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Abstract

The appearance of real correlation function for spontaneous emission is explicitly presented. The non-Markovian correction is
calculated directly by the integro-differential equation. The results are compared with the previous results obtained by stochastic
guantum trajectory analysis. Obvious difference appears for sma|jesg. The present analysis is believed more reliable.

0 2002 Elsevier Science B.V. All rights reserved.

1. Introduction electric dipole, the corresponding correlation spectrum
diverges linearly withw. Hence a cutoff frequency
It is known for a rather long time [1] that a dy- IS needed to be introduced, and there exist different
namical system with spectrum bounded below could conclusions on whether the value of cutoff will affect
not have a purely exponential decay. After some early the decay behavior [6]. The finite-size effect has been
works [2,3], quite a few authors presented the ex- considered in Refs. [7,8], which provides a gradually
plicit corrections from the Weisskopf—Wigner law for ~ cutdown of the correlation spectrum, and thus exhibits
the spontaneous decay of hydrogen or hydrogen-like its real appearance.
atoms in the nineteen seventies and eighties [4-8]. All of these papers [4-8] applied the Laplace
All of these calculated deviations are called as non- transform to solve the resultant integro-differential
Markovian corrections, although, strictly speaking, dynamical equations. Although the treatment of the
not all of them are due to the non-whiteness of the Laplace transformed equation becomes quite easy,
spectrum, as will be explained in the following. the mathematical difficulties appear when one carries
In Refs. [4-6], the radiating atom is taken as a out the inverse transform. Hence, various kinds of
point-like electric dipole, with the effect of finite ~approximation were used. Some papers even made
size of atom neglected. For this kind of point-like perturbation approximation on the dynamical equation
before Laplace transform.
- Seke and Herfort made a detailed study on the
Corresponding author. inverse Laplace transform in their second paper of
h_ﬁf@"‘fg&i‘:{aﬁ_cegzag’fg';lg)e_d”'m (C.-g. Cao), Ref. [8]. They deformed the path of integration to a
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special one used by Davidovich and Nussenzveig [9].

319

like atom decaying from stateF2,> to 151/> as in

In this special path the integrand behaves much better,Refs. [4-8]. The parameter is taken @s/wo which

hence they could give the detailed error estimations.
After lengthy and complicated calculation, they ob-
tained the corrections in the whole range, which in the
end tail is the same as that of Knight and Milonni [4],
and also of that of Robisco [7].

relates to the atomic numbgras

2 9
yalwo = 4(—) 372, (1)

3

Most of the above cited reference papers, except with « denoting the fine structure constant. In the

Refs. [6] and [7], are restricted to the caseZE 1.
The obtained deviations for the hydrogen atom are
extremely small, only comparable to the Weisskopf—
Wigner result in the far remote tail of the decay, when
the atom is practically dropped to the lower level.
Carrazana and Vetri [6] also pointed out that the
deviation from exponential decay would also appear
in the very beginning of the decay. Actually this can
be seen directly from the integro-differential equation.

They also considered the case of hydrogen-like atom

corresponding to large atomic numb&rsince largeZ
will lead to large deviation from Weisskopf-Wigner

numerical calculation there, the valuesyof/wo are
taken as 103 and 104 which is much smaller than
101 and 102 taken in Ref. [6], and correspond to
Z =157 andZ =50, respectively. In the former case,
both corrections specified above are notable, while in
the latter case, the first correction due to the difference
of y andy, is rather small but still recognizable. The
second correction (genuine non-Markovian) remains
the same order of that in the former case.

In Ref. [10], the first correction is evaluated analyt-
ically and hence reliable, while the evaluation of the
second correction by the generalized quantum stochas-

result. But the parameter they adopted corresponds totic trajectory approach suffers two problems. The first

unrealistically large value of. Moreover, for such
large value ofZ, the point-like dipole spectrum is
certainly inapplicable.

Robisco [7] also considered the casezf- 1. In
his treatment, the finite-size effect was taken into ac-
count as well. But he did not give the error estimation,

one is that the program-generated random number is
actually a kind of pseudo random number. When the
step intervalAt is decreased, the result not always be-
comes better, beyond a limit it even becomes worse.
The second error comes from the simulation of the
real non-Markovian correlation spectrum by a sum of

and the approximation made in his calculation seems a few Lorentzian spectra. There exists certain dispar-

dubious for largeZ.

