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In a random-scattering system, the deposition matrix maps
the incident wavefront onto the internal field distribution
across a target volume. The corresponding eigenchannels
have been used to enhance the wave energy delivered to
the target. Here, we find the sum rules for the eigenvalues
and eigenchannels of the deposition matrix in any system
geometry: including two- and three-dimensional scattering
systems, as well as narrow waveguides and wide slabs. We
derive a number of constraints on the eigenchannel intensity
distributions inside the system as well as the correspond-
ing eigenvalues. Our results are general and applicable to
random systems of arbitrary scattering strength as well as
different types of waves including electromagnetic waves,
acoustic waves, and matter waves. © 2022 Optica Publishing
Group

https://doi.org/10.1364/OL.468697

Introduction. Wavefront shaping opened a new frontier for
coherent manipulation of wave propagation in complex media
[1–4]. The core idea is rooted in the determinism of coher-
ent wave propagation in static, linear scattering media [5].
Although the incident wavefront can be optimized via an itera-
tive optimization procedure [6], solving the eigenvalue problem
of a linear operator (matrix) is a more predictive approach [7].
Recently, a number of matrices have been introduced to manip-
ulate quantities such as transmittance, reflectance, dwell-time,
spatial distribution, etc., see Refs. [4,5,8,9] for review. Control
and optimization of wave energy inside a scattering medium
requires an access to the internal field distribution [10]. To find
the ultimate limit of energy delivery to a target buried deep
inside a diffusive medium, we recently introduced a deposition
matrix that relates the incident wavefront to the internal field
distribution across the target [11]. The maximal eigenvalue of
the matrix gives the largest possible energy enhancement, while
the corresponding eigenvector gives the optimal incident wave-
front. However, the properties of the deposition eigenvalues and
eigenchannels remain essentially unknown.

In this work, we theoretically obtain a series of sum rules
satisfied by the local intensity of the deposition eigenchan-
nels (DEs) and their eigenvalues. In Ref. [11], DEs were
decomposed into the transmission eigenchannels (TEs) to

demonstrate the incoherent (i.e., intensity summation) and
coherent (interference) contributions. Here, we show that these
contributions obey rigorous sum rules. These relationships not
only provide physical insights into DEs, but also may play an
important role in utilizing such channels for the most efficient
energy delivery in experiments.

Deposition matrix. We consider a continuous wave of sin-
gle frequency at which the material dispersion and absorption
of light are negligible. Figure 1 illustrates two geometries for
energy delivery into a linear scattering system: (a),(b) wide
slab with open (leaky) boundary, (c),(d) narrow waveguide with
closed (reflecting) sidewalls. The deposition matrix (DM) Z is
introduced for a target region of arbitrary size, shape, and depth
[11]. It relates an orthonormal set of input waves to the corre-
sponding spatial field distributions within the target region. As
illustrated in Fig. 1(a) of a wide slab, the orthogonal input modes
have distinct wave vectors, while in Fig. 1(c), the input waves are
a complete set of waveguide modes. The total number of input
modes is N. With a unit flux of incident light in the nth mode,
the complex field distribution throughout the scattering system
is E(0)

n (r⃗). We sample the fields uniformly across a target region
of volume V centered at r⃗D, see Fig. 1(a). The field at the mth
sampling point r⃗m is E(0)

n (r⃗m; r⃗D), where m = {1, . . . , M}. The
volume V/M covered by each sampling point is much smaller
than λ3, where λ is the wavelength. The deposition matrix of
dimension M × N is defined as

Zmn(r⃗D) ≡

[︃
ϵ(r⃗m)

V

M

]︃1/2

E(0)
n (r⃗m; r⃗D) , (1)

where ϵ(r⃗) is the spatially varying dielectric constant.
The deposition eigenchannels are obtained from the singular

value decomposition (SVD), Zmn(r⃗D) =
∑︁N

α=1 U(D)
mα(r⃗D) ζ

1/2
α (r⃗D)[︁

V (D)
nα (r⃗D)

]︁ ∗. Here, ζα(r⃗D) and V (D)
nα (r⃗D) are the eigenvalue and

eigenvector of matrix Z†(r⃗D)Z(r⃗D), respectively. The incident
wavefront V (D)

nα (r⃗D) excites the αth eigenchannel E(D)
α (r⃗; r⃗D) =∑︁N

n=1 E(0)
n (r⃗)V (D)

nα (r⃗D) inside the system. Using the unitarity of
matrices U(D)(r⃗D) and V (D)(r⃗D) as well as the definition of Z(r⃗D)

in Eq. (1), we get an explicit relationship for the eigenvalue (see
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Fig. 1. Schematic depiction of (a),(b) the slab and (c),(d) the
waveguide scattering-medium geometries. The deposition matrix
relates the input to the internal fields inside a scattering medium,
panels (a),(c). The transmission matrix Tmn relates the input and
output degrees of freedom, panels (b),(d).

