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Abstract: We present a numerical study of the structural properties, 

photonic density of states and bandedge modes of Vogel spiral arrays of 

dielectric cylinders in air. Specifically, we systematically investigate 

different types of Vogel spirals obtained by the modulation of the 

divergence angle parameter above and below the golden angle value 

(≈137.507°). We found that these arrays exhibit large fluctuations in the 

distribution of neighboring particles characterized by multifractal 

singularity spectra and pair correlation functions that can be tuned between 

amorphous and random structures. We also show that the rich structural 

complexity of Vogel spirals results in a multifractal photonic mode density 

and isotropic bandedge modes with distinctive spatial localization character. 

Vogel spiral structures offer the opportunity to create novel photonic 

devices that leverage radially localized and isotropic bandedge modes to 

enhance light-matter coupling, such as optical sensors, light sources, 

concentrators, and broadband optical couplers. 
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OCIS codes: (160.5293) Photonic bandgap materials; (350.4238) Nanophotonics and photonic 

crystals. 
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1. Introduction 

Photonic bandgap structures have received a lot of attention in recent years [1]. The ability to 

engineer spectral gaps in the electromagnetic wave spectrum and create highly localized 

modes opens the door to numerous exciting applications including, high-Q cavities [2], PBG 

novel optical waveguides [3] and enhanced light-emitting diodes (LEDs) [4] and lasing 

structures [5]. Many of these applications rely on photonic crystals that possess a complete 

photonic bandgap (PBG), which is readily achieved in quasiperiodic lattices with a higher 

degree of rotational symmetry [6]. However, while photonic quasicrystals have been mostly 

investigated for the engineering of isotropic PBGs, the more general study of two-dimensional 
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(2D) structures with deterministic aperiodic order offers additional opportunities to 

manipulate light transport by engineering a broader spectrum of optical modes with 

distinctive localization properties [7]. 

One type of aperiodic array which has been recently found to result in an isotropic PBG is 

the so called golden spiral (GA-spiral) [8]. The GA-spiral, which is a particular member of the 

broader class of Vogel’s spirals, has recently been studied in the context of photonic crystal 

fibers (PCF) where it was found to exhibit large birefringence with tunable dispersion [9]. 

Recently, nanoplasmonic Vogel spirals have been shown to possess distinctive scattering 

resonances carrying orbital angular momentum resulting in polarization-insensitive light 

diffraction across a broad spectral range, providing a novel strategy for enhancing light-matter 

coupling on planar surfaces [10]. Most recently, Seng et al. have shown that a GA-spiral array 

of air cylinders in a dielectric medium supports a large PBG for TE polarized light and 

characteristic bandedge modes that are absent in both photonic crystals and quasicrystals [11]. 

Additionally, these bandedge modes where found to carry discrete angular momenta 

quantized in Fibonacci numbers, and to be radially localized (while azimuthally extended) due 

to the distinctive character of spatial inhomogeneity of air holes in the GA structure. 

In this paper, we present a systematic study of the structural properties, photonic gaps, and 

bandedge modes of 2D Vogel spiral arrays of dielectric cylinders in air. Specifically, we study 

a number of Vogel spiral arrays generated by a gradual structural perturbation of the GA-

spiral obtained by varying the divergence angle from 137.3° to 137.6° (corresponding to two 

commonly investigated Vogel spirals) [12–14]. We found that these arrays have unique 

spatial structures characterized by pair correlation functions similar to those of liquids and 

gasses. The tuning of the divergence angle will be shown to profoundly alter the spatial 

inhomogeneity of the arrays, leading to the formation or suppression of localized bandedge 

modes in the TM gap. Moreover, the multifractal nature of these Vogel spirals and of their 

optical gaps will be explored, along with their distinctive size scaling. These results 

demonstrate that Vogel spiral arrays of dielectric rods support multiple series of radially 

localized bandedge modes with distinctive spatial patterns of increasing azimuthal numbers, 

similarly to the behavior of whispering gallery modes in microdisk resonators. 

2. Geometrical structure of aperiodic spirals 

Vogel’s spiral arrays are obtained by generating spiral curves restricted to the radial (r) and 

angular variables (θ) satisfying the following quantization conditions [12, 13, 15]: 

 r a n=  (1) 

 nθ α=  (2) 

where n = 0,1,2,…is an integer, a is a constant scaling factor, and α is an irrational angle that 

gives the constant aperture between adjacent position vectors r(n) and r(n + 1) of particles. In 

the case of the “sunflower spiral”, also called golden-angle spiral (GA-spiral), α ≈137.508° is 

an irrational number known as the “golden angle” that can be expressed as α = 360/φ
2
, where 

φ = (1 + √5)/2 ≈1.618 is the golden number, which can be approximated by the ratio of 

consecutive Fibonacci numbers. Rational approximations to the golden angle can be obtained 

by the formula α = 360 × (1 + p/q)
−1

 where p and q < p are consecutive Fibonacci numbers. 

The GA-spiral is shown in Fig. 1(e) for n = 1000 particles. 
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Fig. 1. Vogel spiral array consisting of 1000 particles, created with a divergence angle of (a) 

137.3° (α1), (b) 137.3692546° (α2), (c) 137.4038819° (α3), (d) 137.4731367° (α4), (e) 

137.5077641° (GA), (f) 137.5231367° (β1), (g) 137.553882° (β2), (h) 137.5692547° (β3), (i) 

137.6° (β1). 

