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Creation of new lasing modes with
spatially nonuniform gain
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We report on the creation of new lasing modes with spatially nonuniform profiles of optical gain in a one-
dimensional random structure. It is demonstrated numerically that even without gain saturation and mode
competition, the spatial nonuniformity of gain can cause dramatic and complicated changes. New lasing
modes appear with frequencies between those of the lasing modes with uniform gain. We examine new
modes in detail and find that they exhibit high output directionality. Our results show that random lasing
properties may be modified significantly without changing the underlying structure. © 2009 Optical Society
of America
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The available lasing modes of a conventional laser
are typically fixed once the cavity is made. Finer con-
trol over lasing properties may be obtained, for ex-
ample, by carefully placing the gain medium in a cav-
ity to reduce the lasing threshold [1] or by using
specific pumping profiles to select lasing modes with
desirable properties [2–5]. However, once the laser
cavity is made, it is difficult to obtain new lasing
modes that have no correspondence to the resonant
modes of the cold cavity if nonlinearity is negligible.
A random laser is made of disordered media, and las-
ing modes are determined by the random distribution
of refractive index. Owing to the randomness, it is
difficult to intentionally produce lasing modes with
desirable properties. To have more control, the struc-
tures themselves may be adjusted by selecting the
scatterer size [6–8] and separation [9,10], changing
the scattering structure with temperature [11,12] or
electric field [13], or creating defects [14]. For random
lasers in the localization regime, spatially nonover-
lapping modes may be selected for lasing by local
pumping [15,16]. In the case of diffusive random la-
sers far above the lasing threshold, nonlinear inter-
action between the light field and the gain medium
alters the lasing modes [17]. Without gain nonlinear-
ity, local pumping and absorption in the unpumped
region can also change the lasing modes significantly
[18], because the system size is effectively reduced.
Recent experiments [19,20] and numerical studies
[21] show that even without absorption in the un-
pumped region, the spatial characteristics of lasing
modes may vary with local pumping. Although the
spatial distributions are distorted, lasing modes have
a one-to-one correspondence to resonant modes of the
passive system. However, spatial inhomogeneity in
the refractive index can introduce a linear coupling of
resonant modes mediated by the polarization of the
gain medium [22].

In this Letter, we demonstrate that new lasing
modes can be created by nonuniform profiles of gain
in 1D random systems without absorption and non-
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linearity. These new lasing modes do not correspond
to modes of the passive system nor to any lasing
modes in the presence of uniform gain. New lasing
modes can lase independently of other lasing modes
when gain saturation is taken into account. They ap-
pear at various frequencies for different gain profiles
and can have highly directional output. These find-
ings may offer an easy and fast way of dramatically
changing random laser properties without modifying
the underlying structure.

We consider a 1D random system composed of 161
layers. Dielectric material with index of refraction
n1=1.05 separated by air gaps �n2=1� results in a
spatially modulated index of refraction n�x�. Outside
the random media n0=1. The system is randomized
by specifying thicknesses for each layer as d1,2
= �d1,2��1+���, where �d1�=100 nm and �d2�=200 nm
are the average thicknesses of the layers, �=0.9 rep-
resents the degree of randomness, and � is a random
number in (�1,1). The length of the random struc-
ture L is normalized to �L�=24.1 �m. The above pa-
rameters give a localization length of ��240 �m at a
vacuum wavelength �=600 nm.

The transfer matrix (TM) method developed in [21]
is used to simulate lasing modes at threshold with
linear gain. A real wavenumber k=2� /� describes
the lasing frequency. Propagation of the electric field
through the structure is calculated via the 2�2 ma-
trix M. Boundary conditions with only emission out
of the system require M22=0. Linear gain is simu-
lated by appending an imaginary part to the index of
refraction ñ�x�=n�x�+ inifE�x�, where ni	0. We ne-
glect the change to n�x� in the presence of gain. Spa-
tial nonuniformity of gain is implemented by multi-
plying ni by a step function fE�x�=H�−x+ lG�, where
x=0 is the left edge of the structure and x= lG speci-
fies the right edge of the gain region.