Supplement 1):

ζα(r⃗D) =
V

M

M∑︂
m=1

ϵ(r⃗m)
|︁|︁E(D)

α (r⃗m; r⃗D)
|︁|︁2 . (2)

This relationship reveals that the deposition eigenvalue is equal
to the total energy inside the target region with a coherent
excitation of E(D)

α (r⃗; r⃗D).
For comparison, Figs. 1(b) and 1(d) show the transmission

matrix T that maps the incident fields to the transmitted fields.
When a monochromatic light with a unit flux in the nth mode
is incident to the scattering system, |Tmn |

2 is the amount of flux
carried away by the mth outgoing mode in transmission. TEs
are obtained from the SVD Tmn =

∑︁N
α=1 U(T)

mα · τ1/2
α ·

[︁
V (T)

nα
]︁ ∗. The

input and output wavefronts of the αth TE are given by V (T)
nα

and U(T)
mα , and the transmittance by eigenvalue τα . Similar to

the DEs above, the incident wavefront V (T)
nα excites the αth TE

E(T)
α (r⃗) =

∑︁N
n=1 E(0)

n (r⃗)V (T)
nα inside the system.

Sum rules for deposited energy. Singular value decompo-
sition is a linear transformation of the input basis that yields an
orthonormal set defined by the unitary matrix V (D)(r⃗D) or V (T) for
the deposition and transmission, respectively. This orthonormal
property of the input eigenvectors V (D)

nα (r⃗D) and V (T)
nα has a pro-

found impact on the distribution of the wave intensity inside the
scattering medium. Summing the intensity of all eigenchannels
at any given point r⃗ gives (see Supplement 1)

N∑︂
α=1

|︁|︁E(D)

α (r⃗; r⃗D)
|︁|︁2 = N∑︂

α=1

|︁|︁E(T)
α (r⃗)

|︁|︁2 = N∑︂
n=1

|︁|︁E(0)
n (r⃗)

|︁|︁2 . (3)

This means the sum of intensities excited by any complete set
of input wavefronts, such as those of DEs or TEs, remains the
same. The above relationships lead to two remarkable proper-
ties. First, the physical quantity being preserved by an SVD
transformation is the sum of field intensity. Because Eq. (3)
holds at every position, and thus can be multiplied by ϵ(r⃗)
from both sides, it can be interpreted as point-wise (i.e., local)
conservation of energy. Second, the above relationship is not
statistical—it does not involve any statistical averaging over an
ensemble of disorder realizations, instead, it holds for every
realization.

?
Fig. 2. Numerical simulations in a 2D disordered waveguide
(Supplement 1). (a) Intensity participation ratio P(D)(z = zD; zD) for
DEs (circles) is consistently below P(T)(z = zD) for the TEs (solid
line) at different depths. (b) Probability density of the deposition
(red circle) and transmission (green cross) eigenvalues for a slice
target at the depth zD = L/2 (Supplement 1). Compared to TEs,
fewer DEs have larger eigenvalues and bigger contributions to local
intensities, leading to their lower participation ratios in panel (a).

Equation (3) has another important implication—a large
enhancement of energy deposition means only a small
number of eigenchannels make dominant contributions to
the sum and the rest of the contributions are negligible.
This can be quantified by the intensity participation ratio
P (D)(z, zD) =

(︂∑︁N
α=1

|︁|︁E(D)
α (z; zD)

|︁|︁2)︂2
/

(︂∑︁N
α=1

|︁|︁E(D)
α (z; zD)

|︁|︁4)︂ for DEs,

and P (T)(z) =
(︂∑︁N

α=1

|︁|︁E(T)
α (z)

|︁|︁2)︂2
/

(︂∑︁N
α=1

|︁|︁E(T)
α (z)

