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Quantum stochastic trajectory theory of microsuperradiant laser
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Abstract

The microsuperradiant laser is studied by the quantum stochastic trajectory approach. Neither discontinuities nor the
instabilities are found as in the case of largeN limit. The atomic population on the middle level is not always high either.
Our  2001 Published by Elsevier Science B.V.

PACS: 42.50.Fx; 42.50.Ar; 24.10.Lx

1. Introduction

The cooperative spontaneous emission ofN iden-
tical two-level atoms, which is so-called superfluo-
rescence, had been studied extensively [1] in 1970’s.
A few years ago, a different type of superradiance,
a kind of N identical three-level atom superradi-
ant laser, was proposed and investigated by Haake
et al. [2,3]. In contrast to the superfluorescence, these
N atoms in this model only interact with two cav-
ity modes. Its line width was found extremely small
and proportional to 1/N2 while the superfluorescence
pulse has a large spectral width∼Nγ . This superra-
diant laser is different from normal laser [4] in that
the pump and relaxation are also cooperative. The
fields are generated collectively by theN atoms so
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that its intensity is still∼N2, if p, the effective pump-
ing strength defined by Haake et al., is kept in a fixed
value independent ofN . Besides, the output light field
can be squeezed almost perfectly. However, there were
some unusual results [3]: at zero pump some atomic
populations show an abruption like first-order phase
transition, and as pump rises to a certain value there
appears a second-order phase transition to make laser
action ceased above this value. These unusual results
are obtained by the conditionN → ∞, which is im-
plicitly assumed in the linearization process applied
in Ref. [3] to solve the superradiant laser’s Langevin
equations. In the following we shall call such results
as semiclassical results.

Recently, there is much interest in microlasers with
small number of atoms or excitons. In this Letter we
consider the microsuperradiant laser in which only
dozens of atoms are involved. It is quite natural to sur-
mise that the abruptions in the semiclassical results
will be smoothed out when the number of atoms be-
comes finite as usually the case in statistical mechan-
ics. The question is, apart from this point, whether
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there is any new behavior of microsuperradiant laser
different from the semiclassical theoretical results of
Ref. [3]. We find that in some region of parameters
the situation is indeed so, which will be described in
Section 3. In addition, only the steady state is stud-
ied in Haake et al. papers [2,3], while in our Letter
the whole evolution process of the microsuperradiant
laser is also studied, which, among others, will give us
an idea as how fast the steady state is established. The
method we take for these purposes is the quantum sto-
chastic trajectory approach (QSTA) [5] which was de-
veloped about ten years ago. The basic idea of QSTA
is to use a non-unitary evolution generated by an ef-
fective non-Hermitian Hamiltonian intermingled with
successive quantum collapses to describe the dynam-
ics of the system. The collapse superoperator which
describes the quantum jumps and the non-Hermitian
Hamiltonian are obtained by a decomposition of the
corresponding master equation [5]. This approach has
some advantages over usual method dealing with mas-
ter equations: the single trajectory may simulate a con-
crete sample of the process with such quantum col-
lapses rather than the average expression correspond-
ing to an ensemble of such process. But in this Letter
we mainly use QSTA as a calculation means to derive
the average values for finite number of atoms. When
the collapse superoperator allows the density operator
ρ(t) to be factorized asρ(t) = |Ψ (t)〉〈Ψ (t)|, the nu-
merical analysis may be much simplified. The vector
|Ψ (t)〉 is sometimes called Monte Carlo wave function
(MCWF).

In Section 2, we will decompose the master equa-
tion of a superradiant laser system to get the non-
Hermitian operator and the collapse operator. In Sec-
tion 3, some stationary results are presented. We show
explicitly that the discontinuities in semiclassical re-
sults is indeed smoothed out. The stationary values
of the atomic populations as functions of the pump
as well as the stationary photon number distribution
are given accordingly. We also show that when the pa-
rametersξ defined in Section 2 becomes large, the
atomic populations among the three levels are ev-
idently dissimilar with the semiclassical results of
Ref. [3]. In Section 4, we will give a general picture
of how the microsuperradiant laser system evolves, as
compared with the usual non-superradiant laser sys-
tem. Besides, we show that, for finite atom number,
there do not exist the instabilities found in Ref. [3].

Brief discussion and conclusions are drawn in Sec-
tion 5.