The structure of the GA-spiral can be decomposed into a number of clockwise and 

counterclockwise spiral families originating from its center. Vogel spirals with remarkably 

different structures can be simply obtained by choosing only slightly different values for the 

aperture angle α, thus providing the opportunity to deterministically control and explore 

distinctively different degrees of aperiodic structural complexity and mode localization 

properties. 

Previous studies have focused on the three most investigated types of aperiodic spirals, 

including the GA-spiral and two other Vogel spirals obtained by the following choice of 

divergence angles: 137.3° (i.e., α1-spiral) and 137.6° (i.e., β4-spiral), shown in Fig. 1(a) and 

Fig. 1(i), respectively [10, 14]. The α1- and β4-spirals are called “nearly golden spirals”, and 

their families of diverging arms, known as parastichies, are considerably fewer. 

In this paper, we extend the analysis of aperiodic Vogel spirals to structures generated 

with divergence angles equispaced between the α1-spiral and the GA-spiral, and also between 

the golden angle and β4, as summarized in Table 1. These structures can be considered as one-

parameter (α) structural perturbations of the GA-spiral, and possess fascinating geometrical 

features, which are responsible for unique mode localization properties and optical spectra, as 

it will be discussed from section 3. 

Table 1. Divergence Angle Structural Perturbations of GA-spiral 

Divergence Angle Labeling Divergence Angle Labeling 

137.300000 α1 137.507764 g.a 

137.369255 α2 137.523137 β1 

137.403882 α3 137.553882 β2 

137.473137 α4 137.569255 β3 

137.507764 GA 137.600000 β4 
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It is well known that from the GA-spiral many spiral arms, or parastichies, can be found in 

both clockwise (CW) and counter-clockwise (CCW) directions [12]. The numbers of 

parastichies are consecutive numbers in the Fibonacci series, the ratio of which approximates 

the golden ratio. As the divergence angle is varied either above (supra-GA or β-series) or 

below the golden angle (sub-GA or α-series), the center region of the spiral where both sets of 

parastichies (CW and CCW) exist shrinks to a point. The outer regions are left with 

parastichies that rotate only CW for divergence angles greater than the golden angle and 

CCW for those below. For the spirals with larger deviation from the golden angle (α1 and β4 

in Fig. 1), gaps appear in the center head of the spirals and the resulting point patterns mostly 

consist of either CW or CCW spiraling arms. Stronger structural perturbations (i.e., further 

increase in the diverge angle) eventually lead to less interesting spiral structures containing 

only radially diverging parastichies (not investigated here). 

To better understand the consequences of the divergence angle perturbation on the optical 

properties of Vogel spiral arrays, we first investigate their Fourier spectra, or reciprocal space 

vectors. Figure 2 displays the 2D spatial Fourier spectra obtained by calculating the amplitude 

of the discrete Fourier transform (DFT) of the spiral arrays shown in Fig. 1. Since spiral 

arrays are non-periodic, periodic Brillouin zones cannot be rigorously defined. The reciprocal 

space structure is instead restricted to spatial frequencies in the compact interval ±1/∆, with ∆ 

being the average inter-particle separation [16–18]. The Fourier spectra for all the Vogel 

spirals explored in this paper lack Bragg peaks, and feature diffuse circular rings (Figs. 2(a)-

2(i)). The many spatial frequency components in Vogel’s spirals give rise to a diffuse 

background, as for amorphous and random systems. Interestingly, despite the lack of 

rotational symmetry of Vogel spirals, their Fourier spectra are highly isotropic (approaching 

circular symmetry), as a consequence of a high degree of statistical isotropy [10, 11]. 

As previously reported [8, 10, 11], the GA-spiral features a well-defined and broad 

scattering ring in the center of the reciprocal space (Fig. 2(e)), which corresponds to the 

dominant spatial frequencies of the structure [11]. Perturbing the GA-spiral by varying the 

divergence angle from the golden angle creates more inhomogeneous Vogel spirals and 

results in the formation of multiple scattering rings, associated with additional characteristic 

length scales, embedded in a diffuse background of fluctuating spots with weaker intensity. In 

the perturbed Vogel spirals (i.e., Figs. 2(a),2(b),2(d),2(g)-2(i)) patterns of spatial organization 

at finer scales are clearly discernable in the diffuse background. The onset of these sub-

structures in Fourier space reflects the gradual removal of statistical isotropy of the GA-spiral, 

which “breaks” into less homogeneous sub-structures with some degree of local order. In 

order to characterize the local order of Vogel spirals we need to abandon standard Fourier 

space analysis and resort to analytical tools that are more suitable to detect local spatial 

variations in geometrical structures. In this paper, we will study the local geometrical 

structure of Vogel spirals by the powerful methods of spatial correlation functions and 

multifractal analysis. In addition, wavelet-based multifractal analysis will be utilized to 

describe the distinctive fluctuations (i.e., the singularity spectrum) of the Local Density of 

Optical States (LDOS) calculated in the frequency domain. 
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Fig. 2. Calculated spatial Fourier spectrum of the spiral structures show in Fig. 1. The 

reciprocal space structure of a (a) α1-spiral, (b) α2-spiral, (c) α3-spiral, (d) α4-spiral, (e) g.a-

spiral, (f) β1-spiral (g) β2-spiral, (h) β3-spiral, and (i) β4-spiral are plotted where ∆ represents 

the average edge-to-edge minimum inter-particle separation. 

