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In perfectly homogeneous media, electromagnetic waves, sound 
and electrons propagate according to their respective wave equa-
tions. This undistorted propagation, also known as ballistic prop-

agation, is maximally efficient in transferring energy and images. 
However, in real-world systems, defects or impurities are almost 
invariably present at disordered positions inside a medium1. The 
presence of these scatterers leads to an exponential attenuation of 
the ballistic wave, as well as to the build-up of scattered intensity. 
After a few scattering mean free paths (Box 1), the intensity of the 
diffuse, randomly scattered waves exceeds that of the ballistic com-
ponent. Typically, the microscopic structure of a sample is unknown 
and, even if it were accessible, tracking millions of scattering events 
is impossible in any experiment or numerical simulation. Given 
that this complexity is difficult to cope with, let alone to harness, 
the traditional approach is to average over statistically equivalent 
samples so that diffusion theory describes the average intensity 
of the multiply-scattered light (Box 1). It is important to keep in 
mind, though, that diffusion theory only describes average behav-
iour. This becomes especially clear when looking at (low-power) 
laser light scattered from paper or paint, which does not form a 
smooth diffusive blob, but an intricate high-contrast speckle pattern  
(Fig. 1a), generated by interference between the many paths of the 
scattered light.

Because diffusion is an irreversible process, one may naively 
expect that multiple scattering fundamentally destroys the possibil-
ity to shape the propagation of light in this process. However, in a 
visionary paper in 1990, Isaac Freund realized that detailed knowl-
edge of the scattering process of a single static scattering sample 
with sufficient resolution of the speckles and their correlations 
allows one to use a disordered scattering material as an optical ele-
ment, permitting one to ‘see through walls and around corners’2. 
Moreover, advanced experiments and the theory of time reversal 
in ultrasound have shown experimentally and theoretically that 
multiple scattering of waves, by static and non-absorbing samples, 
is far from irreversible3. This time-reversal signal processing has 
been a major inspiration for subsequent work with electromagnetic 
waves4,5. In optics, the single-frequency analogue of time reversal, 
namely optical phase conjugation, which allows a beam or image 
to be sent back through a scattering medium to the position of its 
source, has been achieved using holography6, nonlinear optics7 and 
digital holography8,9.

Technological developments of the spatial light modulator 
(SLM)—a mega-pixel device that controls the phase of the light 
reflected by each of its pixels—have enabled the active control of 
light propagation in complex media. An experimental milestone 
was the demonstration of focusing a laser beam through a strongly 
scattering sample by shaping the incident wavefront with an SLM10 
(Fig. 1d). The intensity enhancement at the focal spot already 
reached 1,000 in the first experiment and later increased to 100,000 
(ref. 11). In contrast to phase-conjugation and time-reversal meth-
ods, the focal spot in SLM-based methods does not have to be on 
the same side of the medium as the source—it can lie on the other 
side, or even inside the medium12–14. The ability to control fields 
with precision after hundreds or thousands of scattering events is 
the clearest evidence against the notion that scattering is intrinsi-
cally an irreversible, information-destroying process. Apart from 
the intensity in a focal point, many other figures of merit such as 
resolution15–18, polarization19, arrival time of a pulse20–22, spectrum23 
and even darkness24,25 have been optimized using wavefront shap-
ing. In addition to manipulating the local field properties, the total 
transmission of light through a multiply-scattering sample has 
been increased from a few percent to nearly 50% experimentally26. 
In theory, a 100% transmission is possible for a lossless diffusive 
system, regardless of the scattering strength. Furthermore, the total 
energy stored inside the system can be enhanced dramatically, and 
the spatial distribution of the energy density within the system 
can deviate sharply from the predictions by diffusion theory. Such 
control capabilities open the door to manipulating light–matter 
interactions deep inside turbid media that typically look opaque, 
or indeed white.

The power of the wavefront-shaping approach lies in the fact that 
the SLM can be used both to measure the phase needed to compen-
sate for the scattering and to apply the corresponding correction. 
Although nonlinear optimization of an incident wavefront is easier 
to implement, it does not necessarily reach the global optimum. 
Various matrices related to physical quantities of interest have been 
introduced, and their eigenstates are studied in the search for the 
global maxima of these quantities. The first such matrix that was 
measured in optics is the transmission matrix, which characterizes 
the linear mapping between the incident field profile and the trans-
mitted one27. This matrix provides the input wavefront that cre-
ates a desired output pattern. It can also be used to reconstruct the 
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image of an object hidden behind a strongly scattering medium28. 
The randomness in the transmission matrix can even be a resource 
permitting compressive imaging29. The matrix approach has subse-
quently been extended to the frequency and time domains30, allow-
ing multi-spectral imaging and spatio-temporal focusing, as well as 
to acousto-optics31.

The developments of new measurement techniques and control 
schemes have driven fundamental studies of mesoscopic physics, 
which in turn provide the insights and set the upper bounds for 
wavefront control. Recent experiments have demonstrated imag-
ing, focusing, trapping and other types of manipulation with light 
that were considered impossible only a few years earlier. Real-world 
applications, ranging from radiofrequency technology32 to bio- 
medical optics33–35, are being initiated and explored by applied 
research groups and start-up companies.

It is impossible to review all research progress in this emerging 
field here. Our aim is to provide an overview of recent advances in 
optical wavefront shaping, with an emphasis on the physical under-
standing and on fundamental limits. We first review the capabilities 
and limits of controlling light transmission, focusing and absorp-
tion in diffusive random media and multimode fibres with strong 
mode coupling (diffusion in mode space). We then generalize the 
control by wavefront shaping to other physical quantities in com-
plex media. Finally, we discuss the challenge for practical applica-
tions of wavefront shaping and connections to adaptive optics. Also, 
future directions are described briefly. Additional information can 
be found in other reviews5,14,33,36–42.

transport in complex media
When a coherent beam of light is incident on a diffusive sample, 
the scattered light takes numerous paths, which acquire varying 
phase delays. Their interference forms a speckle pattern (Fig. 1).  

The average speckle grain size is of the order of the wavelength 
inside a diffusive sample or close to its surface. The transmitted 
speckle fields evolve with the input frequency; the spectral correla-
tion width is δω ≈ 1/τD, where τD is the Thouless time (Box 1). If 
the incident light has a spectral bandwidth Δω less than δω, it is 
considered monochromatic.

