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Anderson localization of electromagnetic 
waves in three dimensions

Alexey Yamilov    1  , Sergey E. Skipetrov    2, Tyler W. Hughes3, 
Momchil Minkov3, Zongfu Yu    4   & Hui Cao    5 

Anderson localization is a halt of diffusive wave propagation in disordered 
systems. Despite extensive studies over the past 40 years, Anderson 
localization of light in three dimensions has remained elusive, leading 
to the question of its very existence. Recent advances have enabled 
finite-difference time-domain calculations to be sped up by orders of 
magnitude, allowing us to conduct brute-force numerical simulations 
of light transport in fully disordered three-dimensional systems with 
unprecedented dimension and refractive index difference. We show 
numerically three-dimensional localization of vector electromagnetic waves 
in random aggregates of overlapping metallic spheres, in sharp contrast to 
the absence of localization for dielectric spheres with a refractive index up 
to 10 in air. Our work opens a wide range of avenues in both fundamental 
research related to Anderson localization and potential applications using 
three-dimensional localized light.

Anderson localization (AL)1 is an emergent phenomenon for both 
quantum and classical waves including electron2–4, cold-atom5,6, elec-
tromagnetic (EM)7–11, acoustic12,13, water14, seismic15 and gravity16 waves. 
Unlike in one or two dimensions, AL in three dimensions requires strong 
disorder1,17–19. A mobility edge separating the diffuse transport regime 
from AL can be estimated from the Ioffe–Regel criterion keffℓs ≈ 1, where 
keff is the effective wavenumber in the medium and ℓs is the scattering 
mean free path20. This criterion suggests two avenues to achieving 
localization: reduction of keff or ℓs. For EM waves, the reduction of keff is 
realized by introducing partial order or spatial correlation in the posi-
tion of scatterers7,21. In comparison, reaching localization of light in fully 
random photonic media by increasing the scattering strength (decreas-
ing ℓs) turns out to be much more challenging22,23. Despite successful 
experiments in low-dimensional systems9,10,24, three-dimensional (3D) 
localization remained stubbornly elusive25, which triggered theoreti-
cal26,27 and experimental28 studies of the mechanisms that impede it.

Anderson himself originally proposed “a system composed essen-
tially of random waveguides near cut-off and random resonators, such 
as might be realized by a random packing of metallic balls of the right 
size” as “the ideal system” for localization of EM radiation8. In practice, 

the absorption of metals obscures localization9,29, and the experimental 
focus shifted to dielectric materials with low loss and high refractive 
index29–33. However, even for dielectric systems, experimental artefacts 
due to residual absorption and inelastic scattering mar the data22,23,34–36. 
Numerically, these artefacts can be excluded, but 3D random systems 
of sufficiently large dimension and large refractive index variation 
could not be simulated due to an extraordinarily long computational 
time required37,38.

A recent implementation of the finite-difference time-domain 
(FDTD) algorithm on emerging computing hardware has brought 
orders of magnitude speed-up of numerical calculation39,40. Using 
this highly efficient hardware-optimized version of the FDTD method, 
we solve the Maxwell equations by brute force in three dimensions. 
This enables us to simulate sufficiently large systems and large refrac-
tive index variation to address the following questions: can 3D AL of 
EM waves be achieved in fully random systems of dielectric scatter-
ers? If not, can it occur in any other systems without the aid of spatial 
correlations?

Answering these long-standing questions not only addresses the 
fundamental aspects of wave transport and localization across multiple 
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(Fig. 1c). It features a minimum at around λ = 650 nm and the smallest 
value of keffℓs≃≈ 0.9 is reached at f = 38%. We also compute the transport 
mean free path ℓt from the continuous wave (CW) transmittance of an 
optically thick slab with thickness L ≫ ℓt (Supplementary Sect. 1.7). In 
Fig. 1d, keffℓt also exhibits a dip in the same wavelength range as keffℓs, 
but the smallest keffℓt is found at lower f of 18–29%, as the dependent 
scattering sets in at higher f. In search for AL in this wavelength range, 
we numerically simulate the propagation of a narrowband Gaussian 
pulse centred at λ0 = 650 nm with planar wavefront and compute the 
transmittance through the slab T(t) as a function of arrival time t. The 
diffusive propagation time τD approximately corresponds to the arrival 
time of the peak in Fig. 1e. At t ≫ τD, the decay of the transmitted flux is 
exponential over at least 12 orders of magnitude, as expected for purely 
diffusive systems46. The rate of this exponential decay is 1/τD, which is 
directly related46 to the smallest diffusion coefficient within the spec-
tral range of the excitation pulse (Supplementary Sect. 1.8). In Fig. 1f, 
the dependence of this diffusion coefficient D on the dielectric filling 
fraction f exhibits a minimum at f ≈ 30%. Figure 1e (inset) shows that 
the further increase of the slab thickness does not lead to any deviation 
from diffusive transport. Furthermore, the diffusive behaviour persists 
in the numerical simulation with increased spatio-temporal resolution 
(Supplementary Sect. 1). At t ≫ τD, the spatial intensity distribution 
inside the system features a depth profile (averaged over cross-section) 
equal to that of the first eigenmode of the diffusion equation (Fig. 1b). 
We therefore rule out a possibility of AL in uncorrelated ensembles of 
dielectric spheres with n = 3.5.

At microwave frequencies, the refractive index may be even higher 
than n = 3.5. We therefore, perform numerical simulation of a 3D slab of 
dielectric spheres with n = 10. The main results are summarized here, 
and details are presented in Supplementary Sect. 2. A large scatter-
ing cross-section σs(λ) of a single sphere near the first Mie resonance 

disciplines but also opens new avenues in research and applications. 
For example, in topological photonics41, the interplay between disorder 
and topological phenomena may be explored beyond the limit of weak 
disorder in low-dimensional systems42. Also in cavity quantum electro-
dynamics with Anderson-localized modes43, achieving 3D localization 
would avoid the out-of-plane loss inherent to two-dimensional (2D) 
systems and cover the full angular range of propagation directions44. 
In addition to fundamental studies, disorder and scattering has been 
harnessed for various photonic device applications, but mostly with 
diffuse waves45. Anderson-localized modes can be used for 3D energy 
confinement to enhance optical non-linearities and light–matter 
interactions, and to control random lasing as well as targeted energy 
deposition.

We first consider EM wave propagation through a 3D slab of ran-
domly packed lossless dielectric spheres of radius r = 100 nm and 
refractive index n = 3.5 in air. This corresponds to the highest index 
difference achieved experimentally in the optical wavelength range 
with porous GaP around the wavelength of λ = 650 nm in the vicinity 
of the first Mie resonance of an isolated sphere (Supplementary  
Fig. S5). To avoid spatial correlations, the sphere positions are chosen 
completely randomly, leading to spatial overlap where the index is 
capped at the same value of n. We compute the spatial correlation 
function of such structure, which reveals that the correlation vanishes 
beyond the particle diameter (Supplementary Fig. S4). To avoid light 
reflection at the interfaces of the slab, we surround it by a uniform 
medium with a refractive index equal to the effective index of the slab, 
neff = [(1 − f ) + fn2]1/2, for a given dielectric volume filling fraction f 
(Fig. 1a). As described in Supplementary Sect. 1.5, for each wavelength, 
we compute the scattering mean free path ℓs directly from the rate of 
attenuation of co-polarized field with depth. This, together with the 
effective wavenumber keff = neff(2π/λ), gives the Ioffe–Regel parameter 
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Fig. 1 | Absence of non-diffusive transport in random dielectric systems with 
a refractive index of 3.5. a, A 3D slab filled with dielectric spheres at random 
uncorrelated positions (radius r = 100 nm, refractive index n = 3.5) in air. The slab 
cross-section is 10 μm × 10 μm = 100 μm2, and the thickness is L = 3.3 μm. b, The 
3D distribution of light intensity inside the slab (dielectric filling fraction f = 29%, 
L/ℓt = 33) at long delay time after a short pulse of plane wavefront is incident on 
the front surface. The red curve with shading shows the average depth profile.  
c, The spectral dependence of the Ioffe–Regel parameter keffℓs for different 
volume filling fractions of dielectric spheres, showing enhancement of scattering 
around single-sphere Mie resonances. The horizontal dashed line marks the 