We will now deepen our discussion of the geometrical structure of Vogel spirals by 

applying the well-known statistical mechanics technique of correlation functions to 

investigate the local structural differences of these arrays and discuss their impact on the 

resulting optical properties. The pair correlation function, g(r), also known as the radial 

density distribution function, is used to characterize the probability of finding two particles 

separated by a distance r, measuring the local (correlation) order in the structure. Figure 3(a) 

displays the calculated g(r) for spiral arrays with divergence angles between α1 and the golden 

angle (α series), while Fig. 3(b) shows the results of the analysis for arrays generated with 

divergence angles between the golden angle and β4. (β series). In order to better capture the 

geometrical features associated to the geometrical structure (i.e., array pattern) of Vogel 

spirals, the g(r) was calculated directly from the array point patterns (i.e., no form factor 

associated to finite-size particles) using the library spatstat [19] within the R statistical 

analysis package. The pair correlation function is calculated as: 

 
'( )

( )
2

K r
g r

rπ
=  (3) 

where r is the radius of the observation window and K'(r) is the first derivative of the reduced 

second moment function (“Ripley’s K function”) [20]. 

#158567 - $15.00 USD Received 22 Nov 2011; revised 15 Jan 2012; accepted 19 Jan 2012; published 25 Jan 2012
(C) 2012 OSA 16 January 2012 / Vol. 20,  No. 2 / OPTICS EXPRESS  3020



  

 

Fig. 3. Pair correlation function g(r) for spiral arrays with divergence angles between (a) α1 and 

the golden angle and (b) between the golden angle and β 4. 

The results of the pair correlation analysis shown in Fig. 3 reveal a fascinating aspect of 

the geometry of Vogel spirals, namely their structural similarity to gases and liquids. We also 

notice that in Fig. 3, the GA-spiral exhibits several oscillating peaks, indicating that for 

certain radial separations, corresponding to local coordination shells, it is more likely to find 

particles in the array. 

A similar oscillating behavior for g(r) can be observed when studying the structure of 

liquids by X-ray scattering [16]. We also notice that g(r) of the most perturbed (i.e., more 

disordered) Vogel spiral (Fig. 3(a), α1-spiral) presents strongly damped oscillations on a 

constant background, similarly to the g(r) measured for a gas of random particles. Between 

these two extremes (α2 to α4 and β1 to β3) a varying degree of local order can be observed. 

These results demonstrate that the degree of local order in Vogel spiral structures can be 

deterministically tuned between the correlation properties of photonic amorphous structures 

[21, 22] and uncorrelated random systems by continuously varying the divergence angle α, 

which acts as an order parameter. 

To deepen our understanding of the complex particle arrangement in Vogel spirals, we 

also calculated the spatial distribution of the distance d between first neighboring particles by 

performing a Delaunay triangulation of the spiral array [8, 11]. This technique provides 

information on the statistical distribution of d, which measures the spatial uniformity of 

spatial point patterns [23]. In Fig. 4, we show the calculated statistical distribution, obtained 

by the Delaunay triangulation, of the parameter d normalized by d0, which is the most 

probable value (where the distribution is peaked). In all the investigated structures, the most 

probable value d0 is generally found to be close in value to the average inter-particle 

separation. 

It is interesting to note that the distributions of neighboring particles shown in Fig. 4 are 

distinctively non-Gaussian in nature and display slowly decaying tails, similar to “heavy tails” 

often encountered in mathematical finance (i.e., extreme value theory), suddenly interrupted 

by large fluctuations or “spikes” in the particle arrangement. These characteristic fluctuations 

are very pronounced for the two series of perturbed GA-spirals, consistently with their 

reduced degree of spatial homogeneity. 
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Fig. 4. Statistical distribution of spiral structures shown in Fig. 1. Values represent the distance 

between neighboring particles d normalized to the most probable value do, obtained by 

Delaunay triangulation (increasing numerical values from blue to red colors). The Y-axis 

displays the fraction of d in the total distribution. 

All the distributions in Fig. 4 are broad with varying numbers of sharp peaks 

corresponding to different correlation lengths, consistent with the features in the Fourier 

spectra shown in Fig. 2. Next, we perform Delaunay triangulation in order to visualize the 

spatial locations on the spirals where the different correlation lengths (i.e., distribution spikes) 

appear more frequently. In Fig. 5 we directly visualize the spatial map of the first neighbors 

connectivity of the Vogel spirals obtained from Delaunay triangulation. Each line segment in 

Fig. 5 connects two neighboring particles on the spirals, and the connectivity length d is color 

coded consistently with the scale of Fig. 4 (i.e., increasing numerical values from blue to red 

colors). 

The non-uniform color distributions shown in Fig. 5 graphically represent the unique 

spatial order of Vogel’s spirals. In particular, we notice that distinct circular symmetries are 

found in the distribution of particles for all the spirals, including the strongly inhomogeneous 

α and β-series. Moreover, the color patterns in Fig. 5 feature well-defined circular regions of 

markedly different values of d, thus defining “radial heterostructures” that can trap radiation 

in regions of different lattice constants, similar in nature to the concentric rings of Omniguide 

Bragg fibers. The sharp contrast between adjacent rings radially traps radiation by Bragg 

scattering along different circular loops. The circular regions discovered in the spatial map of 

local particle coordination in Fig. 5 well correspond to the scattering rings observed in the 

Fourier spectra (Fig. 2), and are at the origin of the recently discovered circular scattering 

resonances carrying orbital angular momentum in Vogel spirals [10,11]. Moreover, as we will 

show in the next sections, the characteristic “circular Bragg scattering” occurring between 

dielectric rods in Vogel spirals gives rise to localized resonant modes with well-defined radial 

and azimuthal numbers like the whispering gallery modes of microdisk resonators. 
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Fig. 5. Delaunay triangulation of spiral structures shown in Fig. 1. The line segments that 

connect neighboring circles are color-coded by their lengths d. The colors are consistent to 

those in Fig. 4. 