Lasing frequencies and thresholds are located by
determining which values of k and ni, respectively,

satisfy M22=0. Re�M22�=0 �Im�M22�=0� forms real
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(imaginary) “zero lines” in the (k, ni) plane. The
crossing of a real and imaginary zero line pinpoints a
solution. Zero lines are visualized in Fig. 1 by plot-
ting log10�Re M22� and log10�Im M22� to enhance the re-
gions near M22=0. Changes of zero lines are moni-
tored as the right edge of the gain region moves
gradually from lG=L (uniform gain). In the wave-
length range 500 nm	�	750 nm, new lasing modes
appear between existing lasing modes. Figure 1(a)
shows the only two lasing modes (marked 1 and 2)
found within a smaller frequency range for lG
=14.961 �m. Mode 1 ��1=593 nm� has a lower
threshold than mode 2 ��2=598 nm�. Both modes cor-
respond to resonant modes of the passive system. The
spatial intensity distributions are distorted by non-
uniform gain as reported previously [21]. However,
for lG=14.559 �m [Fig. 1(c)] the zero lines are joined.
An entirely new lasing mode ��nm=596 nm�, en-
circled in white, appears between modes 1 and 2. The
spatial intensity distribution of the new lasing mode
differs from those of modes 1 and 2. As lG decreases
further, the zero lines forming mode 2 and the new
mode pull apart. The solutions approach each other
in the (k, ni) plane [Fig. 1(f)] until becoming identical.
The zero lines then separate; mode 2 and the new
mode disappear [Fig. 1(h)]. The lines cross again for
lG=14.295 �m; the solutions reappear and move
away from each other [Fig. 1(j)].

Fig. 1. (Color online) Left, real (green) and imaginary
(red) zero lines of M22 in the �k ,ni� plane. Right, phase 
 of
M22 in the �k ,ni� plane. The ranges of axes are
10.48 �m−1	k	10.64 �m−1 and −0.0326	ni	−0.0130.
The gain region length lG is, from top to bottom; (a) and (b)
14.961 �m, (c) and (d) 14.559 �m, (f) and (g) 14.523 �m, (h)

and (i) 14.472 �m, (j) and (k) 14.295 �m.
Verification of lasing mode solutions is provided by
the phase of M22, 
=arctan 2�Im�M22� ,Re�M22��. Lo-
cations of vanishing M22 give rise to phase singulari-
ties. The phase change around a closed path sur-
rounding a singularity is referred to as topological
charge. Two phase singularities are seen in Fig. 1(b)
at the same locations as the zero line crossings in Fig.
1(a), verifying the solutions. The singularity at the lo-
cation of the new lasing mode [Fig. 1(d)] also confirms
that it is a genuine lasing mode in the presence of lin-
ear gain. The singularity associated with the new
mode has opposite topological charge. As lG is re-
duced, two oppositely charged singularities move
closer [Fig. 1(g)], eventually annihilate each other at
lG=14.472 �m [Fig. 1(i)], and reappear at smaller lG
[Fig. 1(k)].

For a more thorough study of the new lasing modes
and confirmation of their existence in the presence of
gain saturation, we switch to a more realistic gain
model. The Bloch equations of two-level atoms [23]
are solved together with Maxwell’s equations via the
finite-difference time-domain method [24]. In the re-
sulting Maxwell-Bloch (MB) equations, nonuniform
gain is simulated with two-level atoms only in the re-
gion 0�x� lG. The rate of atoms being incoherently
pumped from the ground state to the excited state is
proportional to the ground-state population. The pro-
portional coefficient Pr is called the pumping rate.
The gain spectrum is centered at the atomic transi-
tion wavelength �a with a spectral width ��a.

To individually investigate the three lasing modes
for lG=14.295 �m, we set ��a= ��2−�nm� /2. Figure 2
shows the steady-state output intensity with �a=�1,
�2, �nm as Pr is varied. The lasing threshold for mode
1 is reached first at Pr=1.9, then mode 2 at Pr=2.1
and the new mode at Pr=3.0, agreeing qualitatively
with the TM calculation. When �a=�nm the first las-
ing mode is the new mode instead of mode 1 or 2. Fig-
ure 3(a) shows the output emission spectrum just
above the threshold at Pr=3.0. It consists of a single
lasing peak with the same wavelength as the new
mode calculated with the TM method. The spatial in-
tensity distribution from the MB calculation �MB�x��2
is compared with that from the TM calculation
�TM�x��2 in Fig. 3(b). They are normalized as
	0

L�MB�x��2dx=	0
L�TM�x��2dx. The two distributions

Fig. 2. (Color online) Steady-state output intensity versus
pumping rate Pr from MB simulations with different gain
spectra. The atomic transition wavelength �a=�1 (red
crosses), �a=�2 (blue open diamonds), and �a=�nm (black

circles).
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are almost identical; the difference between them is
8%. When �a shifts from �nm to �1 or �2, the first las-
ing mode switches to mode 1 or 2. Figure 3(c) plots
the MB and TM distributions of mode 2 for �a=�2
and Pr=2.1, which are also nearly identical. Compar-
ing Figs. 3(b) and 3(c) the intensity distribution of the
new lasing mode differs significantly from that of
mode 2 within the gain region. Outside the gain re-
gion the two distributions are similar, because their
wavelengths are very close.