Ioffe–Regel criterion keffℓs = 1 for 3D localization. d, The transport mean free 
path ℓt (in units of 1/keff) as a function of wavelength, revealing a saturation by 
dependent scattering at high dielectric filling fractions. The vertical dashed  
lines mark the spectral width (33 nm) of the excitation pulse in b and e.  
e, Transmittance of the 3D slab for a pulsed excitation, showing exponential 
decay in time for all dielectric filling fractions, in agreement with diffusive 
transport. The inset shows persistence of diffusion when L/ℓt is increased from 
33 to 60 for f = 38% (green line). f, The dependence of the minimum diffusion 
coefficient within the pulse bandwidth on the dielectric filling fraction f, 
exhibiting a minimum value of 3.6 m2 s−1 at f ≈ 30%.
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leads to strong dependent scattering even at small filling fractions. We 
find the Ioffe–Regel parameter keffℓs ≳ 1 despite the very large refrac-
tive index difference. This is attributed to dependent scattering that 
becomes appreciable even at relatively low dielectric filling fraction f. 
The numerically calculated T(t) for L/ℓt ≫ 1 does not exhibit any devia-
tion from diffusive transport: at t ≫ τD, the decay of transmittance is still 
exponential over approximately ten orders of magnitude. In addition, 
scaling of CW transmittance with the inverse slab thickness 1/L remains 
linear for all f, as expected for diffusion (Supplementary Sect. 2). We 
therefore conclude that AL does not occur in random ensembles of 
dielectric spheres, thus closing the debate about the possibility of light 
localization in white paint8,23.

Previous studies26,27 suggest that absence of AL for EM waves may 
be due to longitudinal waves that exist in a heterogeneous dielectric 
medium, where the transversality condition ∇⋅E(r) = 0 for the electric 
field E(r) does not follow from Gauss’s law ∇⋅[ϵ(r)E(r)] = 0 because of 
the position dependence of ϵ(r). Here, we propose to suppress the 
contribution of longitudinal waves to optical transport and realize AL 
of EM waves by using perfectly conducting spheres as scatterers. The 
Poynting vector is parallel to the surface of a perfect electric conductor 
(PEC)47, and EM energy flows around a PEC particle without coupling 
to longitudinal surface modes. The volume of PEC spheres is simply 
excluded from the free space and becomes unavailable for light. Thus, 
at high PEC volume fraction, light propagates in a random network of 
irregular air cavities and waveguides formed by the overlapping PEC 
spheres, akin to the original proposal of Anderson8.

Similarly to the dielectric systems above, we simulate a 3D slab 
composed of randomly packed, overlapping PEC spheres of radius 
r = 50 nm in air. Figure 2 shows the results of simulating an optical pulse 
propagating through 10 μm × 10 μm × 3.3 μm slabs of various PEC 
volume fractions f. T(t) displays non-exponential tails at high f = 41% 
or 48% in Fig. 2a. From the decay rate obtained via a sliding-window fit, 
we extract a time-dependent diffusion coefficient D(t) (Fig. 2b), which 
shows a power-law decay with time, as predicted by the self-consistent 
theory of localization48. The non-exponential decay of T(t) and the time 
dependence of D are the signatures of AL13,48. In contrast, at lower PEC 
fractions of f = 8% or 15%, D remains constant in time. Figure 2c reveals 

a transition from time-invariant D to time-dependent D(t) at around 
f = 33%, where D(t) starts deviating from a constant. Using a Fourier 
transform, we compute the spectrally resolved transmittance T(λ). 
Figure 2d,e contrasts the T(λ) of diffusive and localized systems. The 
former features smooth, gradual variations with λ due to broad overlap-
ping resonances, whereas the latter exhibits strong resonant structures 
consistent with the average mode spacing exceeding the linewidth of 
individual modes, in accordance with the Thouless criterion of localiza-
tion, as the spectral narrowing of modes is intimately related to their 
spatial confinement3,9,49. The colour maps in Fig. 2d,e show the spatial 
intensity distributions inside the systems, ⟨I(x, y0, z; λ)⟩x, averaged over 
x at a cross-section y = y0. These two-dimensional maps contrast slow 
variation with z and λ in the diffusive system (Fig. 2d) to the sharp 
features due to spatially confined modes in the localized system  
(Fig. 2e). Furthermore, there exist ‘necklace’ states with multiple spa-
tially separated intensity maxima, originally predicted for electrons 
in metals50.

Insight into the mechanism behind AL in the random ensemble of 
PEC spheres can be gained from the wavelength dependence of the 
Ioffe–Regel parameter kℓs (Supplementary Sects. 1.5 and 3). We com-
pute it using a procedure similar to that applied in dielectrics. Even at 
the volume fraction of f = 8%, ℓs is well below the prediction of the 
independent scattering approximation (ISA), owing to scattering reso-
nances formed by two or more neighbouring PEC spheres (Supplemen-
tary Fig. S10). As shown in Fig. 3a, ℓs becomes essentially independent 
of wavelength in the range of size parameter kr of PEC spheres. Conse-
quently, the Ioffe–Regel parameter acquires 1/λ dependence (Fig. 3b). 
It drops below the value of unity within the excitation pulse bandwidth 
λ ≈ 650 ± 45 nm for f between 25% and 33%, in agreement with Fig. 2. We 
further conduct a finite-size scaling study, after computing the depend-
ence of the CW transmittance T on the slab thickness L (Supplementary 
Sect. 1.9). Figure 3c shows the logarithmic derivative d log(T)/d log(L) 
as a function of kℓs. In the diffusive regime, Ohm’s law T ∝ 1/L is expected, 
leading to a scaling power of −1, as indeed confirmed for kℓs > 1. Around 
kℓs ≈ 1, we see a departure from 1/L scaling of transmittance. The scaling 
theory of localization predicts a single-parameter scaling of the dimen-
sionless conductance g = TN (refs. 51,52.). By estimating the number 
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Fig. 2 | AL of light in 3D disordered PEC. a, The transmittance T(t) of an optical 
pulse through a 3D slab (10 μm × 10 μm × 3.3 μm) of randomly packed PEC 
spheres with radius r = 50 nm and volume filling fraction f from 8% to 48%. b, The 
time-resolved diffusion coefficient D(t) extracted from the decay rate of T(t) in a, 
decreasing with time as 1/t at high f. c, The short-time D (dots) and the interval of 

variation of D with time (bars) at different f values. d,e, The CW transmittance 
spectrum T(λ) in diffusive (d, f = 15%, blue line) and localized (e, f = 48%, red line) 
PEC slabs. Colour map: The depth profile of the average intensity ⟨I(x, y0, z; λ)⟩x  
inside the slab at different wavelengths, highlighting the localized and 
necklace-like states for f = 48%.
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of transverse modes as N = 2π(L/λ)2(1 − f)2/3 for L × L area of the slab, we 
compute g and β(g) ≡ d log(g)/d log(L). Figure 3d shows good agree-
ment between the numerical data and the model function 
β(g) = 2 − (1 + g) log(1 + g−1) (ref. 52). In diffusive regime g > 1, β(g) → 1. 
Meanwhile, in the localized regime g < 1, β(g) ∝ log(g). The latter is a 
manifestation of the negative exponential scaling of g with L in the 
regime of AL.

To obtain the ultimate confirmation of AL of light in PEC com-
posites, we simulate the dynamics of the transverse spreading of a 
tightly focused pulse—a measurement that has been widely adopted 
in localization experiments13,33,53. A pulse centred at λ = 650 nm with 
a bandwidth of 90 nm is focused to a small spot of area approxi-
mately 0.5 μm2 at the front surface of a wide 3D slab of dimensions 
33 μm × 33 μm × 3.3 μm (Fig. 4a). We compute the transverse extent 
of the intensity distribution I(x, y, z = L; t) at the back surface of the 
slab. For a diffusive PEC slab with f = 15%, we detect a rapid transverse 
spreading of light with time in Fig. 4b, which approaches the lateral 
boundary of the slab within approximately 2 ps. In sharp contrast, in 
the localized system in Fig. 4c (f = 48%), the transmitted intensity profile 
remains transversely confined even after 20 ps. This time corresponds 
to a free space propagation of 6 mm, which is approximately 2,000 
times longer than the actual thickness of the slab. Figure 4d quantifies 
this time evolution with the output beam diameter d(t) = 2[PR(t)/π]1/2, 
where PR(t) = [∫∫I(x, y, L; t)dx dy]2/∫∫I(x, y, L; t)2dx dy is the intensity 
participation ratio. For a diffusive slab, d(t) ∝ t1/2, while in the local-
ized regime, d(t) saturates at a value on the order of the slab thick-
ness L. Such an arrest of the transverse spreading in the localized PEC 
systems persists with increased spatio-temporal resolution of the 
numerical simulation (Supplementary Sect. 1.3). Further evidence of 
AL includes non-linear decaying depth profile and strong non-Gaussian 

fluctuations of intensity inside the system (Supplementary Sect. 4.2). 
We also confirm our results by repeating calculations for 3D slabs of 
PEC spheres with larger radius r = 100 nm, obtaining similar scaling 
behaviour (Supplementary Sect. 4.2) as in Fig. 3c,d.