We observe that the radially localized azimuthal modes discovered in perturbed aperiodic 

spirals could be extremely attractive for the engineering of novel laser devices and optical 

sensors that leverage increased refractive index sensitivity due to the disconnected (i.e., open) 

nature of the dielectric pillar structures. 

3. Density of states and optical modes 

We now investigate the optical properties of Vogel spirals by numerically calculating their 

LDOS across the large wavelength interval from 0.4µm to 2µm. This choice is mostly 

motivated by the engineering polarization insensitive and localized band-edge modes for 

applications to broadband solar energy conversion. Calculations were performed for all arrays 

shown in Fig. 1, consisting of N = 1000 dielectric cylinders, 200nm in diameter with a 

permittivity є = 10.5 embedded in air, for which TM PBG are favored. All arrays are 

generated using a scaling factor, α, equal to 3x10
−7

. The LDOS is calculated at the center of 

the spiral structure using the well-known relation g(r, ω) = (2ω/πc
2
)Im[G(r, r’, ω)], where 

G(r, r’, ω) is the Green’s function for the propagation of the Ez component from point r to r’. 

The numerical calculations are implemented using the Finite Element method within 

COMSOL Multiphysics (version 3.5a) [11,24]. A perfectly matched layer (PML) is utilized in 

order to absorb all radiation leaking towards the computational window. In Figs. 6(a) and 6(b) 

we display the calculated LDOS for the spiral arrays in the α and β series as a function of 

frequency (ω) normalized by the GA-spiral bandgap center frequency (ω0 = 13.2x10
14

 Hz), 

respectively. For comparison, the LDOS of the GA-spiral is also reported in both panels. 
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Fig. 6. LDOS calculated at the center of the each spiral array as a function of normalized 

frequency (as described in Section 3) for spiral arrays with divergence angles between (a) α1 

and the golden angle and (b) between the golden angle and β4. 

The results in Fig. 6 demonstrate the existence of a central large LDOS bandgap for all the 

investigated structures, which originates from the Mie-resonances of the individual cylinders, 

as previously demonstrated by Pollard et al for the GA-spiral [8]. However, we also found 

that the edges of these bandgaps split into a large number of secondary gap regions of smaller 

amplitudes (i.e., sub-gaps) separated by narrow resonant states that reach, in different 

proportions, into the central gap region as the inhomogeneity of the structures is increased 

from the GA-spiral. The width, shape and the fine resonant structure of these bandedge 

features are determined by the unique array geometries. A large peak located inside the gap at 

ω/ω0 = 1.122 (1.273 µm) represents a defect mode localized at the center of the spiral array 

where a small air region free of dielectric cylinders acts as a structural defect. Several peaks 

corresponding to localized modes appear both along the band edges and within the gap. These 

dense series of photonic bandedge modes have been observed for all types of Vogel spirals 

and correspond to spatially localized modes due to the inhomogeneous distribution of 

neighboring particles, as previously demonstrated by Seng et al. for the GA-spiral [11]. Here 

we extend these results to all the investigated Vogel spirals based on the knowledge of their 

first neighbor connectivity structure, shown in Fig. 5. In particular, we note that localized 

bandedge modes are supported when ring shaped regions of similar interparticle separation d 

in Fig. 5 are sandwiched between two other regions of distinctively different values of d, thus 

creating a photonic heterostructure that can efficiently localize optical modes. In this picture, 

the outer regions of the spirals act as “effective barriers” that confine different classes of 

modes within the middle spirals regions. According to this mode localization mechanism, the 

reduced number of bandedge modes calculated for spirals α4 and β4 is attributed to the 

monotonic decrease (i.e., gradual fading) of interparticle separations when moving away from 

the central regions of the spirals, consistent with the corresponding Delaunay triangulation 

maps in Figs. 5(i) and 5(d). In particular, since these strongly perturbed spiral structures do 

not display clearly contrasted (i.e., sandwiched) areas of differing interparticle separations, 

their bandedge LDOS is strongly reduced and circularly symmetric bandedge modes cannot 

be formed. These observations will be validated by the detailed optical mode analysis 

presented in section 5 for all the different spirals. 

Finally, we notice a similarity between the highly singular character of the LDOS at the 

bandedge of Vogel spirals shown in Fig. 6 and the fractal-like energy/transmission spectra 

universally exhibited by a number of different quasiperiodic and deterministic aperiodic 

electronic/photonic systems [25,26]. In the next section we will demonstrate that geometrical 
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structure of Vogel spirals and the strongly fluctuating character of their photonic LDOS 

spectra in Fig. 6 indeed display clear multifractal scaling. 

