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Remitted waves are used for sensing and imaging in diverse diffusive media from the
Earth’s crust to the human brain. Separating the source and detector increases the
penetration depth of light, but the signal strength decreases rapidly, leading to a poor
signal-to-noise ratio. Here, we show, experimentally and numerically, that wavefront
shaping a laser beam incident on a diffusive sample enables an enhancement of remission
by an order of magnitude at depths of up to 10 transport mean free paths. We develop
a theoretical model which predicts the maximal remission enhancement. Our analysis
reveals a significant improvement in the sensitivity of remitted waves to local changes of
absorption deep inside diffusive media. This work illustrates the potential of coherent
wavefront control for noninvasive diffuse wave imaging applications, such as diffuse
optical tomography and functional near-infrared spectroscopy.

wave diffusion | coherent control | remission | wavefront shaping

Remission geometry is widely used for imaging and sensing deep inside random media
(1–9). In real-world applications where transmitted waves are either inaccessible or
strongly attenuated, waves remitted from the same side of the medium as their source
are measured (10, 11). The source and detector separation on the medium’s surface
is used to control how deep the majority of collected waves have penetrated into the
medium. With increasing source–detector distance d , waves from the source migrate
deeper into the diffusive medium before reaching the detector (12, 13). Their paths
are distributed over a banana-shaped region with ends at the source and detector, and
with the midregion reaching deepest into the medium (close to d/2). Since the waves
generated by the source diffuse in all directions, only a small portion eventually reaches
the detector. The signal strength decays rapidly with increasing source–detector separation;
thus the signal-to-noise ratio (SNR) is poor for waves that have penetrated deep into the
medium.

Recent advances in optical wavefront shaping have enabled the control of coherent
wave transport in random scattering media, enhancing light transmission and energy
deposition (14, 15). Finding the optimal wavefront for an incident beam mostly relies
on the detector/camera on the other side of a medium or a guide star inside the medium
(16, 17). Noninvasive focusing and imaging schemes have been developed utilizing the
optical memory effect (18–21), nonlinear excitation (22, 23), the interaction between light
and acoustic waves (24–29), and linear fluorescence (30–33). Moreover, steady-state and
time-gated reflection eigenchannels are employed for focusing light onto embedded targets
and reconstructing associated images (34–37). In these setups, the backscattered signals,
which are collected at the same location as the injected light, have a penetration depth less
than or comparable to the transport mean free path � (17, 38). Spatial displacement of a
source and a detector—the common geometry for diffuse optical tomography (DOT) and
functional near-infrared spectroscopy (fNIRS)—has not yet been explored in wavefront
shaping experiments, even though remitted waves can go much deeper than � into a
diffusive sample (10, 11).

Here we shape the incident wavefront of a monochromatic laser beam to enhance
the intensity of remitted light at source–detector distances d � �. A key question is
whether the penetration depth of remitted waves is compromised by the enhancement of
their strength. We demonstrate, experimentally and numerically, an order of magnitude
enhancement of remission with no change in the penetration depth up to 10� deep. Our
theoretical model predicts the maximal remission enhancement and its dependence on the
source–detector separation d , the transport mean free path �, and the number of input
and output channels. Finally, we analyze the sensitivity of remitted waves to local changes
of absorption deep inside diffusive media. The sensitivity for the maximum remission
eigenchannel is enhanced by one order of magnitude. This work illustrates the power of
wavefront shaping for steering coherent waves deep inside diffusive media, with potential
applications in DOT and fNIRS.

Significance

Waves propagate diffusively
through disordered media—such
as biological tissue, clouds, or
Earth’s crust—due to random
scattering. Although most waves
are reflected, only a tiny fraction
carry information from deep
inside the medium. These
remitted waves are widely used to
noninvasively probe disordered
systems: from seismic
interferometry to diffuse optical
tomography and functional
near-infrared spectroscopy. The
meager signal-to-noise ratio of
remitted waves eventually limits
the depth that can be probed. By
tailoring the spatial wavefront of a
laser beam, the remitted signal
can be enhanced by an order of
magnitude, while increasing its
sensitivity to local changes inside
an optical diffusive medium. This
work illustrates the potential of
coherent wavefront control for
noninvasive diffuse wave imaging
applications.
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Experimental Setup

In order to monitor wave transport inside the diffusive medium,
we fabricate two-dimensional (2D) disordered structures on a sili-
con chip and observe the internal light distribution from the third
dimension (Fig. 1A) (39). The remission matrixR is introduced to
relate input fields within a finite region of the interface to remitted
waves from another region displaced from the injection site, on the
same interface. We measure R for different separations from 3�
to 25�, find the maximum remission eigenstates, and investigate
their spatial structures.