The striking difference between light propagation in dense ran-
dom ensembles of dielectric and PEC spheres cannot be accounted 
for by the Ioffe–Regel parameter as both reach keffℓs ≈ 1 for similar 
values of the size parameter kr (Figs. 1c and 3b). AL in 3D PEC com-
posites with uncorrelated disorder reveals a localization mechanism 
that is unique to metal. In contrast to a dielectric system where light 
propagates everywhere (both inside and outside the scatterers), the 
propagation is restricted to the voids between scatterers in the PEC 
system. This makes AL inevitable when the wavelength becomes larger 
than the typical width of free-space channels between voids and light 
can hardly ‘squeeze’ through the latter to propagate from one void 
to another. This qualitative picture correctly predicts the increase of 
the critical volume fraction f for localization with the scatterer size r 
(Supplementary Sect. 3).

Finally, we test AL in real-metal aggregates. In the microwave spec-
tral region, the skin depth of crystalline metals such as silver, aluminium 
and copper is several orders of magnitude shorter than the wavelength 
λ and the scatterer size r in the regime of kr ≈ 1. Since the microwave 
barely penetrates into the metallic scatterers, our simulation results 
are almost identical to those for PEC. To account for the imperfec-
tions due to polycrystallinity, surface defects, oxide layers, etc., we 
lower the metal conductivity to match the experimentally measured 
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absorption rate in aggregates of aluminium spheres29. Simulations 
unambiguously show the arrest of transverse spreading of a focused 
pulse (Fig. 4e), revealing AL in 3D random aggregates of aluminium 
spheres. Additional evidence of AL is presented in Supplementary 
Sect. 4. Moreover, even at optical frequencies, where realistic metals 
deviate notably from PEC, the arrest of transverse spreading persists 
in 3D silver nanocomposites (Supplementary Sect. 5). Possible light 
localization in 3D nanoporous metals will have a profound impact 
on their applications in photo-catalysis, optical sensing, and energy 
conversion and storage.

In summary, our large-scale microscopic simulations of EM wave 
propagation in 3D uncorrelated random ensembles of particles show no 
signs of AL for dielectric particles with refractive indices n = 3.5–10. This 
explains multiple failed attempts of experimental observation of AL of 
light in 3D dielectric systems over the last three decades22,23,31–33. At the 
same time, we report the first numerical evidence of EM wave localiza-
tion in random ensembles of metallic particles over a broad spectral 
range. Localization is confirmed by eight criteria: the Ioffe–Regel 
criterion, the Thouless criterion, non-exponential decay of transmit-
tance under pulsed excitation, vanishing of the diffusion coefficient, 
existence of spatially localized states, scaling of conductance, arrest of 
the transverse spreading of a narrow beam and enhanced non-Gaussian 
fluctuations of intensity. Our study calls for renewed experimental 
efforts to be directed at low-loss metallic random systems29. In Sup-
plementary Sect. 5.1, we propose a realistic microwave experiment 
that avoids experimental pitfalls and provides a tell-tale sign of AL.
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1 Methods

1.1 Numerical method

Over the years, various techniques have been developed for large-scale 3D computations. One

efficient method for simulating light scattering in large inhomogeneous media is based on Born

series (S1,S2). This method, however, is limited to small difference in refractive index between

the scatterers and the host medium. To achieve 3D localization, a large refractive-index differ-

ence is needed to enhance light scattering, which makes it necessary to include many terms of

the Born series. This greatly increases the computational complexity, worsening the conver-

gence of such an iterative algorithm.

Another family of approaches for simulating wave transport in 3D aggregates of spherical

particles is based on iterative multi-sphere scattering expansions, e.g., the generalized multi-
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particle-Mie (GMM) formalism (S3, S4, S5), the multi-sphere T-matrix (MSTM) (S6), and the

fast multipole method (FMM) (S7). The latest, and the most advanced implementation, de-

ployed on GPUs for speedup, is capable of simulating up to 105 dielectric spheres (S8), (38).

However, the state-of-the-art algorithm (CELES) has not been used for index higher than 2 (in

air). This is because the Mie resonances of high-index spheres can have very long lifetimes and

strong internal fields, leading the algorithm to either converge extremely slowly or fail to con-

verge. Moreover, the spheres cannot touch or overlap, which would invalidate the Mie solution

for isolated spheres. If two spheres are very close to each other, the near-field effects will excite

high-order multipoles, causing slow or failed convergence. Therefore, these methods require

a minimum distance between densely-packed spheres, which introduces spatial correlations of

the scattering structures (38) that are known to affect Anderson localization (S9), (21).

The finite-difference time-domain (FDTD) method directly solves the Maxwell’s equations

in space and time (S10). It does not make any physical approximations, and is capable of

simulating large-refractive-index, spatially-overlapping or touching particles with high filling

fraction. The effects of spatial correlations of scattering structures that could contribute to

Anderson localization (S9), (21), are avoided by a completely random placement of individual

scatterers in our study, as shown in Sec. 1.4 below.

The ability to simulate refractive-index of 3.5–10 (with air background) in our study is

the key to assert that increasing index difference will not precipitate Anderson localization.

However, simulating such high refractive-index particles requires very fine spatial and temporal

resolution, leading to an extremely long computational time. Previous FDTD simulations were

limited to small 3D structures containing 103–104 particles (37), (21). Our hardware-accelerated

implementation of the FDTD method (39) reduces the computational time by several orders of

magnitude, allowing us to simulate a 3D system with 6⇥ 106 scatterers in about 40 min.

The orders-of-magnitude reduction in computational time is essential to search for Ander-
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son localization in 3D PEC and real-metal composites, because it allows one to repeat the sim-

ulations many times with varying parameters such as particle size, volume fraction, dielectric

function and conductivity, lateral dimension and thickness of simulated systems, etc. Moreover,

our time-domain simulation can extract the fields at more than 1000 discrete frequencies from

a single run through a Fourier transform. In contrast, the frequency-domain methods based on

Born series and GMM/MSTM simulate only one frequency per run. Using such methods to

simulate time-dependent transport, particularly at long delay time, requires repeating the calcu-

lations at many closely-spaced frequencies so that the Fourier transform will give the long-time

behavior.

1.2 System geometry and dimension

Unless otherwise specified, our simulations are carried out on disordered systems in the slab

geometry Lx = Ly � L (Fig. 1a). A plane wave with the electric field polarized along x-axis

is incident on the front surface of the slab. The default bandwidth of a Gaussian pulse, �� = 90

nm, is chosen such that a Fourier transform can be reliably used in the desired spectral range. In

the dynamic simulations of dielectrics, the bandwidth was reduced to �� = 33 nm [Fig. 1b,e,

Fig. S2], or even to �� = 11 nm [Fig. S9], so that `t remains nearly invariant with wavelength.

Periodic boundary conditions are applied along x and y axes. To ensure that the periodicity does

not affect the results presented in this manuscript, we make the transverse dimensions Lx, Ly of

the simulated slabs much larger than the thickness L. In the transmission simulations such as

those in Fig. 1, the ratio is Lx/L = Ly/L = 3, so that any effect induced by periodic boundary

conditions occurs on a length scale much larger than any relevant transport or localization scales.

