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Abstract
Weanalyze coherent wave transport in a newphysical setting associatedwithmultimodewave systems
where reflection is completely suppressed andmode-dependent losses together withmodemixing are
dictating thewave propagation. An additional physical constraint is the fact that in realistic
circumstances the access to the scattering (or transmission)matrix is incomplete.Wehave addressed
all these challenges by providing a statistical description of wave transport which fuses together a free
probability theory approachwith afiltered randommatrix ensemble. Our theoretical predictions have
been tested successfully against experimental data of light transport inmultimode fibers.

Introduction

Randommatrix theory (RMT) has been successfully applied over the years in a variety of physics areas ranging
fromnuclear and atomic physics tomesoscopic physics of disordered and chaotic systems [1–6]. Its applicability
relies on the assumption that in complex systems the underlyingwave interference impose universal statistical
rules which govern their transport characteristics. Along these lines of thinking, randommatrixmodels allowed
us to uncover some of themost fundamental properties of disordered/chaotic systems, including the structure
and statistical properties of their eigenstates [7, 8] and eigenvalues [9, 10], the conductance [11–13], the
resonancewidths and delay times [14], etc. It turned out thatmany of the universal features of transport are
directly connectedwith the various symmetries (time-reversal, chiral, etc) that a specific complex system satisfies
[15]. In all these studies, nevertheless, it was always assumed that the scattering process does not involve any
additional constrains and has both a backward (reflection) and a forward (transmission) component.

Recently, the interest inwave transport has extended to new physical settings with practical relevance,
namely, a class of complexmultimode systemswhere reflection processes are absent [16, 17]. Obviously, the zero
reflectivity condition, imposes new constraints to thewave scattering process, thus constituting the previous
RMTpredictions void. These type of transport problems have emerged naturally in the framework of
multimode (or coupledmulti-core)fiber optics. In these systems, fiber imperfections (core ellipticity and
eccentricity) and external perturbations (indexfluctuations and fiber bending) cause coupling and interference
between propagating signals in different spatialmodes and orthogonal polarizations. At the same time, the effect
ofmode-dependent loss (MDL) (or gain due to optical amplifiers) inwave propagation is another important
featurewhose ramifications are not yet completely understood [16–19]. In the framework ofmultimode fibers
(MMFs), for example, it leads to fundamental limitations in their performance since extremely highMDL can
reduce the number of propagatingmodes and thus the information capacity ofMMFs. It is, therefore,
imperative to develop statistical theories that take into consideration themodal and polarizationmixing and
MDL and provide a quantitative description of light transport in realisticMMFs (and othermultimode systems
that demonstrate similar challenges).
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Here, we develop a statistical theory of light transport inMMFs, where bothMDL andmodal and
polarizationmixing are considered. Our theory is accounting for the fact that in experiments, the degree of
modal and polarization control is limited. To this end, we have combined free probability theory and the filtered
randommatrix (FRM) ensemble and took into consideration thefinite length of theMMFs. Unlike the
telecommunication fibers, which are typically very long, finite lengthMMFs are common inmedical
applications (endoscopy), sensing, local-area networks and data-center interconnects etc. As an example, we
have implemented our theoretical formalism in order to derive two important statisticalmeasures: (a) the
distribution of transmission eigenvalues for polarizationmaintenance (and/or conversion); and (b) the
absorbance distribution of amonochromatic light propagating in aMMFwithMDL and strongmode and
polarization coupling. Our theoretical results have been validated via direct comparisonwith experimental
measurements usingMMFs.

Fibermodel

Weconsider aMMF supportingN propagating linearly polarized (LP)modes, with each LPmode being two-
fold degenerate corresponding to the horizontal (H) and vertical (V) polarizations.Wemodel the fiber of interest
as consisting of a concatenation ofK independent and statistically identical segments [16], with the linear
propagation through theMMFdescribed by a ´N N2 2 transmissionmatrix t(K ),

= = L L L
⎛
⎝
⎜⎜

⎞
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⎟⎟ ( )( )
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where the elements of theN×N blockmatrices ( )t K
HH ( ( )t K

VH ) are the transmission amplitudes into theH (V)
polarizationwhen the incident light isH-polarized. Each segment ismodeled via amatrix vkΛ, where vk is a

