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Abstract

We analyze coherent wave transport in a new physical setting associated with multimode wave systems
where reflection is completely suppressed and mode-dependent losses together with mode mixing are
dictating the wave propagation. An additional physical constraint is the fact that in realistic
circumstances the access to the scattering (or transmission) matrix is incomplete. We have addressed
all these challenges by providing a statistical description of wave transport which fuses together a free
probability theory approach with a filtered random matrix ensemble. Our theoretical predictions have
been tested successfully against experimental data of light transport in multimode fibers.

Introduction

Random matrix theory (RMT) has been successfully applied over the years in a variety of physics areas ranging
from nuclear and atomic physics to mesoscopic physics of disordered and chaotic systems [ 1-6]. Its applicability
relies on the assumption that in complex systems the underlying wave interference impose universal statistical
rules which govern their transport characteristics. Along these lines of thinking, random matrix models allowed
us to uncover some of the most fundamental properties of disordered/chaotic systems, including the structure
and statistical properties of their eigenstates [7, 8] and eigenvalues [9, 10], the conductance [11-13], the
resonance widths and delay times [14], etc. It turned out that many of the universal features of transport are
directly connected with the various symmetries (time-reversal, chiral, etc) that a specific complex system satisfies
[15]. In all these studies, nevertheless, it was always assumed that the scattering process does not involve any
additional constrains and has both a backward (reflection) and a forward (transmission) component.

Recently, the interest in wave transport has extended to new physical settings with practical relevance,
namely, a class of complex multimode systems where reflection processes are absent [16, 17]. Obviously, the zero
reflectivity condition, imposes new constraints to the wave scattering process, thus constituting the previous
RMT predictions void. These type of transport problems have emerged naturally in the framework of
multimode (or coupled multi-core) fiber optics. In these systems, fiber imperfections (core ellipticity and
eccentricity) and external perturbations (index fluctuations and fiber bending) cause coupling and interference
between propagating signals in different spatial modes and orthogonal polarizations. At the same time, the effect
of mode-dependentloss (MDL) (or gain due to optical amplifiers) in wave propagation is another important
feature whose ramifications are not yet completely understood [16—19]. In the framework of multimode fibers
(MMFs), for example, it leads to fundamental limitations in their performance since extremely high MDL can
reduce the number of propagating modes and thus the information capacity of MMFs. It is, therefore,
imperative to develop statistical theories that take into consideration the modal and polarization mixing and
MDL and provide a quantitative description of light transport in realistic MMFs (and other multimode systems
that demonstrate similar challenges).
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Here, we develop a statistical theory of light transport in MMFs, where both MDL and modal and
polarization mixing are considered. Our theory is accounting for the fact that in experiments, the degree of
modal and polarization control is limited. To this end, we have combined free probability theory and the filtered
random matrix (FRM) ensemble and took into consideration the finite length of the MMFs. Unlike the
telecommunication fibers, which are typically very long, finite length MMFs are common in medical
applications (endoscopy), sensing, local-area networks and data-center interconnects etc. As an example, we
have implemented our theoretical formalism in order to derive two important statistical measures: (a) the
distribution of transmission eigenvalues for polarization maintenance (and/or conversion); and (b) the
absorbance distribution of a monochromatic light propagating in a MMF with MDL and strong mode and
polarization coupling. Our theoretical results have been validated via direct comparison with experimental
measurements using MMFs.

Fiber model

We consider a MMF supporting N propagating linearly polarized (LP) modes, with each LP mode being two-
fold degenerate corresponding to the horizontal (H) and vertical (V) polarizations. We model the fiber of interest
as consisting of a concatenation of K independent and statistically identical segments [16], with the linear
propagation through the MMF described bya 2N x 2N transmission matrix %,

