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Abstract
Weakly scattering random lasers exhibit lasing modes that spatially overlap
and can interact strongly via gain saturation. Consequently, lasing in high-
threshold modes may be suppressed by strong low-threshold lasing modes.
We numerically examine the effect of inherent spontaneous emission noise on
this strong nonlinear phenomenon. With a method to incorporate this noise
into the Maxwell–Bloch equations for simulations of random lasers, emission
below the lasing threshold is observed and the noise restrains dramatic nonlinear
behaviour above threshold. The result is a linearization of random laser modes,
made possible when noise overcomes spatial hole burning. Results suggest that
control over the noise properties of the gain medium may facilitate or inhibit
certain modes to lase in the multimode regime.

Mathematics Subject Classification: 78A60, 78A48, 60G20

PACS numbers: 42.55.Zz, 42.60.Mi, 05.40.Ca

(Some figures may appear in colour only in the online journal)

1. Introduction

In contrast to conventional lasers, random lasers have no cavity like a Fabry–Pérot resonator [1].
Instead, they are made of a multiply scattering medium such as a semiconductor powder [2, 3]
or a suspension of scattering particles in dye solution [4], which is excited by an external pump
to introduce gain. Multiple scattering of light in the random medium provides optical feedback
and lasing modes are built on the quasimodes of the passive random system. A recent review
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devoted to the first lasing mode at threshold [5] shows how the relation between lasing modes
and quasimodes depends on the openness of the system. With strong confinement of light,
as in the localization regime, lasing modes have a nearly one-to-one correspondence with the
localized modes of the passive system. In diffusive systems, quasimodes exhibit a large amount
of spatial and spectral overlap but maintain a strong correspondence with the lowest threshold
lasing modes. In systems which are more open, such as those in the quasi-ballistic regime, the
correspondence significantly degrades. This is largely due to the intense pumping required to
overcome high loss from the openness, which introduces a modification of the refractive index
distribution.

Far above the lasing threshold, in the case of multimode lasing, it was found that the
correspondence between lasing modes and quasimodes begins to degrade in the diffusive
regime [6, 7]. Mode competition occurs due to gain saturation. With limited gain available,
spatial hole burning takes place where the field intensity is large. Thus, random lasing
thresholds may increase in the multimode regime and lasing in some modes may be completely
suppressed. In other words, ‘dead’ regions are produced in the spatial profile of gain caused by
the low-threshold lasing modes which proves detrimental for lasing in other higher-threshold
modes. Illustrations of such strong nonlinear effects were made by taking into account the
openness of the system and the nonlinearity via steady-state ab initio laser theory [8] (see [9, 10]
for generalizations). It has been suggested [11] that the correlation of modes in the random
system, which does not exist in a conventional laser, can lead to strong mode competition and
spatial hole burning. Nonlinear effects above threshold have also been studied in the time
domain with full-wave simulations incorporating four-level atomic media [12]. However, the
effects of intrinsic spontaneous emission noise, which cause dynamic changes to the atomic
population and polarization [13], on nonlinear processes has not yet been taken into account.

There have been significant advances in theoretical studies of quantum noise in random
lasers (e.g. [14–17]). Most of them are based on full quantum treatments of noise in the
modal description. For a random system, the mode structures are complex and the decay rates
are unknown a priori. Thus, it is difficult to add the appropriate amount of noise to each
mode. Our new numerical approach [13] allows the introduction of the relevant noise without
prior knowledge of modes and facilitates the study of noise in random lasers. Compared
with spontaneous emission noise, thermal noise is usually negligible since the photon energy
at visible frequencies is much larger than the thermal energy at room temperature. At
higher temperatures or longer wavelengths, where this noise becomes significant, it can be
incorporated into the finite-difference time-domain (FDTD) algorithm following the approach
we developed in [18].

In this paper, a frequency-dependent linear gain model is employed to examine lasing
modes without the effects of gain saturation. Gain saturation is then incorporated via full-
wave Maxwell–Bloch simulations. Comparison of the two methods determines the nonlinear
effects of gain saturation. In the first numerical simulation of spontaneous emission noise
in random lasers [19], the noise was shown to alter lasing thresholds and introduce peaks in
the emission spectra which were absent from the spectra without noise. Thus, we examine
how this noise modifies the dramatic nonlinear effects introduced by gain saturation. The
population inversion is found to be significantly affected by noise in the multimode lasing
regime not far from the lasing threshold. Spatial hole burning can be overcome to excite and
amplify additional modes. Finally, modal amplitudes are found to be linearized across the
lasing threshold and in some cases, mode suppression can be mitigated.

The effect of inherent noise on the random lasing process may be related to stochastic
linearization (SL). Typical studies of SL purposefully add noise to a continuous signal, which
is subject to nonlinear effects and a threshold condition, in order to linearize the output [20].
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In digital signal processing, this is referred to as dithering [21]. We will show here that the
inherent noise, not subject to any tunable parameters, can have a similar linearization effect
on random laser modes.