With gain on the left side of the structure, we ob-
serve that new lasing modes are concentrated on the
right side of the gain region. Thus the emission
through the right structure boundary is much larger
than that through the left boundary. We calculate the
ratio of right-to-left output flux S
��x=L��2 / ��x
=0��2. For the new lasing mode S=40, indicating the
laser output is highly directional. In comparison, S
=1.1 for mode 1 and S=3.3 for mode 2.

Because of the excellent agreement found between
the MB and TM calculations, we conclude that new
lasing modes do appear in random structures with
spatially nonuniform gain. These new lasing modes
are sensitive to the spatial gain profile and disappear
if the profile is altered slightly. We have verified their
existence in numerous random structures as well as
dielectric slabs of uniform refractive index. New las-
ing modes offer more control over random laser prop-
erties, since their frequency and output directionality

Fig. 3. (Color online) Steady-state emission spectra from
two MB simulations with Pr=3.0, �a=�nm (solid curve) and
Pr=2.1, �a=�2 (dashed curve). For both, ��a=0.71 nm, lG
=14.295 �m. The MB intensity distribution �MB�x��2 (black
dashed curve) is compared with the TM intensity distribu-
tion �TM�x��2 (red solid curve) for the new lasing mode (b)
and mode 2 (c). Agreement is so good that the MB curve
mostly covers the TM curve. The inset in (b) expands the
range 0 �m	x	10 �m.
can be quite different from that of existing lasing
modes. Moreover, new lasing modes can be easily ma-
nipulated by varying the spatial profile of the pump
beam without modifying the random structure. We
anticipate that such new lasing modes also exist in
higher dimensions, which may yield further advan-
tages for laser control.

The authors thank C. Vanneste, P. Sebbah, L. Ge,
A. D. Stone, J. Wiersig, and D. Savin for stimulating
discussions and acknowledge support from the Yale
Faculty of Arts and Sciences HPC facility and staff.
This work was supported partly by the National Sci-
ence Foundation (NSF) under grants DMR-0814025
and DMR-0808937.
References

1. R. J. Horowicz, H. Heitmann, Y. Kadota, and Y.
Yamamoto, Appl. Phys. Lett. 61, 393 (1992).

2. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel,
A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science
280, 1556 (1998).

3. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T.
Nishimura, and T. Aida, Opt. Lett. 27, 1430 (2002).

4. G. D. Chern, H. E. Türeci, A. D. Stone, R. K. Chang, M.
Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710
(2003).

5. M. Hentschel and T. Y. Kwon, Opt. Lett. 34, 163 (2009).
6. X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and

R. P. H. Chang, J. Opt. Soc. Am. B 21, 159 (2004).
7. C. Vanneste and P. Sebbah, Phys. Rev. E 71, 026612

(2005).
8. S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S.

Wiersma, and C. López, Nat. Photonics 2, 429 (2008).
9. J. Ripoll, C. M. Soukoulis, and E. N. Economou, J. Opt.

Soc. Am. B 21, 141 (2004).
10. T. Savels, A. P. Mosk, and A. Lagendijk, Phys. Rev.

Lett. 98, 103601 (2007).
11. D. S. Wiersma and S. Cavalieri, Nature 414, 708

(2001).
12. K. Lee and N. M. Lawandy, Opt. Commun. 203, 169

(2002).
13. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S.

Wiersma, Phys. Rev. Lett. 93, 263901 (2004).
14. H. Fujiwara, Y. Hamabata, and K. Sasaki, Opt.

Express 17, 3970 (2009).
15. C. Vanneste and P. Sebbah, Phys. Rev. Lett. 87, 183903

(2001).
16. P. Sebbah and C. Vanneste, Phys. Rev. B 66, 144202

(2002).
17. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, Science

320, 643 (2008).
18. A. Yamilov, X. Wu, H. Cao, and A. L. Burin, Opt. Lett.

30, 2430 (2005).
19. R. C. Polson and Z. V. Vardeny, Phys. Rev. B 71,

045205 (2005).
20. X. Wu, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L.

C. Botten, and H. Cao, Phys. Rev. A 74, 053812 (2006).
21. X. Wu, J. Andreasen, H. Cao, and A. Yamilov, J. Opt.

Soc. Am. B 24, A26 (2007).
22. L. Deych, Phys. Rev. Lett. 95, 043902 (2005).
23. R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, Phys.

Rev. A 52, 3082 (1995).
24. A. Taflove and S. Hagness, Computational

Electrodynamics (Artech House, 2005).