For the simulations of the transverse spreading (Figs. 4,S3,S20), we simulate much wider slabs

having Lx/L = Ly/L = 10 to avoid any edge effect.
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Figure Center Simulation volume Number of spatial Simulated Total
number wavelength �0 Lx ⇥ Ly ⇥ L̃z cells Nx ⇥Ny ⇥Nz time interval time steps
Fig. 1c,d 0.55 µm 55⇥ 1.1⇥ 5.5 µm3 2000⇥ 40⇥ 200 1 ps 0.2⇥ 105

Fig. 1e,f 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 up to 30 ps 5⇥ 105

Fig. 2a-c 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 up to 100 ps 1.8⇥ 106

Fig. 2d,e 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 10 ps 1.8⇥ 105

Fig. 3a,b 0.65 µm 65⇥ 1.3⇥ 6.5 µm3 2000⇥ 40⇥ 200 up to 7 ps 1.2⇥ 105

Fig. 3c,d 0.65 µm 3.9⇥ 3.9⇥ 6.5 µm3 120⇥ 120⇥ 200 up to 10 ps 1.8⇥ 105

0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 up to 100 ps 1.8⇥ 106

Fig. 4b-d 0.65 µm 32.5⇥ 32.5⇥ 8.45 µm3 1000⇥ 1000⇥ 260 up to 20 ps 3.6⇥ 105

Fig. 4e 1.5 cm 60⇥ 60⇥ 18 cm3 800⇥ 800⇥ 240 up to 0.16 µs 1.2⇥ 105

Fig. S2 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 600⇥ 600⇥ 520 9 ps 3.2⇥ 105

Fig. S3 0.65 µm 13⇥ 13⇥ 6.5 µm3 800⇥ 800⇥ 400 up to 2 ps 0.7⇥ 105

Fig. S5 0.65 µm 65⇥ 1.3⇥ 6.5 µm3 2000⇥ 40⇥ 200 up to 7 ps 1.2⇥ 105

Fig. S6 0.65 µm 16.25⇥ 0.65⇥ 3.25 µm3 1500⇥ 60⇥ 300 up to 2 ps 1.1⇥ 105

Fig. S7 0.65 µm 65⇥ 1.3⇥ 6.5 µm3 2000⇥ 40⇥ 200 up to 7 ps 1.2⇥ 105

Fig. S8 0.65 µm 65⇥ 1.3⇥ 6.5 µm3 2000⇥ 40⇥ 200 up to 7 ps 1.2⇥ 105

Fig. S9b,c 0.65 µm 16.25⇥ 0.65⇥ 3.25 µm3 1500⇥ 60⇥ 300 up to 2 ps 1.1⇥ 105

Fig. S9d 0.65 µm 1.95⇥ 1.95⇥ 5.2 µm3 180⇥ 180⇥ 480 up to 25 ps 1.3⇥ 106

Fig. S9e 0.65 µm 3.25⇥ 3.25⇥ 3.9 µm3 300⇥ 300⇥ 360 up to 35 ps 1.9⇥ 106

Fig. S11 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 10 ps 1.8⇥ 105

Fig. S12 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 25 ps 4.4⇥ 105

Fig. S13 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 up to 100 ps 1.8⇥ 106

Fig. S14 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 up to 100 ps 1.8⇥ 106

Fig. S15 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 10 ps 1.8⇥ 105

Fig. S16 0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 up to 100 ps 1.8⇥ 106

Fig. S17 0.65 µm 3.9⇥ 3.9⇥ 6.5 µm3 120⇥ 120⇥ 200 up to 10 ps 1.8⇥ 105

0.65 µm 9.75⇥ 9.75⇥ 8.45 µm3 300⇥ 300⇥ 260 up to 50 ps 0.9⇥ 106

Fig. S19 1.5 cm 15⇥ 15⇥ 18 cm3 200⇥ 200⇥ 240 up to 0.23 µs 1.8⇥ 105

Fig. S20 0.65 µm 19.5⇥ 19.5⇥ 7.15 µm3 600⇥ 600⇥ 220 up to 1.8 ps 0.3⇥ 105

Table 1: Parameters of numerical simulations. The table lists space and time domain pa-
rameters for simulations reported in all figures of the main text and supplementary information.
L̃z is the overall z-dimension of the system including the slab, two boundary layers (perfect
matching layer - PML) and air-buffers in between.

The slab is sandwiched between homogeneous layers of refractive index nB and thickness

�B, which in turn are surrounded by perfectly matched layers of thickness �PML. These

thicknesses are chosen as �B = �PML = 2�0,�0, 2�0 for the slabs of dielectric spheres with

refractive index n = 3.5, 10 and PEC spheres, respectively. For the dielectric slabs, nB is

equal to the effective index neff found by averaging the dielectric constant, while for PEC nB =

1. �0 = 650 nm is the central wavelength of optical pulses in all simulations. The spatial
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discretization step of the FDTD algorithm is �0/20 for n = 3.5 and PEC, and �0/60 for n = 10.

This corresponds to time steps of dt ' 56⇥ 10�18 s and dt ' 19⇥ 10�18 s, respectively. Table

1 lists parameters for numerical simulations of results presented in all figures. The FDTD time

stepping for a single simulation with e.g. a total domain size of 15� ⇥ 15� ⇥ 9� and run time

of 10 ps took two minutes on an elastic network instance with 8 A100 GPUs.

To reproduce our numerical results, one needs to specify the proper volume filling fraction of

the disordered structure to be simulated. The nominal filling fraction fnominal = Nsph [4⇡r3/3]/V ,

given by the number of spheres Nsph in volume V , differs from the actual filling fraction f due

to the following factors:

(i) spatial overlap caused by random placement of spheres;

(ii) discretization effects due to how material properties are assigned on the spatial grids;

(iii) internal averaging/smoothing procedure employed to improve accuracy and/or conver-

gence of the algorithm.

The effect of sphere overlap in (i) can be accounted for theoretically (S11) as f̃ = 1�exp[�fnominal].

However, f̃ 6= f , and quantifying the remaining effect due to (ii-iii) is less obvious. To make

the process of structure generation more straightforward, we create the mapping in Fig. S1.

For each type of structure simulated in this work, it allows one to determine fnominal from f ,

and then Nsph. Subsequently, the desired random structure can be generated by placing Nsph

spheres completely randomly throughout volume V .

1.3 Numerical accuracy and scaling

Tidy3D solver (39) is an implementation of the standard FDTD method, which does not make

any physical approximations or impose any constraint on the scattering structures. To accom-

plish accurate numerical modelling in FDTD, one must be sure to set a sufficiently fine dis-

cretization of space and time (S10). To this end, we have carefully tested spatio-temporal reso-

5



lution of FDTD simulations to ensure consistency of our numerical results through conversion

studies, so that the conclusions of our study are robust and independent of the discretization.

We present two examples of such tests below.

(i) One key evidence for the absence of AL in 3D dielectric random media is the exponential

decay of transmitted flux T (t), shown in Fig. 1e of the main text. This result is obtained with the

spatial grid size of �0/20. When the spatial grid is reduced to �0/40 and the temporal step size

is also halved, the exponential decay of T (t) persists over 12 orders of magnitude in Fig. S2,

which confirms the diffusive transport. (ii) A tell-tale sign of AL in PEC composites is the arrest

of transverse spreading of the transmitted beam when an incident pulse is focused on a slab, as

shown in Fig. 4c,d of the main text. This result is obtained with numerical resolution of �0/20.

To test the robustness of this result, we vary the resolution from �0/10 to �0/40. Fig. S3a shows

the result with �0/40 resolution: the transverse diameter of transmitted beam d(t) saturates to a

constant value in time, consistent with the result of �0/20 resolution in Fig. 4d. The asymptotic

beam diameter d1 is plotted versus the numerical resolution in Fig. S3b. It confirms the con-

sistency of our numerical results: the arrest of transverse spreading persists in all simulations

performed on the progressively finer meshes. Notably, the arrest is already seen in simulations

with �0/10 resolution, despite a slight difference in the value of d1.

Since Tidy3D implements the standard FDTD algorithm, the scaling of computing time with

system size is the same as the standard FDTD method (S10). More specifically, the computing

time scales as NxNyNzNt, where Nx, Ny, Nz denote the number of spatial grid points in x, y,

z dimensions and Nt is the total number of time steps. Typically the spatial grid size along x,

y, z is identical, and it is proportional to the time step.

We note that the finite difference discretization introduces slight anisotropy and dispersion to

the simulated system. To mitigate such effects, the spatio-temporal resolution could be further

increased according to the system size, which would affect the scaling of computing time (S2).

6



However, this is not necessary in our simulations of random ensembles of dielectric or metal

spheres because the statistical properties, like scattering and transport mean free paths, are

barely modified. By varying the spatio-temporal grid size, we find the small effects caused

by finite discretization are simply equivalent to a minuscule change of the refractive index n

of the medium and/or a minuscule change of the volume filling fraction f . As shown in the

manuscript, AL is absent in the dielectric systems for a broad range of n’s, whereas AL persists

in a broad range of f ’s in the metallic systems, so these small changes in n and f have negligible

effects on the results.

Our extensive tests of the numerical procedure and accuracy confirm the consistency and

robustness of the results and conclusions in this manuscript.