This paper is organized as follows. In section 2, information concerning the numerical
methods employed in this paper is given. In section 3, nonlinear effects above the first threshold
for lasing are studied without noise. In section 4, the inherent noise of optical systems is taken
into account. Spatial properties of the gain are examined in section 5. Finally, inherent SL of
random laser modes is discussed in section 6. Final conclusions are presented in section 7.

2. Numerical methods

2.1. Random structure

The one-dimensional random systems considered are composed of 41 layers. Dielectric
material with index of refraction n1 = 2 separated by air gaps (n2 = 1) results in a spatially
modulated index of refraction n(x). Outside the random medium n0 = 1. The system is
randomized by specifying different thicknesses for each of the layers as d1,2 = 〈d1,2〉(1 + ηζ ).
The average thicknesses are 〈d1〉 = 100 nm and 〈d2〉 = 200 nm giving a total average length
of 〈L〉 = 6100 nm. 0 < η < 1 represents the degree of randomness and ζ is a random
number uniformly distributed in (−1, 1). In the wavelength range of interest (400–800 nm),
the localization length ξ ranges from 850 to 1500 nm. ξ was calculated from the dependence
of ensemble-averaged transmittance T on the system lengths L as ξ−1 = −d〈ln T 〉/dL. The
Thouless number g, which reveals the amount of spectral overlap of resonances of these random
systems, is given by the ratio of the average resonance linewidth of the cold cavity (〈ki〉) to
the average frequency spacing (〈dk〉), i.e. g = 〈ki〉/〈dk〉. The linewidth is estimated via the
spectral correlation function G(�k) of the transmission T (k)

G(�k) = 〈T (k)T (k + �k)〉/〈T 2(k)〉. (1)

The width of G(�k) estimates 〈ki〉. The resonance frequencies of the passive system (found
via the transfer matrix (TM) method described below) are used to estimate 〈dk〉. This results
in g = 0.18, meaning the resonances are well separated.

In such strongly scattering systems, spectrally separated modes generally exhibit less
spatial overlap and thus, less interaction [10, 22]. However, interaction does still occur
through the gain medium due to inhomogeneity of the underlying dielectric function and/or
population inversion of the gain medium [23]. We shall show that lasing modes still interact
strongly through the gain medium whose homogeneously broadened spectrum covers multiple
resonances.

2.2. Frequency-dependent linear gain model

The TM method developed in [24] is used to simulate lasing modes at threshold with linear
gain. Gain is linear in that it does not depend on the electromagnetic field intensity. Thus,
gain saturation is not included and consequently, mode interactions via spatial hole burning
are neglected. Solutions are only valid at or below threshold [25], not above it where gain
saturation is needed to reach a steady state.

The lasing solutions must satisfy the time-independent wave equation with a complex
frequency-dependent dielectric function

ε(x, k) = εr(x) + χg(x, k), (2)
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where a real wavenumber k = 2π/λ describes the light frequency in vacuum, and εr(x) =
n2(x) is the dielectric function of the passive background material. The frequency dependence
of εr is ignored. χg(x, k), corresponding to the susceptibility of the atomic material, is
given [26] by

χg(x, k) = −AeNA(x)

k2
a − k2 − ik�ka

, (3)

where Ae is a material-dependent constant, NA(x) is the spatially dependent density of atoms,
ka is the atomic transition frequency and �ka is the spectral width of the atomic resonance. Real
quantum transitions may be considered [26] to induce a response proportional to the population
difference density �NA. NA(x) is thus replaced in equation (3) by �NA(x) = N2(x)−N1(x),
the difference in population between the upper and lower energy levels (i.e. population
inversion). ε(x, k) therefore includes absorption [�NA(x) < 0] or gain [�NA(x) > 0].
The complex, frequency-dependent index of refraction used in the TM method is calculated as

ñ(x, k) = √
εr(x) + χg(x, k). (4)

The atomic transition frequency is set to ka = 10.5 µm−1, the corresponding wavelength
λa = 600 nm. The width of the gain spectrum is chosen such that it spans ten resonances
of the passive system, giving �ka = 3.7 µm−1 and in wavelength-space, �λa = 200 nm.
Propagation of the electric field through the structure is calculated via the 2 × 2 matrix M .
Boundary conditions with only emission out of the system require M22 = 0. We consider a
spatially uniform population inversion (�NA(x) → �NA) to avoid additional light scattering
caused by the spatial inhomogeneity of gain (imaginary part of ñ(x, k)). Although it does
not correspond to common experimental situations where gain atoms are incorporated only in
the dielectric layers, it is possible to have gain atoms in the gas phase distributed in the air
gaps. Lasing frequencies and thresholds are determined by finding the values of k and �NA,
respectively, that satisfy M22 = 0.

2.3. Maxwell–Bloch equations

This numerical method is based on the FDTD formulation we developed to study the effects
of noise on light–atom interaction in complex systems without prior knowledge of resonances
[13, 18]. Two-level atoms are uniformly distributed over the entire random system to avoid
additional light scattering caused by the spatial inhomogeneity of gain. The two-level model
of atoms is a simplified approach that can be applied to actual lasers based on three-level atoms
such as Ruby and Erbium lasers, as the population in the third level is negligibly small [27].

