexistence of multiple modes and their interactions through
the gain material make it difficult to define the lasing threshold
for each mode by using previously developed methods for
single-mode lasers [44–48]. Though the lasing threshold is
not precisely defined here, the soft turn-on and subsequently
smaller intensities at larger Pr in the case with noise shows
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FIG. 8. (Color online) Modal intensities without noise (solid
lines) compared to those with noise (dashed lines) for a random
system with g = 1.0. (a) Intensity of mode 1 I1 (red thick lines) and
mode 2 I2 (blue thin lines) vs Pr . (b) Intensity of mode 3 I3 with
(green thick lines) and mode 4 I4 (black thin lines) vs Pr . Modes are
enumerated in Fig. 7(d).

the threshold is increased for each of the four dominant modes
(1–4) when noise is included.

Next we calculate the spectral width of lasing modes, which
is impossible to do with the noiseless simulation. Considering
the noisiness of the spectrum, we again use a Lorentz error
function [Eq. (6)] to obtain the linewidth objectively. The
integration of emission intensity for the Lorentz error function
is limited to the spectral range of each mode, which is the
same as that used to obtain the spectrally integrated intensity.
Figure 9 plots the linewidths δk of modes 1 and 2 with
respect to the steady-state intensities I . Mode 1 narrows
the most dramatically; its linewidth decays over two orders
of magnitude. On a log-log scale, the data for each mode
falls onto a straight line, indicating a power-law decay. We
fit the data by δk ∝ Iα within a range Il < I < Iu. Il is
set by the threshold pumping rate without noise, at which
separate resonance peaks emerge in the presence of noise. Iu is
determined by the pumping rate at which an accurate estimate
of the linewidth is no longer possible owing to limited spectral
resolution (determined by the running time of the simulation).
For mode 1, the exponent α = −0.97 ± 4.6% is close to
the Schawlow-Townes prediction of laser linewidth [49]. For
mode 2, α = −0.70 ± 4.4% so the linewidth decays slower,
probably owing to mode competition for gain. It is known
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that the multimode operation affects laser linewidths [42,43].
A more quantitative investigation will be carried out in the
future.

Finally we look at some of the smaller peaks, e.g., 5 and 6
in Fig. 7(d). Both have corresponding peaks in the noiseless
spectra, but they are orders of magnitude smaller than the
main peaks and cannot be seen on the vertical scale of Fig. 7.
With noise, peak 6 has a much larger amplitude and is visible
together with the major peaks in the emission spectrum. Close
by the frequency of peak 5, there are two resonances, one on
either side of ka in Fig. 2(b). At lower pumping rates, only a
“composite” peak appears at k = 10.3 µm−1. The linewidths
of the two modes exceed their frequency spacing, which is
reduced by the frequency pulling effect. Consequently, the
two modes are indistinguishable and appear to be merged. At
higher pumping rates, their linewidths decrease further, but
the amplitudes remain relatively small compared to the four
main peaks. Such weaker modes are affected more by gain
nonlinearity, and display complicated behavior with increasing
pumping rate. A detailed investigation of this behavior will be
left for future studies.

VI. ASE AND LASING IN A RANDOM SYSTEM
WITH NONOVERLAPPING RESONANCES

In this section we study laser emission characteristics of
the 1D random system with g = 0.5. With a higher refractive-
index contrast (�n = 0.25), light leakage is reduced and
so is the lasing threshold. Figure 10 shows the steady-state
emission spectra for increasing pumping rates with and without
noise. Pr is normalized to the value at which ρ3 = 0 in
the absence of noise. In Fig. 10(a), Pr = 1 and there is no
gain, so without noise the steady-state emission intensity is
zero. With noise, the steady-state emission spectrum has a
broad peak at approximately the atomic transition frequency.
Spectral modulation of emission intensity is evident. Higher
emission intensities match the transmission peaks in Fig. 1;
lower intensities match the transmission dips. Because the
Thouless number is less than unity, the quasimodes are already
separated. Particular modes may be even narrower and farther
apart. They appear as peaks in the emission spectrum even
without gain (Pr = 1.0).
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FIG. 10. (Color online) Steady-state emission spectra |E(k)|2
with noise (upper black line in each panel) compared to those without
noise (lower red line and circles in the same panel) at the same
pumping rate Pr for a random system with g = 0.5. The values of Pr

are written in each panel.

