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A critical issue that hinders the development of chip-scale optical gyroscopes is the size dependence of the
Sagnac effect, which manifests as a rotation-induced phase shift or frequency splitting between two counter-
propagating waves or resonances, and is proportional to the size of the optical system. We show numerically
and theoretically that the far-field emission patterns (FFPs) of optical microdisk cavities depend strongly on
rotation and can therefore provide an alternative approach. At low rotation speed where resonant frequen-
cies barely shift with rotation (i.e., a negligible Sagnac effect), the FFPs already exhibit a significant
rotation-induced asymmetry, which increases linearly with the rotation speed. We further identify the basic
requirements to maximize this effect, including distinct output directions for the clockwise and counter-
clockwise waves in a cavity mode, as well as a vanishing frequency splitting between one such mode and its
symmetry related partner mode. Based on these requirements, we propose several microcavity shapes that
display orders of magnitude enhancement of the emission sensitivity to rotation and could stimulate a new
generation of optical gyroscopes with small footprints and on-chip integrability. © 2015 Optical Society of

America
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1. INTRODUCTION

Optical gyroscopes have revolutionized precision measurement
of rotation thanks to their scientific ingenuity, affordability,
long-term reliability, and compact size [1–5]. They have been
widely utilized for both civilian and military aircraft as well as
satellites, rockets, and nautical navigation. Meanwhile, optical
microcavities have also found a broad range of applications
since their debut two decades ago [6,7], from coherent light
sources in integrated photonic circuits to cavity quantum
electrodynamics, single-photon emitters, and biochemical sen-
sors. Due to their small footprints and on-chip integration

capability, microcavity-based gyroscopes [8–11] can play an
important role in reducing the equipment cost in space mis-
sions and open the possibility for a new generation of on-chip
optical gyroscopes [12].

One obstacle to miniaturization [13–19] is imposed by the
current measurement scheme of optical gyroscopes, which is
based on the Sagnac effect [1] and has barely changed in
the last 50 years since its introduction. The Sagnac effect man-
ifests as a rotation-induced phase shift in a nonresonant struc-
ture (e.g., an optical fiber) or a frequency splitting in a resonant
cavity, between two counterpropagating waves or resonances;
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it is proportional to the size of the cavity, which puts optical
microcavities at a serious disadvantage in terms of sensitivity
when compared with macroscopic cavities used in current
optical gyroscopes. Therefore, to make optical microcavities
a viable option for rotation sensing, a new detection scheme
must be developed. Previous studies [11,20,21] indicate that
the quality (Q) factor of resonant modes also displays a rota-
tion-induced variation, and its relative change can be higher
than that of the resonant frequencies. This enhancement, how-
ever, is still not sufficient to compensate for the small size of
microcavities, with sensitivity far below the Sagnac effect in
macroscopic cavities.

In this work we investigate rotation-induced changes of the
far-field emission patterns (FFPs) of microdisk resonances. We
find a surprisingly strong dependence of FFPs on rotation
speed, which may be used as a measurable signature of rota-
tion. This strong FFP sensitivity to rotation is achieved by
satisfying three basic requirements. The first one is that the
emission is nonisotropic so that the output direction may be
changed by rotation. This requirement can be realized by
deforming the disk shape from a circle [22–27]. The second
requirement is that the clockwise (CW) and counterclockwise
(CCW) waves in the nonrotating cavity should have distinct
FFPs. Rotation changes the relative weight of CW and CCW
waves in a cavity resonance, resulting in a strong change in the
FFP when this requirement holds. Finally, the relative weight
of CW and CCW waves should be extremely sensitive to
rotation even at very low rotation speed. This requirement
can be satisfied by minimizing the frequency splitting between
a pair of quasi-degenerate resonances in the nonrotating cavity.
By implementing these requirements, we show that a dramatic
enhancement of the FFP sensitivity to rotation can be
achieved.

