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Abstract: Stochasticnoise is incorporated in the numerical simulation
of weakly scattering random lasers, which qualitatively captures lasing
phenomena that have been observed experimentally. We examine the
behavior of the emission spectrum while pumping only part of the entire
one-dimensional random system. A decrease in the density of lasing states is
the dominant mechanism for observing discrete lasing peaks when absorp-
tion exists in the unpumped region. Without such absorption, the density of
lasing states does not reduce as dramatically but the statistical distribution
of (linear) lasing thresholds is broadened. This may facilitate incremental
observation of lasing in smaller-threshold modes in the emission spectrum
with fine adjustments of the pumping rate.
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1. Introduction

After early research on light diffusion with gain [1] the first experiments [2–6] on “random
lasers” [7] exhibited strong amplification around the center frequency of the gain spectrum.
In subsequent experiments on strongly scattering semiconductor powders and polycrystalline
films with gain, emission spectra showed multiple narrow peaks occurring at frequencies other
than the gain center frequency [8, 9]. Similar narrow peaks, appearing on top of a broad and
featureless spectrum, were also observed in weakly scattering random systems [10–12]. In these
cases, only part of the entire spatial region of the random structures was pumped. Increasing the
size of the pumped region added more peaks to the spectra and eventually washed out the fine
spectral structure completely. Pumping only part of the entire random system seemed essential
to observe the discrete lasing peaks in large samples, especially when scattering was relatively
weak. The most commonly cited reason for this behavior is that smaller pump areas excite fewer
modes so that individual narrow peaks become distinguishable in the spectrum. However, two
types of situations occur when partial pumping is employed: (i) significant absorption exists in
the unpumped region, (ii) little or no absorption exists in the unpumped region. The change in
the spectral density of possible lasing states (DLS) in each case may be different.

For uniform pumping, information concerning resonances of the passive (without gain) sys-
tem has been widely used to predict lasing behavior. This relies on there being a correspondence
between resonances and lasing modes. If scattering is not too weak and pumping is not too high
above the lasing threshold, the small-threshold modes show such correspondence [13–15]. As a
result, statistical distributions of resonance decay rates have been used to infer the distribution
of lasing thresholds [16,17].

Concerning partial pumping situation (i), lasing mode properties were found to be dictated
by the effective system size given by the pumped region plus the absorption length [18]. In this
case, spectral behavior of random lasers with respect to pump size is similar to spectral behavior
of passive random systems (of effective size) with respect to the system size. Since the number
of resonances reduces with the system size, the number of lasing modes should reduce with the
size of the pumped region. The frequency spacing of lasing modes should also increase.

Concerning partial pumping situation (ii), the DLS may not reduce significantly with the
pump area [19]. It was found [20] that partial pumping in such systems destroys and creates
lasing modes. In the strongly scattering regime (where localized modes exist), partial pump-
ing has been shown to allow spatially non-overlapping high-quality resonances to be selected
for lasing [13, 21]. In the weakly scattering regime, modes exhibit more spatial and spectral
overlap. Such systems also possess a narrower distribution of decay rates due to reduced scat-
tering [22,23]. The distribution gets even narrower as the system size decreases [24,25]. Thus,
selecting individual modes for lasing in this regime using partial pumping should be more diffi-
cult. However, experiments [10–12] consistently show the observation of discrete lasing peaks
when the pumped region is small enough. The mechanism responsible for such observations is
not well understood.

Several problems exist for predicting random laser behavior using the information of the pas-
sive system. Even uniformly distributed optical gain can modify the spatial properties of lasing
modes [26]. In weakly scattering systems, which require more gain to achieve lasing (larger
lasing thresholds), the correspondence between lasing modes and resonances significantly de-
grades [27]. In addition, partial pumping has been shown to increase random laser thresholds
even further [11, 28–30]. Mode mixing increases as the size of the pumped region reduces in
weakly scattering systems without absorption [20]. There is therefore no one-to-one correspon-
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dence between lasing modes of the partially pumped system and lasing modes of the uniformly
pumpedsystem (or resonances of the passive system). Thus, a partially pumped random laser
is expected to behave differently from predictions based on the passive random system. A sta-
tistical study of lasing thresholds themselves is therefore necessary to illustrate the difference.

This paper intends to address the question: how can discrete lasing peaks be observed eas-
ily in weakly scattering random lasers for both partial pumping situations (i and ii)? Weakly
scattering systems have resonances of very similar decay rates and thus, many modes may lase
simultaneously. Mode linewidth affects how much they overlap spectrally and therefore if they
can be distinguished in the emission spectrum. But even modes with similar lasing thresholds
cannot all lase simultaneously due to gain depletion [31, 32]. Thus, we begin with simulations
of realistic situations by incorporating laser linewidths, gain saturation, and consequential mode
competition effects. Semiclassical laser theory, based on Maxwell’s equations, can predict the
discrete lasing peaks [13, 33] but not their spectral width because spontaneous emission is not
taken into account. Our numerical method incorporates intrinsic noise into the simulation of
random lasers and is based on the finite-difference time-domain formulation we recently de-
veloped [34]. The number of discrete lasing peaks in the emission spectra for both types of
partial pumping is compared with that of uniform pumping for the same random structure. The
number of lasing peaks is found to change differently in each case of partial pumping.