´N N2 2 unitarymatrix describing the polarization andmodemixing in the segment, and L = L L( )diag ,H V is
a diagonalmatrix describing the free propagation and attenuation in the absence of suchmixing.We consider
MMFs in the stronglymixed regimewhere everymode is coupled to every othermode in one segment, with vk
being randomunitarymatrices drawn from the circular unitary ensemble (CUE) [3]. Hence, one segment
corresponds to one transportmean free path lt of light scattering infibermode basis. The number of segments
gives the ratio of the fiber length (L) to the transportmean free pathK=L/lt.We assume that the two
polarizations have the same propagation constants and loss, so that dL = L = ben l n l nl,

H
,

V i n . The higher-order LP
modes take longer paths and impinge on the core-cladding interface at steeper angles, so they typically
experiencemore attenuation than the lower-ordermodes; wemodel suchMDL as  b =( ) ( )m ns N2n with
n=1,L,N, characterized by the coefficient s (s>0 for loss). The real parts ofβn describe themode-dependent
propagation phase shifts and are not important in the context of this paper as they can be absorbed into vk.

In actual experimental circumstances, the preparation andmeasurement of awaveform in allmodes is
technically challenging. In this respect, one needs to analyze portions of the total transmissionmatrix

=( ) ( )t P t PP P
K K

, out inout in
where Pin andPout are projections to the controlled incoming and outgoingmodal subspace.

Specifically, given an incident wavefront yñ∣ which belongs to thePin-subspace, themeasured transmittance in
thePout-subspace (summed over the spatial/polarizationmodes) after propagating through theMMF is
y yá ñ∣( ) ∣( ) † ( )t tP P

K
P P

K
, ,out in out in

. It is therefore obvious that the eigenvalues of thematrix ( )( ) † ( )t tP P
K

P P
K

, ,out in out in
dictates the

transport properties of suchMMFs. For example, the extremal eigenvalues (and corresponding eigenvectors) are
associatedwith themaximal andminimal transmittances achieved in such set-ups and can be used in order to
designwaveform schemeswith extreme transport characteristics. Along these lines of reasoning, of particular
interest is the eigenvalue statistics  t( )( )K

HH associatedwith thematrix ( )( ) † ( )t tK K
HH HH. In this case the preparation

(associatedwithPin) andmeasurement (associatedwithPout) subspaces correspond to the set ofmodeswith
horizontal (H) polarization. Themaximumeigenvalue τ (and the associated eigenvector) indicate the optimal
polarization retention that can be achievedwhen light propagates in the system.

Another interesting statistics is  t( )( )K
H associatedwith thematrix º +( ) ( )( ) † ( ) ( ) † ( )T t t t tK K K K

H HH HH VH VH . In this case
Pin corresponds to the subspace of horizontally polarizedmodes whilePout is the identitymatrix i.e. thewhole
modal space including both polarizations. The eigenvalues ofTH provide information about the total
transmissivity summed over the two polarization states at the output, given aH-polarized incident light. The
complementarymatrixAH≡1−THprovides information about the amount of absorption during
propagation inside theMMF.

Transmittance eigenvalue distribution of concatenated fiber segments

Our theoretical investigation capitalizes on themultiplicative structure of the transmissionmatrix. Specifically,
we use free probability theory [20–22]which predicts the spectral properties of a product of randommatrices
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from the spectral properties of its constituents. Basedupon the probability distribution  t == ( )( )K 1

 t t=L ( ) ( )s12 associatedwith the eigenvalues of ( )( ) † ( )t t1 1 for a single segment,we can construct a recursion
relation from themodel definition in equation (1). Statistically every segment is equivalent, sowe canwrite

= L L+ +( ) ( ) ( )( ) † ( ) † ( ) † ( )t t v t t v , 2K K K K1 1
0 0

where the equality is in the statistical sense. Using the free probability theory [21, 22], when  ¥N we get from
equation (2)

= L+ + ( ) ( ) ( ) ( )( ) ( )( ) † ( ) ( ) † ( )S z S z S z , 3t t t tK K K K1 1 2

where SQ denotes the S transform for an arbitraryHermitianmatrixQ. The S transform is ultimately related to
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Q , where t( )PQ is the eigenvalue density of theHermitianmatrixQ. The

intermediate connections are shown as follows:
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where f ( )zQ is themoment generating function and c ( )zQ is the corresponding inverse function. TheGreen’s
function ( )G zQ enables us to obtain the normalized eigenvalue density of theHermitianmatrixQ through the
relation