Recently two of us (C.-q. Cao and H. Cao) and
other coworkers have restudied this problem by a to-
tally different approach [10]. The generalized quantum
trajectory analysis [11,12]is used in that investigation.
First, the non-Markovian correlation spectrum is de-
rived generally and also without the point-like electric
dipole approximation, then a specific example of al-
lowed transition is taken to make concrete analysis.

The correction to the Weisskopf-Wigner result
actually comes from two factors. The first one is
the difference between the Einstedncoefficientyy,
which is taken as the decay rate in Weisskopf-Wigner
approach, and the real decay rate which takes
into account the effect of finite atom size (and the
contribution of higher multipole transition, if any).
The second factor is the genuine non-Markovian
correction originating from the non-uniformity of the

ity between these two spectra, especially in the case of
smallery, /wp. These problems make the quantity of
the second correction not so definite.

The situation mentioned above on Ref. [10] leads
us to try another different approach to study the same
problem. That is the motive of this Letter.

In this Letter we adopt a straightforward approach,
namely solving resultant integro-differential equation
by direct numerical calculation. To this end we first
evaluate the real correlation function from the corre-
sponding correlation spectrum, and compare it with
the approximate correlation function corresponding to
the simulated correlation spectrum given in Ref. [10].
To our knowledge, it is the first time the appearance
of the real correlation function is explicitly shown.
Then the decay of the atomic upper level population
is derived numerically. The present result shows the
genuine non-Markovian correction becomes consid-

real correlation spectrum. The example considered in erably smaller than that obtained in Ref. [10] in the

Ref. [10] is the spontaneous emission of a hydrogen-

casey,/wo = 1074, but the total correction to the
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Weisskopf-Wigner result is still evident and seems
much larger than that of Ref. [7].

Besides, in the approach of this Letter the light field
is not taken as reservoir but as a part of the whole

dynamical system. So we can studied the properties ECZ(” =

of emitted light field directly, such as its line profile
and degrees of coherence.

2. Thecorrelation function of the spontaneous
emission

We take the interaction picture in our approach.

In the rotating wave approximation, the interaction
Hamiltonian between a two-level atom and photons is
know as

Hint(t) =1ih Z[gkj&+akjei(wo—w)t
K, j
| 2

whereg (6-) is the atom-level upward (downward)
change operatofiy ; (&,Ij) is the photon annihilation
(creation) operator of modek(;j) with j denoting
the polarization,gg; is the corresponding coupling
constant.

It is easy to see that under the above interaction the
state vector of our system can be expressed as

1) = C2(1)]¢2; 0) + ch,kj(l)kﬁl; K, Jj),

k.j

3

where|¢z; 0) denotes the state with atom in the upper
level (level 2) and no photon exists therejgs; k, j)
denotes the state with the atom in the lower level
(level 1) and with one photon in the mode, (j). The
initial condition is taken as

C2(0)=1,

C1k;(0)=0. 4)

The coefficient<C>(r) andCy i (¢) satisfy the follow-
ing dynamical equations

d .

S CLk(=— g€ T Ca(1), (5a)
d it

T Ca() =) gije” T Cr(0). (5b)

kj
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From Eqgs. (5), one readily gets the following integro-
differential equation foC,(¢)

t

d
- / Ut —1t")Ca(th dr', (6)
0
in which
Ut —1) = lg[Pe™ @00~
kj
o0
E/R(w)e_i(w_w())([_’/) dw @)

0

for 0 <t’ <t. The R(w), which is the real correlation
spectrum, is given by

2he

R =—
(@) 47r2m2c3

/d.Qk[|Gk|2— ne-Gel?]  (8)
with
9)

The U(r —t') given above is the correlation function
for the spontaneous emission of the atom, which
describes the dependence of the variation ratéof)

on its past valu€z(t') (¢’ < 1).

To see explicitly the correlation functidri(z), we
consider the same example studied in Refs. [7,8,10],
namely the hydrogen-like atom with two level$;1,
and 2Py>. The corresponding correlation spectrum,
calculated in Ref. [10] by the Schrédinger wave
functions of the two levels, is given by

_ . rA
2mwo (14 £y

Gk = / Xy () V1 (%) dBx.

w

R(w) (10)

YA

in which the factorZMO

o is the universal point
a2w2

electric-dipole correlation spectrum, afibl+ 4°¢-)%
is the cut down factor due to the finite size of the atom,
which is the same as those used in Refs. [7,8].