4. Multifractal and scaling properties of aperiodic Vogel spirals 

In this section, we apply multifractal analysis to characterize the inhomogeneous structures of 

Vogel’s spirals arrays as well as their LDOS spectra. Geometrical objects display fractal 

behavior if they display scale-invariance symmetry, or self-similarity, i.e. a part of the object 

resembles the whole object [28]. Fractal objects are described by non-integer fractal 

dimensions, and display power-law scaling in their structural (i.e., density-density correlation, 

structure factor) and dynamical (i.e., density of modes) properties [16, 29]. The fractal 

dimensions of physical objects can be operatively defined using the box-counting method 

[29]. In the box-counting approach, the space embedding the fractal object is sub-divided into 

a hyper-cubic grid of boxes (i.e., cells) of linear size ε (i.e., line segments to analyze a one-

dimensional object, squares in two dimensions, cubes in three dimensions, and so on). For a 

given box of size ε, the minimum number of boxes N(ε) needed to cover all the points of a 

geometric object is determined. The procedure is then repeated for several box sizes and the 

(box-counting) fractal dimension 
f

D of the geometric object is simply determined from the 

power-law scaling relation: 

 ( ) fD
N ε ε −=  (4) 

The relevance of fractals to physical sciences and other disciplines (i.e., economics) was 

originally pointed out by the pioneering work of Mandelbrot [30]. However, the complex 

geometry of physical structures and multi-scale physical phenomena (i.e., turbulence) cannot 

be entirely captured by homogeneous fractals with single fractal dimension (i.e., mono-

fractals). In general, a spectrum of local scaling exponents associated to different spatial 

regions needs to be determined. For this purpose, the concept of multifractals, or 

inhomogeneous fractals, has been more recently introduced [31, 32] and a rigorous 

multifractal formalism has been developed to quantitatively describe local fractal scaling [31, 

33]. 

In general, when dealing with multifractal objects on which a local measure µ is defined 

(i.e., a mass density, a velocity, an electrical signal, or some other scalar physical parameter 

defined on the fractal object), the (local) singularity strength α(x) of the multifractal measure 

µ obeys the local scaling law: 

 ( )( ( )) x

x
B αµ ε ε≈  (5) 

where ( )
x

B ε is a ball (i.e., interval) centered at x and of size ε. The smaller the exponent α(x), 

the more singular will be the measure around x (i.e., local singularity). The multifractal 

spectrum ( )f α , also known as singularity spectrum, characterizes the statistical distribution 

of the singularity exponent α(x) of a multifractal measure. If we cover the support of the 

measure µ with balls of size ε, the number of balls ( )Nα ε that, for a given α, scales like αε , 

behaves as: 

 ( )( ) fN α
α ε ε −≈  (6) 

In the limit of vanishingly small ε, ( )f α coincides with the fractal dimension of the set of 

all points x with scaling index α [29]. The spectrum ( )f α was originally introduced by Frisch 

and Parisi [33] to investigate the energy dissipation of turbulent fluids. From a physical point 

of view, the multifractal spectrum is a quantitative measure of structural inhomogeneity. As 

shown by Arneodo et al [34], the multifractal spectrum is well suited for characterizing 

complex spatial signals because it can efficiently resolve their local fluctuations. Examples of 

multifractal structures/phenomena are commonly encountered in dynamical systems theory 
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(e.g., strange attractors of nonlinear maps), physics (e.g., diffusion-limited aggregates, 

turbulence), engineering (e.g., random resistive networks, image analysis), geophysics (e.g., 

rock shapes, creeks), and even in finance (e.g., stock markets fluctuations). 

In the case of singular measures with a recursive multiplicative structure (i.e., the devil’s 

staircase), the multifractal spectrum can be calculated analytically [35]. However, in general 

multifractal spectra are computed numerically. 

In this work, we calculated for the first time the multifractal spectra of Vogel spirals and 

of their LDOS spectra. The multifractal singularity spectrum of each spiral structure was 

calculated from the corresponding 600 dpi bitmap image, using the direct Chhabra-Jensen 

algorithm [36] implemented in the routine FracLac (ver. 2.5) [37] developed for the NIH 

distributed Image-J software package [38]. 

In order to calculate the singularity spectrum f(α) of a digitized spiral image, FracLac 

generates a partition of the image into a group of covering boxes of size ε labeled by the index 

i = 1,2,…, N(ε). The fraction of the mass of the object (i.e., number of pixels) that falls within 

box i of radius ε is indicated by P(i), and it is used to define the generalized measure: 

 
( )

( )

q

i q

P i

P i
µ =

∑
 (7) 

where q is an integer and the sum runs over all the ε-boxes. The quantity in Eq. (7) represents 

the (q-1)-th order moment of the “probability” (i.e., pixel fraction) P(i)/N, where N is the total 

number of pixels of the image. The singularity exponent and singularity spectrum can then be 

directly obtained as [36]: 

 ln ( ) / ln
i

P iα µ ε= ×∑  (8) 

 ( ) [ ln ] / ln
i i

f a µ µ ε= ×∑  (9) 

Multifractal measures involve singularities of different strengths and their f(α) spectrum 

generally displays a single humped shape (i.e., downward concavity) which extends over a 

compact interval [αmin, αmax], where αmin (respectively αmax) correspond to the strongest 

(respectively the weakest) singularities. The maximum value of f(α) corresponds to the 

(average) box-counting dimension of the multifractal object, while the difference ∆α = αmax-

αmin can be used as a parameter reflecting the fluctuations in the length scales of the intensity 

measure [26]. 

