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Nonlinear disordered systems are not only a model system for fundamental studies but
also in high demand for practical applications. However, optical nonlinearity based
on intrinsic material response is weak in random scattering systems. Here, we propose
and experimentally realize a highly nonlinear mapping between the scattering potential
and the emerging light of a reconfigurable multiple-scattering cavity. A quantitative
analysis of the degree of nonlinearity reveals its dependence on the number of scattering
events. The effective order of nonlinear mapping can be tuned over a wide range at low
optical lower. The strong nonlinear mapping enhances output intensity fluctuations
and long-range correlations. The flexibility, robustness, and energy efficiency of our
approach provides a versatile platform for exploring such nonlinear mappings for
various applications.

optical scattering | nonlinear mappings | light statistics

Structural disorder and light scattering have recently been widely explored for photonic
applications (1). In most cases, the mapping between input to output fields is linear.
However, nonlinear mapping is desired for various applications such as physical unclon-
able functions (PUFs) (2), implementation of optical neural networks, neuromorphic
computing, and reservoir computing (3–7). Nonlinear mappings can be realized using
nonlinear optical materials, which provide a nonlinear relation between input and output
fields (8, 9). Optical nonlinearity requires high light intensity, which is hard to achieve
in random media due to spatial and temporal spreading of light by scattering. While
Anderson localization of light can enhance light–matter interactions, it is hard to achieve
in three-dimensional disordered systems. Only low-order nonlinear processes such as
second-harmonic generation have been realized in random scattering media (10–15).
Furthermore, temporal instability can be induced by a quadratic electro-optical process
(Kerr effect) in a disordered system (16–19).

Instead of the nonlinear relation between input and output fields, we investigate the
nonlinear mapping between a reconfigurable disordered potential and emerging light of a
multiple-scattering cavity. We point out that the multiple-scattering-induced nonlinear
mapping is fundamentally different from the conventional nonlinear optics based on
intrinsic material response. At low optical power where the intrinsic nonlinear material
response is negligible, light scattering is a linear process: The output field Eo depends
linearly on the input field Ei. The multiple scattering can be described by the Born
series (20):

Eo = TEi =
(
V + VG0V + V [G0V]2 + V [G0V]3 ...

)
Ei,

where T is a matrix that captures the linear mapping from Ei to Eo, V represents
the scattering potential and G0 is the free-space Green’s matrix. The first term in the
expansion of T denotes single scattering (light scattered once), the second term double
scattering, etc. In the presence of multiple scattering, the relation between the scattering
potential configuration V and the output field Eo is nonlinear. The degree of nonlinearity
increases with the number of scattering events (number of terms inT expansion). If single
scattering dominates, the mapping from V to Eo is approximately linear.

Such a scheme is efficient in providing high-order nonlinear mapping at low power
and also avoids temporal instability that occurs in conventional nonlinear optical
systems. However, the nonlinear mapping requires reconfiguring the scattering potential.
Previous studies show that the refractive-index change induced by photorefractive effect
is small (21, 22), and the change by thermo-optical effect is slow (23, 24). Dynamic
coupling between multiple scattered light and colloidal particles can only statistically
control the motion of colloidal particles (25, 26). In the microwave regime, disordered
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cavities with active reconfigurable boundaries are explored for
spatio-temporal focusing and power enhancement (27, 28), mo-
tion detection (29), analog computing (30), and communication
(31–33). So far, the tunablity of multiple-scattering-induced
nonlinear mapping has not been realized.

In this work, we create an optical scattering cavity with a
reconfigurable boundary, and present a quantitative analysis of
the nonlinear mapping between the scattering potential and
the emerging light. High-order nonlinear mapping is obtained
experimentally at low power. The effective nonlinear order can
be tuned over a wide range by varying the cavity parameters.
As a result of the strong nonlinear mapping, fluctuations of
local and total output light intensity are enhanced, and long-
range spatial correlations are established (34, 35). The greatly
enhanced fluctuations facilitate light focusing and control of
total transmission by optimizing the scattering potential (36).
The tunable, stable, and efficient nonlinear mapping opens the
door to a broad range of applications including strong optical
PUFs and nonlinear optical neural networks.