A quantitative understanding of monochromatic wave trans-
port can be obtained in a matrix picture of scattering phenomena, 
derived from mesoscopic transport and random matrix theory43,44. 
This theoretical framework was originally conceived to model elec-
tron wave transport in an elongated conductor or a disordered wire. 
As shown in Box 2, a section of a waveguide with scatterers inside is 
considered here as the scattering region, and the incident and scat-
tered waves are decomposed into the N flux-carrying modes of the 
clean (disorder-free) sections on the left and right. For a waveguide 
with dimension much larger than the wavelength λ, the number of 
flux-carrying modes is N ≈ 2πn2A/λ2, where A is the cross-sectional 
area of the waveguide and n is the refractive index of the interior. 
For samples in free space, N corresponds to the number of propa-
gating free-space modes that are able to enter or leave the sample. 
In practice, for slab-type samples, one defines an area of interest, 
either explicitly or implicitly due to the limited field of view of a 
microscope lens, in which case N can be estimated as the number 
of modes in a waveguide of equivalent cross-sectional area A. This 
makes it possible to describe any linear wave-scattering process by 
the matrix equation

Eout = SEin . (1)

Here, S is the scattering matrix or S-matrix, with dimensions 
2N × 2N, and it describes both reflected and transmitted waves. The 
elements of the vectors Ein and Eout are not to be read as fields, but 

Box 1 | Diffusion theory

A very successful theoretical framework to describe ensemble- 
averaged intensities is diffusion theory, which has high practical 
value and deep importance155. In its simplest form, diffusion the-
ory ignores interference effects. The same diffusion equation can 
describe phenomena with completely different underlying phys-
ics, such as the diffusion of wave energy, heat or the density of a 
particle swarm. In diffusion theory, one considers light transport 
as a random walk of light rays. The rays scatter from impurities 
after travelling a distance that is, on average, equal to the scatter-
ing mean free path, ℓs. Not all scattering events fully randomize 
the direction of a ray. In particular, if the scatterers are larger than 
about one wavelength, forward scattering dominates, so the angle 
θ between the incident ray and the scattered ray is usually small. 
In this case, scattering is anisotropic and predominantly occurs in 
the forward direction. As a result, the ray direction is only rand-
omized after a larger distance known as the transport mean free 
path, ℓt = ℓs/(1− ⟨cos θ⟩), where the brackets 〈·〉 indicate averag-
ing over all possible scattering events156. For example, in biological 
tissue the transport mean free path is typically much larger than 
the scattering mean free path.

The ensemble-averaged energy density U generally obeys 
Fick’s law of diffusion, j = –D∇U, where j is the net energy 
current, and D is the diffusion constant, D = vtℓt/3. Here, vt is the 
transport velocity, which for waves is close to the group velocity 
except in resonant media157. We note that Fick’s law is valid in the 
bulk of a diffusive medium, but not in the outer few mean free 
paths. In this so-called skin layer, one has to correctly describe 
the flow of energy into (and out of) the medium using radiative  
transfer theory158.

A key result of diffusion theory is that the diffusive transmittance 
τ̄ of a sufficiently thick non-absorbing medium scales inversely 
with the thickness L, so that τ̄ ≈ ℓt/L. The prefactor is of order one 
and depends on surface effects159,160. The timescale associated with 
diffusive transmission is bounded from below by the so-called 
Thouless time, τD ≈ L2/(π2D), where the prefactor depends on 
surface reflections. This time, τD, which increases quadratically 
with the thickness, measures how long it takes light to diffuse 
from anywhere inside the medium to its boundaries. Diffusion 
theory neglects interference effects such as speckle, which in most 
situations average out in the ensemble. For very strong scattering, 
interference suppresses transport due to Anderson localization 
(for reviews, see, for example, ref. 161). One may also observe 
deviations from the simple diffusion picture in the case of strong 
absorption with strong anisotropy162.

Isotropic Anisotropic

ℓt = ℓs  ℓt > ℓs  
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as complex coefficients of the flux-normalized waveguide modes. 
The S-matrix is written as

S =

(

Rll Trl

Tlr Rrr

)

, (2)

where Rll is the complex reflection coefficient for input from the 
left, and so on. In a reciprocal medium, the transmission matrix Tlr, 
describing the transmission from each mode in the left lead to each 
mode on the right, is the transpose matrix of Trl.

The transmission matrix T is of high interest in particular. It can 
be decomposed into transmission channels43, which are a special set 
of solutions that correspond to an orthogonal set of incident waves 
that give rise to an orthogonal set of transmitted waves, making 
them essential in communications and imaging41. Mathematically, 
they correspond to the singular vectors of T. Each channel has a 
specific transmittance τ that lies between 0 and 1. With τ being the 
eigenvalue of T†T, this is referred to as the transmission eigenvalue.

Using random matrix theory, one can calculate quantities like 
the average transmittance τ̄ and the distribution function of trans-
mission eigenvalues P(τ), where the statistical average is taken over 
different realizations of a given random matrix ensemble36,43,44. 
Employing such techniques, Dorokhov45 and later Pereyra, Mello 
and Kumar46 have shown an important property of the transmis-
sion matrix in a lossless diffusive system: apart from transmission 
eigenvalues that are exponentially close to zero, the distribution 
P(τ) = τ̄/τ

√

1− τ has a bimodal form36,43. The two peaks of the 
probability density function at τ = 0 and τ = 1 indicate that the cor-
responding eigenchannels have either vanishing or unity trans-
mittance. These are called closed or open channels, respectively. 
Consequently, the conductance is dominated by a small number 
of open channels. Quantitatively, the effective number of transmis-
sion eigenchannels that contribute to transmitted fields is given 
by the channel participation number Me =

(
∑

mτm
)2/

(
∑

mτ2m
)

. 
With Me < N, the transmitted field intensities in N output modes are  

correlated. The degree of positive correlations between their inten-
sities is on the order of 1/Me.

Enhancing transmittance. In a diffusive system of average trans-
mittance τ̄ ∝ ℓt/L ≪ 1, all input energy can be delivered through 
the system by shaping the incident wavefront to match that of an 
open channel with τmax ≈ 1. The enhancement of transmittance is 
τmax/τ̄ ∝ L/ℓt ≫ 1, as a result of the interference of multiply-scattered 
light and to the intensity correlations. Experiments were carried out 
using nonlinear optimization47,48 or by measuring the transmission 
matrix with light27,49, microwaves50,51 and elastic waves52 (Fig. 2a,b). 
In a planar diffusive waveguide, the transmittance is enhanced from 
~0.04 to over 0.4 by coupling light into open channels26,53. At the 
same time, the total energy inside the system is increased nearly ten 
times (Fig. 2c–g). Inside a lossless diffusive sample, the energy den-
sity decays linearly with depth for an arbitrary input wavefront, but, 
once an open channel is excited, the energy density first increases 
with the depth and reaches the maximum in the middle of a dif-
fusive system before decreasing26,54,55. Therefore, selective excita-
tion of an open channel can enhance the light–matter interaction 
by enhancing the energy density deep inside a diffusive medium, 
for example, leading to enhanced fluorescence of embedded probes 
(Fig. 2c)56. Moreover, the open channel depth profile has relatively 
small fluctuations from one disorder realization to another, so 
energy can be reliably delivered in the individual samples53. Very 
recent work also showed how all transmission eigenchannels of a 
disordered medium can be opened by placing an inverse-designed 
anti-reflection structure in front of it57.