1.4 Spatial correlation function

In order to avoid any residual spatial correlation of the scattering structures, we adopt a uniform

random distribution of scatterer centers. The structure factor obtained from a Fourier transform

of center positions is equal to unity (S12). The spheres with center spacing smaller than their

diameter will overlap in space, and the overlapping region is assigned the refractive index equal

to that of an isolated sphere.

We calculate the spatial correlation function C(�) = hh(⇢)h(⇢+�)i/hh(⇢)i2�1, where,

⇢ denotes the spatial position, h(⇢) is a binary function equal to 1 inside the dielectric/PEC/metal

scatterers and 0 outside, and h...i denotes averaging over ⇢, direction of �, and random en-

semble. Fig. S4 shows the normalized C(�)/C(0) with h(⇢) obtained from the discretized

structures in the actual FDTD calculations of systems with particle radii r = 50 nm and 100

nm, and the PEC volume fractions of f ⇠ 15% and ⇠ 50%. In all cases, the spatial correlation

vanishes beyond the range � of one particle diameter 2r, as expected for a random arrangement

of spherical particles.
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1.5 Scattering mean free path

The scattering mean free path `s measures the average distance traveled between two consecu-

tive scattering events. Its value in Figs. 1c and 3a is extracted from the attenuation of the coher-

ent component of the incident field. We simulate systems with dimension Lx = 100�0, Ly =

L = 2�0 for an n = 3.5 dielectric and PEC, Lx = 25�0, Ly = L = �0 in the n = 10 dielec-

tric. The quantity hEx(x, y0, z;�)ix is computed by averaging over the long dimension (along

x-axis) of the system for one particular cross-section y = y0. The average of the co-polarized

field amplitude |hEx(x, y0, z;�)ix| decays exponentially with z at a rate 1/(2`s), from which `s

is obtained for each wavelength. The phase of hEx(x, y0, z;�)ix gives keff.

Figures S5, S6, S7 show the amplitude and phase of the coherent field hEx(x, y0, z;�)ix, as

well as its real and imaginary parts, in random aggregates of dielectric spheres and PEC spheres.

In the dielectric systems, spectral regions with strong attenuation, i.e. short scattering mean free

path, are concentrated in the vicinity of the Mie resonances of the constituent spherical particles.

In contrast, in the PEC systems, the scattering mean free path does not exhibit notable spectral

features in Fig. 3a. In Figs. S7a,e, this can be seen from a constant attenuation rate of the field

amplitude.

1.6 Effective wavenumber

We extract keff from the average co-polarized coherent field Ēx(z;�) = hEx(x, 0, z;�)ix in

Figs. S5, S6, S7. First, we obtain its phase �, normalized by vacuum wavenumber k = 2⇡/�

and average over the entire wavelength range of simulation for the PECs or the � > 650 nm

wavelength range for dielectrics. �(z) increases linearly with depth z near the front surface of

the slab, as shown in Fig. S8. The slope gives keff/k. For the disordered dielectric slab, the

slope is close to the effective index of refraction neff = [(1� f)+ fn2]1/2, where n = 3.5 is the

refractive index of overlapping dielectric spheres (r = 100 nm), and f is the dielectric filling
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fraction. For the PEC slabs with overlapping spheres of r = 50 nm and 100 nm, the slopes are

approximately equal to unity, even at high filling fraction f ' 50%, c. f. Fig. S8. This justifies

that we use the vacuum k to approximate keff in the Ioffe-Regel criterion for disordered PEC

systems.

1.7 Transport mean free path

Transport mean free path `t corresponds to the average travel distance that is required to com-

pletely randomize the propagation direction. Transmittance of a continuous wave (CW) at wave-

length � through a diffusive slab of thickness L is T (�) = (5/3)`t(�)/[L+2z0(�)], where z0(�)

is the extrapolation length (46). The value of z0(�) can be estimated from the CW depth profile

of the internal intensity I(z,�) by linear extrapolation I(z = L+ z0,�) = 0 (Fig. S14b). Then

the value of `t(�) can be extracted from T (�) with known z0(�).

Typically, z0 depends on the refractive-index mismatch between the slab and the surrounding

medium (46). However, our choice of refractive index neff for the surrounding layers eliminates

this mismatch for a dielectric slab, leading to z0 = (2/3)`t (46). Our numerical data suggest

that this relation approximately holds for PEC composites embedded in air as well.

1.8 Diffusion coefficient

The diffusion coefficient D = `tvE/3 depends on both the transport mean free path `t and the

energy transport velocity vE (S13). The propagation of an optical pulse in a slab geometry

makes it possible to directly extract D from the decay of the transmittance, T (t) / exp[�t/tD],

where 1/tD = ⇡2D/(L + 2z0)2. In the localized slabs such as those in Fig. 2, the decay rate,

1/tD, changes with time. To obtain D(t) in Fig. 2b, we use an exponential fit within a time

window [t� 2⌧D, t+ 2⌧D], where ⌧D is the arrival time of the peak of transmitted flux.
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1.9 Scaling functions

To obtain the scaling function d log(T )/d log(L) for the PEC slabs, we compute the logarithmic

derivative of CW transmittance T with respect to slab thickness L for a range of values of k`s.

First, we use the wavelength dependence of k`s in Fig. 3a to map k`s to � for each f . Next,

we compute T (�) for two systems with different thicknesses L1 = 2�0 and L2 = 5�0, where

�0 = 650 nm denotes the center of the wavelength range of interest. Finally, we approximate

d log(T )/d log(L) by the finite difference [log(T2)� log(T1)]/[log(L2)� log(L1)] for all � and

all f . After eliminating �, we obtain the dependence of d log(T )/d log(L) on the Ioffe-Regel

parameter k`s shown in Fig. 3c.

The same procedure is used to obtain the scaling of conductance g in Figs. 3d and S17b.

We calculate the conductance of a L ⇥ L ⇥ L cube as a product of the transmission T of a

slab of thickness L (computed in our simulations) and the number of transverse channels N in

the L ⇥ L cross-section of the cube. We estimate that N = 2⇡(L/�)2(1 � f)2/3, where the

(1 � f)2/3 factor accounts for the presence of PEC. The conductance g, calculated in this way,

is equal to the Thouless conductance up to a prefactor of order 1.

2 Absence of light localization in 3D dielectric systems with

refractive-index of 10

This section reports numerical simulations of 3D slab of dielectric spheres with n = 10. For

ease of comparison, we adjust the sphere radius to r = 32 nm, so that the first Mie resonance

occurs at a wavelength similar to that of a single n = 3.5 sphere (compare Figs S5a and S6a).

Scattering cross-section of a single sphere of n = 10 is exceedingly large (Fig. S9a), leading

to strong dependent scattering already at small volume filling fractions, and limiting the Ioffe-

Regel parameter to keff `s & 1 in Fig. S9b. The minimal value of keff `s is almost identical
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for f = 2.5%, 5%, 9% and starts to increase for f = 18% due to dependent scattering. The

dependent scattering also results in less variation of the normalized transport mean free path

keff `t with � in Fig. S9c, similar to the scattering mean free path in Fig. S9b.

Diffusive nature of wave propagation in n = 10 dielectric systems can be seen from scaling

of the CW transmittance with slab thickness L. In Fig. S9d we plot transmittance multiplied

by L in the f = 2.5%, 5%, 9%, 18% slabs with three different values of L/�0 = 1, 2, 4.

The largest slab thickness L/�0 = 4 corresponds to L/`t > 36 � 1 for all f . The overlap

between the curves with different L in the spectral range of the first Mie resonance is a direct

manifestation of the diffusive scaling T / 1/L.

Furthermore, we numerically calculate dynamic transmittance under pulsed excitation, T (t).

For thick slabs (L/`t � 1), the system does not exhibit deviations from the diffusive transport:

at t � ⌧D, the decay is still exponential (Fig. S9e).

The above results confirm the light transport is diffusive in 3D dielectric random systems

with n = 10 spheres.

3 Difference between PEC and dielectric scattering

Besides the irrelevance of longitudinal fields in PEC composites for energy transport, additional

differences with respect to dielectric media facilitate Anderson localization in PEC:

1. Isolated PEC spheres have strong backscattering (47). This results in a highly anisotropic

angular scattering pattern, making `t < `s at low f , which is very different from the

dielectric spheres.