LK) (6
t(K) = HH - "HY = VKA VzAVIAV(), (1)
5 )

where the elements of the N x N'block matrices tX) (t{X)) are the transmission amplitudes into the H (V)

polarization when the incident light is H-polarized. Each segment is modeled via a matrix v, A, where v is a
2N x 2N unitary matrix describing the polarization and mode mixing in the segment, and A = diag(AH, AY)is
adiagonal matrix describing the free propagation and attenuation in the absence of such mixing. We consider
MMFs in the strongly mixed regime where every mode is coupled to every other mode in one segment, with vy
being random unitary matrices drawn from the circular unitary ensemble (CUE) [3]. Hence, one segment
corresponds to one transport mean free path [, of light scattering in fiber mode basis. The number of segments
gives the ratio of the fiber length (L) to the transport mean free path K = L/I,. We assume that the two
polarizations have the same propagation constants and loss, so that A,If ;= Axl = eif§,. The higher-order LP
modes take longer paths and impinge on the core-cladding interface at steeper angles, so they typically
experience more attenuation than the lower-order modes; we model such MDL as Zm(3,) = ns/(2N) with
n = 1,---, N, characterized by the coefficient s (s > 0 for loss). The real parts of 3, describe the mode-dependent
propagation phase shifts and are not important in the context of this paper as they can be absorbed into vy.

In actual experimental circumstances, the preparation and measurement of a waveform in all modes is
technically challenging. In this respect, one needs to analyze portions of the total transmission matrix
t}(,ﬁz p. = Byt Py, where Py, and P, are projections to the controlled incoming and outgoing modal subspace.
Specifically, given an incident wavefront |)) which belongs to the P;,-subspace, the measured transmittance in
the P,,-subspace (summed over the spatial /polarization modes) after propagating through the MMF is
(Y|t };Ii) Pm)Ttl(JOIi: p, ). Itis therefore obvious that the eigenvalues of the matrix (tl(,(i)) p ) tl(%ﬁ), p, dictates the
transport properties of such MMFs. For example, the extremal eigenvalues (and corresponding eigenvectors) are
associated with the maximal and minimal transmittances achieved in such set-ups and can be used in order to
design waveform schemes with extreme transport characteristics. Along these lines of reasoning, of particular
interest is the eigenvalue statistics P{&)(7) associated with the matrix (t&] )/ £K). In this case the preparation
(associated with P;,) and measurement (associated with P, ) subspaces correspond to the set of modes with
horizontal (H) polarization. The maximum eigenvalue 7 (and the associated eigenvector) indicate the optimal
polarization retention that can be achieved when light propagates in the system.

Another interesting statistics is (X (1) associated with the matrix Tyy = (68 6%} + (8 £{K). In this case
P, corresponds to the subspace of horizontally polarized modes while P, is the identity matrix i.e. the whole
modal space including both polarizations. The eigenvalues of Ty provide information about the total
transmissivity summed over the two polarization states at the output, given a H-polarized incident light. The
complementary matrix Ay = 1 — Ty provides information about the amount of absorption during
propagation inside the MMF.

Transmittance eigenvalue distribution of concatenated fiber segments

Our theoretical investigation capitalizes on the multiplicative structure of the transmission matrix. Specifically,
we use free probability theory [20—-22] which predicts the spectral properties of a product of random matrices
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from the spectral properties of its constituents. Based upon the probability distribution P&=D(7) =
P (1) = 1/(s7) associated with the eigenvalues of (+()7t(1) for a single segment, we can construct a recursion
relation from the model definition in equation (1). Statistically every segment is equivalent, so we can write

(KDY KD — vJA(t(K))Tt(K)AVO, )

where the equality is in the statistical sense. Using the free probability theory [21, 22], when N — oo we get from
equation (2)

Sexenyiparn (z) = Spwyi (2) S 2(2), 3)

where S denotes the S transform for an arbitrary Hermitian matrix Q. The S transform is ultimately related to
, . R . . . . .
the Green’s function G (z) = f drie® , where P, (7) is the eigenvalue density of the Hermitian matrix Q. The

zZ—T

intermediate connections are shown as follows:

z+1

SQ(Z) = XQ(Z))
XQ(¢Q(Z)) = ¢Q(XQ(Z)) =z
¢d@:1Q{g—l, @
zZ z

where ¢, (2) is the moment generating function and x,(2) is the corresponding inverse function. The Green’s
function Gq(z) enables us to obtain the normalized eigenvalue density of the Hermitian matrix Q through the
relation

1. .
Po(1) = ——lim Im Go(7 + ie€). 5)
Te—0"
In the case of one section K = 1, we have the eigenvalue density