The spatial structure of transmission eigenchannels can be tai-
lored through the confinement geometry of a diffusive waveguide, 
for example, by modulating the waveguide width over the depth58,59. 
Even an inverse design has been proposed, namely finding the 
boundary shape of a diffusive waveguide to achieve a targeted depth 
variation of energy density60. In a tapered waveguide whose width 
decreases with depth, propagating waves may convert to evanescent 
ones at certain depths, leading to special eigenchannels with deep 

b

a c

d

Fig. 1 | Wavefront shaping. a, A focused light beam enters a scattering medium and the light undergoes multiple scattering to form a complex, 
seemingly random speckle pattern (transmitted light paths are shown in red, reflected ones in blue). b, Wavefront shaping and related methods such 
as phase-conjugation techniques exploit the feature that sending only the transmitted wave back into the medium reproduces the original focus in a to 
a good approximation. c, before optimization of the wavefront, a collimated laser beam passes through an SLM with all phases set to zero, resulting in a 
complicated speckle pattern behind a scattering sample. d, After optimization of the phase pattern on the SLM, the scattered light is shaped into a focus.
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penetration and total reflection59. The complete return of a probe 
signal to the input end after a deep penetration provides a large sig-
nal for non-invasive sensing and imaging applications.

There is a striking difference in the spatial structure of trans-
mission eigenchannels between waveguide and slab geometries. In 
a narrow waveguide (W ≪ L) the eigenchannels are extended over 
the waveguide cross-section, but in a wide slab (W ≫ L) they are 
transversely localized61. The transverse localization avoids light 
leakage from the open boundary on the side of a slab, ensuring per-
fect transmission for open channels. In a two-dimensional (2D) slab 
where W ≫ L ≫ ℓt ≫ λ, all transmission eigenchannels have a finite 
transverse extent that is much smaller than W, and their transverse 
intensity profile has an exponential tail. Moreover, none of the 
eigenchannels spreads laterally when propagating through the slab, 
and the effective width at the back surface is equal to that at the 
front surface. The effective width of open channels scales as Lℓt/λ 
in the limit W → ∞ in 2D. Such transverse localization occurs in 
the diffusive regime—in contrast to Anderson localization. It arises 
from a combination of reciprocity, local coupling of spatial modes 
and non-local correlations of scattered light. The transverse local-
ization of open channels enhances energy densities both inside and 
behind diffusive slabs.

Excitation of a perfectly transmitting channel requires full con-
trol of fields in all input modes, but this has only been realized 
experimentally with narrow waveguides26,53. For wide slabs, only 
small portions of the full transmission matrices have been mea-
sured so far, as a result of the small illumination area and lateral 
spreading of diffuse light, and also because the illumination and 
collection cover a finite range of angles. Such incomplete control 

has a profound impact on transmission eigenchannels. The percent-
age of orthogonal spatial modes that are modulated at the input or 
detected at the output gives the degree of input or output control, 
m1, m2. The eigenvalue τ̃ of T̃†T̃ , where T̃  is the partial transmission 
matrix, can no longer reach the maximum of one. The eigenvalue 
density P(τ̃) evolves from a bimodal distribution for m1, 2 = 1 to a 
distribution characteristic of uncorrelated Gaussian random matri-
ces for m1, 2 ≪ 1 (ref. 62). An analytic theory based on the filtered 
random matrix ensemble reveals that the incomplete channel con-
trol quickly removes open channels63. Once m1, 2 ≪ 1, the maximal 
enhancement of transmittance drops to four for an equal number 
of input and output modes. The incomplete channel control also 
weakens the transverse localization of transmission eigenchannels 
in diffusive slabs, especially those with low transmission. Still, the 
high-transmission eigenchannels remain exponentially localized in 
the transverse directions and their lateral spreading is suppressed in 
a 3D diffusive slab61.

In the diffusive regime, open channels exist at every frequency, 
but their input wavefronts vary with frequency. If the incident 
wavefront is kept to that of an open channel and the frequency is 
scanned, the transmitted speckle pattern evolves and the transmit-
tance drops. The spectral bandwidth of an open channel is slightly 
larger than δω, and it decreases quadratically with the sample thick-
ness L (ref. 64).

If the input light has a frequency bandwidth Δω ≫ δω, it is con-
sidered broadband and the number of uncorrelated spectral chan-
nels is Ms ≃ Δω/δω. When a short (and therefore broadband) pulse 
impinges onto a diffusive sample, it will break up in space and 
time by multiple scattering. The interference of transmitted fields 

Box 2 | Geometries in scattering experiments

When discussing the transport of waves, three geometries are es-
pecially relevant: the disordered waveguide, the infinite slab and 
the multimode fibre geometry (see figure).

The disordered waveguide geometry (left panel) assumes an 
elongated waveguide with reflecting sidewalls and small scattering 
particles inside. Scattering by these particles causes mode mixing 
in the forward direction as well as backscattering, and in some 
cases also loss of energy. The waveguide model has been used 
in mesoscopic physics to describe electron transport in metallic 
nanowires. It also applies directly to the transport of microwaves 
in waveguides filled with scatterers163, as well as to multimodal 
photonic-crystal waveguides81,164. In the case of a waveguide, the 
S-matrix is naturally expressed in a basis of the modes of the pure 
waveguide without scatterers. As only the open modes of the pure 
waveguide carry flux, S becomes a finite-dimensional matrix, 
which is convenient in numerical work and experiments.

In optics, the case of a slab-type sample (middle panel) is often 
relevant. Examples for such a scattering layer are a coat of paint, a 
sheet of paper or a layer of biological tissue. In this case there is no 
finite, complete basis in which to express the S-matrix. Based on 

the application, a basis of incident wavefunctions can be chosen. 
For example, when expressing speckle correlation functions 
it is useful to use an (infinite) basis of incident plane waves. In 
experiments involving wavefront shaping and transmission-matrix 
measurements, a finite basis of functions within a finite field of 
view is chosen. Typically one chooses a lattice of almost plane 
waves, that is, waves with a flat wavefront that fill the field of view 
of the optics, or a lattice of diffraction-limited spots in the sample 
plane. A transmission matrix expressed in such a basis retains 
many statistical signatures of the transport physics165, but if the 
basis is incomplete, the statistics may be affected and the signatures 
of coherent transport, such as open channels, are reduced63.