We continue with simulations which isolate the effects of partial pumping. This is accom-
plished by studying the same random systems without gain saturation and noise. It becomes
more clear that for both partial pumping situations, the DLS decreases and facilitates the ob-
servation of discrete lasing peaks. This is because the number of small-threshold lasing modes
decreases and their frequency spacing increases. We also study the statistical distribution of las-
ing thresholds for both partial pumping situations and compare to the distribution for uniform
pumping. Wuet al. compared the statistical distribution of resonance decay rates and lasing
thresholds under local pumping without absorption [35]. The two distributions, normalized by
their respective average values, were very similar. We find that such normalized distributions
can be different when there is absorption outside the pumped region. Wuet al.also observed the
absolute degree of lasing threshold fluctuations increases with a decrease of the pump size [36].
Our numerical calculations reveal that in both partial pumping situations (i and ii) the absolute
degree of lasing threshold fluctuations (statistical variation of thresholds from mode to mode)
increases with a decrease of the pump size. Along with a change in the DLS, the increased
threshold variations may be a significant factor in determining lasing properties of partially
pumped random systems.

This paper is organized as follows. In Sec. 2 information concerning the numerical methods
employed in this paper is given. In Sec. 3, results of calculations using the stochastic Maxwell-
Bloch equations are presented for three cases: uniform pumping, partial pumping without ab-
sorption outside the pumped region, and partial pumping with absorption in the unpumped
region. An analysis of these systems is carried out in Sec. 4 using a linear gain model and the
threshold statistics of such random systems is provided in Sec. 5. A discussion of results and
our main conclusions are drawn in Sec. 6.

2. Numerical Methods

2.1. Generation of One-Dimensional Random Structures

The one-dimensional random systems considered are composed ofN = 41 layers. Dielectric
material with index of refractionn1 = 1.05 separated by air gaps (n2 = 1) results in a spatially
modulated index of refractionn(x). Outside the random median0 = 1. The system is random-
ized by specifying different thicknesses for each of the layers asd1,2 = 〈d1,2〉(1+ ηζ ) where
〈d1〉 and〈d2〉 are the average thicknesses of the layers, 0< η < 1 represents the degree of ran-
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domness, andζ is a random number uniformly distributed in (-1,1). The average thicknesses
are〈d1〉 = 100 nm and〈d2〉 = 200 nm giving a total average length of〈L〉 = 6100 nm. The
grid origin x = 0 is at the left boundary of the structure and the length of the random structure
L is normalized to〈L〉. The degree of randomness is set toη = 0.9. The localization length
〈ξ 〉 = 220 µm was calculated from the dependence of ensemble-averaged transmittanceT on
the system lengthsL asξ−1 =−d〈lnT〉/dL and averaged over the wavelength range of interest
(500 nm to 750 nm). Different realizations of random structures are generated using different
random seeds forζ .

2.2. Stochastic Maxwell-Bloch equations: FDTD parameters

This method is based on the finite-difference time-domain (FDTD) [37] formulation we re-
cently developed to study the effects of noise on light-atom interaction in complex systems
without prior knowledge of resonances [34, 38]. The interference effects of electromagnetic
waves and the openness of the system are fully accounted for with Maxwell’s equations and
exact absorbing boundary conditions [39]. The incorporation of the Bloch equations describes
the evolution of the density matrix for two-level atoms and their interaction with light [40]. To
introduce noise to the Bloch equations, we use the stochasticc-number equations that are de-
rived from the quantum Langevin equations in the many-atom and many-photon limit [41]. We
are interested in the lasing behavior of macroscopic systems so we neglect nonclassical noise
and consider only classical noise resulting from the decay, dephasing, and pumping of atoms.

The atomic transition frequency is set toka = 10.5 µm−1, the corresponding wavelengthλa =
600 nm. The lifetime of atoms in the excited stateT1 and the dephasing timeT2 are included in
the Bloch equations. The width of the gain spectrum is given by∆ka = (1/T1 +2/T2)/c [42].
We setT1 = 1.0 ps. The value ofT2 is chosen such that the gain spectrum spans ten resonances
of the passive system. With an average frequency spacing∆k = 0.5 µm−1, ∆ka = 5.0 µm−1,
andT2 = 1.3 fs. We also include incoherent pumping of atoms from level 1 to level 2. The
rate of atoms being pumped is proportional to the population of atoms in level 1 (ρ11), and
the proportionality coefficientPr is called the pumping rate. The stochastic simulations solve
for the population of excited atomic statesρ22 and atomic polarizationρ1 = ρ12 + ρ21 and
ρ2 = i(ρ12−ρ21). With T2 ≪ T1, we neglect pump fluctuations on the polarization because they
are orders of magnitude smaller than noise due to dephasing. The stochastic Maxwell-Bloch
(SMB) equations are solved through a parallel FDTD implementation.

2.3. Implementation of Three Pumping Cases

Lasing with uniform pumping is simulated with the SMB equations by distributing two-level
atoms uniformly over the entire random system to avoid additional light scattering caused by
the spatial inhomogeneity of gain. Although it does not correspond to common experimental
situations where gain atoms are incorporated only in the higher-index dielectric layers, it is
possible to have gain atoms in the gas phase distributed in the air gaps. The two-level model of
atoms is a simplified approach that can be applied to actual lasers based on three-level atoms
such as Ruby and Erbium lasers, as the population in the third level is negligibly small [43].
Partial pumping is simulated by placing two-level atoms only in the region 0≤ x ≤ ℓG (still
in both the higher-index dielectric layers and the air gaps). We chooseℓG/L = 1/3. In the
unpumped region (x> ℓG), there are no atoms nor is there absorption of any kind. There is only
scattering due to the passive random structure. In both of these cases, the output field is sampled
at the grid pointx = L at the right boundary of the random system. We Fourier-transform the
output field to obtain the emission spectra.