The 2D diffusive system has a slab geometry (width W =
400 μm, thickness L= 200 μm) and open boundaries on all four
sides (Fig. 1B). Inside the slab, air holes of 100-nm diameter
are randomly distributed, with a filling fraction of 2.75%. The
transport mean free path is �= 6.4 μm at (vacuum) wavelength
λ0 = 1.55 μm (40). With slab dimensions L and W much larger
than � but still smaller than the 2D localization length, light
transport is diffusive. Out-of-plane scattering is treated as loss,
corresponding to a diffusive dissipation length of ξa = 56 μm
(SI Appendix, section 1A).

A spatial light modulator (SLM) shapes the phase front of
the monochromatic laser beam, which is then coupled into a
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Fig. 1. Remission enhanced by coherent wavefront control. (A) A schematic
illustrating that shaping the incident wavefront of a laser beam into a 2D
diffusive system can steer the light flow in a banana-shaped region to enhance
the remission from a preselected site. The internal intensity distribution is
recorded by capturing the light scattered out-of-plane with a charge-coupled
device (CCD) camera. (B) An example scanning electron microscopy image
of the 2D slab consisting of randomly distributed air holes (with a diameter
of 100 nm) on a silicon-on-insulator wafer. A monochromatic laser beam is
injected through a tapered waveguide (with photonic crystal sidewalls) into
the slab (with open boundaries).
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Fig. 2. High-remission eigenchannel profile. (A) Ensemble-averaged inten-
sity distribution, 〈Irand(y, z)〉, for random input wavefronts. The injection
waveguide is 15 μm wide. (B) An example high-remission eigenchannel
ensemble-averaged intensity distribution 〈Id(y, z)〉 for the remission site dis-
placed d = 17.2� from the injection site. White dashed curve represents the
maximum probability of photon migration from the injection port to detection
site with random incident wavefronts. White square denotes 10 μm × 10 μm
area for sampling the remission. (C) Difference in intensity distribution
between high-remission eigenchannels that maximize remission at y = ±d:
〈I+d(y, z)〉 − 〈I−d(y, z)〉. It reveals that high-remission eigenchannels redis-
tribute energy inside the diffusive system to enhance the banana-shaped
region along the dashed lines. In A–C, images recorded at 12 different
wavelengths, in increments of 1 nm, from 1,547 nm to 1,558 nm, are averaged.

multimode waveguide etched on a silicon-on-insulator wafer. The
waveguide delivers light of λ0 � 1.55 μm to a 2D slab on the same
chip via 56 guided modes. The field distribution across the entire
slab is measured in an interferometric setup. We scan the input
wavelength to obtain different configurations.

First, we generate random illumination patterns using the
SLM, and map diffusive light transport inside the slab. Fig. 2A
shows the ensemble-averaged intensity distribution 〈Irand(y , z )〉.
The injection site centered at (0, 0) has a width W1 = 15 μm.
Away from the injection site, the intensity of the remitted light
drops quickly. Along the front boundary z = 0 of the slab, the
diffusive intensity decreases quadratically with distance |y |=
d �W1.

The probability of photon migration from the injection site
(0, 0) to the remission site (d , 0) via the position (y , z ) inside
the slab equals the product of the probability of migrating from
(0, 0) to (y , z ) and that from (y , z ) to (d , 0). The former is
proportional to 〈Irand(y , z )〉, and the latter is proportional to the
average intensity distribution 〈I (d)rand(y , z )〉 for light injected at
(d , 0), according to optical reciprocity (13). With random inci-
dent wavefronts, the maximum probability of photon migration
is found within a banana-shaped region connecting (0, 0) and
(d , 0). While increasing injection–remission separation enhances
the penetration of the light, it comes at the price of a rapidly
reduced signal strength.

