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We studied the modes of the highest-quality factorQm in disordered photonic crystals. By varying the
strength of disorder, we identified five different scaling regimes of the ensemble averagedkQml with the system
size. For sufficiently large systems,kQml reaches the maximum at some finite degree of disorder, where its
value is comparable to the quality factor of an intentionally introduced single defect at the center of a photonic
band gap. Near this optimal degree of disorder, we predict a superexponential increase ofkQml with the system
size, due to migration of the frequencies of the highest-quality modes toward the photonic band-gap center. Our
result may lead to the design and fabrication of ultralow-threshold random laser.
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In a random laser, the feedback is provided by scattering
instead of reflection[1–3]. The unconventional feedback
mechanism of a random laser leads to properties interesting
from both fundamental and practical points of view[1–12].
However the current threshold of random laser is still too
high for many practical applications. In this paper we will
show that the random laser threshold can be significantly
reduced by incorporating some degree of order into an active
random medium. We demonstrate that there exists an optimal
degree of order/disorder where the random laser threshold is
comparable to that of single-defect photonic band-gap laser
[13]. This finding may lead to the design and fabrication of
ultralow-threshold random lasers.

A finite open system of scattering particles can be charac-
terized by a set of quasistationary(leaky) optical modes.
When optical gain is introduced to such a system and is
sufficient to compensate the leakage in at least one mode,
lasing occurs. Thus the mode with the smallest leakage or
highest quality tend to lase first, and its quality factorQm
would determine the lasing threshold. However, the random
lasing threshold also depends on many other factors. A real-
istic estimate should involve the detailed account of the gain
material properties and its spatial distribution, the variation
of the local density of states in the system and its effect on
light-matter interaction, the pumping scheme, the reabsorp-
tion of laser light, etc. Therefore finding the threshold of
random laser theoretically is a complicated problem. Never-
theless, in the case of a uniform gain distributionQm is the
determining factor[8,9]. In this paper, we calculated the en-
semble averagedkQml in two-dimensional(2D) open sys-
tems of square geometry, and studied its dependence on the
degree of ordering and the system sizeL. With increasing
strength of disorder, we gradually changed the systems from
perfectly ordered photonic crystals to completely random
media. During this transition, we identified five scaling re-
gimes of kQml versusL: (a) photonic band edge,L3, (b)
transitional superexponential,(c) band-gap-related exponen-
tial, (d) diffusive, L2, and (e) disorder-induced exponential,
due to Anderson localization, regimes.

In disordered photonic crystals one cannot take simplify-

ing assumptions such as independent scattering approxima-
tion (low-density limit), or neglect the finite size of the scat-
terers. Moreover, the highest-quality modes weakly
contribute to the transport properties of the system. Among
other methods[14,15], finite difference time domain(FDTD)
method has been shown to be a convenient tool in studying
random laser modes in 1D[8] and 2D[9]. In this work, we
used the FDTD method to find the highest-quality modes in
open passive 2D random systems with various degrees of
ordering. Our main results can be summarized as follows:(i)
for sufficiently wide band gaps,kQml reaches a maximum at
some finite strength of disorder;(ii ) at this “optimal” degree
of disorder, kQml is determined by the localization length
similar to that of single defect in the ordered structure, lead-
ing to a similar quality factor;(iii ) with an increase of the
system size the optimal disorder strength decreases;(iv) near
this optimal disorderness,kQml should scale superexponen-
tially with the sample size, owing to the frequency migration
of the highest-quality modes toward the band-gap center and
the decrease of their localization lengths.

We consider a 2DL3L (up to 9l39l) photonic crystal
made ofNs~L2d cylinders with diameterd=98 nm and re-
fractive indexn0=2.2. The cylinders were arranged into hex-
agonal lattice with nearest-neighbor distancea=140 nm. In
the absence of disorder, the infinite system with these param-
eters has full band gap inf361 nm,426 nmg range for TM
modes(electric field along the cylinder axis). The disorder in
the system was introduced in two ways: by uniformly ran-
domizing the refractive indexn of different cylinders in the
range fn0−wnsn0−1d ,n0+wnsn0−1dg and diameter fds1
−wdd ,ds1+wddg. Care was taken to avoid the uncontrollable
disorder due to discretization of the grid. Disorder in the
system was characterized with parameterd«=kef«sr d
−«0sr dg2dr l1/2/ se«0

2sr ddr d1/2, where «0sr d and «sr d are the
dielectric constant distributions in ordered and disordered
samples respectively.k¯l stands for the average over differ-
ent disorder configurations. In the present work we studied
the systems with 11 different disorder strengths: 1–10 hadwn
from 0.1 to 1.0 with the increment 0.1 andwd=0, the 11th
hadwn=1.0 andwd=0.43. This led to variations of dielectric
constant from weakd«=0.08 to strongd«=0.95 disorder.
Later we will discuss the effect of this particular choice of
the types of disorder. To mimic an open system, a buffer*Electronic address: a-yamilov@northwestern.edu
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layer of air(150 nm thick) was kept around the sample, fol-
lowed by uniaxial perfectly matched absorbing layers[16].
To excite the system we initially launched a short,10 fs
pulse at every grid point. The frequencyve of the pulse was
at the center of the band gaps391 nmd of the ordered struc-
ture. In the frequency domain the full width at half maximum
of the excitation pulse was of the order of the band-gap
width. Thus the pulse excited all the modes within the stop
band and near the band edges.