|︁|︁4)︂ for TEs [12].
Here, P = N when all contributions are equal and P = 1
when only one out of N channels contribute. Figure 2(a) plots
P (D)(z = zD; zD) and P (T)(z = zD) versus zD obtained numerically
(see Supplement 1) for a 2D disordered waveguide system in
Figs. 1(c) and 1(d). A lower participation ratio for DEs, in combi-
nation with the sum rule in Eq. (3), leads to a higher enhancement
of the cross section integrated intensity at the target depth z = zD,
as observed in Ref. [11]. Alternatively, the extraordinarily large
intensities of a few DEs, in turn, allow for the minimal intensity
to be even below that of the lowest-transmission eigenchannel
at the same depth. Furthermore, because Eq. (2) relates the
local intensity of DEs to their eigenvalues, their probability den-
sity function (PDF) exhibits a heavy tail toward the large value
of ζmax(r⃗D)/⟨ζ(r⃗D)⟩, see Fig. 2(b). In contrast, the PDF of the
transmission eigenvalues P(τ) has the celebrated bimodal dis-
tribution [13]. It has one peak at τα ∼ 0 and a smaller peak at
τα ∼ 1. Transmission eigenvalues have an upper bound of 1 due
to flux conservation, whereas deposition eigenvalues have no
such constraint. The eigenvalue repulsion leads to the peak of
P(τ) at 1 and a long tail of P(ζ) at large ζ , c.f., Fig. 2(b). Impor-
tantly, the enhancement of DEs ζ/⟨ζ⟩ exceeds that of TEs τ/⟨τ⟩,
as observed in Ref. [11]. This is consistent with a smaller partic-
ipation ratio of DEs in Fig. 2(a) and their higher local intensity
enhancement than TEs, see Fig. 3. All of these conclusions are
indeed supported by the results in Ref. [11], demonstrating that
a combination of the knowledge of the eigenvalue PDF and the
constraints imposed by Eq. (3) has important implications for
local energy density enhancement inside a random scattering
system.
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Fig. 3. Cross-section-averaged intensity profile of DE (red) in
disordered waveguide geometry (see Supplement 1) for zD = L/2
and its incoherent component (blue) is compared to the corre-
sponding TE (green). Panels (a) and (b) correspond to the highest
(eigenchannel α = 1) and lowest (eigenchannel α = N) eigen-
value, respectively. A random input intensity profile (dashed line)
is shown for reference. Around the target region, the enhance-
ment/suppression of the local intensity of DE above/below that
of the maximum/minimum TE is observed. The incoherent part,
however, is below/above the maximum/minimum TE.

We also find the sum rule for the deposition eigenvalues.
Summing over ζα(r⃗D) and recalling Eq. (3), we obtain

N∑︂
α=1

ζα(r⃗D) =
V

M

M∑︂
m=1

ϵ(r⃗m)

[︄
N∑︂

α=1

|︁|︁E(D)

α (r⃗m; r⃗D)
|︁|︁2]︄

=
V

M

M∑︂
m=1

ϵ(r⃗m)

[︄
N∑︂

α=1

|︁|︁E(T)
α (r⃗m)

|︁|︁2]︄
=

V

M

M∑︂
m=1

ϵ(r⃗m)

[︄
N∑︂

n=1

|︁|︁E(0)
n (r⃗m)

|︁|︁2]︄ .

(4)

This equation shows that the sum of all deposition eigenvalues
is equal to a sum of local energies (sampled over M points

{︁
r⃗m
}︁
)

for all DEs, TEs or, more generally, excited by any orthogonal
set of input wavefronts.

Therefore, the sum of all deposition eigenvalues gives the total
energy within the target region excited by all input degrees of
freedom. Moreover, the degree of control of the energy delivery
via DEs is determined by the PDF of deposition eigenvalue P(ζ).
In diffusive systems, P(ζ) is amenable to a theoretical description
within the framework of filtered random matrix (FRM) theory
[11,14], which thus provides information about the maximal and
minimal energies achievable at the target.

Interference of transmission eigenchannels. The intensity
sum rule in Eq. (3) does not imply that one set of eigenchan-
nel intensity profiles, e.g., DEs’, is a linear superposition of the
intensity profiles for another set, e.g. of TEs’. For example, a lin-
ear combination of

|︁|︁E(0)
n (r⃗)

|︁|︁2, which all decay with depth, cannot
be superimposed to represent the maximum TE profile

|︁|︁E(T)
α (r⃗)

|︁|︁2,
which is peaked in the middle of the system. In Ref. [11], we
demonstrated that the interference between channels inside the
scattering system is responsible for the diverse intensity profiles
of different eigenchannels. Here, we are specifically interested
in a relationship between DEs and TEs. The field patterns of the
two eigenchannels are related via a linear transformation:

E(D)

α (r⃗; r⃗D) =

N∑︂
β=1

E(T)
β (r⃗)dβα(r⃗D), (5)

where the decomposition coefficient dβα(r⃗D) =
∑︁N

n′=1[V
(T)
βn′]

∗

V (D)

n′α(r⃗D) represents a projection of the input vector of the αth DE
onto that of the βth TE. Using these decomposition coefficients,
the intensity pattern of a DE can be expressed as two distinct
terms: |︁|︁E(D)

α (r⃗; r⃗D)
|︁|︁2 = N∑︂

β=1

|︁|︁E(T)
β (r⃗)

|︁|︁2 |dβα |
2 (6)

+

N∑︂
β≠β′

dβα d∗

αβ′E(T)
β (r⃗)

[︁
E(T)

β′ (r⃗)
]︁ ∗ . (7)

The first term is an incoherent sum of TE intensity patterns,
whereas the second term is the result of interference between
different TEs inside the scattering medium. The numerical simu-
lation results in Figs. 3(a) and 3(b) illustrate that the interference
contributions can be positive or negative to enhance or sup-
press the energy in the target. These contributions provide a
physical mechanism to enhance the local energy above that
of the largest-transmission eigenchannel or below that of the
smallest-transmission eigenchannel.