2. Collective scattering resonances are created by two or more adjacent PEC spheres. The

spatial arrangement of scatterers in this work lacks spatial correlations in sphere positions,

creating a random distribution of distance between them. Even at the PEC volume fraction
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of f = 8%, the gap in-between two PEC spheres can be much narrower than � = 650 nm

and the field intensity in the vicinity of the gap is strongly enhanced, as seen in Figs. S10a.

Such an enhancement persists at � = 1080 nm in Figs. S10b despite the wavelength being

much greater than the particle radius r = 50 nm, leading to a small size parameter kr '

0.3 < 1. Already for a volume fraction of f = 8%, a sufficiently broad distribution of gap

sizes creates a large number of red-shifted resonances, enhancing the overall scattering

at longer wavelengths in Fig. 3a and making `s well below the prediction (S14) of the

independent scattering approximation (ISA) `s = [⇢sca(f) �sca(�)]�1, where ⇢sca(f) is

the number density of scatterers and �sca(�) is the scattering cross-section of a single

PEC sphere. With an increase of f to 15% in Figs. S10c,d, additional voids formed by

three or more PEC spheres create even a larger variety of scattering resonances at different

wavelengths, rendering `s nearly constant with �.

3. At high volume fraction f of PEC scatterers, light propagation through air voids is sup-

pressed. In contrast to a dielectric composite, which becomes transparent when the di-

electric volume fraction approaches 100%, a PEC composite with f approaching 100%

becomes a perfect mirror as air voids no longer percolate through the system. In our

simulations, Anderson localization takes place at PEC volume fractions well below the

air percolation threshold (96.6%) (S15, S11). Consider the Anderson model of random

resonators (large air voids) connected by waveguides (narrow air channels). If the wave-

length is larger than the waveguide diameter but smaller than the resonator size, the

waveguides are below cut-off and transmission becomes evanescent, but light can still

be confined in the resonators. The confined light may be coupled evanescently, hopping

from one resonator to the next. The interference between waves following different paths

from one void to another is essential to reach Anderson localization even when the trans-

mission through the channels between voids is evanescent. In the absence of interference,
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transport through a network of voids would be slowed down but still diffusive, no mat-

ter how weak the channel transmissions are. Eventually, in the infrared limit where the

wavelength well exceeds the void size, light can no longer be confined in the voids, and

the optical transport through the system will be blocked.

For a given PEC volume fraction f , both air void and air channel sizes are proportional

to PEC sphere radius r. A random system with smaller spheres have a larger number

of voids and channels, but the the latter have smaller sizes, since their total volume is

fixed by f . Narrower channels make it harder for light to propagate through a system

with smaller spheres, and localization will take place at lower f . This prediction agrees

with our numerical results of lower critical f for AL with r = 50 nm PEC spheres than

r = 100 nm spheres. The above argument is for fixed wavelength �. In a PEC system

with given values of r and f , the typical channel width a is fixed and therefore increasing

� will make it more difficult for light to ‘squeeze’ through the channels, facilitating AL

at long wavelengths. Consequently, for a given r, the localization condition of a ⇠ � is

fulfilled at a smaller f at longer �, which is in agreement with our numerical results.

4 Additional evidence for Anderson localization in PEC sys-

tem

4.1 Spatial intensity distribution

We have examined the intensity distributions inside 3D slabs of PEC spheres with r = 50 nm.

Figure S11 shows the spatial distribution of intensity over a two-dimensional cross-section (x-z

plane at y = 0) in the localized PEC system at five wavelengths (corresponding to the peaks of

transmission spectrum in Fig. 2e). In the logarithmic scale of the intensity map, we see local

regions of high intensity, sometimes a cluster of hot spots, even close-by bright regions that

resemble necklace states. However, it is hard to tell whether they represent individual modes,
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as the localized modes that are spatially separate may have nearly identical wavelength.

In the localization regime, there are many localized modes with similarly long lifetimes.

Separating them would be difficult and require extremely long simulation time. Therefore, to

find and visualize a single localized mode, we lower the PEC filling fraction to f = 33% to be

close to the localization transition, where there are fewer localized modes with long lifetimes.

After a long simulation time, the intensity decay approaches a single exponential decay of rate

equal to the decay rate of the longest-lived mode. Figure S12 is a volumetric plot of this mode

from two viewing angles. We also create a movie with rotating viewing angle (around y-axis),

available as supporting material for this article.

Back to the localized system with PEC filling fraction of f = 48%, we show in Fig. S13

the cross-section averaged depth profile at very long delay time, hI(x, y, z; t ! 1)ix,y. For

comparison, we also plot the asymptotic depth profile in the diffusive system of f = 15%,

which matches the first eigenmode of the diffusion equation, sin[⇡(z + z0)/(L + 2z0)]. In

contrast, the cross-section averaged intensity inside the localized slab with f = 48% exhibits

a much larger variation with depth z. The faster decay towards the surfaces signifies stronger

confinement of energy near the center of the slab.

4.2 Intensity statistics

The fluctuation of intensity or transmission coefficients is a powerful criterion of localiza-

tion (9). We create a video showing the internal intensity distribution on x-z plane for y = 0,

as the wavelength � is continuously scanned in the range of our simulation. It provides a

sharp contrast between diffusive and localized PEC systems. In the former (PEC filling fraction

f = 15%), the intensity pattern is more or less uniform across the system and it varies slowly

with wavelength. In the latter (f = 48%), the intensity fluctuates strongly from point to point

and changes rapidly with �.
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Fig. S14a depicts spectral fluctuation of the cross-section averaged intensity I(z,�) =

hI(x, y, z;�)ix,y, within the wavelength range of 600–700 nm. The normalized variance

var�[I(z,�)]/hI(z,�)i2� corresponds to the magnitude of long-range correlation C2 (S16). In

the PEC slab of f = 15%, C2 ⌧ 1, typical of a diffusive system. When f increases to 48%,

C2 � 1, as expected for localized systems (S14, S17), (9).

Inside a diffusive system, the CW intensity decays linearly with the depth on average (46)

and exhibits weak fluctuations from configuration to configuration. This is confirmed in Fig. S14b

by comparing hI(z,�)i� and exp[hlog[I(z,�)]i�], which indeed agree well in the PEC slab of

f = 15%. In contrast, in the PEC slab of f = 48%, c.f. Fig. S14c, these two quantities are

markedly different due to the fact that strong intensity fluctuations lead to log-normal distri-

bution for localized systems (S18). The depth profile exhibits a roughly exponential decay, as

expected in the AL regime of transport.

We confirm the statistical distribution of field intensity is log-normal in the Anderson lo-

calization regime by a statistical analysis. Fig. S15 shows the probability density function

(PDF) of log(Iy/hIyi), where Iy = |Ey(x, y, L)|2 is the intensity of the cross-polarized field

(parallel to y-axis, while the incident field is x-polarized) close to the output surface of the lo-

calized PEC slab in Fig. 2e of the main text, and it is normalized by the average over �, hIyi.

P [log(Iy/hIyi)] fits well by a Gaussian function (red curve in Fig. S15), verifying the log-

normal distribution. It is further contrasted from the logarithmic intensity PDF of the diffusive

PEC system (blue symbols) in Fig. 2d. The latter satisfies the Rayleigh intensity statistics (blue

curve), P (Iy/hIyi) = (1/hIyi) exp(�Iy/hIyi).

4.3 Thouless criterion

We quantify the Thouless conductance for the diffusive and localized PEC slabs in Fig. 2d,e

of the main text. As shown in Fig. S16a, the intensity spectra at a single position (0, 0, z) on
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the output surface of the slab appear dramatically different for diffusive and localized systems.

Quantitatively, we compute the spectral field correlation function, CE(�!) = hE⇤
y
(x, 0, L;! +

�!)Ey(x, 0, L;!)ix,!/h|Ey(x, 0, L;!)|i2x,!. Fig. S16b plots |CE(�!)|2 versus frequency de-

tuning �!, which is normalized by the average mode spacing �!DOS . We calculate �!DOS =

[!2/(⇡2c3) (1 � f)V ]�1, where !2/(⇡2c3) is the density of states in vacuum, (1 � f) is the

vacuum filling fraction in the PEC slab, V = L3 is the volume of a cube of side L equal to the

slab thickness. The width of |CE(�!/�!DOS)|2 gives the ratio of the average mode linewidth

over the average mode spacing, which is equal to the Thouless conductance. Its value is 7.1 for

the diffusive PEC slab, and 0.28 for the localized one. These values agree with the Thouless

criterion for localization.