Right after the initial pulse, the competition between the
modes[7,17] with different lifetimes led to the complicated
evolution of total electric energyEstd= 1

2 e«sr dE2sr ddr . How-
ever, after a sufficient time only the mode with the longest
lifetime (highest-quality factor) survived. Estd followed a
monoexponential decay Refexp 2ivms1+i /2Qmdtg, from
which we extracted the frequencyvm and quality factorQm
of the longest-lived mode in this particular realization of
disorder. At the same time the spatial pattern,Esr d, was sta-
bilized and the mode profile could be seen. Generally, the
time needed to reach the monoexponential decay regime var-
ied from about 0.5 ps for the smallest system to 10 ps for the
largest. Finally,Qm was averaged over 1000sN=75d, or
100sN=137,188,261,368,449,608d disorder realizations.

Figure 1 shows the dependence ofkQml normalized byN
as a function of the disordernessd«, different curves corre-
spond to different system sizes. This particular normalization
makes it easy to see the deviation from diffusion predicted
[1] dependencekQml~L2~N. One can see that significantly
different scalings at differentd« lead to a maximum ofkQml
at the finite disorder strength. Figure 2 plots the size depen-
dence ofkQml for the fixed disorder strengths.

The understanding of this behavior comes from observing
the frequenciesvm of the highest-quality modes in Fig. 3.
For smalld« the frequencies are concentrated at lower(long-
wavelength) band edge, and they(as well asQm) are inde-
pendent of the frequencyve of the excitation pulse. The
reason for that is the way the disorder was introduced into
the system. The long-wavelength modes are mostly concen-
trated in the dielectric cylinders, which are disordered by the

refractive index fluctuations. Atwn=0.1, vm fell in the im-
mediate vicinity of the band edge[Fig. 3(a)]. Lasing from
the band-edge modes was well studied in the case of ordered
structures[12,18–22], with Qm~L3 [12]. The latter indeed
gives a good fit of our results.

At the increased disorder(Fig. 2), wn=0.2–0.3, the de-
pendence ofkQml on the system sizeL became exponential,
as expected for localized modes[10]. In the unit of wave-
length the localization lengthj, obtained by fitting, de-
creased from 1.44l to 1.27l as wn increased from 0.2 to
0.3. Figure 3(b) provides an insight into the physics behind
the varyingj. The quality factor can be estimated askQml
~expfL /2jsvmdg, wherejsvmd is the “typical” value of the
localization length at the frequencyvm. From Fig. 3(b) one
can see that even for the same disorder strength, the increase
in system size leads to the advance ofvm toward the band-
gap center, wherej is the smallest. This peculiar behavior
should lead to superexponential dependence ofkQml on L
even for fixed disorder strength. The frequency migration
with the increase of the system size can be explained by the
fact that in the small system it is unlikely to find the modes
deep into the band gap due to low density of states there. The
Urbach-like behavior can be expected[14,23]. This is also
qualitatively supported by Fig. 3(b) where the exponential
dependence is apparent. Assuming Urbach-like dependence
of the density of states, the advancement ofvm can be esti-
mated from the condition that total number of defect states
(proportional to the number of cylindersN) times the prob-
ability of having a state locatedDvsNd away from the band
edge, expf−asd«dDvsNdg, is equal to one. Here,asd«d is the
exponential slope of the density of states, which should de-
crease with the increase of the disorderd«. For small disor-
der a−1sd«d!DEPBG, whereDEPBG is the width of the pho-
tonic band gap. Therefore, for weak disorder(or small
system size) the band-edge-type modes have the highest
Q. The crossover to the superexponential dependence of
kQml occurs when theQ of the localized states with the

FIG. 1. kQml normalized by total number of scatterersNs~L2d as
a function of disordernessd«.