Partial pumping with absorption in the unpumped region (x> ℓG) is achieved by placing two-
level atoms there in the ground state. Light emitted from the pumped region is reabsorbed in the
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unpumped region. The average decay length of the intensity in this region yields an absorption
lengthℓa ≈ 170nm. This is much smaller than the length of the unpumped region (L− ℓG =
4067 nm). With strong absorption and no pumping, the noise terms are small in the unpumped
region. We neglect them when the excited state population is less than a threshold valueα.
Incrementally decreasingα and monitoring the change of physical quantities, we found results
to converge whenα = 10−12. When absorption is included atx > ℓG, fields emitted from the
pumped region are significantly absorbed so that no signal reachesx= L. Thus, in this case, the
field atx = 0 is used to obtain the emission spectra. Without absorption, results from sampling
atx = L are identical in character to those from sampling atx = 0.

With noise terms included in the SMB equations, all quantities fluctuate in time for all pump-
ing cases. For a fixed pumping rate, however, their values averaged over small time windows
become nearly constant eventually. By comparing the spectra of output light taken over dif-
ferent temporal windows up tot = 267 ps, we find a steady state is reached by 16.6 ps for all
pumping rates considered here.

2.4. Transfer Matrix Method

To further understand the nature of lasing modes with uniform and partial pumping, we employ
the transfer matrix method developed [20] to find the threshold lasing modes (TLMs) with linear
gain. Propagation of the electric field through the structure is calculated via the 2×2 matrix
M. Linear gain, independent of frequency, is simulated by appending an imaginary part to the
dielectric functionε(x) = εr(x)+ iεi(x), whereεr(x) = n2(x). The complex index of refraction

ñ(x) =
√

n2(x)+n2
y(x)+ iny(x), (1)

whereny(x) < 0 for gain and in turn modifies the real part [20].
With uniform pumping,ny(x) is considered to be spatially constant within the random

system. This is similar to the SMB simulations in the previous section and yields a gain
length ℓg = 1/|ny|k (k = 2π/λ is the vacuum frequency of a TLM) which is the same in
the dielectric layers and the air gaps. Partial pumping is implemented with a step function
ny(x) = niH(−x+ ℓG), wherex = 0 is the left edge of the structure andx = ℓG specifies the
right edge of the pumping region.

Absorption in the unpumped region is implemented throughny(x) = (2kℓa)
−1, whereny(x) >

0 for absorption andℓa is the absorption length. For partial pumping with absorption ˜n(x) =
n(x)+ i(1/2kℓa) in the unpumped region. Such absorption is not included in the pumped region.

Boundary conditions with only emission out of the system require Re[M22] = 0 and
Im[M22] = 0 [20]. These conditions result in “zero lines” formed in the plane of (k, ni). The
crossing of a real and imaginary zero line in the (k, ni) plane results inM22 = 0 at that location.
The values ofk andni at these locations correspond to the frequency and threshold gain of a
lasing mode, respectively. The benefit of this method is that the lasing thresholds may be esti-
mated quickly and easily relative to one another. Moreover, without gain saturation and noise
included the effects of partial pumping are isolated.

3. Stochastic Maxwell-Bloch Simulations of Random Lasers

3.1. Uniform Pumping

Figure 1 shows the steady-state emission spectra|E(k)|2 for uniform pumping with increasing
pumping rates. At a pumping rate ofPr = 1.00 [Fig. 1(a)], there is no net gain. The number
of ground-state atoms isρ11 and the number of excited-state atoms isρ22. Without stimulated
emission and noise, the number of atoms pumped from the ground to excited state isPrρ11/T1.
Meanwhile, the decay rate of atoms isρ22/T1. Thus, whenPr = 1.00,ρ11 = ρ22 and the atomic
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Fig. 1. Steady-state intensity spectra|E(k)|2 for uniform pumping (ℓG/L = 1). (a) Pr =
1.00. A broad peak is centered aroundka. (b) Pr = 1.10. The broad peak narrows around
ka. (c) Pr = 1.22. Multiple peaks appear on top of the broad peak. (d)Pr = 1.56. Eight
visible peaks are marked with arrows. From (f)Pr = 1.74 to (g)Pr = 2.00, the dominant
peaks are revealed.

system is at the transparency point (ρ22−ρ11 = 0). Noise reduces the excited state population,
and it is just below the transparency point forPr = 1.00. The steady-state emission spectra in
this case has a broad peak and is centered at the atomic transition frequencyka = 10.5 µm−1,
resembling the spontaneous emission spectrum. On top of it there are many fine spikes whose
frequencies change chaotically from one time window of Fourier transform to the next. They
result from the stochastic emission process with their spectral width determined by the tempo-
ral length of the Fourier transform. We have found [44] such spikes to bear similar statistical
characteristics to the experimentally observed ASE spikes.