2. Monte Carlo wave function approach to
microsuperradiant laser

The Hamiltonian for the model [3] of superradiant
laser in the interaction picture is

H = ih̄g12
(
aS21 − a†S12

) + ih̄Ω(S20 − S02)

(1)+ ih̄g01
(
bS10 − b†S01

)
,

in which a andb are the annihilation operators of the
light for modea (lasing mode or active mode) and
modeb (passive mode), respectively. The energies for
the three atomic levels areE0,E1, andE2.E0 <E1 <

E2. The collective atomic operatorsSij (i, j = 0,1,2)
are defined as

Sij =
N∑

µ=1

S
(µ)
ij =

∑
µ

(|i〉〈j |)(µ),

which obey the relationsS†
ij = Sji and [Sij , Skl] =

δjkSil − δilSkj . The parametersg01 and g12 are the
coupling constants both taken as positive real number,
and Ω is the pump parameter. We note that the
interactions of atoms with modea and modeb as
well as the pump action are all collective. In addition,
the photons of lasing mode and passive mode are
coupled to their respective reservoirs, leading to the
damping of these two modes. In Ref. [3], the problem
is studied by Heisenberg–Langevin equations, while
we shall study it by master equation. As in Ref. [3], we
assume the damping constantκb of the passive modeb
is the dominant relaxation constant of the system and
is large enough so that we may adiabatically eliminate
the variableb (andb†). By this way, we arrive at the
following master equation [4]:

(2)
d

dt
ρ(t)= Lρ(t)+Λaρ(t)+Λ01ρ(t),

whereL,Λa andΛ01 are superoperators defined by

(3)

Lρ(t)= [
Ω(S20 − S02)+ g12

(
aS21 − a†S12

)
, ρ(t)

]
,

(4)

Λaρ(t)= κa(1+ n̄T )
(
2aρa† − a†aρ − ρa†a

)

+ κan̄T
(
2a†ρa − aa†ρ − ρaa†),
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Λ01ρ(t)= γ (2S01ρS10 − S10S01ρ − ρS10S01),

(5)γ = g2
01

κb
, n̄T = 1

eh̄ωa/kT − 1
.

κa is the damping constant of modea and γ is the
rate constant related to the collective atom relaxation
1 → 0. One can easily convince himself that the
equations for〈Sij 〉 and〈a〉 derived by Eqs. (2)–(5) are
identical to those derived in Ref. [3].

Now we will treat the master equation by Monte
Carlo wave function approach [5]. The non-Hermitian
Hamiltonian and collapse operator may be obtained
from Eqs. (2)–(5). AssuminḡnT ≈ 0, we have

Hnh = ih̄Ω(S20 − S02)+ ih̄g12
(
aS21 − a†S12

)

(6)− ih̄κaa
†a − ih̄γ S10S01,

and the collapse operators are taken as

(7)C1 = √
2κa a, C2 = √

2γ S01.

C1 corresponds to annihilation of one modea pho-
ton, andC2 corresponds to atom transition from level
1 to level 0. Since our numerical simulation takes place
over discrete time with a time step%t , the wave func-
tion of the system|Ψ (t)〉 is represented by|Ψ (tn)〉,
wheretn = n%t . Given the wave function|Ψ (tn)〉, the
wave function|Ψ (tn+1)〉 may be determined by the
following algorithm:

(i) Evaluate the two collapse probabilities during the
interval(tn, tn+1),

p1(tn)= 〈
Ψ (tn)

∣∣C†
1C1

∣∣Ψ (tn)
〉
%t

(8)= 2κa
〈
Ψ (tn)

∣∣a†a
∣∣Ψ (tn)

〉
%t,

p2(tn)= 〈
Ψ (tn)

∣∣C†
2C2

∣∣Ψ (tn)
〉
%t

(9)= 2γ
〈
Ψ (tn)

∣∣S10S01
∣∣Ψ (tn)

〉
%t,

in which %t should be small enough to make
p1(tn)andp2(tn) much smaller than 1.

(ii) Generate two random numberr1 and r2 which
have uniform probability distribution over the
interval[0,1].