FIG. 2. Scaling ofkQml with the lateral size of 2D systemL
~N1/2 in five regimes: band-edgeL3 (circles); transitional superex-
ponential(stars); band-gap exponential(squares); diffusion L2 (tri-
angles); and disorder exponential(inverted triangles). The data
points correspond town=0.1 sd«.0.08d, wn=0.2 sd«.0.15d, wn

=0.3 sd«.0.23d, wn=0.7 sd«.0.53d, and wn=1.0 and wd

=0.43sd«.0.95d values of disorder parameter.
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shortest localization lengthjfDvsNdg available for this
size N exceeds that of the band-edge-type mode:
exp[N1/2a/2jfDvsNdg] ,N3/2. Stronger size dependence in
the superexponential regime means that theN3/2 band-edge-
type dependence observed at smaller disorder would eventu-
ally switch to the superexponential dependence asN in-
creases. However, the latter can be expected to saturate at
larger sizeor disorder whenvm reaches the band-gap center:
N[expf−asd«dDEP BG/2g] ,1, where the localization length
is the smallest. Therefore, we expect the limiting scaling of
kQml to be exponential:kQml~expfN1/2a/2jsDEPBG/2dg.
Three important conclusions(i)–(iii ) listed in the introduc-
tion immediately follow. (iii ) is justified because
jsDEP BG/2d is the smallest in the ordered structure. The
saturated exponential dependence can be seen in our ex-
ample forwn=0.3 (the squares in Fig. 2).

In our system the sharp drop inkQml at d«.0.4 in Fig. 1
is attributed to the removal of the band gap. This could be
seen from the loss of the hexagonal symmetry of the ob-
served mode profiles as well as the sensitivity of the modes
to the excitation pulse positionve. In this regime,vm is not
associated with the photonic band gap, which does not exist
anymore. However, in order to make a direct comparison
with the ordered case, we kept the excitation pulse the same
as before. The exact cause of the disappearance of the band
gap is being debated in the literature[14,23,24], and is not
the subject of this study. In our particular case we found a
simple explanation for the behavior ofkQml in the way the
disorder was introduced. Indeed, the fluctuating index of re-
fraction leads to the fluctuation of the frequency of the Mie
resonances of the particles. For box distribution ofn, there
exists a value ofwn=0.6 when the Mie resonance of some
defect cylinders falls into the gap(Fig. 4). This value
matches the value of disorder parameterd«, where the sharp
decrease ofkQml is observed in Fig. 1. Moreover, Fig. 3(c)
shows that at this crossover disorder, the modes avoid the
region of strong single-particle scattering. This is the conse-
quence of the sharp boundary in the distribution ofn. It also
indicates the presence of the residual band gap, wherevm are
concentrated.

At wnù0.7 the photonic band gap ceased to exist. Tri-
angles in Fig. 2 correspond town=0.7, and were successfully
fitted with diffusion [1,4,5,12,25,26] scaling dependence:
kQml~L2~N. Deviations from this dependence can be seen
in Figs. 1 and 2 at the largest sizes studied, where
L.jAnderson=2.54l and the states become localized again
due to Anderson localization[10,12]. The exponential depen-
dence ofkQml on L becomes especially pronounced at the
largest disorder studied(see inverted triangles in Fig. 2),
where the transition fromL2 to exponential dependence
comes at small system sizes. We want to point out that even
at such strong disorder, the obtained modes had a collective
nature, rather than the single particle’s high-order reso-
nances, which were concentrated at higher frequencies.
Comparing the localization length of these states to that of
band-gap nature we see a factor of 2 difference, which makes
the latter preferable(Fig. 1).

In conclusion, we studied the modes of the highest quality
factor Qm in disordered photonic crystals. By varying the
disorder strength, we identified five scaling regimes for the
ensemble averagedkQml versus the system sizeL. Difference
in scaling results in a maximum ofkQml at “optimal” disor-
der. Migration of the frequencies of highest-quality modes
towards the center of the residual band gap could lead to
superexponential scaling. We also predicted the “optimal”
disorderness would decrease with increase of the system
size. These results can be applied to 2D photonic crystals and
film-based random lasers. Note that we only calculated the
average values of the highest-quality factorsQm. SinceQm is
a fluctuating quantity, a better description of it requires the
calculation of its distribution and variance, which will be
done in the future. Nevertheless,kQml is an important physi-
cal parameter. In fact our study provides a physical insight
into recent experimental results of Shkunovet al., Ref. [27].
The authors observed much lower threshold of lasing in de-
fect modes associated with photonic band gap in disordered
opals.

A. L. Burin is acknowledged for fruitful discussions. This
work is supported by the National Science Foundation under
Grant No. DMR-0093949. H.C. acknowledges the support
from the David and Lucile Packard Foundation.

FIG. 3. Qm vs cavity mode frequency for 20 realizations of
disorder. Circles, squares, and triangles correspond toN equal to 75,
188, and 608, respectively. Four graphs correspond to different dis-
order parameters:(a) wn=0.1 sd«.0.08d, (b) wn=0.2 sd«.0.15d,
(c) wn=0.6 sd«.0.45d, (d) wn=1.0 andwd=0.43sd«.0.95d.

FIG. 4. Mie scattering efficiency vs wavelength for cylinders of
diameter 98 nm. Refractive indexn=2.2 (solid line). For wn

=0.6 sd«.0.45d, the refractive index fluctuates fromn=1.48
(dash-dotted line) to n=2.92 (dashed line).
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