A third geometry that has attracted much attention is that of 
a multimode fire (right panel). Small imperfections, for example, 
roughness at the interface between the core and the cladding or 
the effect of stresses, cause scattering and mode mixing, with only 
minimal backreflection and loss. Different from the disordered 
waveguide with strong backscattering, the optical diffusion in a 
fibre occurs in mode space, as light still propagates forward but in 
different modes.

Waveguide with scatterers Slab Multimode fibre with disorder

m incident/reflected modes
reflection coefficients rab

m transmitted modes 
transmission coefficients tab

m incident modes
no reflection

m transmitted modes
transmission coefficients tab

∞ incident/ 
reflected
modes; 
reflection 
coeffcients rk,k′

∞ transmitted
modes; 
transmission
coefficients tk,k′
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in space and time generates a spatio-temporal speckle pattern. The 
average temporal speckle grain size is inversely proportional to Δω, 
and the temporal spreading to δω. Their ratio gives the number of 
temporal channels, which is equal to Ms.

For a broadband input covering many spectral channels, perfect 
transmission is possible by modulating the spatial wavefronts sepa-
rately for individual channels at the input (with complete control). 
However, this is very difficult to realize experimentally using a 2D 
SLM for the number of spectral channels Ms = 10–100. This raises 
the question of whether it is possible to enhance the transmittance 
of all spectral channels with a single incident wavefront. The answer 
is yes, by constructing a broadband matrix B = ∫SI(ω)T†(ω)T(ω)
dω, where T(ω) is the frequency-resolved or multi-spectral trans-
mission matrix and SI(ω) is the input power spectrum65. The total 
transmittance for an input wavefront |ψ i⟩ is ⟨ψ i|B |ψ i⟩. Hence, the 
largest eigenvalue of B gives the maximal transmittance, and the 
corresponding eigenvector provides the incident wavefront. For a 
lossless diffusive sample with an average transmittance of 2%, the 
spectrally integrated transmittance across a bandwidth Δω = 60δω 
is enhanced ten times65. Such broadband enhancement is attributed 
to the long-range spectral correlations in coherent diffusion, which 
change the scaling of the enhancement factor from 1/Ms to 1/

√

Ms .

Spatial and temporal focusing. In addition to enhancing the trans-
mittance, the transmission matrix can be used to find the incident 
wavefront to create a target spatial pattern behind a disordered 
medium. A simple example is focusing light through a turbid sample 
to a wavelength-scale spot10 (Fig. 3a,b). For monochromatic light, 

the incident wavefront is equal to the phase conjugate of an output 
field generated by a point source at the focal position7. Modulating 
the input phase front will precompensate the phase delays incurred 
by different scattering paths so that the light arriving at the focal 
spot will interfere constructively to enhance the local intensity.

The enhancement factor η is defined as the ratio of the focal 
intensity to the average intensity under random illumination  
(Fig. 3c). It is given by the number M1 of orthogonal spatial modes 
that are modulated at the input5. With phase-only modulation of the 
incident wavefront, the enhancement factor is reduced to η = (π/4)
(M1 − 1) + 1. The spectral bandwidth for focusing through a diffu-
sive sample is equal to δω (ref. 66).

The optimal incident wavefront for focusing through a diffu-
sive medium preferably excites the high-transmission eigenchan-
nels, so the intensities of speckle grains outside the focal spot also 
increase47,54. The contrast μ between the intensity of the speckle 
grain at the focus and the average intensity of speckle grains outside 
the focus (Fig. 3c) is given by the channel participation number Me 
(ref. 67). The value of Me fluctuates with disorder configuration, yet 
its relation with μ holds for every configuration68.

Beyond single-point focusing, wavefront shaping can also 
focus transmitted light to multiple points simultaneously, but the 
enhancement factor η is reduced by the number M2 of focal points 
(speckle grains)27. Ignoring any correlations in the diffusive light 
arriving at those points, η scales as M1/M2. This seems to suggest 
that it is impossible to focus to an extended area in which the num-
ber of speckle grains M2 exceeds the number of input modes M1 
modulated by the SLM. However, the positive intensity correlations  
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among the speckle grains become notable when M2 exceeds Me. 
Such long-range correlations facilitate focusing to a large target. 
Once the partial transmission matrix T̃  that maps M1 input modes 
to M2 modes within the target region is calibrated, the largest eigen-
value of T̃†T̃  gives the maximal flux across the target. The flux 
enhancement approaches (1+

√

M1/Me)
2 for M2 ≫ Me.

In addition to monochromatic focusing, broadband focus-
ing through a diffusive medium has been achieved with the 
multi-spectral transmission matrix69. As long as the transmitted 
intensity is measured over a sufficiently long integration time, beat-
ing between different frequencies averages away. The total intensity 
is an incoherent sum of all spectral channels. When focusing light 
of bandwidth Δω ≫ δω to a diffraction-limited spot behind a diffu-
sive medium, long-range spectral correlations no longer play a role. 
Using a common incident wavefront for all Ms spectral channels, the 
maximal enhancement of intensity at the focus is Ms times smaller 
than that of monochromatic focusing. The spectrally resolved 
transmission matrices also provide the optimal incident wavefronts 
for focusing individual spectral channels to the same position or to 
different positions69.

In contrast to broadband focusing, spatio-temporal focusing of 
a short pulse requires the fields in all spectral channels to interfere 
constructively at a chosen time. Multiple scattering in a diffusive 
medium creates numerous paths for light to take, and each path 
is associated with a respective time delay. The coupling between 

spatial and temporal degrees of freedom allows spatio-temporal 
focusing of the transmitted light by shaping either the spatial wave-
front20,21,30 or the spectral profile of an incident pulse22 (Fig. 3d–f). 
The enhancement factor is higher with wavefront shaping, because 
the number of spatial modes (M1) controlled by a 2D SLM is typi-
cally much higher than the number of spectral channels (Ms).

The spatio-temporal mapping through a diffusive medium is 
described by the time-resolved transmission matrix, which can be 
measured directly in a time-gated experiment30 or from the Fourier 
transform of T(ω): T(td) =

∫

T(ω)SE(ω)e−iωtddω, where td is 
the delay time and SE(ω) is the field spectrum of an input pulse. 
The eigenvalues τ(td) of T†(td)T(td) give the transmittance at td for 
time-resolved eigenchannels. The channel participation number 
at td is Me(td) = [

∑

mτm(td)]2/[
∑

mτ2m(td)]. With M1 orthogo-
nal modes modulated by an SLM, the intensity enhancement of 
spatio-temporal focusing is still M1, but the spatial contrast70 is 
given by Me(td) for M1 ≫ Me(td).

One step beyond focusing is creating an arbitrary time trace at 
any chosen location. This is done by using the matrix that maps the 
spatial wavefront of an incident pulse to the temporal profile of the 
transmitted field at the chosen position30,71.