Remission Matrix and Eigenchannels

Our aim is to utilize the spatial degrees of freedom in the coherent
illumination pattern to improve the remitted signal strength.
To find the optimal input wavefront, we measure the remission
matrix R, and find its associated eigenstates. In a standard DOT
setup, light is delivered onto a diffusive sample by a waveguide,
and the remitted signal is collected by another waveguide. The
incident field Ein and remitted field Ere are decomposed into
M1 and M2 flux-carrying modes of the waveguides. In a linear
scattering medium, they are related by the remission matrix R as
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Ere =REin. [1]

Singular value decomposition of R gives the remission eigen-
channels. The one corresponding to the largest singular value has
the highest possible remittance.

While the waveguide mode basis is used in Eq. 1, any or-
thogonal basis is sufficient. In our experiment, instead of using
a waveguide to collect the remitted light, we directly measure
the field at the front boundary of the slab at a distance d from
the injection waveguide. More specifically, we sample the fields
at 20× 20 spatial positions within a 10 μm × 10 μm square
(SI Appendix, section 1D). By displaying orthogonal phase pat-
terns on the SLM, we construct the remission matrix RSLM→d .
Singular value decomposition of RSLM→d provides the remission
eigenchannels and associated input vectors. Since our SLM can
only modulate phase, not amplitude, it will not excite a pure eigen-
channel. Alternatively, we can use the experimentally measured
matrixRSLM→SLAB that connects the incoming fields to the field
everywhere inside the slab. The field distribution across the entire
slab is obtained by multiplying RSLM→SLAB by the input vector
of a remission eigenchannel.

Fig. 2B shows an example high-remission eigenchannel profile
〈Id(y , z )〉. The remission region (white square) is located at
d = 17.2� from the input waveguide. 〈Id(y , z )〉 shows that the
diffuse light is steered toward the detector through the banana-
shaped region, which is obtained by tracing the maximum
photon migration probability under random illumination
(SI Appendix, section 1C). The steering is further illustrated by
the difference 〈I+d(y , z )〉 − 〈I−d(y , z )〉 in Fig. 2C. The positive
(red) or negative (blue) intensity pattern reveals light is directed
toward the remission site at (d , 0) or (−d , 0). In both cases, the
optical energy in high-remission eigenchannels is redistributed
along the banana-shaped region connecting the injection and
detection sites.

We vary the injection–detection distance d and plot the differ-
ence between high-remission eigenchannel profiles 〈Id(y , z )〉 and
random input patterns 〈Irand(y , z )〉 for d = 12.5�, 18.8�, and
25.0� in Fig. 3. The positive (red) and negative (blue) intensity-
difference areas demonstrate that high-remission eigenchannels
redistribute the optical energy inside the system compared to
random inputs, increasing the remitted signal. Furthermore, the

Imax
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A B
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 ℓ 25
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C

Fig. 3. Difference between high-remission eigenchannel profiles and ran-
dom illumination patterns. Ensemble-averaged intensity distributions for
high-remission eigenchannels subtracted from those of random input wave-
fronts 〈Id(y, z)〉 − 〈Irand(y, z)〉 for remission sites (black square) located at (A)
d = 12.5�, (B) d = 18.8�, and (C) d = 25� away from the injection waveguide
center. The solid green lines show the most probable photon location in
the banana-shaped region, for each separation. In A–C, data taken over 12
different wavelengths, in increments of 1 nm, from 1,547 nm to 1,558 nm, are
averaged.

positive (red) intensity difference regions in Fig. 3 are concentrated
in the banana-shaped region (green line). Therefore, it is possible
to direct photon migration deep inside diffusive systems by cou-
pling into high-remission eigenchannels. The penetration depth
of the remitted signal, however, does not change as a result of the
remission enhancement.