4.4 Larger PEC spheres

To further confirm AL in PEC slabs, we repeat the calculations reported in Fig. 3c,d for an-

other system with larger PEC spheres (r = 100 nm). Figure S17 shows that transmittance and

conductance exhibit similar scaling behaviors as for the PEC slabs of r = 50 nm in Fig. 3c,d.

Although the diffusion-localization transition occurs at a different volume filling fraction f of

PEC spheres, the scaling behaviors with respect to the Ioffe-Regel parameter k `s and to the

dimensionless conductance g are reproduced.

5 Anderson localization in real metals

The perfect electric conductor (PEC) is an ideal metal that has no absorption. Scattering cross-

sections of PEC spheres with different radii are shown in Fig. S18a. To show the possibility of

AL in realistic metallic systems, we simulate real metals using parameters reported in literature.

The dielectric constant of a metal is related to the conductivity �(!) via ✏(!) = 1+ i�(!)/!✏0,

where ✏0 is electric permittivity of vacuum. In the Drude model, the conductivity of a metal is
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given by �(!) = �0/(1� i!⌧), where �0 is the static conductivity and ⌧ is the relaxation time.

5.1 Microwave regime

At microwave frequencies, ! ⌧ 1/⌧ and ✏(!) ' 4⇡�0i/!. The penetration depth of electric

field into the metal is characterized by the skin depth ⇠ (�0/2⇡) (!/2⇡�0)1/2. Common metals

like silver, aluminum, and copper have low loss and large conductivity at microwave frequen-

cies, and their skin depth is much shorter than the wavelength. For example, at 20 GHz where

the wavelength is 1.5 cm, the skin depth is less than 1 µm (S19).

To simulate microwave transport in 3D aggregates of metallic spheres, we generate random

arrangements of overlapping spheres with the same procedure as used for the PEC systems. The

sphere diameter of 0.56 cm is four orders of magnitude larger than the skin depth of crystalline

metals like silver, aluminum, copper. Thus, the microwave barely penetrates into the metallic

scatterers and the absorption loss is negligible. When we use the conductivity �0 = 3.8 ⇥ 107

⌦�1/m of crystalline aluminum reported in literature (S19), the scattering cross-section of an

aluminum sphere barely deviates from that for PEC (Fig. S18b).

However, experimentally fabricated metallic structures have additional losses due to poly-

crystallinity, surface defects, oxide layers, etc. To take these into account, we lower the conduc-

tivity �0 so that the simulated transport properties match the experimental values in Ref. (29).

Specifically, we simulate dynamic transmittance in a diffusive slab of aluminum spheres with

the same volume fraction f = 35% and slab thickness L = 6 cm as in the experiment. When

the conductivity is reduced to �0 = 3.8 ⇥ 104 ⌦�1/m, our simulated diffusion coefficient

D = 1.9 ⇥ 109 cm2/s and absorption coefficient ↵ = (D⌧a)�1 ' 0.2 cm�1 both agree to the

experimental values at 20 GHz. Using these realistic parameters, we simulate 3D metallic com-

posites with high volume fractions of f = 60%. As shown in Fig. S19a, the apparent diffusion

coefficient, obtained from the temporal decay of the transmittance without taking absorption

17



into account, decreases in time as 1/t, similarly to its behavior in PEC, until it reaches the value

set by the absorption. The simulated field intensity distribution inside the system, in Fig. S19b,

provides evidence of spatial confinement of microwave, similar to the result for PEC in Fig. 2e.

The most conclusive evidence of AL is the arrest of transverse spreading of transmitted wave

field. It is insensitive to absorption as shown in the main text in Fig. 4e.

We believe that the tell-tale experimental sign of AL is the arrest of transverse spreading

of transmitted wave with a focused incident pulse. Potential pitfalls include background sig-

nals or possible emission by the metal upon microwave excitation. However, these signals are

typically broadband and incoherent with the incident wave. If the incident microwave has a nar-

row spectral band, the transmitted field may be measured coherently, e.g., using the homodyne

technique common for microwaves, when those background and incoherent signals will not

contribute. Hence, we propose an experiment with a frequency-tunable narrowband microwave

source: focus the incident microwave to the front surface of a slab and scan the frequency, per-

form an interferometric measurement of transmitted field distribution near the slab back surface

at each frequency (using a local oscillator), finally Fourier transform the spectral fields to recon-

struct the temporal evolution of transmitted field for an incident short pulse in order to detect

the arrest of transverse spreading.

5.2 Optical regime

Here we investigate the possibility of AL of visible light in 3D metallic nanostructures. Even for

low-loss metals like gold and silver, the skin depth is ⇠ 25 nm at � = 650 nm (S19), comparable

to the nanoparticle diameter of 100–200 nm. A significant penetration of light field inside the

metal particles makes them deviate from the PEC, which expels the fields completely. Another

consequence of the penetration is a notable loss. We simulate silver, which is widely used in

nano-plasmonics and meta-materials, using realistic parameters reported in the literature. We
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adopt the Drude model of ✏(!) with �0 ' 6.1 ⇥ 107 ⌦�1/m and ⌧ ' 3.7 ⇥ 10�14 s from

Ref. (S20). Despite absorption and deviation from PEC, we still detect the arrest of transverse

spreading in Fig. S20.

Compared to 2D nanostructures, 3D nanoporous metals have a much larger (internal) sur-

face area, leading to a wide range of applications in photo-catalysis (S21), optical sensing (S22),

energy conversion and storage (S23). Metallic nanostructures have been widely explored to en-

hance Raman scattering, second-harmonic generation, etc., because they can produce ‘hot spots’

(giant local fields) to boost optical nonlinearities. Also metallic nanoparticles have been used

for random lasing, as their strong scattering of light improves optical feedback (S24, S25). Our

simulation results suggest the possibility of AL in 3D metallic nanostructures at optical frequen-

cies. Light localization in such structures will have a significant impact on optical nonlinear,

lasing, photochemical processes and related applications.
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Figure S1: Dielectric/PEC filling fraction of simulated aggregates of randomly positioned

spheres. Mapping between the actual volume filling fraction f (accounting for sphere overlap
and discretization effects) and the nominal filling fraction fnominal.
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Figure S2: Confirmation of the absence of Anderson localization in random dielectric me-

dia with refractive-index of 3.5 with increased numerical resolution. Transmittance T (t) of
an optical pulse through a 3D slab of thickness L = 3.3 µm, filled with dielectric spheres at
random uncorrelated positions (radius r = 100 nm, refractive index n = 3.5, volume filling
fraction f = 38%) in air. Numerical simulations are performed with a spatio-temporal dis-
cretization of �0/40, which is twice finer than that used to produce Fig. 1e in the main text. The
pure exponential decay of T (t) in time, over 12 orders of magnitude, is a hallmark of diffusive
transport in the dielectric random system.
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Figure S3: Robustness of the arrest of transverse spreading of transmitted beam in local-

ized PEC systems against numerical discretization. The simulation is schematically depicted
in Fig. 4a of the main text, and the structure parameters (sphere radius r = 50 nm, volume fill-
ing fraction f = 48%) are identical to those in Fig. 4d. a, Transverse diameter of the transmitted
beam d(t), obtained from numerical simulation (slab thickness L = 1.3 µm) with �0/40 reso-
lution, exhibits a saturation consistent with the result with �0/20 resolution in Fig. 4d. b, Arrest
of the transverse spreading is seen in all simulations performed with numerical resolution from
�0/10 to �0/40 with a consistent asymptotic transverse beam diameter d1. Symbols and error-
bars represent the mean value and standard deviation of d(t) in the time interval 1 ps < t < 2
ps (gray area in panel a, i.e. over sample size of 50 data points).
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Figure S4: Spatial correlation in PEC composites. Normalized spatial correlation function
C(�)/C(0) for random aggregates of overlapping spheres with radii r = 50 nm, 100 nm
and volume filling fractions f ' 15%, 50%. Spatial correlation vanishes beyond one sphere
diameter 2r.
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Figure S5: Extinction of coherent field in a dielectric slab of n = 3.5 spheres. a, Scattering
cross-section of a single dielectric sphere of radius r = 100 nm and refractive index n =
3.5 in air, normalized by the geometrical cross-section. The spectral peaks correspond to Mie
resonances. b,c,d,e, amplitude (b), phase (c), real (d) and imaginary (e) parts of coherent field
hEx(x, y0, z;�)ix versus depth z and wavelength � for dielectric filling fraction f = 29%.
White lines represent z = m�eff, where m is an integer and �eff = �/neff. The coherent field
amplitude experiences an enhanced extinction in the wavelength range 500–700 nm due to
hybridized Mie resonances.
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Figure S6: Extinction of coherent field in a dielectric slab of n = 10 spheres. a, Scattering
cross-section of a single dielectric sphere of radius r = 32 nm and refractive index n = 10 in
air, normalized by the geometrical cross-section. The peak represents the first Mie resonance
of magnetic dipole origin. b,c,d,e, amplitude (b), phase (c), real (d) and imaginary (e) parts of
coherent field hEx(x, y0, z;�)ix versus depth z and wavelength � for dielectric filling fraction
f = 29%. White lines represent z = m�eff, where m is an integer and �eff = �/neff. The
coherent field amplitude experiences an enhanced extinction in the spectral range 630–660 nm
in the vicinity of the first Mie resonance.
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Figure S7: Comparison of coherent fields in diffusive and localized slabs of PEC