The atomic transition frequency is set to ka = 10.5 µm−1, the corresponding wavelength
λa = 600 nm. The lifetime of atoms in the excited state T1 and the dephasing time
T2 are included in the Bloch equations. The dephasing process, resulting mainly from
atomic collisions, contributes to the homogeneous broadening; inhomogeneous broadening
is neglected. The width of the gain spectrum is given by �ka = (1/T1 + 2/T2)/c. We
set T1 = 1.0 ps. The value of T2 = 1.8 fs is chosen such that the gain spectrum spans ten
resonances of the passive system. We also include incoherent pumping of atoms from level
1 to level 2. The rate of atoms being pumped is proportional to the population of atoms in
level 1 [ρ11(x)] and the proportionality coefficient Pr is called the pumping coefficient. In
the steady state, a spatially dependent population inversion ρ3(x) = ρ22(x) − ρ11(x) emerges
and is within the interval [−1, 1]. This quantity is spatially averaged and represents the pump
level. This number can be compared with the threshold population inversion �NA found via
the TM method. The spatial properties of ρ3(x) are also examined. These Maxwell–Bloch
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(MB) simulations solve for the atomic population inversion ρ3(x) and atomic polarization
ρ1(x) = ρ12(x) + ρ21(x) and ρ2(x) = i[ρ12(x) − ρ21(x)].

To introduce noise to the MB equations, we use the stochastic c-number equations that
are derived from the quantum Langevin equations in the many-atom limit [28]. Based on
the fluctuation–dissipation theorem, noise accompanies decay of the light field and atomic
dissipation. Thermal noise accompanying the field decay is neglected, but can be incorporated
into the FDTD algorithm following the approach we developed in our previous work [18]. We
only consider noise associated with three dissipation mechanisms for atoms (described in detail
in [13]) (i) dephasing events, (ii) excited state decay, (iii) incoherent pumping (from ground
state to excited state). In all cases, the noise strength is fixed according to the fluctuation–
dissipation theorem; no tunable parameters are introduced in this model. The stochastic MB
simulations solve for the atomic population inversion ρ3(x) and atomic polarization ρ1(x) and
ρ2(x). With T2 � T1, we neglect the influence of population fluctuations on the polarization
because it is orders of magnitude smaller than noise due to dephasing. All calculations here
are done in the regime ρ22 � ρ11, where stochastic terms in the density matrix evolution of
the macroscopic system successfully mimic spontaneous emission4 [13, 29].

3. Nonlinear effects above the first lasing threshold

For a thorough study of nonlinear effects and noise in random lasers, we consider a single
realization of a random structure. A statistical study of modes is beyond the scope of this
paper. However, the modes of this structure vary dramatically in frequency (spectral distance
from the atomic frequency) and quality factor, thereby giving a good representation of how
different modes behave with gain saturation and noise present. The results here are expected
to be qualitatively similar for different realizations of the random medium, as confirmed by
the simulations of multiple random realizations in similar studies [12, 19].

3.1. Effects of gain saturation

Gain saturation is first neglected in the frequency-dependent TM calculation and the lasing
thresholds of a random system found. Figure 1 maps the wavelengths and thresholds (λ, �NA)
of lasing modes. Many possible lasing modes exist due to the width of the gain spectrum. In
this strongly scattering system, the intensity distributions of modes are distributed throughout
the structure, but still fully contained inside the structure (ξ < L). Such systems possess a
wide distribution of decay rates [30–32]. This translates into a wide distribution of lasing
thresholds [33, 34]. The effect is seen clearly in figure 1 where threshold values extend over
an order of magnitude. Near the gain centre wavelength, amplification is large and thus,
lasing modes have smaller thresholds. Large-threshold modes are not observed in this region
as indicated by the bright region where M22 is far from zero. We focus here on the small-
threshold modes (small �NA).

Figure 2 reveals the wavelengths and thresholds of the first 7 lasing modes. Both vary
stochastically due to the randomness of the structure. In general, modes closer to λa = 600 nm
have smaller thresholds. However, some modes farther from the gain centre (e.g. mode 4) are
associated with quasimodes which have smaller decay rates and thus, have smaller thresholds.

Effects of gain saturation are examined here through MB simulations (without noise).
Emission spectra are found through fast Fourier transformations (FFTs) of the steady-state

4 Issues arise [29] in the current model for the regime ρ22 � ρ11. We are currently investigating this regime,
where population noise in the polarization terms becomes important. Without it, spontaneous emission may be
underestimated.
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Figure 1. Lasing solutions with frequency-dependent linear gain (TM method) shown via a map of
M22(λ, �NA), where dark regions indicate values near zero. Gain saturation is neglected. Lasing
modes are marked by white squares. 23 modes are found in the wavelength range with a wide
distribution of thresholds. The bright region near λa = 600 nm indicates large values of M22,
meaning large-threshold modes may not exist near the gain centre wavelength.
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Figure 2. Threshold population inversion of the first 7 lasing modes without (TM—filled circles)
and with (MB—open circles) gain saturation included. TM thresholds are normalized relative to
the first MB threshold. Modes are labelled in order of increasing threshold without gain saturation.

output field. A Welch window is used to keep large-amplitude peaks from overlapping and
thereby masking small-amplitude peaks in the spectra. Lasing thresholds are determined to be
at the lowest pump level at which a peak appears in the emission spectrum. The steady-state
spatiotemporally averaged population inversion is compared with the threshold population
inversion found via the TM method. The TM method neglects gain saturation; however, the
first lasing threshold should be the same for both the TM and MB calculations where gain
saturation does not play a role. Thus, the first TM threshold is normalized to the first MB
threshold by adjusting the parameter Ae in equation (3). All other TM thresholds are scaled
by the same ratio and the results are shown in figure 2.