2. ROTATION-DEPENDENT FAR-FIELD PATTERN

We consider a deformed semiconductor microdisk [22–27]
with thickness much less than the radius. Due to the strong
index guiding of light in the disk plane, the microdisk can
be treated as a two-dimensional (2D) cavity with an effective
refractive index n. Here we focus on a cavity with at least one
symmetry axis, chosen to be along θ � 0, 180° in the polar
coordinates, and asymmetric cavities will be discussed else-
where. The disk boundary is described by ρ�θ�, and the sym-
metry requires ρ�−θ� � ρ�θ�. When the cavity does not rotate,
the resonant modes generally form quasi-degenerate pairs keven,
kodd, whose wave functions have even [ψ even�r; θ� �
ψ even�r; −θ�] and odd [ψodd�r; θ� � −ψodd�r; −θ�] symmetries
about the cavity axis. Therefore, they consist of an equal
amount of CW and CCW waves, denoted by ψm<0 and
ψm>0, where m is the angular momentum number [see
Eq. (2)]. Their FFPs IFFP�θ� are both symmetric about the
symmetry axis, i.e., IFFP�−θ� � IFFP�θ�.

As a microcavity rotates, a pair of such quasi-degenerate
ψ even, ψodd resonances couple to each other and gradually be-
come a pair of CW (ψ cw) and CCW (ψ ccw) resonances [8].
The CW and CCWwaves experience opposite frequency shifts
by rotation, leading to an increase of their frequency splitting

(Sagnac effect). However, such an increase is significant only
when the rotation speed exceeds a critical value Ωc . Below it
the frequency splitting barely changes with rotation, which is
referred to as a “dead zone” in deformed microcavities [8–10].
However, within the dead zone, the balance between CW and
CCWwaves in a resonance is already broken by rotation. If the
CW and CCW waves have different output directions, the
FFP may start changing even within the dead zone. As will
be shown in the next section, the unbalance between CW
and CCW waves introduces an asymmetry in the FFP, which
increases linearly with rotation speed in the “dead zone” and
hence displays a much stronger dependence on rotation speed
than the Sagnac effect.

Without loss of generality, we focus on transverse magnetic
(TM) resonances whose electric field is perpendicular to the
disk plane. We take the angular velocity Ω to be a constant
and perpendicular to the cavity plane, with the convention that
Ω > 0 indicates a CCW rotation. When jRΩ∕cj ≪ 1, the
resonances of an optical microcavity are determined by the
modified Helmholtz equation [8]

�
∇2 � n�⃗r�2 ω

2

c2
� 2i

ω

c
Ω
c
∂
∂θ

�
ψ �⃗r� � 0 (1)

to the leading order of Ω in the rotating frame. Here R is the
average radius of the cavity, n�⃗r� is the refractive index, ω is the
complex resonant frequency of mode ψ �⃗r�, and c is the speed
of light in vacuum. To avoid the confusion with the rotation
speed, we use the wave vector k ≡ ω∕c instead of ω henceforth.
We assume that the detecting apparatus is integrated on the
same chip as the microcavity; thus it measures the FFP in
the rotating frame where the microcavity is stationary.

To find the optical resonances in a rotating microcavity and
their FFPs, one can use the finite-difference time-domain
method adapted to the rotating frame [20,28]. Here we em-
ploy a frequency-domain method that is grid-free—the scatter-
ing matrix method [21]. In this approach the wave function of
a resonance is decomposed in the angular momentum basis,
i.e., ψ �⃗r� � P

m�0;�1;�2;…Am�r�eimθ, where

Am�r� �
�
αmH�

m �k̄mr� � βmH −
m�k̄mr�; r < ρ�θ�;

γmH�
m �k̃mr�; r > ρ�θ�: (2)

Here H�
m are the Hankel functions of the first and second

kind, describing outgoing and incoming waves. k̄m ≡
��nk�2 − 2mkΩ̄∕R�12 and k̃m ≡ �k2 − 2mkΩ̄∕R�12 are m-depen-
dent wave vectors inside and outside the cavity, where Ω̄ ≡
RΩ∕c is the dimensionless rotation speed.

A. Case Study: Symmetric Limaçon Cavity

The first example we analyze is the limaçon cavity, whose
boundary is given by ρ�θ� � R�1� ε cos θ�, where ε is
the deformation parameter. Over a wide range of ε, the cavity
supports resonances with high Q-factor and directional emis-
sion [24]. Figure 1(a) shows a ψ even resonance at ε � 0.41.
This whispering-gallery (WG) like resonance has the normal-
ized frequency kevenR ≃ 33.78, which has dominant angular
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components m � �101 and corresponds to a vacuum wave-
length λ ≈ 930 nm if we take R � 5 μm. The FFP in
Fig. 1(b) shows that the emission is predominantly in the for-
ward direction θ � 0.