Instead of focusing through a scattering medium, focusing 
inside the medium is important for many applications. This has 
been achieved by optimizing the incident wavefont of a laser beam 
with a guide star14, for example, the fluorescence or nonlinear signal 
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Fig. 3 | Spatial and spatio-temporal focusing of light through multiple-scattering samples. a, Transmitted speckle pattern for an unshaped incident 
beam from a monochromatic laser. b, Spatial focusing of transmitted light by optimizing the incident phase front with an SLM. The intensity at the 
wavelength-scale focus is over 1,000 times the initial speckle intensity. c, Intensity profile before (grey) and after (blue) focusing, illustrating the 
enhancement factor η and contrast μ. d, Spatio-temporal speckle generated by an optical pulse through a scattering sample. A spatial (red) or a temporal 
(black) section is plotted, as well as the spatially or temporally integrated signal (top). e, Spatio-temporal focusing in transmission by shaping the spectral 
profile of an incident pulse. f, Spatio-temporal focusing by shaping the spatial wavefront of an incident pulse. The first two curves (black) represent 
the averaged and single transmitted pulse with a non-optimized input wavefront. The remaining curves (red) are the amplitudes of single pulses after 
optimization at different time delays, indicated by the dashed arrows (grey). Figure adapted with permission from: a,b, ref. 10, Optica Publishing Group;  
c, ref. 47, APS; d,e, ref. 22, Springer Nature Limited; f, ref. 20, APS.
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from the sample12,72,73. For energy delivery to a target of size much 
larger than the wavelength-scale focus, matrices like the general-
ized Wigner–Smith operator74,75 or the deposition matrix76 map 
the input wavefront to the interior field distribution (see section 
‘Generalized control’). Their extreme eigenvalues give the upper 
and lower bounds of energy delivery into a target region of arbitrary 
size and shape. For non-invasive imaging of biological samples, a 
time-resolved reflection matrix is measured to acquire eigenchan-
nels of the matrix at long delay times77. Injecting light into such 
channels will enhance the interaction of multiply-scattered light 
with objects buried deep in a scattering medium42,78.

Controlling absorption. Optical absorption has a profound impact 
on coherent transport in complex media. The strength of absorption 
is characterized by the absorption length, la. Although absorption 
does not destroy the phase coherence of scattered light, it attenuates 
the longer scattering paths more than the shorter paths. The aver-
age length of light paths transmitted across a lossless diffusive slab 
is given by lp ∝ L2/ℓt. Once the absorption is strong enough, such 

that la < lp, the optical paths taken by light in a high-transmission 
eigenchannel are straightened to shorten the path length through 
a diffusive system so as to reduce absorption79. Because the eigen-
channel with the highest transmission experiences the least reduc-
tion in transmittance by absorption compared to other channels 
and random input wavefronts, the enhancement of transmittance 
increases with the absorption for both 2D and 3D diffusive systems.

Many diffusive systems, including biological samples, have spa-
tially non-uniform absorption. The high-transmission eigenchannels 
will redirect the energy flows to bypass the strong absorbing regions 
to minimize attenuation80. Such re-routing is achieved by adjusting 
the incident wavefront to induce destructive interference of scattered 
light inside the absorbing region and constructive interference out-
side81. The interplay between non-uniform absorption and scattering 
in a diffusive sample with a narrow pore will give rise to transmission 
eigenchannels concentrated in the pore, to avoid absorption82.

In addition to transmission, optical absorption can be controlled 
by shaping the incident wavefront of a coherent beam. Complete 
absorption of all incoming light is possible at certain frequencies 
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for specific values of la (ref. 83). This condition of coherent perfect 
absorption corresponds to the time-reversed process of lasing84, 
such that a realization for disordered media corresponds to a ran-
dom anti-laser—a device that completely absorbs rather than emits 
light—at its first lasing threshold85 (see Fig. 5f for such a perfect 
absorbing state). In strongly scattering media, coherent enhance-
ment of absorption can be realized at every frequency and for any la 
by increasing the dwell time via the interference of scattered light86. 
Let us consider one-sided illumination of a diffusive sample, and 
use the transmission matrix Tlr and reflection matrix Rll to construct 
a new matrix Al = I− T†

lrTlr − R†
llRll. Its largest eigenvalue αmax 

determines the maximal absorption, and the associated eigenvector 
provides the incident wavefront to achieve such absorption87. The 
density of absorption eigenvalues P(α) transforms from a unimodal 
distribution around α = 0 in the weak absorption regime (la > lp) to 
a bimodal distribution in the strong absorption regime (la < lp). The 
second peak of P(α) appears near αmax, which approaches unity, lead-
ing to nearly complete absorption. Furthermore, wavefront-shaping 
techniques are also employed to control photo-electron generation 
in a space-dependent manner by modifying the internal distribu-
tion of light inside a highly scattering dye-sensitized solar cell88.

Multimode optical fibre. The idea that by controlling the input 
wavefront one exerts control over the output applies to any system 
characterized by a transmission matrix, and one good candidate 
is a multimode optical fibre. Multimode fibres (MMFs) transmit 
between a handful and a few thousand orthogonal modes. All 
modes of different order propagate with a different phase velocity. 
As a result, even in a straight fibre where the modes are isolated, 
owing to inexact knowledge of the dimension and refractive index 
of the fibre, all modes arrive with a different, a priori random phase, 
which makes the transmission matrix in the real-space basis seem-
ingly random.

Furthermore, inherent imperfections (refractive index varia-
tions) and external perturbations (fibre bending or twisting) lead 
to coupling of the guided modes89,90. Such coupling can be consid-
ered as light scattering in mode space, and can be described by an 
effective mean free path, ℓs. Once the fibre length, L, exceeds ℓs, 
light is scattered multiple times among the fibre modes, performing 
a random walk in mode space. It may return to the original mode 
after hopping to other modes, leading to interference effects91. At 
the distal end of the MMF, interference between all modes creates a 
speckle pattern. This evolves with frequency, and the spectral corre-
lation width, δω, is inversely proportional to the differential group 
delay and the fibre length, L.

If the MMF has negligible loss and nonlinearity, the transmit-
tance is unity at any frequency for any arbitrary incident wavefront, 
regardless of mode coupling. For a given input power, when the 
transmitted intensity of one fibre mode increases, the others will 
decrease. Such negative intensity correlations, as a result of energy 
conservation, are opposite the positive intensity correlations in dif-
fusive media. For a monochromatic input beam, wavefront shap-
ing can focus all transmitted light to a single diffraction-limited 
spot with vanishing background (Fig. 4a), in contrast to focusing 
through a random scattering medium40,90,92–96.