Py (7) = Pp(r) = —, ©)
ST

where 7 € (e, 1). Correspondingly, we can get from equation (4) the S transform for one section

z+1 e* -1
Sy (2) = Sp(z) = Y (7)
z e%—e

Combining equations (3) and (7) we have

sz K
S(t(K))%t(K) (2) = ( z+1 671) X (8)
e — oS
. . .. (K) _ P(K)()\) (K)
Thus we can use equations (4) and (8) to get the implicit formula for G*) (z) = f d\————= where now P
7z —

is the probability distribution of the eigenvalues of (t®)) t®) = yJ ATy .- Ay A - v Aw,. Specifically, we
get

1 2GE) K es6® _ es)E

z (ZG(K) -1 ) e 1 )7 ©

Typically we resort to numerical method to obtain the eigenvalue density by combing equation (5) and the
implicit formula for the Green’s function equation (9). However, for the first few moments, explicit results can
be easily obtained. For example, using equations (3) and (4) we can get the mean 1% and variance (¢€))? for the
eigenvalue density of (%)) as

c® Y o?
where y1and o are the mean and the variance of the eigenvalue distribution for one section (equation (6)), which
1—e 2 1—e® 1—e*)\2
turn outtobe p = - ,and 0% = — ( - ) .

We further calculate the probability distribution P (1) using equation (5). In figure 1 we show the
theoretical results together with the outcome of simulations. We find that for finite number of concatenated
segments K and finite MDL s = 0, the distribution %) (7) deviates from the standard semicircle expected from
standard RMT considerations, see figures 1(a) and (b). The explicit knowledge of the first two moments allow us
to analyze the scenario of many concatenated fiber segments K — oo with aloss-per-segments — 0, such that
the mean p®) = f PE(r)rdr iskept fixed, i.e. u© = C. We find, using the Bhatia—Davis inequality, that in
this case the variance of the probability distribution P®)(7) goes to zero /X~ — 0. Consequently, the
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Figure 1. Distribution P®)(7) for (a) different s-values and fixed K = 3; (b) different K-values and fixed s = 0.4. In both cases the
number of modesis N = 25.(c) K — 00, s — 0 while ') = 0.71s kept fixed. In this case N = 75.
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Figure 2. Eigenvalue distributions P{)(7) for the polarization-maintaining states in a multimode fiber. (a) Dependence on the loss-
per-segment parameter s for a fixed number of segments K = 3. (b) Dependence on the number of segments K for a fixed s = 0.4.
(c) The long-fiber limit K — oo, s — 0 while keeping the overall loss 11**? = 0.7 fixed. Solid lines are analytic predictions and
histograms are from numerical simulations of the concatenated MMF model with N = 25 modes for (a)—(b) and N = 75 for (c).

eigenvalue distribution P (7) — §(C — 7) becomes a delta function and thus G (z) = ! > see

figure 1(c).

Transmittance distribution of filtered channels
To evaluate the transmission eigenvalue distribution for any portion of the transmission matrix, we use G’ to
derive the Green’s function G l(’f:,)l% . and the eigenvalue distribution Pg,ﬁ ) p,(T) associated with the projected

>

transmission matrix t}(ﬁ p. - Following a FRM formalism [23], we have that

2
n ) d '
G(K)( PoutsPin ] _ 9PuwPin , an

dPout)Pin npout,Pin

where np  p and dp  p, aretwo auxiliary functions related to the filtering process By, P,y and the Green’s

out>4 1
i (K)
function Gp, /p .

For the specific case of GX) and the eigenvalue distribution P(7) of (£5))£K), we have that
1 1 . . . .
AHH = — (ZGI({I;) + Dand dyg = —z (GI({I;) )2. For this derivation one needs to consider that the input and

output fraction of total mode space is half. Combining equations (9), (11), we derive an implicit equation

1 ( Pun ]2[ Pun )K 1( ePun — s )K

- = 5 > (12)

z P — 1) \ Py — 2 exPun — 1
which we can solve to obtain py;;(z) = zG{§{ (z) + 1and G (2). Then, the probability distribution P{(r)
is given by the inverse Stieltjes transform in equation (5). We can derive analytical expressions for P{)(7) for
various s-values and number of concatenated segments K, see figure 2. We find that for increasing loss-per-
segment parameter s, the deviations from a bimodal distribution {>)(7) become progressively stronger, see
figure 2(a). The same is true for the case of increasing number of concatenated segments K while keeping s fixed,
see figure 2(b). In both cases, the most dramatic changes occur at the upper edge of P{&)(7) associated with the

largest transmission eigenvalues. In the same figures, we also plot the histograms from numerical simulations of
the concatenated MMF model with a finite number of modes. The agreement between the theoretical
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predictions and the numerical simulations is perfect. The above analysis also captures the effect of incomplete
modal control, e.g. when only parts of the N spatial modes are modulated or measured.