(iii) Compare p1(tn),p2(tn) with r1, r2 and derive
|Ψ (tn+1)〉 according to the rule

∣∣Ψ (tn+1)
〉 = C1|Ψ (tn)〉√

〈Ψ (tn)|C†
1C1|Ψ (tn)〉

,

(10)p1(tn) > r1 and p2(tn)� r2,

∣∣Ψ (tn+1)
〉 = C2|Ψ (tn)〉√

〈Ψ (tn)|C†
2C2|Ψ(tn)〉

,

(11)p1(tn)� r1 and p2(tn) > r2,

∣∣Ψ (tn+1)
〉 = C2C1|Ψ (tn)〉√

〈Ψ (tn)|C†
1C

†
2C2C1|Ψ(tn)〉

,

(12)p1(tn) > r1 and p2(tn) > r2,

∣∣Ψ (tn+1)
〉 = e−(i/h̄)Hnh%t |Ψ (tn)〉√

〈Ψ (tn)|e(i/h̄)(H†
nh−Hnh)%t |Ψ (tn)〉

,

(13)p1(tn)� r1 and p2(tn)� r2.

By carrying out the steps above over and over, we
will get a quantum stochastic trajectory of the Monte
Carlo wave function|Ψ (t)〉 of the superradiant laser
system. And the expectation value of a given operator
O at each tn in respect of this trajectory can be
obtained by

(14)
〈
O(tn)

〉 = tr
[
Oρ(tn)

] = 〈
Ψ (tn)

∣∣O∣∣Ψ (tn)
〉
.

Finally, an ensemble average over a sufficiently large
number of trajectory is carried out.

Let |n2, n1, n0〉 denote the totally symmetric atomic
state wherenk (k = 0,1,2) is the atomic population
on the energy levelk, and let |m〉 denote the state
of photon of lasing modea with photon numberm.
The state of the system|Ψ(t)〉 may be expressed as
a superposition of all quantum states|n2, n1, n0〉|m〉
in the case that the initial atomic state is totally
symmetric as we assume it to be

∣∣Ψ (t)
〉 =

∑
n2n1n0

∑
m

An2n1n0m(t)|n2, n1, n0〉|m〉,

(15)n2 + n1 + n0 =N,

N is the total atom number. The initial state is taken
as|N,0,0〉|0〉. The operatorsSij act on these states as
follows [6]:

S12|n2, n1, n0〉|m〉
(16)= √

n2(n1 + 1)|n2 − 1, n1 + 1, n0〉|m〉,
S21|n2, n1, n0〉|m〉

(17)= √
n1(n2 + 1)|n2 + 1, n1 − 1, n0〉|m〉,

S01|n2, n1, n0〉|m〉
(18)= √

n1(n0 + 1)|n2, n1 − 1, n0 + 1〉|m〉,



J. Wei et al. / Physics Letters A 291 (2001) 208–214 211

S10|n2, n1, n0〉|m〉
(19)= √

n0(n1 + 1)|n2, n1 + 1, n0 − 1〉|m〉,
S02|n2, n1, n0〉|m〉

(20)= √
n2(n0 + 1)|n2 − 1, n1, n0 + 1〉|m〉,

S20|n2, n1, n0〉|m〉
(21)= √

n0(n2 + 1)|n2 + 1, n1, n0 − 1〉|m〉.
Apart from N , these are four parameters of fre-

quency dimension in the master equation, namelyΩ ,
g12, κa andγ , from which three dimensionless para-
meters can be defined. To compare our results with
those of Haake et al., we introduce the same three di-
mensionless parameters as in Ref. [3]:

(22)

c = g2
12κb

g2
01κa

= g2
12

γ κa
, p = Ω

Nγ
√
c
, ξ = γN

κa
.

They are called as dimensionless coupling strength,
effective pump strength and ratio of decay rates,
respectively,ξ is also regarded as the quality factor
of the cavity [3].

3. Stationary results for finite atom number N

First we carried out the numerical simulation of
an ensemble average of 400 stochastic trajectories for
N = 10,15,30. For fixed value ofN , the stationary
atomic populations〈Sjj 〉 are determined by the three
dimensionless parameters defined by Eqs. (22), hence
the curves〈Sjj 〉/N versus pump parameterp will in
general depend onc andξ , takingc = 2 andξ = 0.15.
The calculated results are shown in Figs. 1–3, where
the dotted lines correspond to the semiclassical result
in Ref. [3]. The solid lines are the atomic populations
for N = 10,15,30, respectively.

We see all atoms stay on level 0 atp = 0 as
surmised above, there is no jump of〈S22〉 toN/(1+c)

at p = 0 as claimed by the semiclassical approach in
Ref. [3]. Whenp = 1, both〈S00〉/N and〈S22〉/N are
not down exactly to zero and hence no discontinuity
of derivatives appears atp = 1. In addition, for these
values of parametersc and ξ , the biggerN grows,
the closer the curve is to the dotted line, namely to
the semiclassical result. It is remarkable that the trend
towards the infiniteN limit can be recognized with
atomic numbers as low as 30.