Once the field transmission matrix T of the MMF is calibrated, 
the inverse of T gives the input wavefront for creating an arbitrary 
output pattern (within the numerical aperture and field of view of 
the MMF). The fibre transmission matrix also allows one to recover 
the spatial field distribution at the distal end from the signal trans-
mitted back to the proximal end of the MMF97,98.

When a short pulse (of spectral bandwidth Δω) is launched 
into an MMF with random mode mixing, it is temporally stretched 
and distorted due to modal dispersion. At the fibre output, distinct 
time traces are created at different locations, each with a length of  
~1/δω and containing temporal speckles of average width ~1/Δω. 

The total power (sum over all spatial modes) is no longer conserved 
at any instance (delay time td).

In the presence of weak mode coupling, a selective excitation of 
fibre modes with similar group velocities results in the formation of a 
focused spot with minimal temporal broadening at the output of an 
MMF99 (Fig. 4b). However, if the mode coupling is strong, the inci-
dent pulse will spread into all fibre modes with distinct group veloci-
ties, leading to transmitted light outside the spatio-temporal focus.

Beyond spatio-temporal focusing, global temporal focusing 
through an MMF is realized using the time-resolved transmis-
sion matrix T(td), as shown in Fig. 4c. The largest eigenvalue of 
T†(td)T(td) gives the maximal transmitted power (sum of all fibre 
modes) at chosen delay td, and the corresponding eigenvector 
provides the incident wavefront. The long-range spatio-temporal 
correlations in the MMF facilitate a simultaneous increase of trans-
mission through all fibre modes at td (ref. 100). More specifically, the 
positive intensity correlations among all fibre modes at the same 
delay time enable a global enhancement of transmitted power at 
td with a single incident wavefront. At different delay times, the 
transmitted powers are positively correlated for short separation 
of the delays, and become negatively correlated for distant delays. 
Consequently, the transmitted energy increases in the vicinity of 
the targeted value of td, but decreases away from it. In the strong 
mode-coupling regime, the time-dependent enhancement of trans-
mitted power is ⟨τmax(td)/τ̄(td)⟩ ≈ (1+

√

1+Mf/Me(td))
2
, where 

Mf is the number of fibre modes and Me(td) is the participation num-
ber of time-resolved transmission eigenchannels100.

Finally, arbitrary vector spatio-temporal fields are gener-
ated through an MMF by combining a multi-plane light conver-
sion device and a polarization-resolved multi-port spectral pulse 
shaper101. The multi-plane light conversion device maps a 1D array 
of Gaussian spots to a 2D set of Hermite–Gaussian modes so that 
two spatial dimensions of the output beam can be controlled using 
a single spatial dimension of the SLM, leaving the other spatial 
dimension of the SLM for control of the spectral or temporal degree 
of freedom. As an example, Fig. 4d shows a spatio-temporal spiral 
created in this way in the transmitted light.

Generalized control
In this section we will review the emerging area of generalized con-
trol, which refers to wavefront-shaping techniques that are based on 
a direct comparison between two different transmission or scatter-
ing matrices.

Wigner–Smith time delay. The best example of a scattering- 
matrix-based operator in which such a comparison is made implic-
itly is the Wigner–Smith time-delay operator102,103, which is defined 
as Qω = −iS−1∂ωS. The difference between two spectrally neigh-
bouring scattering matrices, as implicitly involved in the frequency 
derivative ∂ω, provides access to the conjugate quantity to fre-
quency, which is time. For unitary scattering matrices (S†S = 1), the 
time-delay operator is Hermitian, Q†

ω = i(∂ωS†)S = Qω, and has 
real eigenvalues, known as proper delay times. These times corre-
spond to the time delay suffered by a spectrally narrow wavepacket 
centred around the frequency at which the derivative ∂ω is evalu-
ated104. The corresponding eigenvectors of Qω, which determine the 
spatial input wavefront of these time-delay eigenstates, provide an 
orthogonal basis in which states are sorted according to the time 
delay they accumulate during the scattering process. Of particular 
interest in complex media are those states with the shortest and the 
longest possible time delays: whereas short time delays typically 
correspond to fast and ballistic scattering processes with a certain 
robustness105–107, the direct connection between the dwell time and 
the field intensity104,108 makes long-lived scattering states very attrac-
tive for enhanced energy storage in a sample108–110 (see Fig. 5e for  
an example).
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In MMFs, the time-delay eigenstates are referred to as the prin-
cipal modes (PMs) as they generalize the principal states of polar-
ization in a single-mode fibre111. In the ideal case of a lossless fibre 
without any back-reflections, the modal transmission matrix T(ω), 
which contains the complex amplitudes for transmission from the 
N incoming fibre modes on the proximal end of the MMF to the N 
outgoing modes on its distal end at frequency ω, is itself a unitary 
matrix of size N × N. If we now demand that an incoming state of 
light is dispersion-free, in the sense that its output speckle pattern is 
invariant with respect to a small change in frequency, ω → ω + dω, 
we obtain the following defining equation for these dispersionless 
or ‘principal’ modes111:

φout = T(ω)φin = βT(ω + dω)φin. (3)

The global proportionality factor β ∈ C is undetermined so far (it 
only changes the phase and brightness of the field, but not its spatial 
pattern). Taylor-expanding T(ω + dω) to first order, we arrive at the 
eigenvalue equation

−iT(ω)
−1 dT(ω)

dω
φin = λφin, (4)

where the eigenvalue λ = −i(1− β)/(βdω). What we find in this 
way is that the PMs are time-delay eigenstates of the Wigner–Smith 
time-delay operator and feature the special property of an output 
beam profile that is insensitive with respect to a small frequency 
shift—a useful property that has meanwhile also been verified 
experimentally112,113 (Fig. 5h). Launching a transform-limited pulse 
into a single PM, the output pulses in all spatial modes remain short 
and undistorted (neglecting chromatic dispersion in the fibre), even 
in the presence of strong mode coupling113. The decoupling of spa-
tial and temporal profiles of a PM allows the transmitted field to 
be focused to a diffraction-limited spot or converted to any spatial 
pattern by additional spatial shaping.

The PMs’ spectral insensitivity can, in fact, also be extended 
from differentially small to finite frequency steps. Extending, for 
example, the small frequency difference inherent in the time-delay 
operator to finite frequency shifts (dω → Δω ≡ ω − ω0) results in the 
following eigenvalue problem:

−iT (ω0)
−1 T(ω)− T(ω0)

Δω
φin = λφin, (5)

with eigenstates φin that are then insensitive with respect to the (not 
necessarily small) spectral shift Δω. More precisely, simplifying the 
above equation to T(ω)φin = γT(ω0)φin with γ = iλΔω + 1, we imme-
diately see that the output fields T(ω0)φin and T(ω)φin created by 
the same input φin at ω0 and ω, are directly proportional to each 
other. In the frequency domain this property can be used to create 
‘super-principal modes’ that have a spectral stability that exceeds 
that of conventional principal modes114.