spheres. Amplitude (a,e), phase (b,f), real (c,g) and imaginary (d,h) parts of coherent field
hEx(x, y0, z;�)ix versus depth z and wavelength � for PEC filling fraction f = 15% (a,b,c,d)
and 48% (e,f,g,h). White lines represent z = m�, where m is an integer. In the localized slab
(f = 48%), the extinction of the coherent field is much stronger and nearly independent of
wavelength.
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Figure S8: Estimation of effective wavenumber keff. The phase �(z) of the average co-
polarized coherent field, normalized by vacuum wavenumber k, grows linearly with depth z
near the front surface of both dielectric (green circle) and PEC (red circle: r = 50 nm, cyan
cross: r = 100 nm) slabs. Green and red lines are linear fits, which gives slopes of neff and
unity, respectively.
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Figure S9: Resonant scattering and diffusion in random ensembles of n = 10 dielectric

spheres. a, Scattering cross-section of a single dielectric sphere of radius r = 32 nm and
refractive index n = 10, normalized by the geometrical cross-section. The vertical dotted lines
mark the spectral width of the excitation pulse in panel e. b, Resonantly enhanced scattering
mean free path `s in the spectral vicinity of the first Mie resonance of single-particle scattering.
The dielectric filling fraction f = 2.5% (blue), f = 5% (red), 9% (green) and 18% (brown).
The minimum Ioffe-Regel parameter keff `s ⇠ 2. The horizontal dashed line marks the Ioffe-
Regel criterion keff `s = 1 for 3D localization. c, Normalized transport mean free path keff `t
in the spectral vicinity of the first Mie resonance, reflecting saturation by dependent scattering
between f = 2.5% and 18%. d, CW transmittance T (�) for three slab thicknesses L/�0 =
1, 2, 4 (solid, dashed, and dotted lines). T (�) multiplied by L/�0 remains nearly independent
of L at wavelengths around minimum transmission, reflecting the diffusive scaling of T / 1/L.
Results are color-coded as in panels b,c. For f = 5%, 9% and 18%, the curves are shifted
up vertically by one, two, and three decades for legibility. e, Transmittance of 3D slabs with
thickness L = 2�0 for pulsed excitation, showing an exponential decay (dashed lines) in time
at long delay. The decay rate is determined by the minimum diffusion coefficient within the
pulse bandwidth. Legend shows values of L/`t in each system. For f = 5%, 9% and 18%, the
curves are shifted down vertically by two, four and six decades for legibility.

31



-4

-2

0

Lo
g 1
0[
I(y
,z
)]

f=8% f=15%
λ=650nm λ=1080nm λ=650nm λ=1080nm

a b c d

λ

λ

Figure S10: Spatial intensity distribution inside disordered PEC system. Field intensity at
a (y, z) cross-section inside a random ensemble of PEC spheres with radius r = 50 nm. PEC
filling fraction is f = 8% in panels a,b and f = 15% in panels c,d. � = 650 nm in panels
a,c and 1080 nm in panels b,d. The bottom row shows a magnified view of each distribution in
the top row, revealing strong intensity enhancement in air voids between PEC particles due to
coupled resonances. The size of the voids can be much smaller than the wavelength � indicated
by the white scale bar.
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Figure S11: Intensity distribution inside localized system. Field intensity I(x, 0, z;�) dis-
tribution over the y = 0 cross section (x � z plane) in the localized PEC slab (Fig. 2e) at five
wavelengths. The wavelengths are selected to correspond to peaks of the transmission spectrum
in Fig. 2e.
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a b

Figure S12: 3D localized mode in disordered PEC system. Volumetric plot of a localized
mode in a slab with f = 33% made up of overlapping PEC spheres with radius r = 50 nm.
Panels a,b show the same state from two different viewing angles.
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Figure S13: Asymptotic depth profiles of intensity in disordered PEC. a, Depth profile
hI(x, y, z; t ! 1)ix,y inside the PEC slab of f = 15% (blue solid line) and 48% (red solid
line). The lowest-order diffusive mode profile (black dashed line) matches that of f = 15%
(blue).
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Figure S14: Intensity statistics in disordered PEC. a, Normalized variance of cross-section
integrated intensity, showing two orders of magnitude enhancement of intensity fluctuations
for f = 48% over f = 15%. b,c, CW intensity depth profiles hI(z,�)i� (solid lines) and
exp[hlog[I(z,�)]i�] (dashed lines), compared to linear decay for f = 15% and exponential
decay for f = 48% (black dashed lines).
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Figure S15: Statistical distribution of transmitted intensity in disordered PEC. Probability
density of the logarithm of transmitted field intensity Iy = |Ey(x, y, L)|2 (normalized by its
mean hIyi) from Fig. 2e (red symbols) in the localized system is fit well by a Gaussian function
(red curve). It is distinct from that in the diffusive system from Fig. 2d (blue symbols), which
is fit well by the Rayleigh intensity statistics (blue curve).
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Figure S16: Thouless criterion in disordered PEC. a, Normalized intensity at location
(0, 0, L) of the output surface of the diffusive slab of PEC filling fraction f = 15% (blue line),
and of the localized slab with f = 48% (red line). b, Spectral field correlation function squared
|CE|2 vs. frequency detuning �! normalized by the average mode spacing �!DOS .
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Figure S17: Diffusion-localization transition in another PEC system with larger spheres.

The scaling behavior reported in Fig. 3b,c is reproduced for a system of larger PEC spheres
with radius r = 100 nm, even though the diffusion-localization transition occurs at a different
volume filling fraction f of PEC spheres. In a, the blue dashed line denotes diffusive scaling
T / L�1; the red dashed line marks k`s = 1. In b, the blue and red dashed lines denote diffusive
and localized scaling g / L and g / exp(�L/⇠) respectively, where ⇠ is the localization length.
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Figure S18: Scattering cross-section of PEC and aluminum spheres. (a) Scattering cross-
section of a PEC sphere with radius r = 50 nm (yellow), 100 nm (blue), normalized by the
geometrical cross-section. (b) Scattering cross-section of an aluminum sphere with r = 0.56 cm
and �0 = 3.8 ⇥ 104 ⌦�1/m in the microwave regime (gray), normalized by the geometrical
cross-section. It is almost identical to that of a PEC sphere with the same radius (blue line).
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Figure S19: Localization of microwaves in a 3D real-metal composite. A random aggregate
of aluminum spheres with radius r = 0.28 cm, realistic conductivity �0 = 3.8 ⇥ 104 ⌦�1/m,
and volume filling fraction f = 60% localizes microwave of frequency around 20 GHz in a slab
of thickness L = 6 cm. a, Time-resolved apparent diffusion coefficient D(t), extracted from
the temporal decay rate of T (t), decreases as 1/t, due to Anderson localization. Eventually it
saturates to the value set by metal absorption. b, Wavelength-resolved transmittance T (�) (red
line) exhibits fluctuations. Color map: depth profile of average intensity hI(x, y0, z;�)ix inside
the slab at different wavelengths, highlighting spatially localized and necklace-like states.
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Figure S20: Arrest of transverse spreading of visible light in 3D random aggregates of sil-

ver particles. Transverse diameter of the transmitted light d(t), with a tightly-focused incident
pulse of center wavelength �0 = 650 nm, increases as

p
t in the diffusive slab (f = 15%,

blue dots) but it saturates to a constant value in the localized slab (f = 48%, red dots). The
slab thickness L = 2 µm. Silver spheres have radius r = 50 nm, �0 ' 6.1 ⇥ 107 ⌦�1/m and
⌧ ' 3.7⇥ 10�14 s.
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