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In the case of one sectionK=1, we have the eigenvalue density
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where t Î -( )e , 1s . Correspondingly, we can get from equation (4) the S transform for one section
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Combining equations (3) and (7)wehave
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Typically we resort to numericalmethod to obtain the eigenvalue density by combing equation (5) and the
implicit formula for theGreen’s function equation (9). However, for the first fewmoments, explicit results can
be easily obtained. For example, using equations (3) and (4)we can get themeanμ(K ) and variance s( )( )K 2 for the
eigenvalue density of ( )( ) † ( )t tK K as

m m
s
m

s
m
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whereμ andσ2 are themean and the variance of the eigenvalue distribution for one section (equation (6)), which
turn out to be m = - -

s

1 e s

, and s = -- -- -( )s s
2 1 e

2

1 e 2s s2

.

We further calculate the probability distribution  t( )( )K using equation (5). Infigure 1we show the
theoretical results togetherwith the outcome of simulations.Wefind that for finite number of concatenated
segmentsK andfiniteMDL ¹s 0, the distribution  t( )( )K deviates from the standard semicircle expected from
standard RMTconsiderations, seefigures 1(a) and (b). The explicit knowledge of the first twomoments allow us
to analyze the scenario ofmany concatenated fiber segments  ¥K with a loss-per-segment s→0, such that
themean òm t t tº ( )( ) ( ) dK K is keptfixed, i.e. m =( )K .Wefind, using the Bhatia–Davis inequality, that in

this case the variance of the probability distribution  t( )( )K goes to zero s ¥( ) 0K . Consequently, the
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eigenvalue distribution  t d t -¥ ( ) ( )( ) becomes a delta function and thus


=
-

¥ ( )( )G z
z

1
, see

figure 1(c).

Transmittance distribution offiltered channels

To evaluate the transmission eigenvalue distribution for any portion of the transmissionmatrix, we useG(K ) to
derive theGreen’s function ( )GP P

K
,in out

and the eigenvalue distribution  t( )( )
P P
K

,in out
associatedwith the projected

transmissionmatrix ( )tP P
K

,out in
. Following a FRM formalism [23], we have that
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where nP P,out in
and dP P,out in

are two auxiliary functions related to the filtering process P P,out in and theGreen’s
function ( )GP P

K
,out in

.

For the specific case of ( )G K
HH and the eigenvalue distribution  t( )( )K

HH of ( )( ) † ( )t tK K
HH HH, we have that
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2. For this derivation one needs to consider that the input and

output fraction of totalmode space is half. Combining equations (9), (11), we derive an implicit equation
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whichwe can solve to obtain º +( ) ( )( )p z zG z 1K
HH HH and ( )( )G zK

HH . Then, the probability distribution  t( )( )K
HH

is given by the inverse Stieltjes transform in equation (5).We can derive analytical expressions for  t( )( )K
HH for

various s-values and number of concatenated segmentsK, see figure 2.Wefind that for increasing loss-per-
segment parameter s, the deviations from a bimodal distribution  t=

¥ ( )( )
s 0 become progressively stronger, see

figure 2(a). The same is true for the case of increasing number of concatenated segmentsKwhile keeping sfixed,
see figure 2(b). In both cases, themost dramatic changes occur at the upper edge of  t( )( )K

HH associatedwith the
largest transmission eigenvalues. In the samefigures, we also plot the histograms fromnumerical simulations of
the concatenatedMMFmodel with afinite number ofmodes. The agreement between the theoretical

Figure 1.Distribution  t( )( )K for (a) different s-values and fixedK=3; (b) differentK-values and fixed s=0.4. In both cases the
number ofmodes isN=25. (c)  ¥ K s, 0 whileμ(K )=0.7 is kept fixed. In this caseN=75.

Figure 2.Eigenvalue distributions  t( )( )K
HH for the polarization-maintaining states in amultimode fiber. (a)Dependence on the loss-

per-segment parameter s for a fixed number of segmentsK=3. (b)Dependence on the number of segmentsK for afixed s=0.4.
(c)The long-fiber limit  ¥ K s, 0 while keeping the overall lossμ(K )=0.7fixed. Solid lines are analytic predictions and
histograms are fromnumerical simulations of the concatenatedMMFmodel withN=25modes for (a)–(b) andN=75 for (c).
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predictions and the numerical simulations is perfect. The above analysis also captures the effect of incomplete
modal control, e.g. when only parts of theN spatialmodes aremodulated ormeasured.