In our experiment, wavefront shaping could modify the angular
distribution of out-of-plane scattered light so that a larger fraction
of the light would be collected by our optics with a finite numer-
ical aperture (41). This would artificially increase the measured
remission intensity. We thus resort to numerical simulations of the
experimental system to quantify the remission enhancement as a
function of d . For this purpose, we simulate wave propagation
in 2D disordered slabs using the Kwant package (41, 42), and
compute the remission matrix R with M1 = 56 input channels
and M2 = 37 output channels. The eigenvalues ρ of R†R give
the fraction of power remitted to the output waveguide of width
W2 = 10 μm when sending the associated input vectors into the
slab. In Fig. 4A, we present the probability density function (PDF)
of nonzero eigenvalues,P(ρ), for a broad range of source–detector
distance d (larger than the transport mean free path �= 6.4 μm).
The PDF decays monotonically, indicating that most eigenstates
deliver little power at the remission port. However, we note that
the PDF presents an upper edge ρmax much larger than ρrand
(the fraction of power delivered by random input illumination).
For example, 10% of the total injected power can be remitted at
a distance d � 8 �, compared to 1% for random illumination. As
the distance d increases, all eigenvalues decrease, since less power
is collected, and the PDF narrows. To quantify the benefit of using
the eigenstate associated with the largest remission eigenvalue
instead of random illumination, we represent, in Fig. 4B, the
ratio ρmax/ρrand as a function of the distance d . Enhancement
typically larger than 10 is reached (blue circles). Remarkably, the
enhancement ρmax/ρrand increases with d , which illustrates the
power of coherent wavefront control for d � �. When including
out-of-plane scattering loss in our simulations (purple squares),
the enhancement ρmax/ρrand increases slightly because dissipa-
tion has more impact on the random input propagation than on
a high-remission eigenchannel (43); see SI Appendix, section 2D
for the full distributions P(ρ) in the presence of loss. More-
over, increasing the scattering strength of the disordered medium
through a reduction of � (red circles) leads to further enhancement
of remission ρmax/ρrand, which can be as large as 20 at d �
47�= 150 μm.

To elucidate the dependence of P(ρ) and ρmax/ρrand on
relevant parameters d , �, M1, and M2, we develop a theoretical
model based on a combination of random matrix theory and
microscopic computations of intensity fluctuations in remission.
Our approach relies on the concept that any structure consisting
of effective diffusive systems with comparable conductance in a
series is characterized by a universal bimodal eigenvalue distri-
bution, irrespective of the microscopic origin of scattering and
the geometry of the scattering system (44). This distribution,
initially put forward for transmission through diffusive wires
(45), can, in principle, be used for the remission configuration,
as long as input and output spatial channels do not belong to
the same waveguide. However, in our setup, light propagates
in an open geometry, with input/output covering only a small
fraction of the total surface area. Therefore, we must also take
into account the incomplete channel control of the injection and
detection. We model the remission matrix R as a filtered matrix
of dimension M2 ×M1, drawn from a virtual M0 ×M0 matrix
characterized by a bimodal distribution of eigenvalues with mean
ρ̄0, and use the predictions of the filtered random matrix (FRM)

PNAS 2022 Vol. 119 No. 41 e2207089119 https://doi.org/10.1073/pnas.2207089119 3 of 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 Y
al

e 
U

ni
ve

rs
ity

 o
n 

O
ct

ob
er

 3
, 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

13
0.

13
2.

17
3.

22
7.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207089119/-/DCSupplemental
https://doi.org/10.1073/pnas.2207089119


A B

Fig. 4. Theoretical model and numerical simulation of maximal remission enhancement. (A) Probability density P(ρ) of remission eigenvalue ρ for varying
source–detector distance d normalized by the transport mean free path � = 6.4 μm in a 2D lossless diffusive slab. Analytical predictions (solid lines) agree with
simulation results (dots) averaged over 2,275 disorder configurations. (B) Maximal remission enhancement ρmax/ρrand for three diffusive systems with different
scattering strength and loss (see legend). ρmax/ρrand increases with d. Shorter � leads to stronger remission enhancement. With loss (ξa = 56 μm), ρmax/ρrand
is slightly larger than that without loss (ξa = ∞). The input waveguide has a width W1 = 15 μm and supports M1 = 56 modes, and the output waveguide has a
width W2 = 10 μm and supports M2 = 37 modes.

ensemble (46). The only free parameters of this model are thus M0

and ρ̄0, which can be determined from microscopic calculations
of the first two moments of the distribution P(ρ). Details of
the full model are given in SI Appendix, section 2. Solid lines in
Fig. 4 show our theoretical predictions for P(ρ) and its upper
edge ρmax, which are in excellent agreement with the numerical
results.