With only a slight increase of the pumping rate to Pr = 1.02
[Fig. 10(b)], a single lasing peak appears at k = 10.8 µm−1 in
the absence of noise. With noise present, the broad emission
peak grows and narrows at approximately ka . The intensity
modulation is enhanced, as the resonance peaks become
narrower by light amplification. For Pr � 1.04 [Figs. 10(c)–
10(g)], well-separated peaks develop in the emission spectra
with noise. The two strongest emission peaks, enumerated
in Fig. 10(d), have the same frequencies as the lasing peaks
without noise. They correspond well to the two resonances
nearest ka in the passive system (boxed in Fig. 2). By Pr = 2.00
[Fig. 10(g)] the spectrum with noise resembles that without
noise. In both cases, the number of major peaks is three.
The influence of noise is reduced for the system of smaller
g, because the lower lasing threshold narrows the range of
pumping rates where ASE dominates. With increasing Pr ,
gain saturation quickly sets in to suppress the fluctuations.

Figure 11 plots the spectrally integrated intensity of the
two peaks enumerated in Fig. 10(d). As compared to the two
modes in Fig. 8(a), the increase of intensity with pumping is
more rapid. As before, we cannot pinpoint the exact lasing
threshold for each mode because of multimode operation.
Nevertheless, it is evident that without noise the onset of lasing
oscillation occurs at a lower pumping rate, and the modal
intensity is higher than that with noise. This is because the
pump energy is partly consumed by ASE in other modes in the
presence of noise. However, by Pr = 2.00, the effect of noise
is diminishing, and the modal intensity with noise converges to
that without noise. Hence, the transition from the amplification
of spontaneous emission to the lasing oscillation happens over
a relatively small range of pumping rates, and the effect of
noise is less significant than that in the random system with
larger g.
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VII. CONCLUSION

The effects of fluctuations caused by interactions of atoms
with reservoirs were studied in random lasers. A FDTD-based
method for solving the stochastic MB equations was employed.
It is particularly well suited for studies of light-matter
interaction in complex systems without prior knowledge of
resonant modes. Two random systems with different degrees
of spectral overlap of resonances were investigated. We were
able to simulate ASE below the lasing threshold and capture
the transition from ASE to lasing.

In the case of overlapping resonances, the emission spectra
at low pumping are broad and continuous. Above the trans-
parency point, frequency-selective amplification leads to a
dramatic narrowing of the emission spectrum and a superlinear
increase of the peak emission intensity. Such behavior is in
accordance with early experimental results [2]. Moreover,
our simulation reproduced the stochastic emission spikes in
the spectra, with similar characteristics to the experimentally
observed ASE spikes [10,11]. Previous experiments found the
spectral width of ASE spikes depends on the temporal duration
of the emission pulse. Here, we found the width of stochastic
emission spikes is determined by the integration time of the
Fourier transform of the output field. The statistical distribution
of frequency spacing of spikes displays an exponential tail,
as seen experimentally. The spikes have no relation to the
resonant modes of the system, and can be clearly differentiated
from the emission peaks formed by resonances.

We compared the lasing behavior with noise to that without
noise in the same random system. The lasing peaks in the
spectra without noise coincide with peaks in the spectra with
noise. Hence, noise does not affect mode frequencies. How-
ever, all modes within the gain curve are constantly excited
by noise and subsequently amplified by stimulated emission.

Therefore, there are always multiple modes appearing in the
steady-state emission spectra. The regime of single-mode
lasing, realized in the noiseless simulation by fine tuning
of pump, disappears. With some portion of pump energy
diverted to ASE in other modes, the lasing modes have higher
thresholds than those without noise. Moreover, the ASE below
the lasing threshold results in a soft turn-on of the lasing mode.
It is in sharp contrast to the abrupt turn-on in the simulation
without noise, where the emission intensity vanishes below
the lasing threshold. When the pumping rate is well above the
threshold value, the spectra with noise become more similar
to the spectra without noise, both showing multimode lasing.
Thus, noise has the greatest influence on lasing behavior near
threshold. With noise included, we can calculate the spectral
widths of individual lasing modes, and observe their decrease
with increasing pump. The decrease appears to follow the
Schawlow-Townes law for the strongest lasing mode, but not
for other modes, probably owing to mode interactions.

The effects of noise on lasing become less significant in ran-
dom systems with a smaller degree of spectral overlap of reso-
nances. If the Thouless number is less than unity, the resonant
modes can be resolved in the emission spectra below the trans-
parency point. ASE narrows the resonance peaks, making them
more distinct. The transition from ASE to lasing occurs over a
narrower range of pumping rate, because the lasing threshold
is lower in the case of nonoverlapping modes. The difference
between the simulation results with less mode overlap and
those with larger mode overlap agrees qualitatively to the ex-
perimental data [25] that compare different particle densities.
Increasing the refractive index contrast �n in our simulation
enhances the scattering strength, which is similar to increasing
the density of scattering particles in the experiments.