Using equation (11) and the fact that


=
-

¥ ( )( )G z
z

1
(see discussion at the end of previous section), we

get


=
-

¥ ( )
( )

( )G z
z z

1
HH . Consequently wefind that 


t 

p t t
¥

-
( )( )

( )HH
1 reduces to a bimodal distribution

with confined support t Î ( )0, . In this case the information about the number of concatenation segmentsK
and the loss-per-segment s is ‘hidden’ in the upper bound of the transmittance support  . In the limiting case of
zero losses s=0, it is easy to show, that the eigenvalue distribution  t( )HH reduces to a bimodal distribution

 t =
p t t= -

( )
( )s 0
1

1
[24].

It is tempting, at this point, to establish an analogy between the s=0 and ¹s 0 cases (  ¥K ). In both
cases there are essentially only two groups of propagating channels—open channels associatedwith τ-values
close to 1 or  , and closed channels with τ-values in the neighborhood of zero. One then can understand the
results for  ¥ K s, 0 in the followingway: when theMMF is long enough (largeK ) such that complete
mode and polarizationmixing happensmany times across the fiber, themixing equalizes themode dependence
and turnsMDL intomode-independent loss with the transmittance of the open channels being renormalized to
 . These analytic predictions are nicely confirmed by numerical simulations of the concatenatedMMFmodel, as
shown infigure 2(c).

We note that because of the strongmode and polarizationmixing, this analysis applies equally to  t( )( )K
VH or

other quarters of the transmissionmatrix.We stress that the calculation strategy that we have used here is not
bounded by the specific choice ofMDL (constant increase) and can be easily generalized to any type ofMDL
distribution.Moreover, the same scheme can be utilized for the case ofmode-dependent gain.

Using the same approach as above, we can also evaluate the eigenvalue distribution  t( )( )K
H ofmatrix

º +( ) ( )( ) † ( ) ( ) † ( )T t t t tK K K K
H HH HH VH VH and the associatedmean and variance. In case of lossless fibers, i.e. s=0, the total
transmittance is unity.When ¹s 0 we get a similar relation for ( )G K

H and ( )G K as equation (11)where now
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H associatedwith the eigenvalues ofT-matrix is then given via

equation (5) by substituting  ( )G G K
Q H while the correspondingmean value m( )K

H and variance s( )( )K
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expressed in terms of themicroscopic variables of the concatenatedmodel as m m= =( ) ( )K K
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. These eigenvalues provide information about the total transmission

summed over the two polarization states at the output, given aH-polarized incident light. Alternatively, one can
consider the complementarymatrix = -A T1H H whose eigenvalues a tº -1 provide the absorbance
distribution  a( )A .

Experiments

To confirmour theoretical predictions, we experimentallymeasured the transmissionmatrices tHH and tVH for
several realizations ofMMFswith strongmode coupling. The polarization-resolved transmissionmatrix is
characterizedwith an interferometric setup, see figure 3. A laser beam atwavelengthλ=1550 nm is collimated
by a lens and then horizontally polarized by a polarizing beam splitter. The beam is split into a reference arm and
afiber arm. The SLM in thefiber arm is imaged to the input facet of the fiber by a lens and amicroscope
objective. It generates planewaves with different angles to excite different fibermodes. A half-wave plate rotates
the polarization direction of the reference beam. Transmitted light from the distal end of the fiber is recombined
with light from the reference arm at another beam splitter with a tilt angle, forming interference fringes on the
CCDcamera. A linear polarizer in front of the camera selects the polarization component tomeasured. By
rotating the polarizer, wemeasure the transmitted light of different polarization. The amplitude and phase of the
outputfield are extracted from the interference fringes. Both tHH and tVH are of dimension 14 641×441
(121× 121 camera pixels and 21× 21 input angles).