From time delay to the control of arbitrary observables. Small 
objects can be conveniently manipulated with light—an insight that 
has recently been recognized by the Nobel Prize in Physics to Arthur 
Ashkin for his development of optical tweezers. Although being 
versatile and applied in many different contexts (from fundamen-
tal physics to biology), the Gaussian laser beams that are typically 
employed to trap and manipulate small dielectric particles suffer 
from several known problems. In a disordered medium, the scatter-
ing of light destroys the Gaussian profile and renders such trapping 
beams inoperable. Even in free space, the particles must have certain 
shapes and sizes to be manipulable, and in terms of figures of merit 
like the trapping stiffness, Gaussian beams remain considerably 
below the optimally reachable performance. To solve these problems,  

a number of techniques have been introduced, in particular those 
based on iterative optimization procedures115–118. With these, how-
ever, it is not guaranteed that the globally optimal input light field 
can be reached, so for single particles that can be individually 
addressed from the far-field (like in free space), techniques based 
on scattering information have also been introduced118–120. When a 
complex medium shields the target to be manipulated, these opti-
mal states can still be found based on the concept of optical eigen-
modes121, which deliver a well-defined force, torque or scattering 
interaction on microparticles of arbitrary shape (see Fig. 5a for an 
example). Exploiting the linearity of Maxwell’s equations and the 
fact that the interaction of light and matter can be written in a qua-
dratic matrix form allows one to obtain these optical eigenmodes 
as the eigenstates of a Hermitian matrix with real eigenvalues. The 
optical eigenmode with the largest eigenvalue then corresponds to 
the optimal state in terms of the transfer of the specific quantity 
(force, torque and so on) onto the target particle, which is expressed 
in the quadratic form. To set up the quadratic form in the first place, 
however, it needs to be known which near-fields around the tar-
get the far-fields give rise to when excited at the input plane. This 
requirement also applies to similar concepts like the field matrix122 
and the deposition matrix76 that relate the incident light fields to 
those at a certain depth inside a disordered medium for focusing 
and energy deposition (Fig. 5j).

For complex media, in particular, the relation between near- 
and far-fields is typically not available experimentally. Even in that 
challenging case, however, optical eigenmodes can still be obtained 
as eigenstates of the so-called generalized Wigner–Smith (GWS) 
operator74. Instead of taking the frequency derivative—as for the 
time-delay operator above—the GWS operator involves a deriva-
tive with respect to the target parameter one wishes to manipulate 
with the incoming light field: Qα = − iS−1∂αS. Here, the derivative 
∂α provides access to the conjugate quantity to α, such that the 
eigenvalues of the corresponding GWS operator are directly pro-
portional to specific quantities exerted by the GWS eigenstates on 
the target75: if α is the position of a target, the eigenvalues of the 
corresponding GWS operator are directly proportional to the force; 
if α is the rotation angle of a target, they are proportional to the 
torque; and for the target’s refractive index, the eigenvalues scale 
with the light intensity. For unitary scattering matrices S, the cor-
responding GWS operator Qα is Hermitian (just like Qω), such that 
the maximal (real) eigenvalue also labels the optimal input state 
with respect to the specific light–matter interaction at hand. In this 
way, micro-manipulation and energy deposition at the optimal level 
of efficiency can be implemented without any near-field informa-
tion from the target plane being required75; instead, to assemble the 
GWS operator Qα, it is sufficient to have access to the far-field infor-
mation stored in the S-matrix and its α-dependent shifts when the 
target moves, turns or changes its refractive index (see Fig. 5b for 
such a state). In all these cases, the output fields produced by the 
eigenstates of the corresponding GWS operator are insensitive with 
respect to small changes of the relevant parameter α. This property, 
which is inherited from the spectrally insensitive principal modes 
when replacing ω → α, can be used to create field modes that are 
perturbation-insensitive123.

The challenge for the real-world implementation of the GWS 
approach is of course that one needs to get the target to execute such 
movements or changes in the first place, so as to measure the signa-
tures of these system modifications in the scattering matrix. When 
the particles move or rotate by themselves, it turns out that the GWS 
operator based on scattering matrix measurements at two consecu-
tive moments in time, QES = −iS−1∂tS, measures the energy shift (ES) 
that the corresponding eigenstates of this operator induce in the 
kinetic energy of all the particles with which these light fields inter-
act124. As a result, the maximal eigenstates are those that are optimal 
for cooling or heating a whole particle ensemble, corresponding to 
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the strongest possible decrease or increase in kinetic energy. If a tar-
geted particle or a designated focus spot is not self-moving, consid-
erable expertise is available on how to obtain the necessary feedback 
from such targets by external means such as by using ultrasound 
beams that can penetrate through optically dense media without 
much scattering14,125 or external magnetic fields13.

Considerable progress has recently also been made in focusing 
light deep inside scattering media without the need for a second 
type of wave or any other guide star, but by using time-gating tech-
niques78,126,127 instead (Fig. 5d). Specifically, using time-gated reflec-
tion matrices, it has become possible to compensate the volumetric 
aberrations induced by multiple scattering and thereby to consid-
erably improve the resolution in both optical126 and ultrasound 
imaging127. A promising concept here is the so-called distortion 
matrix126,127, for the construction of which the analytically available 
geometrical components in light propagation are subtracted from 
the reflected light.

States with the same input and output pattern for two differ-
ent media. One of the surprising properties of the transmission 
matrix T for scattering across a complex medium (which we assume 
to be a square matrix for simplicity) is the fact that its eigenstates, 
Tφin = λφin = φout, have the same spatial shape at the input and out-
put of the medium. The overall brightness and the global phase of 
the output profile will, however, be different, because, in general, 
the eigenvalue λ ≠ 1. This feature can also be generalized to demand 
that input states φin give rise to the output states with the same spa-
tial shape when being transmitted across two different media. In 
this case, we obtain the following generalized eigenvalue problem, 
T1φin = γT2φin = φout, based on the transmission matrices T1, T2, of 
these two systems. (This relation is equivalent to equation (5) when 
relabelling T1 ≡ T(ω) and T2 ≡ T(ω0), demonstrating the intimate 
link to the concept of PMs.) For the special case that T1 character-
izes a scattering medium and T2 transmits through the same volume 
of empty space, the resulting set of eigenstates all have the remark-
able property that they produce the same output speckle pattern, 
irrespective of whether the scattering medium is present or not128. 
These scattering-invariant modes (SIMs) have recently been imple-
mented experimentally based on prior transmission matrix mea-
surements of zinc oxide powder deposited on a glass side (T1) and 
of the empty glass slide as a reference medium (T2)128. When it is not 
the removal of the system altogether that is characterized by T1, T2, 
but rather angular rotations of the incident and transmitted fields, 
one obtains an angular memory operator whose eigenstates feature 
perfect and tailor-made memory-effect correlations129.