MB thresholds of modes 3, 4 and 5 are larger than their TM counterparts. This is
expected [6, 7, 11, 12] since spatial hole burning caused by the first mode reduces the gain
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Figure 3. (a) Emission spectrum from MB simulations with gain saturation for 〈ρ3(x, t)〉 =
2 × 10−3. Lasing modes are enumerated in figure 2. The four lasing peaks are labelled (1, 3,
4, 5) and the wavelengths of the three suppressed lasing modes (2, 6, 7) are indicated by vertical
blue lines. Various other peaks appear in the emission spectrum due to nonlinear wave-mixing.
Two four-wave mixing peaks (involving modes 1, 3, and 5) are labelled as examples. (b) Intensity
of random lasing modes with increasing 〈ρ3(x, t)〉. Vertical lines indicate the corresponding TM
thresholds. Modes 4 and 5 switch order with gain saturation included.

available for larger-threshold modes, thereby increasing their thresholds. Three modes, 2, 6
and 7, are missing from the MB simulations. The emission spectrum near the lasing threshold
of mode 4 is shown in figure 3(a) to verify this behaviour. It is clear that mode 2 is suppressed
in this case, i.e., it is not lasing. Higher pump levels were checked but modes 6 and 7 were
not found. Their behaviour shall later be discussed in more detail. Note that ‘linewidths’
of peaks are discernible in figure 3(a). This is purely a numerical linewidth due to the finite
running time of the simulation and is determined precisely by the integration time of the Fourier
transformation.

Figure 3(b) reveals the intensity of lasing modes as a function of the pump level above
threshold. A sharp increase of mode intensity is seen near the lasing threshold, which is larger
than the corresponding TM threshold indicated by a vertical line. Within a small range of
pump levels (approximately 1.5×10−3 < 〈ρ3(x, t)〉 < 2×10−3), mode 4 is suppressed while
mode 5 lases. Eventually mode 4 reaches its lasing threshold and quickly overtakes mode 5 in
intensity. In general, stronger scattering systems have less mode overlap and therefore weaker
competition effects. However, the relatively large number of lasing modes (due to a wide gain
spectrum) encourages mode interaction through the gain medium [23] and stimulates mode
suppression.

3.2. Nonlinear wave-mixing

Nonlinear wave-mixing in random media is well known [35–38] and occurs regularly due to
random quasi-phase-matching. However, such effects have only been observed recently in
random lasers through numerical simulations with four-level gain atoms [12]. Here, with two-
level gain atoms, a higher pump level results in four-wave mixing (FWM) involving modes
1 and 3 seen in figure 3(a), with a peak at (2λ−1

1 − λ−1
3 )−1 ≈ 740 nm. Another peak, with

mixing involving modes 1 and 5, is seen at (2λ−1
1 −λ−1

5 )−1 ≈ 690 nm. Many such peaks exist
and other nonlinear processes, such as third-harmonic generation, occur simultaneously but at
much shorter wavelengths.

The amplitude of FWM peaks is orders of magnitude smaller than the lasing peaks with
which they are associated. The FWM peaks may not generally influence steady-state lasing
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Figure 4. Emission spectra from MB simulations without noise for 〈ρ3(x, t)〉 = (black solid line)
3.84 × 10−3, (red dotted line) 5.89 × 10−3, and (blue dashed line) 6.84 × 10−3. The spectrum is
focused around λ7 = 601.4 nm (thick vertical grey line). Although noise is not included in these
simulations, the spectrum appears noisy due to nonlinear wave-mixing (FWM wavelengths marked
by vertical black dotted lines). A broad distribution of intensity appears around λ7 for high pump
levels.

properties due to their small amplitudes. However, they can be comparable in amplitude to
higher-threshold lasing modes (e.g. lasing peak 4 and FWM peak (1,3) in figure 3(a)).

Another example showing the influence of FWM peaks is shown in figure 4, where
mode 7 is examined. The lasing threshold for mode 7 predicted by the TM method is
〈ρ3(x, t)〉 = 2.5 × 10−3. Above this pump level, a multitude of FWM peaks are generated
at wavelengths close to mode 7, which obfuscates the character of the mode. The signal
integrated around the mode 7 wavelength λ7 is orders of magnitude smaller than the signal
of known lasing modes at the same pump level. However, it appears that the fields generated
by FWM are somewhat trapped by the resonance at λ7 resulting in a broad peak around λ7

in figure 4. The centre of the broad peak does not exactly coincide with λ7, but this could be
attributed to frequency pulling caused by the large amount of gain. Similar behaviour occurs
for modes 2 and 6. We conclude that these modes do not lase without noise. Fields due to
FWM can be trapped at these resonances, but a thorough examination of this effect on lasing
of large-threshold modes is beyond the scope of this paper.