The calculated multifractal spectra are shown in Fig. 7(a) and Fig. 7(b) for the spiral 

arrays in the α and β series, respectively. For comparison, the LDOS of the GA-spiral is also 

reported in both panels. All spirals exhibit clear multifractal behavior with singularity spectra 

of characteristic downward concavity, demonstrating the multifractal nature of the 

geometrical structure of Vogel’s spirals. We notice in Figs. 7(a) and 7(b) that the GA-spiral 

features the largest fractal dimensionality (Df, = 1.873), which is consistent with its more 

regular structure. We also notice that the ∆α for the GA-spiral is the largest, consistently with 

the diffuse nature (absolutely continuous) of its Fourier spectrum (Fig. 2(e)). On the other 

hand, the less homogeneous α1-spiral structure features the lowest fractal dimensionality (Df, 

= 1.706), consistent with a larger degree of structural disorder. All other spirals in the α series 

were found to vary in between these two extremes. On the other hand, the results shown in 

Figs. 7(c) and 7(d) demonstrate significantly reduced differences in the singularity spectra of 

the spirals in the β series, due to the much smaller variation of the perturbing divergence 

angle α (137.5-137.6) reported in Table 1. These results demonstrate that multifractal analysis 

is suitable to detect the small local structural differences among Vogel spirals obtained by 

very small variations in the divergence angle α. 
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Fig. 7. Multifractal singularity spectra f(α) of direct space spiral arrays (N = 1000) with 

divergence angles between (a) α1 and the golden angle and (b) between the golden angle and 

β4. Multifractal spectra for spiral LDOS with divergence angles between (c) α1 and the golden 

angle and (d) between the golden angle and β4. 

Now we turn our attention to the multifractal analysis of the LDOS spectra of Vogel 

spirals. We notice first that the connection between the multifractality of geometrical 

structures and of the corresponding energy or LDOS spectra is not trivial in general. In fact, 

multifractal energy spectra have been discovered for deterministic quasiperiodic and aperiodic 

systems that do not display any fractality in their geometry despite the fact that they are 

generated by fractal recursion rules. Typical examples are Fibonacci optical quasicrystals and 

Thue-Morse structures [26]. Optical structures with multifractal eigenmode density (or energy 

spectra) often display a rich and fascinating behavior leading to the formation of a hierarchy 

of satellite pseudo-gaps, called “fractal gaps”, and of critically localized eigenmodes when the 

size of the system is increased [39]. Moreover, dynamical excitations in fractals, or fracton 

modes, have been found to originate from multiple scattering in aperiodic environments with 

multi-scale local correlations, which are described by multifractal geometry [15]. 

In order to demonstrate the multifractal character of the LDOS spectra of Vogel’s spirals, 

we performed wavelet-based multifractal analysis [40]. This approach is particularly suited to 

analyze signals with non isolated singularities, such as the LDOS spectra shown in Fig. 6. The 

Wavelet Transform (WT) of a function f is a decomposition into elementary space-scale 

contributions, associated to so-called wavelets that are constructed from one single function ψ 

by means of translations and dilation operations. The WT of the function f is defined as: 

 
1

[ ]( , ) ( )
x b

W f b a f x dx
a a

ψ ψ
+∞

−∞

− =  
 ∫  (10) 
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where a is the real scale parameter, b is the real translation parameter, and ψ  is the complex 

conjugate of ψ . Usually, the wavelet ψ  is only required to be a zero-average function. 

However, for the type of singularity tracking required for multifractal analysis, it is 

additionally required for the wavelet to have a certain number of vanishing moments [40]. 

Frequently used real-valued analyzing wavelets satisfying this last condition are given by the 

integer derivatives of the Gaussian function, and the first derivative Gaussian wavelet is used 

in our multifractal analysis of the LDOS. In the wavelet-based approach, the multifractal 

spectrum is obtained by the so called Wavelet Transform Modulus Maxima (WTMM) method 

[40], using the global partition function introduced by Arneodo et al [34] and defined as: 

 ( , ) [ ]( , )
q

p

q a W f x aψΖ =∑  (11) 

where q is a real number and the sum runs over the local maxima of [ ]( , )W f x aψ  considered 

as a function of x. For each q, from the scaling behavior of the partition function at fine scales 

one can obtain the scaling exponent τ(q): 

 ( )( , ) aq a aτΖ ≈  (12) 

The singularity (multifractal) spectrum f(α) is derived from τ(q) by a Legendre transform 

[40, 41]. In order to analyze the LDOS of photonic Vogel’s spirals we have implemented the 

aforementioned WTMM method within the free library of Matlab wavelet routines 

WaveLab850 [42]. Our code has been carefully tested against a number of analytical 

multifractals (i.e., devil’s staircase) and found to generate results in excellent agreement with 

known spectra. 

The calculated LDOS singularity spectra are shown in Figs. 7(c) and 7(d) for the α and β 

spiral series, respectively. For comparison, the LDOS of the GA-spiral is also reported in both 

panels. The data shown in Figs. 7(c) and 7(d) demonstrate the multifractal nature of the LDOS 

spectra of Vogel spirals with singularity spectra of characteristic downward concavity. The 

average fractal dimensions of the LDOS were found to range in between Df ≈0.6-0.74, with 

the two extremes belonging to the α-series (i.e., α1 and α2, respectively). The strength of the 

LDOS singularity is measured by the value of α0 = αmax, which is the singularity exponent 

corresponding to the peak of the f(α) spectrum. In Fig. 7(c), we notice that the singular 

character of the LDOS spectra steadily increases from spiral α1 to the GA-spiral across the α-

series. On the other hand, a more complex behavior is observed across the β series, where the 

strength of the LDOS singularity increases from β2 to β4 spirals. 

In the last section of our paper, we will study the properties of the localized bandedge 

modes that populate the multifractal air bandedge of Vogel spirals. 