As mentioned previously, the cavity symmetry ρ�θ� �
ρ�−θ� determines that the CW and CCW waves in its reso-
nances at rest have the same magnitude. The CW wave of this
ψ even resonance has two main peaks in the FFP, one near θ �
0 and a slightly weaker one at θcw ≈ −138° � 222° [Fig. 1(d)];
they are attributed to the chaotic diffusion of optical rays inside
the cavity [24,29], which can be seen in the logarithmic-scale
intensity plot in Fig. 1(c). The mirror image of these patterns
about the symmetry axis gives the FFP of the CCWwave, with
the secondary peak located at θccw ≈ 138°. The constructive
interference of the CW and CCW waves enhances the emis-
sion near θ � 0 of the ψ even resonance.

As the cavity rotates, the initial balance between the ampli-
tudes of the CW and CCWwaves is broken, which is similar to
the finding in closed billiards [8]. In this ψ even resonance the
CW wave becomes stronger with rotation speed, and the in-
tensity peak at θcw increases with respect to the ones at θccw
and θ � 0 [see Fig. 2(a)], leading to an asymmetric FFP. The
opposite takes place in the corresponding odd-symmetry res-
onance ψodd, with the CCW wave becoming prevailing and an
increasing intensity peak at θccw (not shown). Consequently,
we find that the CW and CCW waves �ψm<0, ψm>0� in the
ψ even, ψodd resonances at rest give good approximations of the

CW and CCW resonances (ψ cw, ψ ccw) at high rotating speed,
i.e., ψ cw ≈ ψm<0 and ψ ccw ≈ ψm>0.

For the FFP evolution to have a strong dependence on ro-
tation, obviously we require ψ cw, ψ ccw to have very different
FFPs from ψ even, ψodd. It is clear from the discussion above
that this criterion can be directly evaluated in a cavity at rest,
by requiring that ψm<0 and ψm>0 have very different FFPs. In a
limaçon cavity the FFP peaks of ψm<0 at θcw and ψm>0 at θccw
satisfy this requirement. Utilizing this difference, the evolution
of the FFP IFFP�θ� of the ψ even resonance shown in Fig. 2(a)
can be quantified by the asymmetry

χ�Ω̄� �
R θcw�σ∕2
θcw−σ∕2 IFFP�θ; Ω̄�dθR θccw�σ∕2
θccw−σ∕2

IFFP�θ; Ω̄�dθ
− 1; (3)

where σ is the angular detection window of each peak and
taken to be 15°. We note χ�Ω̄ � 0� � 0.

In Figs. 2(b) and 2(c) we show how the Sagnac effect, given
by the real part of the dimensionless frequency splitting
Δ � �kcw − kccw�R of the ψ cw, ψ ccw resonances, and the
FFP asymmetry χ evolve with rotation speed. The “dead zone”
for Δ lies below a critical speed Ω̄c ∼ 10−9 (or equivalently,
Ω ∼ 6 × 104 rad∕s), within which Δ barely changes. In

Fig. 1. Near-field and far-field intensity patterns of a nonrotating
limaçon cavity. (a) Near-field intensity pattern in the logarithmic scale
and (b) far-field intensity pattern in the polar coordinates of a symmetric
resonance ψ even at kevenR ≈ 33.78. The cavity deformation is ε � 0.41,
and the refractive index is n � 3. The resonance is concentrated near the
cavity boundary, similar to a whispering-galley mode. Its emission is
directional, with the main direction centered in θ � 0° and the secondary
peaks in θ ≈ 138° and −138° � 222°. The CW wave component of this
resonance is separated and plotted in (c) and (d). Its mirror image about
the horizontal axis gives the CCW wave (not shown).
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Fig. 2. Rotation-induced changes in resonance frequency and far-field
emission pattern of a limaçon cavity. (a) Far-field intensity pattern of the
resonance shown in Fig. 1 when the dimensionless rotation speed
Ω̄ � 10−8 (thick line), 10−9 (medium line), and 10−10 (thin line).
The maximum intensity is normalized to 1 for each curve. Rotation en-
hances the emission peak at θcw and reduces the one at θccw . (b) Dimen-
sionless frequency splitting Δ of the quasi-degenerate resonances as a
function of the normalized rotation speed Ω̄. Δ remains nearly constant
below Ω̄c ≈ 10−9 (marked by the vertical dashed line), marking a “dead
zone” for the Sagnac effect. The diamonds represent the numerical data,
and the solid line shows the result of the coupled-mode theory, Eq. (4).
(c) Rotation-induced FFP asymmetry χ as a function of Ω̄. χ increases
linearly with Ω̄ inside the “dead zone.”