Next, we consider limiting cases. If the number of output
spatial channels M2 is equal to one, the remission enhancement
ρmax/ρrand equals the number of input channels M1, regardless
of the injection–remission distance d and the transport mean free
path �. As M2 increases, the maximal remitted signal ρmax grows,
but the enhancement ρmax/ρrand drops. A key quantity control-
ling the scaling of ρmax/ρrand with microscopic parameters is
the non-Gaussian component of intensity fluctuations measured
at the remission port and generated by random illumination
from the injection port. These fluctuations are commonly
termed C2 (47); see SI Appendix, section 2B for their explicit
calculation. When C2 is small, M2 < 1/C2, the remission matrix
R can be approximated by a Gaussian random matrix, and the
enhancement factor ρmax/ρrand scales as ∼M1/M2 (46, 48, 49).
However, if C2 is larger, M2 > 1/C2, non-Gaussian intensity
correlations can further enhance the remission. In a 2D diffusive
system,C2 leads to an increase of ρmax/ρrand with both scattering
strength 1/k� and injection–remission distance d . Indeed, in the
situation d � �, we find that the remission enhancement depends
on a single parameter: the normalized variance Var(ρ/〈ρ〉) of the
PDF P(ρ), related to C2 as Var(ρ/〈ρ〉) =M2C2 +M2/M1,
where C2 ≈ ln(d/W1)/k� (SI Appendix, section 2B). In the
limit M2 � 1/C2, the remission enhancement takes the form
(SI Appendix, section 2C)

ρmax

ρrand
� 3

2
M1C2 ∝M1

ln(d/W1)

k�
. [2]

Unlike remission under random illumination ρrand �
M2k�/(kd)

2, the high-remission eigenchannel generates a
flux ρmax �M1M2 ln(d/W1)/(kd)

2 that is independent of
the scattering strength k�. Ignoring the weak dependence of
ln(d/W1) on M1, the enhancement factor scales linearly with
the number of input channels M1. Furthermore, the dependence
of C2 on d and k� explains the general trends beyond the above

limits in Fig. 4B. We refer to SI Appendix, section 4C for a study
of the continuous evolution of ρmax/ρrand with M2.

Sensitivity Analysis

Given that high-remission eigenchannels improve the SNR, a
natural question is whether they provide higher sensitivity to local
perturbations of the dielectric constant inside a diffusive medium.
The answer is important to DOT and fNIRS, which often monitor
the change in remitted signal due to localized absorptive targets.
The answer to this question is not straightforward, because sensi-
tivity depends not only on the value of remission but also on the
position inside the medium, as shown below. Furthermore, prior
analysis of the problem, based on the diffusion equation (13), is
not applicable, as the enhanced remission here is achieved through
wave interference, which is not captured by diffusion theory.

Let R be the total power collected at the remission port divided
by the incident power for an arbitrary incident field profile Ein.
With Ein fixed, weak absorption is introduced as the imaginary
part of the relative permittivity dεi over a subwavelength area
Aε centered at location r0. This changes the collected remis-
sion by dR. The sensitivity is defined as S ≡−dR/dεi . Under
the scalar wave equation approximation in 2D, we show, in
SI Appendix, section 3, that

S (r0;Ein)≡− dR [Ein]

dεi

∣∣∣∣
r0

= k2
0Aε

Re [Et(r0)Ec(r0)]∫
dy Im [E∗

in∂Ein/∂z ]z=0

, [3]

where k0 = ω/c is the vacuum wave number, Et is the total field
given Ein as the incident field, and Ec is the total field with
E∗
t in the remission port as the incident field. Eq. 3 generalizes

the adjoint method, commonly used in inverse designs (50), to
multichannel systems. We evaluate the sensitivity S (r0;Ein) for
different input wavefront Ein in our numerical simulation.

Fig. 5 A and B shows the ensemble-averaged sensitivity map
S (r0;Ein) computed using Eq. 3 for random input wavefronts
and for high-remission eigenchannels, respectively, in a lossless
system. The sensitivity map of high-remission eigenchannels
has the same spatial profile as that of random inputs, with
the sensitivity maximized along the banana-shaped region.
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A B

C D

Fig. 5. Sensitivity enhancement by maximal remission eigenchannel. Nu-
merically calculated sensitivity of remission, that is, change in the remitted
signal due to local absorption inside a 2D lossless diffusive system, for (A)
random input wavefronts and (B) maximal remission eigenchannel. The pa-
rameters are W1 = 15 μm, W2 = 10 μm, M1 = 56, M2 = 37, k0A1/2

ε = 0.65, � =
6.4 μm, and ξa = ∞. Average over 1,000 disorder realizations is performed.
White dots denote the depth where the maximum sensitivity is reached for a
given value of y, fitted by part of a circle—dashed line. The sensitivity map is
identical in A and B, confirming the penetration depth is not compromised by
the enhanced remission. (C) Maximum sensitivity vs. y from A and B, showing
an order of magnitude enhancement by the maximal remission eigenchan-
nel. (D) Sensitivity enhancement at y = d/2 (circles) compared to remission
enhancement (crosses) as a function of injection–remission separation d.