Fig. 1. Ensemble average of the stationary atomic population on
level 0 versus effective pump strength atc = 2, ξ = 0.15 with
the step lengthγ%t = 0.0001. The dotted line corresponds to the
semiclassical result in Ref. [3].

Fig. 2. Ensemble average of the stationary atomic population on
level 1 versus effective pump strength atc = 2, ξ = 0.15 with
the step lengthγ%t = 0.0001. The dotted line corresponds to the
semiclassical result in Ref. [3].

However, the above situation changes when the
parameters go over to other range. Sinceξ , the so-
called quality factor of the cavity [3], is an important
parameter of the laser and, somewhat surprisingly, the
semiclassical results of〈Sjj 〉sc/N given in Ref. [3]
is independent ofξ , in this Letter we will mainly
study the effect due to variation ofξ . Now whenξ
becomes larger, such as taking 10 instead of 0.15, the
calculated results presented in Figs. 4–6 indeed show
different behavior. We see there is no indication of
the trend towards the semiclassical results of Ref. [3]
asN changes from 10 to 30, especially forp close
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Fig. 3. Ensemble average of the stationary atomic population on
level 2 versus effective pump strength atc = 2, ξ = 0.15 with
the step lengthγ%t = 0.0001. The dotted line corresponds to the
semiclassical result in Ref. [3].

Fig. 4. Ensemble average of the stationary atomic population on
level 0 versus effective pump strength atc = 2, ξ = 10 with the
step lengthγ%t = 0.0001.

to one. To further highlight this point, we takep =
1, c = 2 and calculate the atomic population on
the middle level 1 as function of 1/ξ . The result
is given by Fig. 7. We see that instead of all the
atoms staying on the middle level in the semiclassical
results, the atomic population on the middle level
in our microsuperradiant case decreases continuously
and seems to approach zero forξ → ∞. Our above
results seem physically plausible, since in the case
of good cavity, the better lasing corresponds to larger
population inversion.

It merits to note that the semiclassical stationary
value〈Sjj 〉sc of Ref. [3] are derived under two pre-

Fig. 5. Ensemble average of the stationary atomic population on
level 1 versus effective pump strength atc = 2, ξ = 10 with the
step lengthγ%t = 0.0001.

Fig. 6. Ensemble average of the stationary atomic population on
level 2 versus effective pump strength atc = 2, ξ = 10 with the
step lengthγ%t = 0.0001.

Fig. 7. Ensemble average of the stationary atomic population on
level 1 versus 1/ξ atc = 2,p = 1 with the step lengthγ%t = 0.002.
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suppositions: one is operatorszi satisfying the Bose
commutation rules[zi, z†

j ] = δij , which is not an ex-

act relation since, for example,[z0, z
†
0] |0,0,N〉 equals

−N |0,0,N〉 not |0,0,N〉, the second presupposition
claims the average of the products of operators equal
to the products of the average of operators, which also
needsN very large. When the value ofN is about
a few dozens, these prerequisites seem more ques-
tionable. Furthermore, the derivation of the〈Sjj 〉sc in
Ref. [3] involves an inner conflict, since atp = 0 and
p = 1 some of their values equal zero and hence vi-
olate the initial assumption that the fluctuation can
be neglected as compared with the average value.
This may provide an explanation why the curves of
Figs. 4–6 do not show the tendency to the〈Sjj 〉/N as
N increases.

We have also calculated the stationary photon num-
ber distributions of the system starting from following
different initial conditions:

(23)(1)
∣∣Ψ (0)

〉 = |0,0,50〉|0〉,
(24)(2)

∣∣Ψ (0)
〉 = |β = 0.2, n0 = 45〉|0〉,

(25)(3)
∣∣Ψ (0)

〉 = |0,0,50〉|α = 0.2〉 .
Eq. (23) means all the 50 atoms initially stay on level 0
and the light field is vacuum. In Eq. (24),|β,n0〉
denotes that 45 out of 50 atoms occupy level 0 and the
rest 5 atoms are so distributed on level 2 and level 1
as to form a two-level atomic coherent state [7]. In
Eq. (25),|α〉 denotes a photon coherent state.