The quantity |dβα |
2 represents the incoherent (i.e., a real pos-

itive intensity) contribution due to βth TE to the αth DE. We
obtain the sum rule (see Supplement 1):

N∑︂
β=1

|dβα |
2 = 1 =

N∑︂
α=1

|dβα |
2. (8)

This is a non-trivial result, since |dβα |
2 cannot be interpreted as

a weight coefficient due to presence of the interference term in
Eq. (7). Furthermore, it leads to an important constraint on this
very term. By summing both sides of that equation and using
Eqs. (3) and (8), we get

N∑︂
α=1

[︄∑︂
β≠β′

dβα d∗

αβ′E(T)
β (r⃗)

[︁
E(T)

β′ (r⃗)
]︁ ∗]︄

≡ 0. (9)

As shown in Ref. [11], the interference contribution can be
quite large, even dominant in some cases. The relationship in
Eq. (9) states that the sum of interference contributions to all
DEs is, in fact, zero. To illustrate this point, we plot (see Sup-
plement 1) in Fig. 4 the coherent contributions at the target
depth zD = L/2 for all DEs. Each contribution is normalized
by (1/N)

∑︁N
n=1

⟨︂|︁|︁E(0)
n (zD)

|︁|︁2⟩︂, which represents the unoptimized
intensity at the target depth. A small number of DEs have large
positive contributions. In contrast, the number of small negative
contributions is large to ensure the sum is equal to 0 in Eq. (9).

Again, we stress that the above relationships apply to every
disorder configuration and do not require any statistical aver-
aging. Furthermore, because the left-hand side of Eq. (7) is a
positively defined quantity, we note that

N∑︂
β=1

|︁|︁E(T)
β (r⃗)

|︁|︁2 |dβα |
2 ≥ −

N∑︂
β≠β′

dβα d∗

αβ′E(T)
β (r⃗)

[︁
E(T)

β′ (r⃗)
]︁ ∗ . (10)

It illustrates that when the interference contribution does become
negative, i.e., for a low-deposition eigenchannel, it cannot exceed
in absolute value the incoherent contribution, i.e., it cannot
become dominant, see the inset in Fig. 4. However, such restric-
tion does not apply for the high-deposition eigenchannel with
positive coherent contribution, which can and, in fact, does
become dominant in a diffusive medium for the deposition depth

https://doi.org/10.6084/m9.figshare.20480808
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Fig. 4. Coherent contribution in Eq. (7) for each DE α, computed
at z = zD in the numerical model (see Supplement 1), is shown in
the main plot. A small number of large positive contributions is
balanced by a large number of smaller negative contributions in
accordance with Eq. (9). The inset shows that, when negative, the
coherent contribution (red) cannot exceed the incoherent one (blue)
in absolute value, see Eq. (10). In both plots, symbols/lines represent
one disorder realization/statistically averaged results, respectively.

zD<L/2, c.f., Fig. 4 and Ref. [11]. We note that such larger pos-
itive interference contributions are related to the PDF of the
deposition eigenvalues. Since the PDF P(ζ) has a long tail at
large ζ in diffusive systems, the number of positive contribu-
tions is small. Consequently, the sum rule in Eq. (9) dictates
that such contributions must be large to balance the numerous
negative ones.

Conclusions. Targeted delivery of electromagnetic energy
inside a random-scattering system has important applications in
imaging, optogenetics, photothermal therapy, etc. DEs accom-
plish the goal of delivering maximal or minimal amount of
energy to a target region of arbitrary size, shape, and depth. Little
is known about the spatial structure of the deposition eigenchan-
nels, albeit some progress has been made in understanding the
spatial distribution of TEs [12,15–18]. The PDF of deposition
eigenvalues has been predicted by the filtered random matrix
theory [11]. The sum rules, presented in this work, establish a
connection between the spatial structure of DEs and the eigen-
values. They represent the rigorous constraints for any disorder
realization of 2D and 3D scattering systems in both waveguide
and slab geometry. We note that material dispersion is neglected
in this study of monochromatic light. It would be interesting
to extend the sum rules for dispersive materials and broadband
light, and also explore the limitation due to incomplete channel
control of excitation.
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