These studies shed light on the transition from ASE to lasing
in random systems, which is poorly understood. The results
presented here are limited to the steady state. Noise is expected
to have a greater effect on the dynamics, e.g., the buildup of
lasing modes and temporal fluctuations and switching of lasing
modes on short time scales. These phenomena can be studied
with our numerical method. Furthermore, this method can be
extended to the study of random lasing in higher dimensions.
The larger density of modes and potentially stronger mode
overlap in frequency may enhance the noise effects.
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C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler,
Phys. Rev. Lett. 98, 043906 (2007).

[48] X. Hachair, R. Braive, G.-L. Lippi, E. David, L. L.
Gratiet, A. Lemaı̂tre, A. Izo, I. Sagnes, I. Robert-Philip, and
A. Beveratos, e-print arXiv:1005.1538v1.

[49] A. L. Shawlow and C. H. Townes, Phys. Rev. 112, 1940 (1958).

063835-10

http://dx.doi.org/10.1103/PhysRevLett.86.4524
http://dx.doi.org/10.1103/PhysRevLett.86.4524
http://dx.doi.org/10.1103/PhysRevLett.93.053903
http://dx.doi.org/10.1103/PhysRevLett.93.053903
http://dx.doi.org/10.1103/PhysRevA.76.033807
http://dx.doi.org/10.1103/PhysRevA.76.033807
http://dx.doi.org/10.1364/OL.32.003089
http://dx.doi.org/10.1103/PhysRevA.77.013832
http://dx.doi.org/10.1103/PhysRevB.73.245107
http://dx.doi.org/10.1103/PhysRevB.73.245107
http://dx.doi.org/10.1103/PhysRevLett.85.70
http://dx.doi.org/10.1103/PhysRevLett.87.183903
http://dx.doi.org/10.1103/PhysRevLett.87.183903
http://dx.doi.org/10.1103/PhysRevB.67.161101
http://dx.doi.org/10.1103/PhysRevB.67.161101
http://dx.doi.org/10.1126/science.1155311
http://dx.doi.org/10.1126/science.1155311
http://dx.doi.org/10.1364/JOSAB.21.000208
http://dx.doi.org/10.1002/lapl.200410068
http://dx.doi.org/10.1002/lapl.200410068
http://dx.doi.org/10.1364/OL.31.001806
http://dx.doi.org/10.1364/OL.31.001806
http://dx.doi.org/10.1103/PhysRevLett.98.143901
http://dx.doi.org/10.1134/S1054660X07090010
http://dx.doi.org/10.1103/PhysRevA.81.043830
http://dx.doi.org/10.1038/nphys971
http://dx.doi.org/10.1103/PhysRevE.61.1985
http://dx.doi.org/10.1103/PhysRevE.61.1985
http://dx.doi.org/10.1103/PhysRevLett.81.1829
http://dx.doi.org/10.1103/PhysRevLett.86.5262
http://dx.doi.org/10.1103/PhysRevLett.86.5262
http://dx.doi.org/10.1103/PhysRevA.65.043809
http://dx.doi.org/10.1103/PhysRevLett.93.013602
http://dx.doi.org/10.1103/PhysRevA.79.063822
http://dx.doi.org/10.1103/PhysRevA.79.063822
http://dx.doi.org/10.1103/PhysRevA.75.063820
http://dx.doi.org/10.1103/PhysRevA.75.063820
http://dx.doi.org/10.1103/PhysRevA.77.023810
http://dx.doi.org/10.1109/JLT.2009.2024627
http://dx.doi.org/10.1103/PhysRevA.52.3082
http://dx.doi.org/10.1103/PhysRevA.52.3082
http://dx.doi.org/10.1103/PhysRevA.44.2072
http://dx.doi.org/10.1103/PhysRevA.44.2072
http://www.unipress.waw.pl/fityk
http://http://www.unipress.waw.pl/fityk
http://dx.doi.org/10.1103/PhysRevLett.101.143901
http://dx.doi.org/10.1364/JOSAB.27.001446
http://dx.doi.org/10.1103/PhysRevA.49.4038
http://dx.doi.org/10.1103/PhysRevA.50.4318
http://dx.doi.org/10.1103/PhysRevLett.96.127404
http://dx.doi.org/10.1103/PhysRevLett.98.043906
http://arXiv.org/abs/arXiv:1005.1538v1
http://dx.doi.org/10.1103/PhysRev.112.1940