Research Article Vol. 2, No. 4 / April 2015 / Optica 325



contrast, χ displays a linear increase with the rotation speed Ω̄
in the “dead zone,” based on which the rotation speed can be
detected. The minimum detectable Ω scales linearly with the
smallest asymmetry that can detected in the FFP measurement.
For example, if we assume that min�χ� ∼ 10−4, the lowest
rotation speed that can be measured is Ω̄ ≈ 10−13, or equiv-
alently, Ω ∼ 6 rad∕s. This performance is comparable to
commercial optical gyroscopes based on the Sagnac effect in
macrocavities, whose sensitivity would be 104 times lower
when simply scaled down to microcavities.

B. Further Enhancement of Far-Field Sensitivity to
Rotation

To enhance the FFP sensitivity to rotation, we conduct a quan-
titative analysis with the coupled-mode theory. The increase of
the FFP asymmetry χ with the rotation speed can be attributed
to the mixing of one resonance with others by rotation. Since
ψ even and ψodd are quasi-degenerate, their mutual coupling is
much stronger than the coupling with other resonances farther
away in frequency [30,31]. Therefore, we can approximate
ψ�Ω̄� ≈ aeven�Ω̄�ψ even � aodd�Ω̄�ψodd [8–10,21], which gives
the frequency splitting

Δ�Ω̄� ≈ �Δ2
0 � g2Ω̄2�12: (4)

Here Δ0 ≡ Δ�Ω̄ � 0� and g is the dimensionless coupling
constant between ψ even and ψodd, which are approximately real
for high-Q resonances [21]. In a deformed microcavity,
Δ0 ≠ 0 in general, and the dead zone is determined by
Ω̄c ≡ jΔ0j∕g . When Ω̄ ≫ Ω̄c , Δ approaches its asymptote
Δ�Ω̄� ≈ gΩ̄ and displays the familiar linear scaling of the
Sagnac effect. Below Ω̄c , the rotation-induced splitting (gΩ̄�
is much smaller than the intrinsic splitting (Δ0), and the
Sagnac effect becomes very weak as shown in the “dead zone”
in Fig. 2(b). Using g � 21.45 − 0.004i and Δ0 �
�2.29� 0.90i� × 10−8 from the scattering matrix calculation,
Eq. (4) gives a good approximation of Ω̄c ≈ 1.07 × 10−9.

A high rotation sensitivity of the FFP asymmetry requires a
rapid increase of the mixing ratio ξ�Ω̄� ≡ aodd�Ω̄�∕aeven�Ω̄�
with rotation speed, in addition to very different FFPs for
ψm<0 and ψm>0 at rest. Deep in the dead zone (Ω̄ ≪ Ω̄c),
the mixing ratio ξ�Ω̄� in the initially ψ even resonance is
approximately

ξ�Ω̄� ≈ �i
Ω
2Ωc

; (5)

from which we see immediately that the key quantity is a small
Ωc , or equivalently, a small frequency splitting Δ0 at rest and a
large coupling g between ψ even, ψodd resonances. g is propor-
tional to the optical path length and hence limited by the small
size of microcavities. Δ0, however, can be reduced by using
microcavities with more than one symmetry axis [9].