Using equation (11) and the fact that G (z) =

(see discussion at the end of previous section), we

get GiR(z) = . Consequently we find that P55} (1) — . — reduces to abimodal distribution

1
Jz@z—0) Jr€-n
with confined support 7 € (0, C). In this case the information about the number of concatenation segments K
and the loss-per-segment sis ‘hidden’ in the upper bound of the transmittance support C. In the limiting case of
zerolosses s = 0, it is easy to show, that the eigenvalue distribution Pyy(7) reduces to a bimodal distribution
Peolr) = ——[24].

It is tempting, at this point, to establish an analogy between the s = 0 and s = 0 cases (K — ©0). Inboth
cases there are essentially only two groups of propagating channels—open channels associated with 7-values
closeto 1 or C, and closed channels with 7-values in the neighborhood of zero. One then can understand the
results for K — oo, s — 0 in the following way: when the MMF is long enough (large K') such that complete
mode and polarization mixing happens many times across the fiber, the mixing equalizes the mode dependence
and turns MDL into mode-independent loss with the transmittance of the open channels being renormalized to
C. These analytic predictions are nicely confirmed by numerical simulations of the concatenated MMF model, as
shown in figure 2(c).

We note that because of the strong mode and polarization mixing, this analysis applies equally to P{X)() or
other quarters of the transmission matrix. We stress that the calculation strategy that we have used here is not
bounded by the specific choice of MDL (constant increase) and can be easily generalized to any type of MDL
distribution. Moreover, the same scheme can be utilized for the case of mode-dependent gain.

Using the same approach as above, we can also evaluate the eigenvalue distribution P () of matrix
T = EDTER) + ) 5] and the associated mean and variance. In case of lossless fibers, i.e. s = 0, the total
transmittance is unity. When s = 0 we get a similar relation for G and G® as equation (11) where now

- K
dyg — dy = i(ZGI({K) + 1) GO while nyy = npy. We get % = ( Py )( P )K 1( ) where

s
exPH —es

py—1 Py — 2 exPH — 1
pu2) = zGﬁK )(z) 4+ 1. Thedistribution ’Pg()(r) associated with the eigenvalues of T-matrix is then given via
equation (5) by substituting Go — G{& while the corresponding mean value ugo and variance (04X))2 can be

expressed in terms of the microscopic variables of the concatenated model as ,ug() = u® =

(o o0\ K(o) . L . .
-5 = E(W) =215 . These eigenvalues provide information about the total transmission
I

I

summed over the two polarization states at the output, given a H-polarized incident light. Alternatively, one can
consider the complementary matrix Ay = 1 — Ty whose eigenvalues v = 1 — 7 provide the absorbance
distribution Py ().

Experiments

To confirm our theoretical predictions, we experimentally measured the transmission matrices tip; and tyy for
several realizations of MMFs with strong mode coupling. The polarization-resolved transmission matrix is
characterized with an interferometric setup, see figure 3. A laser beam at wavelength A = 1550 nm is collimated
by alens and then horizontally polarized by a polarizing beam splitter. The beam is split into a reference arm and
afiber arm. The SLM in the fiber arm is imaged to the input facet of the fiber by alens and a microscope
objective. It generates plane waves with different angles to excite different fiber modes. A half-wave plate rotates
the polarization direction of the reference beam. Transmitted light from the distal end of the fiber is recombined
with light from the reference arm at another beam splitter with a tilt angle, forming interference fringes on the
CCD camera. A linear polarizer in front of the camera selects the polarization component to measured. By
rotating the polarizer, we measure the transmitted light of different polarization. The amplitude and phase of the
output field are extracted from the interference fringes. Both i3y and #yyy are of dimension 14 641 x 441
(121 x 121 camera pixelsand 21 x 21 input angles).

