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Abstract
A relativistic and non-Markovian study is carried out on the magnetic-dipole
emission of a hydrogen-like atom of large atomic number Z without perturbation
approximation. The correlation spectra are derived analytically and the
corresponding correlation functions are calculated numerically. The Markovian
approximation is seen to be satisfied with more accuracy as compared with the
case of electric-dipole emission while the relativistic corrections are quite
larger. In transition 2S1/2 to 1S1/2, the relativistic values even become several
times of the non-relativistic values. As a comparison with the magnetic-dipole
emission, the electric-quadrupole emission in the case of the 2D3/2 to 1S1/2

transition is also studied.

1. Introduction

In a previous paper [1], we investigated the possible relativistic and non-Markovian corrections
to the electric-dipole emission. Now we make a similar consideration of the magnetic-dipole
spontaneous emissions.

For quite a long time the interest in magnetic-dipole emission has been limited in
astrophysics [2], where the collision probability between the atoms is so small that the
magnetic-dipole emission may have the chance to take place. Subsequently it also became of
interest for solar physics, in connection with the solar corona observation. Only since 1970
has the development of experimental techniques made it possible to be studied in laboratories
both for hydrogen-like and helium-like atoms, leading to a relatively high interest in their
theoretical investigation.

In a low Z(atomic number) region, the two-photon electric-dipole emission will overwhelm
the magnetic-dipole emission, but for large Z the situation becomes different; magnetic-dipole
emission may turn out to be the dominant mode.
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Usually the magnetic-dipole transitions are divided into two types. In the case where
the non-relativistic atomic radial wavefunctions of the initial and final states are the same,
such as in the process from 2P3/2 to 2P1/2, the corresponding transition is called unhindered
[2]. In contrast, if the non-relativistic initial and final atomic radial functions are orthogonal
to each other, such as in the process from 2S1/2 to 1S1/2, the corresponding transition is
called hindered, since its transition rate will be zero in the non-relativistic theory provided the
atom-size effect is neglected, namely the factor eik·x is taken as 1 within the range of atoms.

The earlier theories just calculate the emission rate, and mainly give the results in the
lowest order of perturbation; some even just give an estimate of the order of magnitude [2–6].
Lin and Feinberg [7] calculated the radiative correction to the lowest order in the process
2S1/2 → 1S1/2 + γ decay in hydrogen-like atoms. Barut and Salamin [8], on the other hand,
derived the rates of spontaneous emission based on the calculation of electron self-energy
formulation; their result for the 2S1/2 → 1S1/2 + γ decay rate is the same as the known lowest
perturbation value.

In [1] we used the multi-pole photon field formulation to study the whole process of
electric-dipole emission without perturbation approximation. Now we still use the same
formulation to study the magnetic-dipole emission process, which says the magnetic emission
corresponds to radiating a photon with a total angular momentum J = 1 and with a parity
P = +1. For comparison, the electric quadrupole emission is also studied which corresponds
to radiating a photon with a total angular momentum J = 2 and with a parity P = +1. The
general multipole photon field formulation has been described in [1], in which the multipole
vector potential AkJMP is expressed by the spherical Bessel function gL(kr) and vector
spherical function YJLM(θ, ϕ). If only the two atomic levels concerned need to be considered,
the interaction Hamiltonian in rotating-wave approximation is given by

Ĥ int = ih̄
∑

kJMP

[
gkJMP σ̂+âkJMP e−i(ω−ω

(R)
0 )t − g∗

kJMP σ̂−â
†
kJMP ei(ω−ω

(R)
0 )t

]
, (1)

where σ̂+ and σ̂− are the atom level upward and downward change operators, ω
(R)
0 is the

relativistic value of 1
h̄
(E2 − E1), ω = kc, gkJMP is the corresponding coupling constant

given by

gkJMP = e

h̄

∫
d3xψ2(x)γψ1(x) · AkJMP (x), (2)

in which ψ2(x) and ψ1(x) are the upper level and lower level atomic wavefunctions,
respectively; they are now Dirac spinors.