4. Impact of noise

4.1. Spectral behaviour

We first introduce the emission spectra for the pump level at the transparency point then
investigate higher pump levels. The transparency point is defined here as the pump level
at which half of the atoms are in the upper level and half are in the lower level, so that
the net gain and loss is zero. Without noise, at a pumping coefficient of Pr = 1.00, the
system reaches this transparency point (ρ3 = ρ22 − ρ11 = 0 at the steady state). Since there
is no net gain, the initial seed pulse dies away, and there is no signal at the steady state.
Noise slightly reduces the excited state population [39], thus the system is just below the
transparency point for Pr = 1.00. The pumping coefficient Pr can be adjusted so that the
steady-state spatiotemporally averaged population inversion is zero (〈ρ3(x, t)〉 = 0). Figure 5
shows the steady-state emission spectrum with noise |E(λ)|2 at this point when there is no net
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Figure 5. Emission spectra from MB simulation with noise at the transparency point (〈ρ3(x, t)〉 =
0). Top: vertical lines mark the resonance wavelengths found via the TM method.

gain nor absorption. The spectrum is broad and centred at the atomic transition wavelength
λa = 600 nm.

Spectral modulation of emission intensity is evident in figure 5 though there is no net gain.
Without amplification, the system cannot support lasing. However, due to strong scattering,
the dwell time of light at resonant frequencies is longer than at nonresonant frequencies so
the field builds up in the system. Peaks due to this buildup are visible because the resonance
peaks are spectrally separated (g = 0.18). Thus, modes are visible as peaks in the emission
spectrum without gain. Note that for all FFTs of fields with noise included, the integration
time for the FFTs is set long enough so that the numerical linewidth is much smaller than the
linewidth caused by physical noise.

Introducing amplification (ρ3 > 0) allows the first lasing threshold to be reached without
noise at 〈ρ3(x, t)〉 = 0.3×10−3 in figure 6(a). The single lasing peak matches the lasing mode
1 wavelength found in the absence of gain saturation. A narrow spectral peak also appears at
the same wavelength with noise. In agreement with experiment [3] and as previously observed
numerically [19], there is a smooth transition from amplified spontaneous emission (ASE)
to lasing. However, the smooth transition makes determining lasing thresholds with noise
nontrivial and shall be discussed later. Meanwhile, we observe that most of the resonance
peaks exist in the spectrum with noise (though some may be buried) and become narrower
by light amplification. The physical linewidth of the dominant mode has been found [19] to
follow the scaling of the Schawlow-Townes linewidth. However, the openness of the structure
introduces excess noise [40–43] and gain saturation further modifies linewidths [44–47]. Due
to such complications, a detailed quantitative study of linewidths in the present model remains
to be carried out.

With gain saturation included, the second mode to reach its lasing threshold in the absence
of noise (figure 6(b)) is mode 3 (enumerated in figure 2). Gain saturation evidently causes
mode 2 to be suppressed. With noise, however, both modes 2 and 3 are seen in the emission
spectrum. The mode 2 peak has a smaller amplitude and a larger linewidth than mode 3.

Mode 5 is next to reach the lasing threshold without noise in figure 6(c) meaning mode
4 is suppressed. Again, mode 4 is observed in the emission spectrum with noise but is
slightly stronger than mode 5 in this case. Even though mode 4 is farther from the gain
centre wavelength, its amplitude is comparable to that of mode 5. The linewidth of mode 4 is
also slightly narrower than that of mode 5.
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Figure 6. Emission spectra without noise (red) and with noise (black) for 〈ρ3(x, t)〉 = (a)
0.30 × 10−3, (b) 1.1 × 10−3, (c) 1.8 × 10−3, (d) 1.9 × 10−3. Modes (enumerated in figure 2) are
marked in sequence along with relevant peaks due to four-wave mixing. Spectra without noise are
vertically offset and normalized for clarity.

Without noise, mode 4 begins lasing at a higher pump level as shown in figure 6(d). A
corresponding peak is seen easily in the spectrum with noise. Although much higher pump
levels were checked, modes 2, 6 and 7 are never seen clearly in the emission spectrum without
noise. The peak in the spectrum without noise (in figure 6(d)), whose frequency is close to
that of mode 6, is in fact a FWM peak involving modes 1 and 5, i.e. (2λ−1

1 −λ−1
5 )−1. All three

modes (2, 6, 7), however, clearly exist in the spectra with noise.
Note that although modes appear as peaks in the emission spectra with noise, FWM peaks

are not clearly observed. It is unclear if the FWM peaks are merely hidden in the noise
background or if FWM is suppressed by noise. One possibility is that noise continually
randomizes the phases of modes making even random quasi-phase-matching difficult to
achieve.