We find that, as long as the system parametersp,
c and ξ remain the same, the stationary photon dis-
tributions which we obtain will be precisely identi-
cal with no reference to the initial state. These re-
sults indicate that in our calculation the steady states
are indeed reached. For the casec = 2, p = 0.2 and
ξ = 5, the steady photon distribution is characterized
by 〈%n2〉 = 8.9 and〈n〉 = 11.2 which means the cav-
ity photon has a sub-Poissonian distribution as ex-
pected.

4. The time evolution of the superradiant laser
system

The quantum stochastic trajectory approach still
allows us to see the time evolution of the whole
process. The time development of atomic populations

Fig. 8. The time evolution of the atomic populations over an average
of 500 trajectories for the initial state|Ψ (0)〉 = |0,0,20〉|0〉. The
simulation parameters arec = 1, p = 0.5, ξ = 2 and step length
γ%t = 0.0005. This figure is also an example to show that the
system remains stable for system parameters far out of the stable
region in Ref. [3].

〈Sjj 〉/N (j = 0,1,2) for the initial state|Ψ (0)〉 =
|0,0,20〉|0〉 are shown in Fig. 8. The system parame-
ters arec = 1, p = 0.5, ξ = 2. We can see that the
atomic populations display some feature like damped
Rabi oscillation and undergo roughly three vibration
periods to arrive at their stationary values. The total
relaxation time is about 1/γ .

In order to get more physical understanding of
the superradiant laser system, we calculate the time
evolution of the coherent part of the light field〈a(t)〉
corresponding to initial states (23)–(25). When the
initial state is given by Eq. (23), the state expectation
value〈a(t)〉 of the superradiant laser remains zero at
any time for any given single stochastic trajectory.
This is understandable, since none of the initial states,
including atomic state and photonic state, is coherent.
The result will be different for initial states (24), (25),
in which either the relevant atomic initial state or the
photon initial state is coherent. The time evolutions of
the coherent part〈a(t)〉 in both cases first experience
a development then go down gradually to zero due to
the phase diffusion [8].

Another question of importance is the stability
of the stationary solution. It is shown in Ref. [3]
that in certain domain of the three parametersp,
c and ξ the stationary solutions become unstable
and therefore will not represent true stationary states.
However, we have not found any instability for the
microsuperradiant laser in a region much larger than
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those stationary region indicated in Ref. [3]. Fig. 8 also
serves as an example. The system parameters are far
out of the stable region in the Fig. 2 of Ref. [3], while
the atomic populations still evolve to stationary values.

5. Brief discussion and summary

In this Letter, we get the ensemble average value
by average over about four hundred trajectories. The
question may arise whether such number of trajecto-
ries is many enough to attain the true ensemble average
value. To check this we have made a comparison with
a recent paper by Wiele et al. [9] in which both pho-
ton modes are eliminated adiabatically from the mas-
ter equation and the resultant simplified master equa-
tion is treated by a totally different methods from ours
to get the stationary values. For comparison, we also
treat this simplified master equation by quantum sto-
chastic trajectory approach with parameterc = 2 and
calculate the average value over four hundred trajecto-
ries. Our results are the same as those in Ref. [9] and
also similar to our Figs. 1–3, since the two-mode adi-
abatic approximation corresponds to the limiting case
ξ → 0 and in Figs. 1–3 the value ofξ is quite small.
The agreement show that taking about four hundred
trajectories for ensemble average is likely enough.

Brief summary: we have shown that the discontinu-
ities in the curve of stationary atomic populations ver-
sus pump parameter will not appear in microsuperra-
diant laser with finite atom numberN . The authors of
Ref. [9] got the same conclusion by adiabatically elim-
inating both lasing mode and passive mode. Here we
not only keep the photons of lasing mode as in Ref. [3],
but also carry out further study on the temporal evolu-
tions of the atomic populations. The cavity photon dis-
tribution for quite good cavity (ξ = 5) is shown sub-

Poissonian. Besides, the unstable region described in
Ref. [3] seems not to exist, and in the stationary state
for p ∼ 1, not nearly all the atoms populate in the mid-
dle level. For large value ofξ , the atomic population
in the middle level even becomes very small, hence the
corresponding curves do not show the tendency to the
semiclassical results of Ref. [3] asN increases from
10 to 30. This may hint that the limit of〈Sjj 〉/N as
N → ∞ may also depend onξ .
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