Above the transparency point atPr = 1.10 [Fig. 1(b)], there is net gain. The broad emission
peak grows and narrows spectrally. Since optical gain is frequency dependent, the emission
intensity closer toka is amplified more than that away fromka, leading to a spectral narrowing.
This behavior is typical of ASE.

As the pumping ratePr increases [Figs. 1(c) – 1(g)], discrete peaks begin to form amidst the
broad emission peak. They correspond to resonances of the passive system. We mark eight vis-
ible peaks in Fig. 1(d). The frequency of these peaks is stable with respect to the pumping rate.
They also become narrower and more distinct at higher pumping rates. All of these modes are
constantly excited by noise and subsequently amplified in the presence of population inversion.

To ensure these results are not limited to the particular configuration considered here, the
simulations are repeated with another random seed (to initialize the noise terms) and another
realization of a random structure. The results are qualitatively similar. Slight differences arise
due to stochasticity.
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Fig. 2. Steady-state intensity spectra|E(k)|2 for partial pumping (ℓG/L = 1/3). (a)Pr =
1.00. A broad peak is centered aroundka. (b) Pr = 1.10. The broad peak narrows around
ka and multiple peaks already emerge on top of the broad peak. (c)Pr = 1.22. More peaks
emerge. (d)Pr = 1.56. Seven visible peaks are marked with arrows. From (f)Pr = 1.74 to
(g) Pr = 2.00, the dominant peaks are revealed. The number of modes is less than the case
with uniform pumping and the lasing modes are more separated in frequency.

3.2. Partial Pumping

Figure 2 shows the steady-state emission spectra|E(k)|2 for partial pumping with increasing
pumping rates. AtPr = 1.00 [Fig. 2(a)], the system is near the transparency point (ρ22−ρ11 . 0)
in the pumped region. The steady-state emission spectra again has a broad featureless peak and
is centered at the atomic transition frequencyka = 10.5 µm−1. On top of it there are many fine
spikes resulting from the stochastic emission process.

In contrast to the uniform pumping case, resonance peaks are more visible in the emission
spectrum forPr = 1.10 [Fig. 2(b)]. These peaks grow asPr increases further [Figs. 2(c) – 2(g)].
We mark seven visible peaks in Fig. 2(d). The frequency of these peaks is stable with respect to
the pumping rate. They also become narrower and well separated due to amplification. There
is one less peak here compared to the uniform pumping case, but there appears to be some
correspondence between the peak frequencies for partial and uniform pumping. The relation of
these peaks to peaks in the uniform pumping case will be examined in detail in Sec. 4.

It is evident that the frequency separation between lasing peaks is increased from the uniform
pumping case. Greater frequency separation allows the resonance peaks to be more distinguish-
able from the broad ASE peak. Spectral overlap has been reduced, but the effect is different
from what occurs for stronger scattering. If the index contrast is increased, spectral overlap re-
duces due to the resonance linewidths becoming narrower. Thus, even if the frequency spacing
is the same as weaker scattering, the resonance peaks can be visible in the presence of noise
even when there is no net gain [44].
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Fig. 3. Steady-state intensity spectra|E(k)|2 for partial pumping (ℓG/L = 1/3) and absorp-
tion in the unpumped region (ℓa = 170 nm). (a)Pr = 1.00. A broad peak is centered around
ka. (b) Pr = 1.10. The broad peak narrows aroundka and multiple peaks already emerge
on top of the broad peak. (c)Pr = 1.22. More peaks emerge. (d)Pr = 1.56. Five visible
peaks are marked with arrows. From (f)Pr = 1.74 to (g)Pr = 2.00, the dominant peaks are
revealed. The number of modes is less than the case of partial pumping without absorption
and the lasing modes are more separated in frequency.

3.3. Absorption in the Unpumped Region

Figure 3 shows the steady-state emission spectra|E(k)|2 for partial pumping with absorption
in the unpumped region as the pumping rate increases. AtPr = 1.00 [Fig. 3(a)], near the trans-
parency point in the pumped region, the broad ASE peak is seen atka = 10.5 µm−1. Like the
previous partial pumping case, resonance peaks emerge clearly in the emission spectrum for
Pr = 1.10 [Fig. 3(b)] and they grow asPr increases further [Figs. 3(c) – 3(g)]. In contrast to the
previous partial pumping case, there are far fewer peaks in the emission spectra with absorption
included. We mark four visible peaks in Fig. 3(d). The frequency of these peaks is stable with
respect to the variation of the pumping rate. However, the peak frequencies in this case are
notably different from those in the uniform and partial pumping cases without absorption. The
relation between these peaks will be examined in detail in Sec. 4.

With the number of peaks noticeably reduced, the frequency separation increases further
compared to the cause of partial pumping without absorption. The increased frequency separa-
tion makes it easier to distinguish the peaks from the broad ASE peak. Although the resonance
peaks in Fig. 3 become narrower due to amplification, they are not as narrow as the peaks in the
case without absorption. This behavior is consistent with analytical work [45] which shows the
amount of excess noise increases when the spatial distributions of gain and loss are different.
The excess noise contributes an additional factor to the linewidth.
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Fig. 4. (Color online) The frequenciesk andthresholdsni of lasing modes with linear gain.
(a) TLM solutions for (diamonds) uniform pumping (ℓG/L = 1), (circles) partial pumping
(ℓG/L = 1/3), and (squares) partial pumping with absorption in the unpumped region (ℓa =
170 nm). The filled symbols represent the modes which are visible in the emission spectra
of the SMB simulations. The enlarged filled diamonds are TLMs for uniform pumping
that disappear for partial pumping without absorption. The vertical dashed gray line marks
the center frequency of the gain spectrumka in the SMB simulations. (b) Real (green) and
Imaginary (red) zero lines ofM22 in the(k,ni) plane for partial pumping over the frequency
range of the filled circles in (a). TLM solutions are marked by white circles.