The MMF we tested is a graded-index fiber with 50 ysm core diameter and 0.22 numerical aperture. In the
absence ofloss, the fiber supports 55 guided modes for a single polarization. To introduce mode mixing in the

2 mlong bare fiber, we coil the fiber and use clamps to apply stress. The clamps deform the fiber, causing strong
(K)
5
mode mixing and inevitable MDL. Experimentally, we measured an ensemble of #;; = I;II?) . To determine the
WH
number of spatial modes in the fiber, we examine the eigenvalues of the matrix Ty = #ty = wA w', where A,
is a real diagonal matrix with the diagonal entries sorted in decreasing order and w is the unitary matrix with
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Figure 3. (a) Schematic of the experimental setup for measuring transmission matrices of a MMF. SMF: single mode fiber. L: lens.
PBS: polarizing beam splitter. BS: beam splitter. M: mirror. HWP: half-wave plate. P: polarizer. (b) Amplitude of measured
transmission matrix for horizontally polarized input light and both horizontally and vertically polarized output fields in the fiber
mode basis (the top halfis t;15;, and the bottom half is fyyy).
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Figure 4. Experimental results and comparison with theory. (a) Eigenvalues of the measured matrix Tj;, showing the number of spatial
modes tobe N = 52. (b), (c) Measured eigenvalue distributions 73(,5)(@) for the total absorption summed over the two output

. = (K S S . . .
polarizations and 775.”)[(7') for the polarization-maintaining output, both showing comparison to the analytic results and to
simulations.

columns being the eigenvectors of Ty;. As shown in figure 4(a). In the presence of loss, the effective number of
modes is less than 55. The sudden drop of the eigenvalues corresponds to the cut-off of the guided modes in the
fiber [25]. The cut-off of fiber modes is chosen to be at the center of the abrupt drop of the eigenvalues, giving the
effective number of fiber modes N = 52. The corresponding eigenvalue at this cut-off is on the order of the noise
level in the experiment. Numerically, we find a slight variation of this cut-off value has little impact on the
analysis. Let w be the truncation of the matrix w obtained from taking the first N = 52 columns. Subsequently
we project the transmission matrices &7 and t{X) onto the space spanned by .

To normalize the unscaled data of the transmission matrix ty, experimentally we excite the highest

Vvt tgv

Ry
tT = (.48, where
v'v

fi1 = cty is the normalized data for the transmission matrix. It enables us to determine the scaling constant cand
thus properly normalized transmission data 7. Correspondingly we have Ty = # fiy and we can extract from iy
the half truncation matrix 7§} and 7{£;.

To determine the model parameters K and s, we evaluate the mean [LI({K ) and the variance 5 of the

transmission channel v = Ww'e withe, = (1 0 --- 0)’.Experimentally we have

eigenvalue distribution 75%() of the experimental Tj; measured over different realizations of the fiber. A direct
comparison with the theoretical predictions yields K = 1ands = 2.7. The fiber used in the experiment is
relative short, therefore the fiber length is approximately equal to one transport mean free path in mode basis. In
figure 4(b) we plot the experimental distribution P,(cv) (orange-line histogram) together with results of
simulations (blue-dashed histogram) from the concatenated MMF model. In the same figure, we plot the
theoretical expression for the distribution of absorbances using the extracted (K, s) parameters (blue line). The
results agree well.

Finally, we examine the polarization-maintaining eigenvalue distribution 73;11% evaluated from the
experimentally measured transmission matrices, and compare it to the analytic prediction using the extracted
(K, s) parameters (figure 4(c)). We observe excellent quantitative agreement with no fitting, which validates our
model and our analytic framework.
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Conclusion

We have developed a theoretical formalism that utilizes a free probability theory together with a FRM approach
in order to derive theoretical expressions for the probability distribution of transmittances and absorbances in
multimode scattering set-ups where reflection mechanisms are absent (paraxial approximation) and the
information about the transmission matrix is incomplete. The motivation for this study is drawn by the recent
interest to understand light transport in MMFs with MDL and strong mode and polarization mixing. The
resulting probability distributions are different from any known results found for lossy disordered or chaotic
systems [26—29] indicating that the paraxial constraint, and/or the presence of MDLs can dramatically affect
light transport. The validity of our predictions have been tested both with simulations and via direct comparison
with experimental data. We stress that our scheme can take into account any type of MDL (or gain) distribution.
It will be interesting to extend this study to the case of weak mode mixing where the mode mixing matrices v, do
not belong to the CUE.
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