The only free parameter in this exampleZs the
atomic number. All the parameters in Eq. (10) are
related toZ by

2 K2 1
e 11a
a 3me2 7’ (112)
3 2
wo = ~a?2 72, (11b)

8 &
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Fig. 1. The absolute value @f(t) as function oft. 7 is in unit of
1/y4. () The parametery /wg = 1073, (b) y4/wp = 1074

4 2
YA = (—) a5£Z4 (11c)

9 A ’

with « denoting the fine structure constant. The
correlation functionU (t) for this example is given
hence by

U(r)=F(1)e'™", 0<t<t, (12a)

in which F(7) is conventional Fourier transform of
R(w):

o0
F(r):/R(w)e*"“’r dw

0

_ra
T 27w

—lwT dCl)

w
f 1+ a2a?/c2)A° (12b)
0
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Fig. 2. The argument of/ () as function ofr (in unit of 1/y,).
(a) The parameters /wp = 103, (b) y4 /wg = 1074.

The imaginary part ofF (r) can be easily calculated
by contour integration, since its integrand is an even
function of w. But the real part of that integral cannot
be evaluated in the same way. So we have to use the
numerical calculation to evaluat&(t). The results are
shown in Figs. 1 and 2. The free parameter is taken as
ya/wo instead ofZ, the relation between these two
dimensionless parameters is

1/64\% 5 ,
ya/wo= 6(81) a~Ze.
For comparison with Ref. [10], we still takey /wo =
102 and 10%. The valuey,/wo = 1073 used in
Figs. 1(a) and 2(a) correspondsde= 157, somewhat
larger than the upper limit of the real nuclei. The value
va/wo = 104 for Figs. 1(b) and 2(b) corresponds to
Z =50.

Fig. 1 showsU (t)|/ U (0) vs.t, while Fig. 2 shows
Arg U (1) vs. 1. The unit ofz in the abscissa is taken
as 1ya, since it still characterizes the time scale of

(13)
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decay even in the non-Markovian approach. The value
of U (0) may be analytically derived with the result

uo 1 (6)2
y2 "~ 12rwoya \a
2 (64\° [wo\?
== (= =) 14
o (a1) (1) a

We see from Fig. 1 that the peak &3 has
a width of order Ywp, the proportional coefficient
decreases whery /wg decreases. Fig. 2 shows outside
the peak ar@/ (r) quickly approaches its asymptotic
valuewgt — 7.

The correlation function corresponding to point
electric-dipole spectrum can be derived analytically:

o0
UD(T): %‘Z)Ov/\we—i(w—wo)f do
0

00

—_YA lim [ we i@—@0)T=¢7 4,
2w £—0
0

_m 1

21 wg T2

It diverges ag — 0, and hence is meaningless.
If one approximate the cut-down factor

(%)

by e~#, the corresponding correlation function is
given by

iwgT

(15)

az(,()2
2

c

VA 1

iwoT+2i0;
27 wo T2 + B2 ’

Ua(r) =

0<t <1, (16)

0, = tan*l(—%), henced, changes quickly from zero
to —m/2 ast increases, in casg is a small time
interval.

As mentioned above the phase factor of the corre-
lation functionU (r) soon approaches its asymptotic
value expi(wor — )], like Us(r) for small 8. The
calculated value ofU (1)| is also similar to

U0
124 B2
(8 = 1/wo for ya/wo = 103 as shown in Fig. 3).
We now compare the real correlation functigir)
with its Markovian approximation-(y + 2i §wg)s(z).
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Fig. 3. The simulation oft (v)|/ U (0) by 1/(w§? + 1). Solid line
representsU (v)|/ U (0); dotted line represents/w3r? + 1).

It is known thats(t) can be expressed by different
limit form, such as

3(t) 1 lim (17a)
T)=— —_
T 60712+ &2
and
1 . sin
5(r)= = lim 9% (17b)
T Ww—>00 T

The first form (17a) is always of positive value and has
typical peaked form with infinitesimal widths2 So it
tends to zero for > 0. The value of form (17b) al-
ternates with time and its absolute value decays rather
slowly as~ 1/t. However, the infinite oscillation fre-
guency makes its value effectively drop to zero for
7 > 0 too.