4. Threshold Lasing Modes With Linear Gain

Figure 4(a) compares lasing frequenciesk and thresholdsni with uniform and partial pump-
ing implemented via Eq. (1). With uniform pumping (ℓG/L = 1), the separation of thresholds
between neighboring modes marked by diamonds is quite small. This results in all the modes
having very similar behavior as the pumping rate is increased in the SMB simulations in Fig. 1.
The eight peaks marked by arrows in Fig. 1(d) are associated with the threshold lasing modes
(TLMs) marked by filled diamonds in Fig. 4(a). There are nine filled diamonds because the
two TLMs closest toka in Fig. 4(a) appear only as a “composite” peak in Fig. 1(d). The finite
linewidths of the two modes exceed their frequency spacing, which is reduced by the frequency
pulling effect. Consequently, the two modes are indistinguishable and appear to be merged.
Nevertheless, there is a clear correspondence between the TLMs and the peaks seen in the
SMB simulations. The frequency pulling effect merely shifts the frequencies toward the center
of the gain curve in the SMB simulations by 10–20% (compared to the TLM frequencies).

With partial pumping (ℓG/L = 1/3), the lasing thresholds|ni | increase significantly as illus-
trated by the circles in Fig. 4(a). The seven peaks marked by arrows in Fig. 2(d) are associ-
ated with the TLMs marked by filled circles in Fig. 4(a). Aside from slight frequency pulling
(∼ 16%), there is a clear correspondence between the TLMs and the peaks seen in the SMB
simulations. The increased frequency separation between the TLMs (e.g., atk = 9.26 µm−1

andk = 10.4 µm−1) allows them to be visible in the SMB simulations atPr = 1.10 [Fig. 2(b)].
The reason for this increased frequency separation is due to the disappearance of some small

threshold modes and the creation of lasing modes with larger thresholds. This process is seen
more clearly in Fig. 4(b) which shows the zero lines of the real and imaginary parts ofM22.
The zero line crossings are marked by circles which correspond to TLM solutions [the same
solutions marked by the circles in Fig. 4(a)]. From small to large thresholds (top to bottom), real
and imaginary zero lines may cross once but may also cross again at larger thresholds. Thus, two
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classes of TLMs can be seen: those associated with first-crossings of the zero lines and those
associatedwith additional crossings. Only the first class of TLMs have any correspondence to
TLMs with uniform pumping [20] (though there is mode mixing). The second class of TLMs
are actually new lasing modes generated by partial pumping [46]. In general, the first class has
smaller lasing thresholds and are usually the modes observed to lase at pumping rates not too
high above threshold. For example, the peaks which appear in Fig. 2 are only associated with
the first class of modes. This is not always the case since the second class of modes may be
observed with specific gain spectrum [46]. Typically, however, the frequencies of the small-
threshold lasing modes are observed to become more separated and for small pumping rates
there are effectively fewer lasing modes available within a fixed gain spectrum.

Figure 2 shows that there is one less peak with partial pumping compared to uniform pump-
ing. However, Fig. 4(b) reveals that three modes from the uniform pumping case have disap-
peared. These three modes are marked by enlarged filled diamonds in Fig. 4(a). This means
there is not one less but three less modes compared to the uniform pumping case. Only one less
peak appears in Fig. 2 because of the composite peak close toka (for uniform pumping) and
because of an extra higher-frequency mode that shifted fromk = 13.2 µm−1 to k = 13 µm−1.
Note that the shift is not caused by frequency pulling becauseni is frequency-independent. This
is a shift caused by partial pumping becauseni modifies the real part of the refractive indexnr

[some modes shift away fromka as seen in Fig. 4(a)]. Frequency pulling due to the finite-width
gain spectrum in the SMB simulations shifts this mode further tok = 12.7 µm−1 in Fig. 2.

To simulate absorption in the unpumped region for the partial pumping case, we useℓa = 170
nm, which was the approximate absorption length in the SMB simulations in Sec. 3.3. The las-
ing thresholdsni shown in Fig. 4(a) increase compared to partial pumping without absorption,
as expected. The four peaks marked by arrows in Fig. 3(d) are associated with the TLMs marked
by filled squares in Fig. 4(a). More frequency pulling occurs in this case with a shift of 30–40%
compared to the TLM frequencies. Nevertheless, there is a clear correspondence between the
TLMs and the peaks seen in the SMB simulations.

The reduction in the number of lasing modes results in a large frequency separation and
allows them to be distinguishable even in the SMB simulations atPr = 1.10 [Fig. 2(b)]. The
reason for the increased frequency separation in this case is entirely different from the par-
tial pumping case without absorption. With absorption, the peaks are associated with modes
confined to the pumped region [18]. Thus, in general, they do not correspond to peaks of the
uniformly pumped system. In other words, with absorption, the modes are determined only by
local region of the random structure of lengthℓG + ℓa. Feedback from the random structure
beyondℓG + ℓa is suppressed due to absorption. Without absorption, additional feedback in the
unpumped region plays a role in determining the modes.