5. Optical mode analysis of Vogel spirals 

We will now investigate the properties of optical modes localized at the higher frequency 

multifractal bandedge of Vogel spirals. Across this bandedge, the field patterns of the modes 

show the highest intensity in the air regions between the dielectric cylinders and thus are best 

suitable for sensing and lasing applications where gain materials can easily be embedded 

between rods [43]. 

The spatial profile of the modal fields and their complex frequencies ω = ωr + iωi were 

calculated using eigenmode analysis within COMSOL. Complex mode frequencies naturally 

arise from radiation leakage through the open boundary of the arrays. The imaginary 

components of the complex mode frequencies give the leakage rates of the mode, from which 

the quality factor can be defined as Q = ωr/2ωi. The calculated quality factors of the modes 

are plotted in Fig. 8(a) for the α1-spiral and in Fig. 8(b) for the GA-spiral and the β4-spiral as a 

function of normalized frequency. We limit our analysis to only these three structures since 
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they cover the full perturbation spectrum and are representative of the general behavior of the 

localized bandedge modes in Vogel spirals. By examining the spatial electric field patterns of 

the modes across the air bandedge of Vogel spirals we discovered that it is possible to group 

them into several different classes. The Q factors of modes in the same class depend linearly 

on frequency, as shown in Fig. 8. In particular, their quality factors are found to linearly 

decrease as the modes in each class move further away from the central PBG region. The 

frequency range spanned by each class of modes depends on the class and the spiral type. For 

example, the modes in classes A and B (Fig. 8(a)) of the α1-spiral span the entire air-

bandedge, while modes in classes C-F are confined within a narrower region of the bandedge. 

 

Fig. 8. Quality factors of the air band edge modes for (a) α1-spiral and (b) g-spiral and β4-spiral 

versus normalized frequency (as described in Section 3). 

As an example, in Fig. 9 we show the calculated electric field distribution (Ez component) 

for the first three bandedge modes in class B of α1-spiral and GA-spiral, as well as the first 

three bandedge modes in class A of the β4-spiral. Each spiral bandedge mode is accompanied 

by a degenerate mode at the same frequency but with complementary spatial pattern, rotated 

approximately by 180° (not shown here) [11]. We notice in Fig. 9 that modes belonging to 

each class are (radially) confined within rings of different radii, and display more azimuthal 

oscillations as the frequency moves away from the center of PBG (i.e., Figs. 9(a)-9(c)). A 

detailed analysis of the mechanism of mode confinement and mode separation into different 

classes has been previously provided by the authors for the GA-spiral [11]. It was previously 

shown that the unique spatial distribution of neighboring particles in the GA-spiral gives rise 

to numerous localized resonant modes at different frequencies. Different areas of the spiral 

hosting particles with similar spacing, evidenced by the similarly colored rings in Fig. 5, lead 

to mode confinement at various radial distances from the center, as in circular grating 

structures of different radii. In particular, for the GA-spiral the field patterns of bandedge 

modes originate via Bragg scattering occurring perpendicularly to curved lines of dielectric 

cylinders called parastichies [11]. 
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Fig. 9. Spatial distributions of electric field Ez for the first three band edge modes of (a-c) class 

B in a α1-spiral, (d-f) class A in a g-spiral and (g-i) class A in a β4-spiral. Spectrally located at 

ω/ω0 = (a) 0.9248, (b) 0.9290, (c) 0.9376, (d) 1.1629, (e) 1.1638, (f) 1.1657, (g) 1.1781, (h) 

1.1900, and (i) 1.2152 (normalized as described in Section 3). 

We now discover that the same mechanism occurs for all Vogel spirals examined here, 

each characterized by a unique configuration of parastichies that reflect into characteristic 

spatial patterns of the modes. As an example, we first analyze the behavior of the α1 spiral, 

and we discover that its bandedge modal classes contain modes spatially confined to the red 

region in Fig. 5(a), bounded on either side by areas of higher particle density (i.e., shorter 

interparticle separations). The spatial profiles of the representative class-B modes of the α1 

spiral, shown in Fig. 9(a), are centered around this low density circular region (i.e., central red 

ring in Fig. 5(a)) and have the same number of oscillations in the radial field (i.e., radial 

number 2) while displaying increasing azimuthal oscillations (i.e., increasing azimuthal 

numbers). On the other hand, for the GA-spiral the modal patterns in class A, shown in Figs. 

9(d)-9(f), are also confined to this spatial region, but have radial number equal to one along 

the series of increasing azimuthal numbers. Modes in class C also occupy the same spatial 

region of the spiral, but with a radial number of three (not shown here). This characteristic 

cascade process of “radial splitting” of the modes continues for classes D, E and F in each 

spiral. However, as the radial numbers increase, the less confined outer portions of the modes 

result in a reduced quality factor. It is also relevant to note here that the slopes of the linear 

trends in Q-factors with frequency are all approximately the same for modes that are confined 

approximately within the same spatial region. 
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Fig. 10. Spatial distributions of electric field Ez class D1 band edge mode (ω/ω0 = 1.053 

normalized as described in Section 3) in a α1-spiral with (a) 1000 particles, (b) 750 particles 

and (c) 500 particles. (d) LDOS calculated at the center of α1-spirals with varying number of 

particles between n = 150 and n = 1000. 