1. Reconfigurable Scattering Cavity

As shown in Fig. 1A, our experimental setup is composed
of a commercial integrating sphere (diameter 3.75 cm). Its
inner surface is covered with a diffuse white reflective coating,
which provides a static scattering potential. There are three
openings in the sphere’s boundary. The first one (diameter
8 mm) is covered by a switchable digital mirrors device (DMD),
which acts as a reconfigurable scattering potential. The DMD
(Texas Instruments DLP9000X) consists of 2,560 × 1,600
micromirrors, each of lateral dimension 7.6 μm can be flipped
to either +15◦ or −15◦. A continuous-wave, linearly polarized
laser (Agilent 81940A) at wavelength λ = 1,550 nm is coupled
to a single-mode fiber, which is inserted to the second opening
of the integrating sphere. Input light is scattered multiple times
inside the integrating sphere by the rough wall and the switchable
micromirrors. The third opening (diameter 3 mm) outputs light,
which is directed by a mirror to an InGaAs camera (Xenics Xeva
FPA-640). A linear polarizer is placed in front of the camera,
which records the speckle intensity pattern for a specific DMD
configuration.

At low input power (21 mW), the output field depends
linearly on the input field, in spite of multiple scattering in
the integrating sphere. However, the relation between the DMD
configuration and the output speckle pattern is nonlinear, because
light is scattered multiple times by the DMD. We divide the
micromirror array into Mp ×Mp macropixels. Each macropixel
has only two states +1 and −1, in which all constituent
micromirrors are tilted by +15◦ and −15◦, respectively. The
DMD macropixels configuration can be described by a Boolean
vector X of lengthM = M2

p (total number of macropixels). There
are 2M possible configurations and each outputs a speckle pattern.
The recorded two-dimensional intensity pattern is rearranged to a
one-dimensional vector Y. Its length N is given by the number of
camera pixels (100×100) within the region of interest (including
∼400 speckle grains). The exact nonlinear mapping from the k-
th DMD configuration X(k) to the corresponding output pattern
Y(k) is obtained with Boolean function analysis (37–40):

y(k)r = f
(
x(k)1 , ..., x(k)M

)
[1]

= c(n,k)0 +
M∑

m1=1
c(n,k)m1

x(k)m1
+

M∑
m1=1

m1∑
m2=1

c(n,k)m1,m2
x(k)m1

x(k)m2

+ ...+ c(n,k)1,2,...,M x(k)1 x(k)2 ... x(k)M ,

where x(k)m is the m-th element of X(k), y(k)r is the r-th element of
Y(k), and c(n,k)

{·}
is the expansion coefficient, which is obtained by

projection. See SI Appendix, section 1 for complete derivation.
The number of x(k)m factors in each term on the right-hand-

side of Eq. 1 gives the order d of that term. d = 1 is the linear
term, and d ≥ 2 are nonlinear terms. Larger d represents higher-
order nonlinear mapping, and the maximal order is d = M . We
obtain the expansion coefficients in Eq. 1 by fitting the measured
output intensity patterns (subtracted by their average over k) for
all possible DMD macropixel configurations. See SI Appendix,
section 1 for more details. Averaging |c(n,k)m1,m2,...md | for a certain
order d , over r and k, gives the mean expansion coefficient c̄(d)
for this order. It is then normalized such that

∑
d c̄(d) = 1. The

effective order of nonlinearity is given by d̄ ≡
∑

d d c̄(d).

Fig. 1. Experimental setup. A frequency-tunable continuous-wave fiber laser is coupled via a single-mode fiber to an integrating sphere with an inner static
rough boundary. A two-dimensional (2D) digital-mirror-array (DMD) covers one of the sphere’s ports. Light is scattered multiple times inside the integrating
sphere by its static boundary and the reconfigurable mirror array. Through a small opening, light leaks out of the cavity, and its intensity pattern is recorded
by a digital camera.
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A

B

Fig. 2. Expansion coefficient c̄ vs. order d for output light intensity with 3×3
DMD macropixels in (A) and 4× 4 in (B). Note that the upper limit for d is 9 in
(A) and 16 in (B). The distribution of c̄(d) shifts to higher order d with larger
number of macropixels. The effective order of nonlinearity d̄ increases from
3.5 (A) to 8.0 (B).