The other effect that may play a role in lasing with partial pumping is the threshold sep-
aration. The class of small-threshold modes for partial pumping in Fig. 4(a), have thresholds
which have become more separated due to partial pumping. This greater separation of thresh-
olds would make it easier to see modes begin lasing incrementally with a gradual increase of
the pumping rate. Furthermore, if the threshold pumping rate isPt and the experimentally lim-
ited pump step (e.g., by power fluctuations) is∆P, then the relative pump step isδP = ∆P/Pt .
LargerPt means a smaller allowable adjustments ofδP, thereby allowing a finer tuning of the
pumping rate with respect to the threshold value.

Observations here are based on results from this example of a random structure. In the next
section, we study the statistics of lasing thresholds for an ensemble of random structures to
obtain more general conclusions.
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5. Effects of Inhomogeneous Pumping and Absorption on Threshold Statistics

Theeffects of partial pumping reveal themselves here through calculations of the lasing thresh-
old statistics of TLMs. We consider 10000 realizations of the random structures described in
Sec. 2.1. The right spatial boundary of the gain regionℓG [implemented via Eq. (1)] is always
chosen to coincide with an interface between the higher-index dielectric material and air. This
results in a partial pumping length ofℓG/L = 0.33±0.011 over the 10000 realizations. With
the number of modes reduced by 3 on average in the partial pumping case with absorption, we
consider 30000 structure realizations in order to maintain roughly the same number of modes.
Different realizations of random structures are generated using different random seeds forζ .
The frequency range for these calculations is limited toka ± 2 µm−1, the same range as the
SMB simulations in Sec. 3. The solutions are pinpointed precisely by using the Secant method.
Locations of minima of|M22|

2 and a random value located closely to these minima locations are
used as the first two inputs to the Secant method. Once a solution converges or|M22| < 10−12,
a solution is considered found. Verification of these solutions is provided by the phase ofM22,
calculated asθ = atan2(ImM22,ReM22). Locations of vanishingM22 give rise to phase singu-
larities since both the real and imaginary parts ofM22 vanish. The phase change around a path
surrounding a singularity is±2π. Thus, if the phase change around a proposed solution is not
±2π, that solution is discarded.

This mode-finding method was tested using 10 different random structures and 10 different
random seeds (for the second initial guess used in the Secant method). All solutions were found
manually for these cases in order to test the reliability of the Secant method. The crossings of
real and imaginary zero lines [e.g., in Fig. 4(b)] are found easily by eye. For uniform pumping,
all modes were always found by the Secant method. For partial pumping, 96% of modes were
found successfully by the Secant method. Some modes are missed due to sharp modulations of
M22. Convergence for these modes is limited numerically by machine precision.

Though the lasing thresholdsni < 0, we hereafter refer|ni | to ni for brevity. The optimal bin
size∆ni for lasing thresholds was found using the Scott formula [47] based on the main peak of
the distributions. For uniform pumping∆ni = 0.001 and for partial pumping∆ni = 0.002. The
histograms are normalized yielding the probability distributionP(ni) so that

∫

P(ni)dni = 1.
Figure 5 shows theP(ni) for uniform and partial pumping. No absorption is included for

partial pumping. Figure 5(a) shows a large-threshold tail forni > 0.175 in the partial pumping
case. The reason for the sharp kink between small and large-threshold modes is seen clearly
in Fig. 4(b). The large-threshold modes are formed predominantly by secondary crossings of
the real and imaginary zero lines ofM22. These secondary crossings haveni well above the
first crossings. This tail highly distorts the threshold statistics which is evident in the skewness
S that characterizes the degree of asymmetry around the mean value. The skewness increases
from S= 1.4 for uniform pumping toS= 2.2 for partial pumping.

The large-threshold modes rarely lase experimentally, so we only consider data forni ≤ 0.175
with partial pumping and re-normalize the histogram to obtain a new probability distribution.
The inset in Fig. 5(a) shows this re-normalized threshold distribution (the distribution for uni-
form pumping is left unchanged). Due to asymmetry (even uniform pumping hasS> 1), we
characterize the first moment of the distribution using the most probable thresholdnm rather
than the mean threshold〈ni〉. nm shifts from 0.047 for uniform pumping to 0.112 for partial
pumping, a factor of 2 increase.

The standard deviation aroundnm increases fromσ = 0.012 for uniform pumping toσ =
0.023 for partial pumping, nearly twice as large. This indicates the fluctuation of thresholds
increases for smaller pumping sizes. Furthermore, the inset of Fig. 5(a) shows the slope of
the rising part of the re-normalized threshold distribution with partial pumping. The number of
lasing modesdNl within a threshold rangedni is proportional to the slopem(dNl = m dni). With
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Fig. 5. (Color online) (a) Probability distributions of lasing thresholds for uniform pump-
ing (dashed black lines) and partial pumping (solid red lines). Partial pumping increases
lasing thresholds. The inset shows there-normalizedprobability distribution (solid dark-
red lines) for partial pumping. The rising slope of the first main peak is 4.5 times greater
with uniform pumping than with partial pumping. (b) Probability distributions of thresholds
normalized to the most probable threshold. Partial pumping redistributes lasing thresholds
by destroying small-threshold modes and creating large-threshold modes. The number of
large-threshold modes (found by the area under the curve forni > 0.175 orni/nm > 1.55)
is 25% of the total number of modes. The inset shows the shape of the main peak with
partial pumping almost the same as that with uniform pumping but slightly narrower.