4.2. Lasing threshold

The results in section 4.1 illustrate that suppression of lasing modes due to gain saturation is
weakened in the presence of noise. Some resonant modes, which fail to lase without noise,
manage to lase in the presence of noise. The co-existence of multiple lasing modes and their
interactions through the gain material make it difficult to define the threshold for each separate
mode using previously developed methods for generic single mode lasers [48–52]. The data
in figure 7 clearly display an abrupt change of slope for the mode intensity versus pump level.
This allows us to define a lasing threshold in the presence of noise and multiple lasing modes.
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Figure 7. Mode intensities versus population inversion with noise for representative modes.
Modes 1 and 3 are lasing without noise while modes 2 and 6 are suppressed without noise. Slopes
of linear fits on a log–log scale indicate the power m of intensity increase, i.e. intensity ∝ρm

3 . The
lasing modes 1 and 3 experience superlinear increase above a threshold pump level. The lasing
threshold is defined as the intercept of the two linear fits. Suppressed mode 2 does not experience
superlinear increase but mode 6 does, indicating it is lasing when noise is included.

The mode intensities in figure 7 are plotted on a log–log scale in order to better examine
the rate of increase. The slope indicates the power m of increase; m < 1 is sublinear and m > 1
is superlinear. When the pump level exceeds a threshold, the mode intensity changes from a
sublinear to a superlinear increase. This reflects the onset of light amplification by stimulated
emission into the mode. We define this threshold as the lasing threshold for the mode.

For modes 1 and 3, the thresholds are 〈ρ3(x, t)〉 = 9.7×10−3 and 12.4×10−3, respectively.
Noise has increased the absolute lasing thresholds. However, relative to one another, the
thresholds are closer together with noise. Without noise, mode 6 is suppressed, in other words
it does not lase. With noise, the threshold is 〈ρ3(x, t)〉 = 19.7 × 10−3 and is much closer to
the first lasing threshold. Thus, noise reduces the difference in thresholds of different modes,
which makes the system behave more similar to a linear gain system (TM method).

Noise weakens the nonlinear effect of gain saturation. Although mode 6 manages to lase
with noise, the other suppressed modes (2 and 7) do not lase even with noise included. Mode 2
is shown in figure 7. No clear turn-on exists; its slope remains fairly constant and sublinear.
The same behaviour occurs for mode 7 (not shown). The remaining cases of modes 4 and 5
do display a change of slope, but the superlinear increase in intensity is weak. The range of
superlinear increase, due to stronger mode competition at higher pump levels, is not enough
to find a reasonable linear fit so their thresholds are not defined.

5. Spatial behaviour

Due to gain saturation, the mechanism through which mode competition and mode suppression
occur is spatial hole burning. In previous sections, spatial properties have been averaged out
and only the spectral steady-state properties examined. However, above threshold, spatial hole
burning creates ‘dead’ regions since there is no gain left for larger-threshold lasing modes.
Next, we investigate the spatial properties of the population inversion and on it, the effects of
noise.
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Figure 8. Time-averaged population inversion 〈ρ3(t)〉 versus position x without noise (red) and
with noise (black) for 〈ρ3(x, t)〉 = 3.68 × 10−3. (a) ρ3 with noise is averaged in time over one
optical cycle T . (b) ρ3 with noise is averaged in time over 2T1. Intensity without noise (magenta)
and with noise (blue) is also shown; spatial hole burning is much weaker in (a).

5.1. Well above the lasing threshold

Our previous study demonstrated [19] that the spatial behaviour of the population inversion is
similar with and without noise at high pump levels, well above the lasing threshold. Only at low
pump levels does ASE dominate the emission spectrum. With an increasing pump level, gain
saturation quickly sets in to suppress the fluctuations. Without noise, the population inversion
reaches a fairly stationary level and temporal averaging over one optical cycle T ≈ λa/c gives
an accurate assessment of inversion behaviour. With noise, averaging only over T yields a more
transient behaviour of the gain medium (see figure 8(a)). Much larger spatial fluctuations of the
population inversion averaged over T reflect stronger temporal fluctuations on the time scale
of T ; the inversion even becomes negative at some locations. The optical cycle T = 2.0 fs,
dephasing time T2 = 1.9 fs and average cavity lifetime (taken from inverse mode linewidths)
τ = 17 fs are all similar. The atomic population changes over the much longer timescale of
T1 = 1 ps, which is the longest time scale in the system. Thus, with noise, the population
inversion is averaged over 2T1 to remove short-time dynamic behaviour. Results are shown in
figure 8(b) along with the field intensity to illustrate spatial hole burning. When averaging over
2T1, the spatial behaviour of gain is quite similar with and without noise. This means noise
does not remove the ‘dead’ regions at high pump levels. This is expected since the influence
of noise decreases far above threshold when the lasing signal is much larger than that of noise.