We have shown that the real correlation function
U (t) has both the peaked form and oscillating behav-
ior outside the peak region. The oscillation frequency
is wp and the peak width is of order/dg. These two
factors together mak& (r) approximates-function
when itis applied to functions with variation rate much
smaller thanwg. Since the variation rate of sponta-
neous emission is of ordety, the condition for valid-
ity of Markovian approximation is therefore given by

A <1
wo

(18)

Next let us investigate the approximate correlation
function U, (t) corresponding to the simulation corre-
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1.0 T T T T T

lation spectrum [10R; (w) for y4/wo = 1073:
]
o g1l osf N\ TW/@=10"
27 (0 — w1)? + 31§ N\ :
06 4
g2 } \
(w—w2)2+ %FZZ ' 2 04 | 4
with >
w1/wo =1, g1/wo =0.011, I'n/wo=1.3, ' .
w2/wo = 1.85, g2/wo = 0.018 I2/wo=2.4. e i,
The integration range ab is now extended tg—oo, t
+00), henceU,(r) has the following analytical ex- (@)
pression: 10 . . . . .
1 ‘ ;
Us(t) = wo[ﬁ|g1|2el‘“’l“’°>’%“’ S AN T/o=10"
1 2 —i(wy— )‘L’—;F 06 | V:g E
+ —lgo| e a0 2t
= 2 x 1074[0.93, 050" Zosr ]
+ 1.35€7i0.85wor71.2w0r]. (19) Wl AN \\\; |
Whent becomes larger, the first term soon becomes e
dominant, soU, () drops down exponentially with a 00 o5 1o s 20 a5 a0 X1,
comparatively large rat&; /2 of orderwp, but without t
oscillation. We see that/;(r) has a quite different (b)
behavior fromU (7).

Fig. 4. The evolution of atom upper-level populatidf(z). Solid
line is the numerically calculated result without Markov approxi-
) . mation; dash line is the result with Markov approximation on the
3. Non-Markovian correction to the atom decay real correlation spectrum; dotted line represents Weisskopf-Wigner

result. (a) The parametegr /wg is taken as 103. (b) The parameter
In Ref. [10], the non-Markovian effect on the decay ¥4/@o s taken as 10%.
of the atom upper-level population is investigated by

the quantum trajectory analysis of an enlarged system. the initial conditionC2(0) = 1. If we denotenAr by

For the example studied there, the transition is pure ;  the recurrence formula may be simply taken as
electric dipole transition, so the correction is solely

due to the finite size of the atom and non-uniformity N - 2
of correlation spectrum. As mentioned in Section 1, C2(n+1) = C2(tn) — 2 (AD2U () Coltn—m).  (20)

the correction to Weisskopf-Wigner result [13] results m=1
from two factors. The first factor comes from the use other more skilled method may also be applied.
of real decay rate’ instead ofy,, but the finiteness Fig. 4(a) and (b) show the so obtained evolutions of

of correlation time is still ignored (cf. Eq. (25)). This the upper level populatioN> () = |C2()|? and com-
factor is evaluated analytically and hence is reliable. pare them with the results with Markov approxima-
The second factor is due to finiteness of correlation tion based on the real correlation spectrum (namely to
time. Its evaluation in Ref. [10] is quantitatively not use the real decay rajeinstead ofy4) and also with

so accurate. In this Letter we will solve the integro- the Weisskopf-Wigner results. The latter two curves
differential equation (6) numerically step by step with are identical to those in Ref. [10]. We see that in the
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Table 1
The five sets of parameter of imitation
A v/
—0.018y4 0.627y4
—0.014y4 0.635y4
0 0.663y4
0.01y4 0.683y4
0.036y4 0.735y4

casey, /wo = 10~3 the correction due to this second
factor (i.e., the difference between the upper curve
and the middle curve) is of the same sign as that in
Ref. [10], but quantitatively somewhat smaller. In the
casey, /wo = 1074, this second correction is much
smaller than that presented in Ref. [10]. However, the
total difference from the Weisskopf-Wigner result is
still evident.

Next, we inspect whether the exact (numerically
calculated) resultvo(7) (solid line) in Fig. 4(a) (cor-
responding/4 /wo = 10~3) still may be approximated
by an exponential decay in the range ypft from
nearly zero to three. If we simula@&(¢) by

(1+At)e—%/[—i5a)/[’
namely simulateVa(r) by
(14 An)2e™7"

with the factor(1 + Ar)? representing the deviation
from an exponential decay, the results of numerical fit-
ting show that the five sets of parameters in Table 1 all
generate practically identical curves with the exactly
calculated curve (the solid line in Fig. 4(a)) as shown
in Fig. 5.
The above results mean thaf(z) practically

still has an exponential behavior in this finite range

(the very beginning stage which deviates exponential

decay as shown in Fig. 3 of Ref. [10] is too small to be
recognized in Fig. 4(a)), but with an effective decay
constant

Yeff = 0.663y4, (21)
which is smaller than the real decay rate
y = 2w R(wp) = 0.7294.