partial pumping, the slope is 4.5 times smaller than with uniform pumping (including the large-
threshold tail for partial pumping gives a slope 6 times smaller). If the pumping rate is gradually
increased from zero, the number of available lasing modes can be less with partial pumping.
In Sec. 4 we discussed how the relative pump stepδP = ∆P/Pt is smaller for largerPt in
experiments. The most probable thresholdnm gives a good representation ofPt by showing the
increased lasing thresholds are a general occurrence and not limited to one random realization.
The relative pump stepδni = dni/nm may allow a finer tuning of the pumping rate, thereby
making it easier to see modes begin lasing incrementally.

Although the absolute fluctuation of lasing thresholds does increase for partial pumping, the
effect is different from the increased fluctuation shown for increased scattering strengths with
uniform pumping [44]. Figure 5(b) plots the uniform and partial pumping distributions versus
the thresholds normalized to their most probably valuenm. The inset of Fig. 5(b) reveals that
the two distributions are nearly identical at smaller thresholds. Because there is no absorption,
feedback from scattering in the unpumped region of the random structures still occurs. Thus, it
is not surprising that the results are quite similar.

Even in this case without absorption in the unpumped region, the number of modes does
change with partial pumping. For the 10000 realizations, a total of 81396 modes were found
for uniform pumping and 67371 modes were found for partial pumping. The total number of
modes with partial pumping is 17% less than with uniform pumping. If we assume only 96%
of modes were successfully found with partial pumping (based on the test results), the total
number of modes with partially pumping is 14% less. However, 25% of all modes with partial
pumping are located in the large-threshold tail, as shown by the shaded area in Fig. 5(b). Thus,
the number ofavailablesmall-threshold lasing modes for partial pumping is roughly 35% less
than for uniform pumping. With the number of available lasing modes reduced, the frequency
spacing between them increases. The enlarged filled diamonds in Fig. 4(a) shows modes which
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Fig. 6. (Color online) (a) Probability distributions of lasing thresholds for partial pumping
without absorption (solid dark-red lines) and with absorption (dotted blue lines). The dis-
tribution without absorption excludes large-threshold modes and has been re-normalized.
Absorption increases lasing thresholds. The inset shows the rising slope is roughly 1.3 times
greater with absorption than without absorption. (b) Probability distributions of thresholds
normalized to the most probable threshold for uniform pumping (dashed black lines), par-
tial pumping (solid red lines), and partial pumping with absorption (dotted blue lines). The
inset shows partial pumping with absorption narrows the main peak.

exist for uniform pumping but not partial pumping. These modes disappear, as described in [20],
but the remaining modes still exist with relatively the same frequencyk.

Figure 6(a) compares the threshold statistics for partial pumping (ℓG/L = 1/3) with and
without absorption in the unpumped region. The absorption length isℓa = 170 nm. The large-
threshold modes have completely disappeared by adding absorption in Fig. 6(a). The large-
threshold tail without absorption has been excluded in order to compare the distributions di-
rectly. We have found [46] that the large-threshold modes are spatially concentrated on one
side of the pumping region (typically on the side with lower index contrast compared to the
outside medium, i.e., the right side in this case). Thus, absorption added to this side of the
structure effectively kills these modes.

With absorption in the unpumped region, lasing modes are confined to the pumped region.
Thus, the number of modes is dictated by the effective system sizeℓG + ℓa which is roughly
three times less than the uniform pumping case. We consider three times as many random struc-
tures when absorption is included to obtain comparable sampling. For the 30000 realizations,
a total of 76673 modes were found for partial pumping with absorption (comparable to the
81396 modes found for uniform pumping with only 10000 realizations).

Figure 6(a) shows a noticeable bi-modal distribution for the case with absorption. This stems
from the small number of modes within the wavelength range of interest (500 nm≤ λ ≤ 750
nm) and the use of frequency-independent gain. The two peaks correspond to different mode
numbers. The smaller-threshold peak is composed mostly of higher-frequency modes while the
larger-threshold peak is composed of lower-frequency modes. There is not enough fluctuation
in their thresholds to completely wash out the bi-modal distribution. Thus we take an average of
the two most probable thresholds to findnm. This results innm = 0.129 with absorption, which
is nearly identical to the mean threshold〈ni〉 = 0.130. nm is 15% larger for partial pumping
when absorption is included in the unpumped region. This increase ofnm shows the lasing
threshold increase is a general occurrence and not limited to one random realization.

The standard deviation decreases fromσ = 0.023 for partial pumping without absorption to
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σ = 0.015 when absorption is included. This indicates the fluctuation of thresholds decreases
when absorption is included. Furthermore, the inset of Fig. 6(a) shows the slope of the rising
part of the re-normalized distribution for partial pumping. With absorption, the slope is 1.3
times greater (including the large-threshold tail without absorption means the slope with ab-
sorption is 1.8 times greater). Compared to the uniform pumping case whereσ = 0.012, the
absolute fluctuation of thresholds is still larger with partial pumping even when absorption is
included. The rising slope of the distribution with absorption is roughly 3.4 times smaller than
for uniform pumping.