The regions of spatial localization of spiral modes can be easily identified in Fig. 5. For 

example, the geometrical structure of the GA-spiral, captured in Fig. 5(e), indicates the 

presence of multiple circular regions of similar interparticle separations that act as radial 

heterostructures inducing spatial mode confinement [11]. The first three field distributions of 

class A-modes of the GA-spiral, shown in Figs. 8(d)-8(f), are all confined to the outermost 

light blue region evident in Fig. 5(e). Here again, secondary classes can be confined to the 

same spatial region with increased radial numbers (i.e., class D with radial number 2, and 

class F with radial number 3). Classes B and E both occupy the second light blue ring shown 

in Fig. 5(e), while classes C and G share the innermost. The trends in Q-factors for the 

different series can again be seen to depend on the region of mode confinement. Contrary to 

the behavior of GA and α1-spirals, the β4-spiral supports only one class of modes localized by 

the disordered arrangement of cylinders at its centre, as shown in Figs. 8(g)-8(i). The lack of 

radial classes in this spiral can be readily explained by its geometrical structure. In fact, in 

Fig. 5(i) we notice that the spirals arms quickly diverge with gradually decreasing 

interparticle separations, providing no “heterostructure regions” for radial light confinement. 

We finally investigate the size scaling of the LDOS and of the bandedge modes for the 

three most representative spiral structures (GA, α1, and β4). The LDOS is again computed at 

the center of the array utilizing the same methodology described previously. In Figs. 10-12 we 

show the calculated LDOS for the three spiral types with progressively decreasing number of 

cylinders from 1000 to 150. Also included in Figs. 10-12 are representative air-bandedge 

modes calculated for a spirals with decreasing size (from panels (a) to (c)). 
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Fig. 11. Spatial distributions of electric field Ez class B band edge mode (ω/ω0 = 1.175 

normalized as described in Section 3) in a GA-spiral with (a) 1000 particles, (b) 750 particles 

and (c) 500 particles. (d) LDOS calculated at the center of g.a-spirals with varying number of 

particles between n = 150 and n = 1000. 

Examining the size scaling behavior of the LDOS of the spiral arrays shown in Figs. 10-12 

certain general characteristics can be noticed. First of all, for each spirals the frequency 

positions and overall width of the principal TM gaps remain unaffected when scaling the 

number of particles, but the gaps become deeper as the number of particles is increased. This 

is consistent with the known fact that the main gaps supported by arrays of dielectric cylinders 

are dominated by the single cylinder Mie resonances for TM polarization. Moreover, we 

notice that the frequency position of the most localized resonant mode inside the gap remains 

almost constant when varying the particles number, while its intensity decreases with the 

bandgap depth. This implies that this mode is created by the small number of cylinders at the 

center, which is defined in the first few generated particles. However, the most striking 

feature of the LDOS scaling, evident in Figs. 10-12, is the generation of a multitude of 

secondary sub-gaps of smaller intensity as the number of cylinders is increased. As the 

number of dielectric cylinders is increased, regions with different spatial distributions of 

cylinders are created in the spirals resulting in many more spatial frequency components. As 

previously shown, these are key components in creating new classes of modes, leading to the 

distinctive behavior of fractal bandedge modes. 

This phenomenon is most evident in the α1-spiral scaling shown in Fig. 10, which we 

found to possess the lowest fractal dimension (i.e., or the highest degree of structural 

inhomogeneity). Below 750 cylinders, the air bandedge region is almost completely 

depopulated of bandedge modes, which become strongly leaky as shown in Figs. 10(a) and 

10(b). This behavior can directly be attributed to the loss of the outermost boundary region 

(outer blue region in Fig. 5(a)) when the number of cylinder is decreased, eliminating the 

radial heterostructure confinement scheme needed to support localized bandedge modes. On 

the other hand, the modes in the LDOS whose confinement regions remain intact upon size 

scaling, such as the ones shown in Figs. 11(a)-11(c) and Figs. 12(a)-12(c), exist even when 

scaling the size of the spiral down to only a few hundred cylinders. These results demonstrate 
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the localized nature of the air bandedge modes that densely populate the multifractal LDOS 

spectra of Vogel spirals. 

 

Fig. 12. Spatial distributions of electric field Ez class A band edge mode (ω/ω0 = 1.190 

normalized as described in Section 3) in a β4-spiral with (a) 1000 particles, (b) 750 particles 

and (c) 500 particles. (d) LDOS calculated at the center of β4-spirals with varying number of 

particles between n = 150 and n = 1000. 

6. Conclusions 

In conclusion, we have studied the structural properties, photonic mode density and bandedge 

modes of Vogel spiral arrays of dielectric cylinders in air as a function of their divergence 

angle. Vogel spiral arrays have been discovered to possess pair correlation functions similar 

to those found in liquids and gasses, and computed singularity spectra have shown Vogel 

spiral arrays to be multifractal in nature and to possess multifractal LDOS spectra. A 

significant PBG for TM polarized light has been discovered for all spiral arrays examined, 

with a multifractal distribution of localized bandedge modes organized in different classes of 

radial confinement. Modes with well-defined azimuthal numbers are found to form at 

different radial locations via Bragg scattering from the parastichies in all spiral structures, 

suggesting a simple strategy to manipulate the orbital angular momentum of light by multiple 

scattering in engineered dielectric nanostructures. The unique structural and optical properties 

of aperiodic Vogel spirals can be utilized to engineer novel devices with a broadband 

spectrum of localized resonances carrying well-defined values of angular momenta, such as 

compact light sources, optical sensors, light couplers, and solar cell concentrators. 
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