Fisher information and the discrimination operator. During 
a scattering process, an incoming light field, φin, picks up a cer-
tain amount of information on a given scattering parameter α 
(like an observable of a target of interest). The amount of infor-
mation that is delivered to the observer in the far-field can be 
quantified through the formalism of the Fisher information: 
J(α) = ⟨φin|Fα|φin⟩. The operator Fα in this quadratic form is the 
Fisher information matrix130Fα = (∂αS)†∂αS, which again requires 
the far-field information stored in the scattering matrix S(α) and 
its derivative with respect to the target parameter α to be assem-
bled. For fully unitary scattering matrices, S†S = 1, this expression 
can be simplified to give Fα = Q2

α, where Qα = −iS−1∂αS is the GWS 
operator introduced above. With Qα and Q2

α having the same eigen-
vectors, it follows that those states with the maximum possible 
information content (as quantified by the maximal eigenvalue of 
Q2

α) are at the same time those states that have the strongest mea-
surement back-action on the conjugate quantity to α (as quanti-
fied by the maximal eigenvalue of Qα). For sub-unitary scattering 
matrices (such as those typically measured in the experiment) the 
Fisher information matrix Fα = (∂αS)†∂αS stays Hermitian already 

by construction (in contrast to Qα), such that one can always iden-
tify the maximum information state out of only those far-fields that 
are scattered to an external observer (like a camera)130. This special 
input state (Fig. 5c) then allows one to estimate the parameter α 
with ultimate precision.

If, instead of estimating a given parameter, the aim is to discrimi-
nate between two different scattering systems that are characterized 
by the two scattering matrices (S1, S2), the appropriate discrimina-
tion operator131 is given by D12 = (S2 − S1)†(S2 − S1). Note that 
this expression, which experimentally involves the measurement of 
S1, S2, is a generalization of the Fisher information operator, where 
the differential ∂αS is replaced by S2 − S1. This finite difference may, 
for example, come from a target that is present only in one of the 
two systems. If one now tries to probe the presence of such a tar-
get that is potentially hidden inside a strongly scattering system in 
low-light conditions, the quantum noise fluctuations in the light 
field impose a fundamental limit on the rate of error achievable in 
this binary decision. This limit, known as the Helstrom bound132, 
can be shown to be minimized by that eigenstate of the discrimina-
tion operator D12 that is associated with the maximal eigenvalue131 
(Fig. 5i). Note here the similarity between this generalization and 
the one applied to the Wigner–Smith time-delay operator to involve 
finite frequency shifts, dω → Δω ≡ ω − ω0 (see equation (5)).

Outlook and future directions
Although this Review is focused on light scattering, many inspi-
rations and insights are drawn from earlier studies of electron 
transport through disordered conductors and its random matrix 
description36,43,44,133. In optics, a closely related field is adaptive 
optics, which has established a set of techniques to deal with scatter-
ing, and that is already successfully being used in fields like astron-
omy to remove aberrations from atmospheric turbulence. Indeed, 
the difference to the tools reviewed above is merely a quantitative 
one: the deformable mirrors used in adaptive optics are only able to 
correct distortions corresponding to small deviations in the angles 
of refraction. The wavefront-shaping techniques described in this 
Review, on the other hand, can be applied even to disordered media 
with multiple scattering and backreflection that impose a strong 
distortion on the optical wavefront. The arsenal of adaptive optics, 
in turn, is able to operate on the timescale of milliseconds and can 
thus correct the detrimental influence of atmospheric distortions in 
real time. The key tool that enables this impressive high-speed oper-
ation is the Shack–Hartmann wavefront sensor, which detects an 
entire discrete set of phase aberrations in parallel. The availability of 
equivalent tools for transmission or reflection matrix measurements 
would greatly increase the versatility of the wavefront-shaping tech-
niques discussed here in practical applications. Although many of 
the experiments were implemented with stationary media, the main 
challenge is to efficiently control light in dynamic systems, that is, 
complex media that move in time, such as biological systems. For 
in vivo tissue, the timescale of this movement is comparable to that 
of the atmosphere (typically milliseconds), imposing rather chal-
lenging requirements on the acquisition time of a scattering matrix. 
For overcoming this limitation, not only will advances in the hard-
ware (including the SLM and the camera) be crucial, but it will also 
require improvements in the acquisition of optical scattering matri-
ces134–137. Removing this barrier in time resolution would certainly 
open up many new possibilities, in particular for the application of 
wavefront shaping in bio-medical imaging42,138 (see the companion 
review by Bertolotti and Katz139).

A promising direction in the context of imaging is to use the 
measurement of an optical or acoustic reflection matrix not only 
for correcting higher-order aberrations, but also to create ‘virtual’ 
sources and receivers inside a scattering medium126,127. A conve-
nient way to forgo the necessity of measuring the scattering matrix 
altogether is to train neural networks to predict the illumination  
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necessary to generate a target pattern behind a scattering material140. 
Instead of using artificial intelligence to exploit and characterize 
complex media, the opposite is also possible: because the propaga-
tion of light across a disordered medium is equivalent to multiply-
ing the input field by a (quasi-)random matrix, one can use this 
transmission process as an analogue implementation of compres-
sive sensing, for computing and computational imaging, as well as 
for artificial intelligence tasks like training a neural network141 (see 
the companion perspective article by Gigan142). Wavefront-shaping 
techniques have recently also been proposed for scaling-up optical 
levitation and micro-manipulation143, such as for efficiently cool-
ing multiple moving particles at once124. Other emerging applica-
tions of interest are the purposeful modulation of electron beams 
in free space by means of suitably shaped light fields144 and the con-
trol of light’s branched flow through weakly disordered media145,146. 
The techniques for shaping the spatial and spectral degrees of 
freedom can also be combined with engineering of the quantum 
states of light147–149. In this newly emerging field of quantum optics 
in complex media, established protocols from metrology such as 
squeezing and entanglement of photons are added to the arsenal 
of manipulating incident light fields (see companion perspective 
by Lib and Bromberg150). Finally, we emphasize that all the scatter-
ing matrix-based concepts covered in this Review rely on a linear 
relationship between input and output fields. In this sense, we have 
entirely left out the propagation of light through nonlinear com-
plex media, where fascinating phenomena like self-organization 
and instabilities of multimode light arise due to nonlinear interac-
tions (see companion review by Wright et al.151). For all the current 
and emerging research directions discussed in this special issue, our 
Review is intended to provide an easily accessible basis on which 
advanced concepts can build.
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