This behavior of exponential decay does not mean
thatU (r —t') is still proportional tas(r — ¢’), because

C.-g. Cao et al. / Physics Letters A 303 (2002) 318-327

1.0 T T T T T

08 - -

06 [ -

02 [

0.0 1 1 1 1 1
0.0

30 X 1h,

Fig. 5. The simulation of exact (numerically calculated) result
without Markov approximation. All the five simulating curves with
parameters specified in Table 1 coincide with the exact result, the
solid line in Fig. 4(a).

this behavior is limited in finite interval. Let us do a
little more inspect on this point.

Under this zero correlation-time supposition, Eq. (6)
reduces to

t
%Cz(t)z—Cz(t)/U(t—t’)dt’. (22)
0
Let
t
%F(I)E/U(t—t/)dt/, (23)

0

substitute Eq. (7) into the right-hand side of Eq. (23)
and carry out the integration over one gets

Rel(t) =2 / Ry SN@ =)t (24)
w — wQ
0

In case the above supposition agrees with our
numerical investigation, the right side of Eq. (24)
should equal toses given by Eq. (21) except for the
very beginning of.

To check this, we take five values ofn Eq. (24):
(0.1,05,1, 2, 3))/%\, all the Rel"(r) numerically cal-
culated according to Eq. (24) are still7@9% 4 up
to three significant figures, which is jugt not yes.
Hence the supposition that(s — ¢') is proportional to
8(t — ") for y4 /wo = 1073 is not true, the difference
between the upper curve and middle curve is a genuine
non-Markov correction.



C.-g. Cao et al. / Physics Letters A 303 (2002) 318-327 325

We may also see this by analytical inspection. #or

larger than the effective correlation timg, which is
of order Ywo, the integration limit(0, t) in Eq. (23)
may be extended t6-oo, t), then

t

%F(t): / U@i—1t)dt

—0o0
t t
= lim f dr’ / dw R(w)e (@—wo=ie)t=1)
e—0
—00 0
o0

. —i
= lim /R(a))i,dw
e—0 w—wo—1E&
0

o
1
=/R(w)|:n3(w—a)o)—ig,) ]dw,
w — wQ
0 (25a)
leading to usual result
Rel'(t) =27 R(wo) =y, (25b)

which has the value of .029 4, not yef given by
Eq. (21).

4. Theline profile and degrees of coherence of
emitted light

of the emitted photon in modé () is |C1.x;(c0)]?.

To derive the line profile, we first transfer the summa-
tion overk to integration, then carry out the integration
over the direction angle &. After further summation
over j, we readily get the photon distribution over
as

W?d2c 'V
P(w)ZZ/TkW’Cij(OO)F
J

R(w)
(0 — w0)2 + 3V

Eq. (27) indicates the photon frequency distribution is
a product of the correlation spectrum and a Lorentzian
factor with linewidthyes. SinceR (w) varies little over
the range of a fewes aroundwg, the line profile is
practically Lorentzian. The non-Markovian effect just
lies in the change of linewidth t@es.

One may also define photon “frequency” distribu-
tion for anys > 0 as

2V
P(w,t):Z/%W]Cij(I)]z
J

R
(0 — w0)2 + 3V

(27)

X [1 — Ze*%Ve“’ coSw — wo)t + eﬂ’e“t].

Actually P(w, t) is the distribution among wave num-
ber according to the relatio® = kc. We see from

As mentioned in Section 1, in our approach the P(w, 1) that the photon’s “frequency” is always lim-

light field is not eliminated from the dynamical system
as a reservoir, so we may inspect the features of the yt with a time-varying coefficient. Fap

emitted photon directly from the value @y (),
which may be obtained by substitutingz(¢) into
Eqg. (5a) and integrating over

SinceCa(¢) is well approximated by

Cz(l) — ef%yeﬁtfiéwot

even forZ as large as 157 (correspondingtg/wo =
1073), the result ofCyx;(¢) is easily evaluated and
given by

ig;j

—[ei(W—wO)f—%)/eﬁf ~1],
(@ — wo) + 3i Vet

Cirkj(t) =

(26)
with dwg already incorporated iayg.