One example is the microcavity with spatial symmetry de-
scribed by the dihedral group D3, ρ�θ� � R�1� ϵ cos 3θ�
[9], which we will simply refer to as the D3 cavity (see Fig. 3).
Idealistically Δ0 can be entirely eliminated for the resonances

whose angular momentam in Eq. (2) are not integer multiplies
of 3, giving a linear increase of the frequency splitting Δ with
the rotation speed Ω [Fig. 3(d)]. In practice, there is always
inherent surface roughness introduced unintentionally during
the fabrication process, which breaks the exact D3 symmetry
and lifts the degeneracy of ψ even, ψodd at rest slightly. Thus a
“dead zone” is created, but its size is expected to be much
smaller than the intrinsic one, e.g., for the limaçon cavity.
The resulting small Ω̄c greatly enhances the rotation depend-
ence of the FFP asymmetry at low speed, given that the ψm<0
and ψm>0 waves also have very different FFPs here [Fig. 3(b)].
To visualize this expected enhancement, we plot χ by con-
structing ψ�Ω̄� ∝ ψ even � ξ�Ω̄�ψodd:ψ even, ψodd are directly
obtained by the scattering matrix method, and ξ�Ω̄� can be
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Fig. 3. Enhanced sensitivity of far-field emission pattern to rotation in
a D3 cavity with R � 5 μm and n � 3. (a) Near-field intensity plot of
the CW wave in a whispering-gallery-like resonance at kevenR ≈ 33.80 in
the logarithmic scale. The dominant angular components of this
resonance are m � �94. (b) Distinct FFPs in the polar coordinates
of CW (solid) and CCW (dotted) waves at rest. (c) Far-field intensity
pattern at Ω̄ � 10−13 (thick line), 10−14 (medium line), and 10−15 (thin
line). (d) Dimensionless frequency splitting Δ as a function of the nor-
malized rotation speed Ω̄, showing a linear increase due to the vanishing
“dead zone”. The diamonds represent the numerical data, and the solid
line shows the result of the coupled-mode theory, Eq. (4). (e) Rotation-
induced FFP asymmetry χ of the ψ even resonance as a function of Ω̄.
θcw � 254°, θccw � 226° (equivalent to the one at −254°), and
σ � 15° are used in calculating χ�Ω̄� from Eq. (3).
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calculated from Eq. (5), using g ≈ 20.62 again from the scat-
tering matrix method and taking Ω̄c � 10−14, which is 105

smaller than that in the limaçon case. The result is shown in
Figs. 3(c) and 3(e), and a rotation sensitivity of χ is enhanced
by roughly the same factor, i.e., 105, at low speed when com-
pared with the limaçon cavity shown in Fig. 2(b): now
χ � 10−4 corresponds to Ω̄ ≈ 10−18 instead of 10−13.

3. DISCUSSION AND CONCLUSION

In summary, we have investigated how rotation modifies the
FFPs of open microcavities. In a 2D cavity deformed from a
circle and with at least one symmetry axis, the FFPs are non-
isotropric and each resonance has equal CW and CCW wave
components at rest. Rotation breaks the balance between CW
and CCW waves, causing a significant change in the FFP, if
the CW and CCW waves have distinct output directions. At
low rotation speed where the resonant frequencies barely shift
with rotation, the FFPs already exhibit asymmetry, which in-
creases linearly with the rotation speed. The sensitivity of the
FFPs to rotation can be enhanced by reducing the intrinsic
splittingΔΩ0 of quasi-degenerate resonances at rest, achievable
via engineering the cavity shape. For example, the D3 sym-
metry can support degenerate resonances with directional
emission. Using a perturbation theory [30–32], one can show
that the small ΔΩ0 in a D3 cavity due to surface roughness
scales inversely with the system size to the leading order,
and hence a larger cavity will have a stronger sensitivity to ro-
tation. To eliminate this residual ΔΩ0, one solution is using
the hexagonal cavity, which also possesses the D3 symmetry
and supports degenerate resonances. Since single-crystalline
GaN or ZnO disks with hexagonal cross section can be grown
with atomic flat surfaces [33–36], ΔΩ0 due to surface rough-
ness can be greatly reduced. Finally we comment that the
current study is focused on the FFP change of individual res-
onances in the linear regime. It would be interesting to explore
the simultaneous excitation of multiple resonances and their
nonlinear interactions in rotating microcavities in future work.
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