5.2. Near the lasing threshold

The spatial behaviour of the population inversion with and without noise for a low pump level
is shown in figure 9(a). Without noise, ρ3(x) is averaged over T and with noise, it is averaged
over 2T1. Even averaging over the longest time scale in the system in this case does not make
ρ3 with noise converge to that without noise. Note that the population inversion without noise
is plotted on a different scale for comparison, since it is over an order of magnitude smaller.
The inversion with noise fluctuates dramatically in space with some spatial points (not shown)
becoming negative (similar to figure 8(a)).

Not only does ρ3 fluctuate strongly in space, but also in time. In a spatial region not
significantly influenced by spatial hole burning (x = 0.5 µm), the inversion in figure 9(b)
fluctuates considerably in time, even though averaged over 2T1. These fluctuations still occur
where spatial hole burning is strong, e.g. at x = 3 µm. At this location, the inversion is
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Figure 9. (a) Time-averaged population inversion 〈ρ3(t)〉 without noise (red) and with noise
(black) for 〈ρ3(x, t)〉 = 0.86×10−3. (b) 〈ρ3(t)〉 with noise at x = 3 µm (circles) and x = 0.5 µm
(squares). The solid horizontal line marks 〈ρ3(t)〉 = 10−4 without noise at x = 3 µm and the
dotted horizontal line marks 〈ρ3(t)〉 = 0.03 without noise at x = 0.5 µm. ρ3 is averaged over
2T1 = 2 ps with noise in (a) and (b).

dynamically ‘dead’ without noise, i.e. ρ3 ∼ 0, due to low-threshold lasing modes depleting
the gain. Figure 9(b) illustrates the change of the inversion 〈ρ3(t)〉2T1 in time at x = 3 µm due
to noise. The gain medium is constantly altered by spatial and temporal fluctuations and dead
regions are overcome. In other words, spatial hole burning is unable to continually enforce
gain depletion in the presence of noise.

5.3. Gradual behavioural change

From the results above, it is clear that the spatial profile of the population inversion with noise is
most different from that without noise near the lasing threshold. Without noise, the population
inversion is depleted in regions of high laser intensity. With noise, the gain has a more uniform
spatial behaviour. Thus, noise weakens gain depletion. This helps one to overcome the spatial
regions of gain that would be depleted without noise. To quantize the difference of population
inversion with noise (ρ3(x))n and without noise (ρ3(x))w, we take the difference between
the two,

K =

∫ L

0
|(ρ3(x))n − (ρ3(x))w| dx

∫ L

0
(ρ3(x))w dx

. (5)

Figure 10 shows K as a function of the pump level ρ3. The spatial distributions (ρ3(x))n
and (ρ3(x))w are compared when their spatially averaged quantities are roughly equal. For
low pump levels, the difference is greatest. The distributions converge towards one another at
high pump levels, as expected.

6. Stochastic resonance and stochastic linearization

In nonlinear systems, the mechanism of stochastic resonance (SR) [53] manifests itself when
noise is able to amplify a weak signal past a certain threshold. With noise included, it was
observed in section 4 that peaks appeared in the emission spectra which are absent from the
spectra without noise. The appearance of such peaks with noise suggests the mechanism of SR.
However, in typical SR cases, an external driving source forces a ‘resonance’ peak in the power
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Figure 10. Spatial differences K between the population inversion with and without noise
calculated via equation (5). With spatial averaging, the two inversion distributions are roughly
equal (horizontal axis). Their spatial differences increase significantly at low pump levels.

spectrum at the driving frequency if the noise is strong enough [54, 55]. The random lasers
considered here employ an incoherent pump to drive the system. Thus, the typical mechanism
of SR is not observed. The peaks that appear in the emission spectrum are associated with
intrinsic resonances of the underlying random structure [5].

Closely related to SR is the mechanism of SL. Noise added to a continuous signal subject to
nonlinear effects (in this case due to gain saturation) and a threshold condition (in this case the
lasing threshold) has the effect of linearizing the output [20]. In digital signal processing, this
is known as dithering [21] or SL. In section 4, we observed that strong nonlinear effects, such
as the suppression of lasing modes due to gain saturation, are weakened with noise included
in the calculation. Moreover, in section 5, it was observed that regions of depleted gain were
overcome by noise, a typical marker of SL. In this section, we further explore the occurrence
of SL in random lasers.

For a signal subject to a threshold condition, nonlinearity in the detector can cause
unwanted errors in the detection of that signal. On the one hand, nonlinearity may push
the original signal above threshold causing a false positive detection. On the other hand,
nonlinearity may pull the original signal below threshold causing a false negative. Adding the
proper amount of noise to such a system can remove the detection errors. For example, with a
signal originally above threshold, random noise can mitigate the effects of nonlinearity so that
the signal is pulled below threshold less frequently. Thus, if many measurements are taken, a
positive detection of the signal being above threshold occurs most often. A statistical average
of measurements therefore yields the correct detection of the signal being above threshold.
Likewise, a signal originally below threshold can be correctly detected if the proper amount of
noise is added to remove the effects of nonlinearity. It is in this sense that a signal is linearized
by a stochastic process since the effects of the nonlinearities are removed.