Fig. 2A shows the distribution of c̄(d) for 3 × 3 macropixels
(29 configurations). c̄(d) spreads from d = 1 to d = 8, reaching
the maximum at d = 3. When the number of macropixels is
increased to 4 × 4 (Fig. 2B), the distribution of c̄(d) moves
to larger d , with the maximum at d = 8. The mean order d̄
increases from 3.5 to 8.0, reflecting stronger nonlinear mapping.
Experimentally the total area of the DMD is fixed, and the
number of macropixels determines the degree of control of
the scattering potential. Hence, the effective order of nonlinear
mapping increases with the degree of control of the scattering
potential. We further enhance the nonlinear mapping by using
10 × 10 macropixels. There are 2100 possible configurations,
which are impossible to measure and analyze to find the mean
expansion order. Another way of tuning the nonlinear order
is to vary the area of each macropixel, while fixing the total
number of macropixels. The resulting larger area will increase
the chance of scattering light, thus enhancing the nonlinear
mapping.

2. Strength of Nonlinear Mapping

We expect the strength of nonlinear mapping to depend on the
number of times that light scatters off the DMD. Experimentally,
it is difficult to tune the number of scattering events, and we resort
to numerical simulation. To save computation time, we consider
a small two-dimensional (2D) cavity with a rough boundary
(Fig. 3A). The boundary roughness is on the order of λ/10,
leading to diffuse reflection of light. One side of the cavity is
composed of M = 12 micromirrors. Each mirror (with 100%
specular reflectivity) can be tilted by +15◦ (state of +1) or−15◦
(state of −1). Monochromatic light is injected through a small
input port and scatters off the rough boundary and micromirrors.
To vary the number of scattering events at the switchable micro-
mirrors, we adjust light absorption by the rough boundary (away
from the mirrors), so that the diffuse reflectivity ρ changes from
51% to 100%. See SI Appendix, section 1 for additional values of
reflectivity. Part of the light leaks out of an output port, and the
spatial distributions of both field and intensity are computed in
a full-wave simulation of light propagation inside the cavity for
each possible configuration of the M = 12 switchable mirrors

(212 in total). See SI Appendix, section 2 for more details on
the numerical simulation. Output field and intensity patterns are
stored in two matrices YE and YI correspondingly. We map the
mirror configurations matrix X to YE and YI using Eq. 1, for
different values of boundary reflectivity ρ.

Fig. 3 B and C shows the distribution of c̄E(d) for output
field and that of c̄(d) for intensity. Both distributions shift to
larger d with increasing ρ. At low boundary reflectivity, light
absorption by the rough boundary reduces the number of bounces
off the micromirror array. At ρ = 51%, c̄E(d) is peaked at
d = 1, thus the nonlinear mapping of output field is weak
(Fig. 3B). Correspondingly, c̄(d) is peaked at d = 2, indicating
the nonlinear mapping of intensity is mostly from the square
of field amplitude (Fig. 3C ). With increasing ρ, the effective
order of nonlinear mapping for both field d̄E and intensity d̄
rises monotonously, despite d̄E is slightly lower than d̄ (Fig. 3D).
As the boundary reflectivity is higher, light has more chance of
scattering off the switchable mirrors, leading to higher expansion
order.

To quantify the number of bounces off the micro-mirror array,
we conduct a classical ray tracing simulation in the same cavity
with varying boundary reflectivity. See SI Appendix, section 3
for more details. Briefly, we launch many optical rays into the
cavity and trace individual ray propagation until it dies out. The
number of bounces off the mirrors is weighted by the intensity of
the ray at each bounce to give the effective number of bounces for
a single ray. Then, we average this number over all rays escaping
through the output port, to obtain the mean number of bounces
ν̄ for different ρ. Fig. 3E shows that d̄ scales linearly with ν̄,
indicating that the average number of light bounces is closely
related to the expansion order.