Figure 6(b) compares the distributions normalized tonm. In this case, when absorption
is included, the distribution is narrower. Measuring the half-widthσn for each case yields
σn = 0.232 for uniform pumping,σn = 0.200 for partial pumping, andσn = 0.145 for par-
tial pumping with absorption. Without absorption, the distribution narrows as well which may
not be surprising if spatially inhomogeneous gain is considered to enhance scattering feedback
from within the pumped region [19], thereby reducing the effective system size slightly.

6. Discussion and Conclusion

The spectral behavior with partial pumping was studied in weakly scattering random lasers.
A FDTD-based method for solving the stochastic Maxwell-Bloch (SMB) equations was em-
ployed. Simulation results of a random system pumped uniformly and partially were compared.
For partial pumping, the system was studied with and without absorption outside the pumped
region. It was revealed that there are fewer lasing peaks with partial pumping and even fewer
when absorption is added to the unpumped region. The resulting greater frequency separation
between lasing modes makes them more distinguishable in the emission spectra compared to
uniform pumping where modes often spectrally overlap.

The SMB simulations produce more accurate results than semiclassical laser theory because
the spectral linewidth of lasing modes and emission fluctuations are included. Each peak in
the emission spectra from the SMB simulations was found to correspond to a threshold las-
ing mode (TLM) calculated by the transfer matrix method with linear gain. Lasing threshold
statistics were obtained for an ensemble of random structures for uniform pumping and partial
pumping with and without absorption in the unpumped region. Gain saturation and noise were
excluded so that the effects of partial pumping could be isolated. The statistical calculations
simply specified a generic absorption length independent of any specific loss mechanism (such
as reabsorption, scattering loss, etc.).

We identified two possible reasons why it is easier to see discrete lasing peaks with partial
pumping: (I) a decrease in the density of possible lasing states (DLS) and (II) an increase in
the fluctuation of lasing thresholds. With absorption in the unpumped region, the number of
lasing modes is already known to scale with the size of the pumped region. Thus, the DLS can
decrease drastically. Without absorption, it was found that the total DLS decreases only slightly
(by roughly 14% compared to 67% with absorption). However, partial pumping results in the
disappearance of some small-threshold modes and the creation of larger-threshold modes. With
noise, it is usually seen that only the smaller-threshold modes appear in the emission spectrum.
This redistribution of lasing thresholds results in a further decrease of the density of small-
threshold lasing modes (35% compared to 14%). This decrease without absorption is not as
great as that with absorption. However, the effect of absorption depends on the size of the
pumped regionℓG. If the size of the unpumped regionL− ℓG is less than the absorption length
ℓa, the total number of modes with and without absorption may be similar.

The distribution of thresholds normalized to the most probable threshold narrowed with par-
tial pumping. However, an increase in the fluctuation of absolute values of lasing thresholds for
partial pumping occurred. The larger threshold separation also manifested itself in the smaller
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rising slope of the threshold distribution. The number of modes within a given threshold range
dni is thus smaller with partial pumping. The threshold fluctuations for partial pumping without
absorption in the unpumped region were nearly twice as large as those for uniform pumping.
With larger lasing thresholds, stronger pumping is required to reach lasing in partially pumped
systems, making the amplified spontaneous emission (ASE) stronger. The SMB simulations
show that noise tends to smear out the differences in thresholds as it constantly excites all
modes within the gain spectrum. With partial pumping, all TLMs in the small-threshold regime
resulted in well-defined peaks in the SMB emission spectra. This result, however, clearly de-
pends on the absolute strength of the threshold fluctuations and the tunability of the pumping
rate. Larger threshold fluctuations would make the selection of fewer small-threshold modes for
lasing possible, even in the presence of noise. The tunability of the pumping rate, experimen-
tally, depends on the lasing thresholdPt . Given a fixed pump stepδP, the relative pump step
δP = ∆P/Pt is smaller for largerPt . The most probable thresholdnm gives a good representa-
tion of Pt . nm was found to increase for partial pumping. Thus, a finer tuning of the pumping
rate (smaller stepsδni = dni/nm) is possible. This facilitates the observation of an incremental
increase of lasing modes with the pumping rate.

In conclusion, the density of possible lasing states (DLS) was found to decrease with a
smaller spatial pump region. This, in combination with the larger threshold fluctuations, is
likely to produce discrete lasing peaks in the emission spectrum. For partial pumping with
absorption in the unpumped region, the DLS decreased according to the pump size directly.
For partial pumping without absorption, the DLS decreased less dramatically but the threshold
fluctuations increased more. Thus, threshold fluctuations play a larger role in partially pumped
systems where no absorption exists in the unpumped region. Our findings provide qualitative
explanation for the experimental observations of weakly scattering random lasers based on col-
loidal dye systems [10–12]. Our work may also be relevant for recently reported fibre random
lasers [48,49] because they are extremely weak scattering one-dimensional random lasers with
spatially inhomogeneous gain and loss. In those systems, the gain length is much larger than the
scattering mean free path. Further study is needed to fully understand their lasing behavior. A
quantitative verification of our findings in this paper requires systematic experimental studies,
e.g., a systematic measurement of lasing threshold fluctuations with a varying pump area, mean
free path, and absorption length outside the pump area.
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