In random lasers, we check if noise linearizes the emission signal across the lasing
threshold. We define the lasing threshold to be reached as the threshold without gain
saturation (found via the TM method). Since we observed mode suppression, nonlinearity
(gain saturation) in random lasers only influences the emission in one way, i.e. the signal is
pulled below its threshold. Therefore, as suggested by sections 4 and 5, we check if noise is
able to push the signal up above threshold again thereby removing the influence of nonlinearity.

The effect of noise on representative random laser modes is shown in figure 11. Mode
intensity with noise is clearly nonzero for all cases below the TM threshold (marked by the
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Figure 11. Mode intensities versus population inversion without noise (red dashes) and with noise
(black solid circles) for lasing modes 1 and 3, and modes 2 and 6, which are suppressed without
noise. The vertical blue dotted lines indicate the lasing thresholds without gain saturation (via
the TM method). The vertical green solid lines indicate the lasing thresholds with noise (via the
stochastic MB method). The nearly vertical increase of red dashes indicates the lasing threshold
without noise (via the MB method).

vertical blue line). A nonzero signal, however, does not indicate the threshold has been reached.
From the steady-state value of the population inversion, we see that there is no sustained lasing
oscillation in these cases since there is not enough gain to compensate the loss. The noise can
push the system above the lasing threshold for short periods of time; however, the population
inversion that is time-averaged over 2T1 does not reach the threshold value for lasing. This
time-averaging is equivalent to the statistical averaging discussed above in relation to SL. The
time-averaged nonzero signal below the lasing threshold is attributed to spontaneous emission
for ρ3 < 0 and ASE for ρ3 > 0 [19].

The signals with noise in figure 11 cross the TM lasing thresholds in a continuous manner,
a behaviour typical of SL. However, the signals with noise for modes 1 and 3 have not yet
reached their lasing threshold, as defined in section 4.2 and indicated by vertical green lines.
For mode 1, gain saturation does not play a role since no other modes lase to suppress it [12].
Noise influences mode 1 by increasing its lasing threshold. This occurs because noise draws
energy away from the lasing mode and distributes it over many other modes via ASE. For
mode 3, the effects of gain saturation and noise influence its behaviour; they both cause an
increase in the lasing threshold. However, the threshold with and without noise is nearly the
same. Although the lasing threshold is increased with noise, the effects of gain saturation are
mitigated with noise. These two effects are balanced for this particular mode resulting in a
similar threshold with and without noise.

Lasing oscillation in modes 2 and 6 in figure 11 is always suppressed without noise. With
noise, much larger signals appear in the emission spectra. For mode 6, noise allows the lasing
threshold to be reached when it is otherwise impossible (due to mode suppression). Without
noise, nonlinearity due to gain saturation caused an ‘error’, in that its signal was not detected
when it otherwise would have been above the threshold without gain saturation. Inherent noise
weakens the effects of gain saturation enough so that the signal is detected. In the case of mode
2, the proper amount of noise does not inherently exist in the system to remove this error. The
appearance of mode 2 with noise for ρ3 > 0 is merely due to spontaneous emission, since a
superlinear behaviour of the emission signal is never observed.
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We believe the inability of noise to excite mode 2 to lase is because of improper ‘tuning’.
The noise we consider in random lasers is inherent and therefore, not tuned to give optimal
output. This opens the question, however, if noise can be tuned, e.g., by adjusting the atomic
interaction with the heatbath. With the proper amount of noise, mode 2 may lase and its
amplitude maximized.

7. Conclusion

Gain saturation causes strong nonlinear effects in random lasers in the multimode regime. We
have shown these effects, such as the increased lasing thresholds and mode suppression, by
comparing full-wave Maxwell–Bloch simulations to linear gain simulations that exclude gain
saturation. In general, random lasers require intense pumping since the lasing threshold is
high and nonlinear effects are more pronounced. It was shown here that inherent spontaneous
emission noise of the laser system can mitigate the nonlinear effects. Noise increases the
thresholds of modes that lase at low pump levels due to redirection of energy out of lasing
modes, but reduces the thresholds of modes that lase at higher pump levels. Noise constantly
excites all modes and their dwell time in the random system results in peaks in the emission
spectrum that are absent without noise. Above the transparency point, amplified spontaneous
emission enhances the mode amplitude and allows a smooth transition to lasing. In some
cases, this process allows lasing of modes that are suppressed when noise is not included. The
result is inherent stochastic linearization. We have shown that this is made possible when noise
overcomes ‘dead’ regions of gain caused by spatial hole burning. Recently, a connection was
established between mode competition and the statistical properties of normal modes of the
underlying random structure [11]. A study of the impact of noise on such correlations would
be an interesting avenue for future research. In fact, these correlations are a major difference
between random and conventional (including chaotic) lasers. With intense pumping, ASE is
strong and its effect on the lasing modes should also be more significant than in a conventional
laser. Together, the processes studied here are expected to be less dramatic in conventional
lasers. We further suggest that noise may be tuned by adjusting the atomic medium providing
gain, to possibly excite and maximize the amplitude of all possible lasing modes. It may also
be possible to frustrate lasing in particular modes by properly adjusting the noise.
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