3. Output Intensity Statistics

Next, we investigate how the nonlinear mapping influences
intensity statistics of output light. Previously, “hot spots” of field
intensities akin to rogue wave formation have been observed in
random-scattering microwave and chaotic nanophotonic cavities
(41, 42). Here, we show that highly nonlinear mapping leads to
exceptional light statistics.

We observe extraordinary fluctuation of local intensity with
varying scattering potential. Fig. 4A shows the probability density
function (PDF) of output intensity normalized by its mean over
all mirror configurations, ηk(r) ≡ Ik(r)/〈Ik(r)〉k, where Ik(r)
is light intensity at a spatial location r for the switchable-mirror
configuration k. As ρ increases from 51% to 100%, the PDF
P(η) develops a heavy tail at large η, reflecting super-Rayleigh
intensity statistics.

This behavior is surprising, as individual output patterns
exhibit Rayleigh statistics. As seen in Fig. 4A, with Ik(r)
normalized by the spatial-average 〈Ik(r)〉r for individual mirror
configuration: η̃k(r) ≡ Ik(r)/〈Ik(r)〉r , the PDF P(η̃) dis-
plays an exponential decay regardless of ρ. See SI Appendix,
section 2 for additional details. Fig. 4C shows that the
contrast of η̃ (SD divided by mean) stays close to 1,
while the contrast of η increases with the mean expansion
order d̄ .

The super-Rayleigh statistics of η at high d̄ originates from
enhanced fluctuation of total output intensity with mirror
configuration. Fig. 4B shows the PDF of normalized total
intensity, ζk ≡

∫
Ik(r) dr/〈

∫
Ik(r) dr〉k = 〈Ik(r)〉r/〈Ik(r)〉r,k.

With increasing ρ, P(ζ ) is broadened and skewed. Fig. 4D shows
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A

B

D E

C

Fig. 3. Tuning of nonlinear mapping. (A) Steady-state solution of light distribution inside a 2D cavity (dimension 130�× 60�) with static rough boundary (blue)
and 12 switchable mirrors (red). Each mirror (length 10�) is set independently to a tilt-angle of +15◦ (state of +1) or −15◦ (state of −1). Monochromatic light is
injected from the input port (Top) and exits through the output port (Right), producing a 1D speckle pattern (containing∼70 speckle grains). (B and C) Expansion
coefficient c̄(d) vs. expansion order d for output field (B) and intensity (C). With increasing reflectivity � of the cavity boundary, the distribution of c̄(d) moves
to higher order d. (D) Mean expansion order for output field d̄E and intensity d̄ grows with �. Since intensity is the square of field amplitude, it is slightly higher.
(E) d̄ scales almost linearly with the mean number of bounces of optical rays off the mirror-array �̄. Solid markers are numerical data for different boundary
reflectivity �. Green dashed line is a linear fit.

an increase of the variance of log[P(ζ )] with d̄ , confirming the
fluctuation of total output intensity with mirror configurations
is enhanced by high-order nonlinear mapping. We note that
anomalously localized states in diffusive random media can
enhance intensity fluctuations (43), but they are absent in our
scattering cavity, as confirmed by spatially uniform intensity
distribution throughout the cavity (Fig. 3A).

In addition to the wave simulation results shown above, we
experimentally measure the intensity statistics of output speckle
patterns from the integrating sphere. To increase the order of
nonlinear mapping, we divide the DMD into 10×10 macropixels
and record the output speckle patterns for a large ensemble
(>10,000) of random binary configurations of DMD macropix-
els. Fig. 5A shows the local intensity PDF, P(η), is much more
extended than that for 3 × 3 macropixels. Its heavy tail reflects
stronger local intensity fluctuations for 10 × 10 macropixels.
The extraordinary intensity values facilitate light focusing, i.e.,

enhancing local intensity of output light by optimizing the DMD
configuration. Fig. 5B shows the fluctuation of total output
intensity P(ζ ). For 3 × 3 macropixels, P(ζ ) has a narrow,
symmetric distribution around ζ = 1. It becomes much wider
and skewed with a long tail for 10 × 10 macropixels. The
broadening of P(ζ ) increases the range of control of the total
output intensity (transmittance) by manipulating the scattering
potential with the DMD.