TheMMFwe tested is a graded-index fiberwith 50 μmcore diameter and 0.22 numerical aperture. In the
absence of loss, thefiber supports 55 guidedmodes for a single polarization. To introducemodemixing in the
2 m long bare fiber, we coil the fiber and use clamps to apply stress. The clamps deform the fiber, causing strong

modemixing and inevitableMDL. Experimentally, wemeasured an ensemble of º
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )t
t

t

K

KH
HH

VH

. To determine the

number of spatialmodes in the fiber, we examine the eigenvalues of thematrix = = L† †T t t w wdH H H , whereΛd

is a real diagonalmatrix with the diagonal entries sorted in decreasing order andw is the unitarymatrix with
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columns being the eigenvectors ofTH. As shown in figure 4(a). In the presence of loss, the effective number of
modes is less than 55. The sudden drop of the eigenvalues corresponds to the cut-off of the guidedmodes in the
fiber [25]. The cut-off offibermodes is chosen to be at the center of the abrupt drop of the eigenvalues, giving the
effective number offibermodesN=52. The corresponding eigenvalue at this cut-off is on the order of the noise
level in the experiment. Numerically, we find a slight variation of this cut-off value has little impact on the
analysis. Let w̃ be the truncation of thematrixw obtained from taking the firstN=52 columns. Subsequently
we project the transmissionmatrices ( )t K

HH and ( )t K
VH onto the space spanned by w̃.

To normalize the unscaled data of the transmissionmatrix tH, experimentally we excite the highest

transmission channel = ˜ ˜ †v ww e1with = ( )e 1 0 0 T
1 . Experimentally we have =

˜ ˜† †

† 0.48
v t t v

v v
H H , where

=t̃ ctH H is the normalized data for the transmissionmatrix. It enables us to determine the scaling constant c and
thus properly normalized transmission data t̃H. Correspondingly we have =˜ ˜ ˜†T t tH H H andwe can extract from t̃H

the half truncationmatrix ˜( )t K
HH and ˜( )t K

VH .
To determine themodel parametersK and s, we evaluate themean m̃ ( )K

H and the variance s̃K
H of the

eigenvalue distribution ̃
( )K
H of the experimental T̃H measured over different realizations of the fiber. A direct

comparisonwith the theoretical predictions yieldsK=1 and s=2.7. Thefiber used in the experiment is
relative short, therefore the fiber length is approximately equal to one transportmean free path inmode basis. In
figure 4(b)weplot the experimental distribution  a˜ ( )A (orange-line histogram) together with results of
simulations (blue-dashed histogram) from the concatenatedMMFmodel. In the same figure, we plot the
theoretical expression for the distribution of absorbances using the extracted (K, s) parameters (blue line). The
results agreewell.

Finally, we examine the polarization-maintaining eigenvalue distribution ̃
( )K
HH evaluated from the

experimentallymeasured transmissionmatrices, and compare it to the analytic prediction using the extracted
(K, s) parameters (figure 4(c)).We observe excellent quantitative agreement with nofitting, which validates our
model and our analytic framework.

Figure 3. (a) Schematic of the experimental setup formeasuring transmissionmatrices of aMMF. SMF: singlemode fiber. L: lens.
PBS: polarizing beam splitter. BS: beam splitter.M:mirror. HWP: half-wave plate. P: polarizer. (b)Amplitude ofmeasured
transmissionmatrix for horizontally polarized input light and both horizontally and vertically polarized output fields in thefiber
mode basis (the top half is tHH, and the bottomhalf is tVH).

Figure 4.Experimental results and comparisonwith theory. (a)Eigenvalues of themeasuredmatrix T̃H, showing the number of spatial

modes to beN=52. (b), (c)Measured eigenvalue distributions  a˜ ( )( )
A
K

for the total absorption summed over the two output

polarizations and  t˜ ( )( )K
HH for the polarization-maintaining output, both showing comparison to the analytic results and to

simulations.
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Conclusion

Wehave developed a theoretical formalism that utilizes a free probability theory togetherwith a FRMapproach
in order to derive theoretical expressions for the probability distribution of transmittances and absorbances in
multimode scattering set-upswhere reflectionmechanisms are absent (paraxial approximation) and the
information about the transmissionmatrix is incomplete. Themotivation for this study is drawn by the recent
interest to understand light transport inMMFswithMDL and strongmode and polarizationmixing. The
resulting probability distributions are different from any known results found for lossy disordered or chaotic
systems [26–29] indicating that the paraxial constraint, and/or the presence ofMDLs can dramatically affect
light transport. The validity of our predictions have been tested bothwith simulations and via direct comparison
with experimental data.We stress that our scheme can take into account any type ofMDL (or gain) distribution.
It will be interesting to extend this study to the case of weakmodemixingwhere themodemixingmatrices vk do
not belong to theCUE.
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