The high-remission eigenchannels improve the sensitivity up to
11 times in the banana-shaped region, as shown in Fig. 5C. We
further find that the sensitivity enhancement increases with d ,
similar to the remission enhancement. Notably, the sensitivity
enhancement is even larger than the remission enhancement
(Fig. 5D). To illustrate that the sensitivity depends not just on the
remission, we separate the incident and the scattered contributions
of the conjugate field, Ec = E in

c + E sca
c , where E in

c = E∗
t at

the remission port. The numerator of Eq. 3 has two terms:
Re

[
EtE

in
c

]
and Re [EtE

sca
c ]. A high-remission eigenchannel

naturally enhances the first term, which is proportional to the
remissionR ∝ |Et |2 for r0 near the remission port, but it may also
increase the second term to further enhance the sensitivity. Similar
results are observed in systems with loss (SI Appendix, Fig. S7).

Discussion and Conclusion

We have shown that coherent wavefront shaping greatly enhances
the remitted signal and its sensitivity to local change of ab-
sorption deep inside a diffusive medium. Our method differs
from the existing method of structured illumination in opti-
cal tomography, which utilizes incoherent light and modulates
only its intensity (8). While the latter improves the speed and

accuracy of image reconstruction, it does not increase the remitted
signal (51, 52). In our case, coherent light must be used for
illumination, and both its amplitude and phase can be modulated.
The phase modulation is essential to the enhancement of the
remitted signal via constructive interference of multiply scattered
light.

While this study is conducted on 2D diffusive systems, the
method and theoretical model are applicable to 3D. The remission
enhancement increases with M1 but decreases with M2. The 3D
is different from 2D in that the maximal remission enhance-
ment does not vary with d , because C2 becomes independent
of d (SI Appendix, section 2C). However, the 1/� dependence
due to C2 is preserved. In DOT and fNIRS, the commonly
used 3D biological samples have negligible C2 ≈ 1/

√
M1k��

1/M2, and the maximal remission enhancement is approximately

ρmax/ρrand �
(
1 +

√
M1/M2

)2

, according to the Marcenko–
Pastur law (49).

Finally, we comment that the remission matrix stands in be-
tween the transmission and reflection matrices. They are all parts
of the scattering matrix. With increasing injection–detection sepa-
ration, segments of the scattering matrix form a remission matrix
that produces high-flux eigenchannels with deep penetration as
high-transmission eigenchannels, and simultaneously large return
signals (to the same side of a medium as the source) like high-
reflection eigenchannels. The greatly improved sensitivity of re-
mitted signals to local perturbations deep inside diffusive media is
promising for DOT and fNIRS. An experimental implementation
for biomedical imaging would involve two multimode optical
fibers: one for injecting laser light into a scattering tissue, the
other for collecting the remitted light. The technical challenge is
that a live multicellular organism is not temporally static, which
demands rapid measurement and constantly updating the remis-
sion matrix. A potential solution, beyond significant hardware
improvements, is developing sophisticated algorithms or opti-
mization techniques for obtaining an approximate high-remission
eigenchannel from a small number of measurements. While the
wavefront shaping is done with a continuous wave in the current
experiment, short optical pulses may be explored in future studies,
and adding temporal resolution can provide further control over
remitted waves. As such, remission eigenstates are a nascent topic
with great potential in practical applications ranging from seis-
mology to noninvasive photomedical devices and brain–computer
interfaces.

Data, Materials, and Software Availability. The theoretical and numeri-
cal findings can be reproduced using the information presented in the pa-
per or SI Appendix. The original measured data used in the experiments has
been uploaded to Zenodo (https://doi.org/10.5281/zenodo.7101602) (53), and
the ensuing results can be obtained by following what is presented in the
paper.
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