Whenr — oo, the atom completely jumps to the

ited within a narrow range of widthes aroundawg,

= wp, this
coefficient increases with monotonically from zero
to approach 1, fow # wy, it approaches 1 by damped
oscillation, so the profile varies with time.

Next let us turn to the coherence functions of the
emitted field. The coherence functions are originally
defined in Heisenberg picture, they should be first
transfered to the interaction picture. Note that the state
vector |) and operatorsl: in these two pictures are
connected by

L) =U©,0)L1U,0)

(28)
in which (7(t, t") is the evolution operator in interac-
tion representation fronf to ¢, |¢) and L(r) are also
state vector and operator in interaction picture, with

N =0,0]),

lower state with one photon emitted. The probability the upper index | omitted.
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The first and second order of coherence functions 5. Summary

in interaction picture are readily obtained by utilizing
Eq. (28) with the results
G (x, 12 %, 11)
=Y (IE7 %, 1)U (t2. ) E T (x, 1)),
1
G (x, 12X, 11)

=> (mlE T x ) U (.2 E 7 (. 12)
L

x Ey7 (X, 1)U (12, 1) E " (X, 1)) (29)
Since
EM(x,1)n)
|2 h ; ;
— Z Tho @j&k./elk.)(7lwtl|tl>
- \%
K.Jj
2nhw ; ;
= Z,/ &, C1k; (1)e X |py, 0)
“ \%
K.Jj
=E(X,11)|¢1,0) (30)
and
U (12, 11)|¢1, 0) = |$1, 0) (31)
under rotating-wave approximation, we get
GV (X, 12; X, 11) = EX(X, 12) - E(X, 11). (32)

Actually from the conservation of angular momen-

(1) The correlation function of spontaneous emis-
sion is investigated in some detail. Although we use
an example to get concrete results, the following fea-
tures may have general meaning.

The correlation functior/ (r) commonly has the
expression

U(r) = f(r)e'™"

in which
fx)= f R(w)e " dw,
0

with R(w) being zero atwv = 0, and dropping down
for largew. The absolute valugf (t)| decreases as
increases because the factor'®® oscillates more
quickly with » for larger r. This leads to a peak
shape of| f(z)|. The peak width in our example is
of order Ywo. The U (1) approximates-function not
only due to the drop dff (z)|, but also due to the rapid
oscillating factore!®o”. The oscillating frequencyg

is large as compared with the decay rate. However it is
a finite value, while a genuinifunction has limiting
forms

sinwt £

! lim
T e>0T12 42’
the former has an oscillating frequeneythat tends

§(r) = lim

w—>00 JTT

tum and parity’ the emitted photon field in our exam- to |nf|n|ty, and the latter has an infinitesimal width

ple should have angular momentuin= 1 and nega-
tive parity, hence it is just the electric dipole field. In
the wave zonef (x, t) has the form of spherical wave
function with polarization vectay perpendicular tex.

Write £(X, t) ase(X, )&, we get accordingly
GV (X, 12; X, 11) = £* (X, 12)e (X, 11). (33)

AlthoughGP (x, 12; x, 11) varies with time, the first
order degree of coherengé? (x, 12; x, t1), which is
given by

GO (x, 125X, 11)
le(x, 2)|le(X, 11)|”

This difference betweed/(r) and §(r) causes non-
Markovian corrections whep, /wo becomes not very
small.

(2) The Weisskopf—Wigner result is good for hydro-
gen-like atom only for relatively smalt. For Z = 50,
the difference between the non-Markovian result and
the Weisskopf-Wigner result is already obvious.

The upper-level population practically still shows
exponential decay in the period foe= 0 up to ¥y,
even when the non-Markovian correction is relatively
large as in the case; /wg = 1073.

(3) The line profile is shown in general to be the
product of correlation spectrum and a usual Lorentzian

has its absolute value identical to one in the wave zone, factor with widthyes;. However practically it shows no

for any positiver; andzs.

deviation from the Lorentz profile, the non-Markovian

Utilizing Egs. (30) and (31), it is easy to see that effect just lies in the change of linewidth 1gs.

G@(x,12; %, 1) is identically zero as expected, since
|t) at most contains one photon.

The coherence functions may be calculated from
the state of the emitted field. The absolute value
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