The high-order nonlinear mapping also enhances spatial
correlations of intensity fluctuations with scattering potentials.
In Fig. 5C, the spatial correlation of η(r), described by
C(1r) ≡ 〈ηk(r) ηk(r+1r)〉r,k−1, is compared to that of η̃(r)
by C̃(1r) ≡ 〈η̃k(r) η̃k(r+1r)〉r,k−1. C(1r) exceeds C̃(1r).
Their difference1C(1r) ≡ C(1r)−C̃(1r) decays slower with
1r than C̃(1r), revealing the increased range of correlation. In
contrast, C(1r) is almost equal to C̃(1r) for 3× 3 macropixels

4 of 6 https://doi.org/10.1073/pnas.2305027120 pnas.org
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A B

DC

Fig. 4. Output intensity fluctuations. (A) PDF P(�) of local intensity (normalized by the mean of all mirror configurations) �. With increasing boundary reflectivity
�, P(�) becomes broader and develops a tail (Green). PDF P(�̃) of intensity normalized by the spatial-average for individual mirror configuration (Red) exhibits
an exponential decay, regardless of �. (B) PDF of the total output intensity for individual mirror configuration, P(�), is widened and skewed with increasing
�. Fluctuations of local and total output intensities are stronger with higher-order nonlinear mapping. (C) Contrast of � increases with the effective order of
nonlinear mapping d̄, while contrast of �̃ remains close to 1. (D) Variance of log[P(�)] grows with d̄. All the results are obtained from wave simulation of a 2D
cavity with parameters identical to those in Fig. 3.

(not shown). This confirms that the enhanced correlation of
intensity fluctuations results from high-order nonlinear mapping.

4. Discussion and Conclusion

The multiple-scattering-induced nonlinear mapping discussed in
this work does not rely on applied high-power electromagnetic
field. This independence of high optical power is in stark contrast
to conventional nonlinear optics based on intrinsic material
response. While nonlinear optical materials can generate new

frequencies of light, the frequency of output light from the
multiple-scattering cavity is identical to the input one. Only
the relation between output fields and reconfigured scattering
potential (DMD configuration) is nonlinear due to multiple
scattering by the potential.

Our method of achieving highly nonlinear mapping is ro-
bust, flexible, and power efficient. Such tunable nonlinearity will
have a variety of applications, for example, the enhancement
the security of optical scattering PUFs by introducing complex
nonlinear mapping between challenge and response (44). An-

A

B

C

Fig. 5. Measured speckle statistics. (A and B) Probability density function of local speckle intensity � in (A) and of total output intensity � in (B) is much broader
with a heavy tail for 10 × 10 macropixels than that for 3 × 3 macropixels. (C) Spatial correlation C(1r) of � is stronger than that C̃(1r) of �̃. Their difference
1C(1r) = C(1r) − C̃(1r) (normalized by 1C(0) in the inset) has a larger width than C̃(1r). Spatial correlation of local intensity fluctuation is enhanced with
10× 10 macropixels.
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other application would be optical implementation of deep neural
networks (45) and large-scale reservoir computing (5). Current
approaches mostly rely on linear light diffraction or scattering
and external digital nonlinearity, because conventional optical
nonlinearities are power consuming and difficult to integrate.
Our platform combines linear mixing and nonlinear mapping at
low power and can be integrated on-chip to realize programmable
linear and nonlinear operations for neuromorphic computing.
Another possible direction is the realization large-scale photonic
Ising machines for parallel processing of a vast number of spins
(46, 47). Furthermore, our quantitative analysis of nonlinear
mapping can be adopted to assess wireless communication chan-
nels (33) and their dependence on the reconfigurable intelligent
surfaces (RIS). This will facilitate the utilization of RIS to control
signal reception in reverberate chambers. Therefore, we expect
the current platform in particular and such high-order nonlinear
mapping in general to have diverse applications in metrology,
optical computing, communication, and cryptography.

Data, Materials, and Software Availability. The theoretical and numerical
findings can be reproduced using the information presented in the paper or
SI Appendix. The original measured data used in the experiments has been

uploaded to Zenodo (https://doi.org/10.5281/zenodo.8126899) (48), and the
ensuing results can be obtained by following what is presented in the paper.
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