The state of our system is expressed by

|t〉 = C2(t)|ψ2; 0〉 +
∑

kJMP

C1,kJMP (t)|ψ1; kJMP 〉 (3)

with |ψ2; 0〉 denoting the state in which the atom is in its upper level and no photon exists,
|ψ1; kJMP 〉 denoting the state in which the atom is in its lower level with one photon in the
mode (kJMP).

After eliminating C1,kJMP (t) from the coupled equation as we did in [1], one easily gets
the integro-differential equation for C2(t) as

d

dt
C2(t) = −

∫ t

0
U(t − t ′)C2(t

′) dt ′. (4)

The function U(t − t ′), the so-called correlation function, is given by

U(t − t ′) =
∫ ∞

0
R(ω) e−i(ω−ω

(R)
0 )(t−t ′) dω (5)
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with

R(ω) =
∑
JMP

R0

cπ
|gkJMP |2, ω = kc, (6)

in which R0 is the radius of the normalized sphere of the photon field. The function R(ω)

is called the correlation spectrum, and can be calculated by the relevant Dirac wavefunctions
and corresponding multipole vector potential of the photon.

Having got U(t − t ′), equation (4) may be solved numerically by a simple recurrence
formula [9],

C2(tn+1) = C2(tn) −
n∑

m=1

U(tm)C2(tn−m)(�t)2. (7)

2. The magnetic-dipole emission in atomic transition 2S1/2 to 1S1/2 and 3D3/2 to 1S1/2

First, let us consider the atomic transition 2S1/2 to 1S1/2, which is also considered in [7, 8].
The only possible one-photon emission is magnetic-dipole emission, as can be seen from the
angular momentum conservation and parity conservation. By these conservation laws, the
quantum number set (J, P ) of the emitted photon should be (1, +1). However, in the non-
relativistic theory, the corresponding magnetic transition moment m21 is zero; even the spin
contribution is taken into account. The reason is that

m21 = − eh̄

mc

∫
ϕ+

2 (x)(L̂ + σ)ϕ1(x) d3x (8)

while both integrals
∫

ϕ+
2 (x)L̂ϕ1(x) d3x and

∫
ϕ+

2 (x)σϕ1(x) d3x are zero. It is evident that
the first integral is equal to zero, because the orbital angular momenta of both initial and
final states are zero. The second integral is also equal to zero by the reason that the radial
wavefunctions of 2S and 1S are orthogonal. Thus, only when the finite size correction (of
higher order of ka) and relativistic correction are taken into account, the one-photon emission
for this transition becomes possible. It is evident that under rotating-wave approximation this
spontaneous emission is just a two-level process, and no other atomic level can be involved in
this process as an intermediate state; hence the formulation of the last section can be applied.

We take, by will, the m′ of the initial state 2S1/2 as 1/2; so its wavefunction is given by

ψ2(x) =




1

r
G2(r)	 1

2 0 1
2
(θ, ϕ)

1

r
F2(r)	 1

2 1 1
2
(θ, ϕ)


 = B ′

0

(
(1 + B ′

1ρ)ρs e−ρ	 1
2 0 1

2

(A′
0 + A′

1ρ)ρs e−ρ	 1
2 1 1

2

)
1

r
, (9)

in which s = √
1 − Z2α2, the same as that in ψ1 described in [1], and

A′
0 = − Zα

1 + s
, A′

1 = −2s − √
2(1 + s)

Zα(1 + 2s)
, B ′

1 = −2Zα +
√

2(1 − s)

Zα(1 + 2s)
,

ρ = Z

aB

√
1
2 (1 − s)

Zα
r, E2 = m0c

2

√
1

2
(1 + s),

|B ′
0|2 =

(
Z

aB

) √
1
2 (1 − s)

Zα

22s+1

�(1 + 2s)

[(
1 + A′2

0

)
+ (B ′

1 + A′
0A

′
1)(1 + 2s)

+
1

2

(
B ′2

1 + A′2
1

) · (1 + s)(1 + 2s)

]−1

.

(10)



2074 C-Q Cao et al

The final atomic wavefunction ψ1(x) is the same as in [1]. ω(R)
o is also the same as that of the

2P1/2 to 1S1/2 transition, namely ω
(R)
0 = m0c

2

h̄

(√
1
2 (1 + s) − s

)
.

The third components of angular momenta of photon and final-state atom (M,m) now have
two possible combinations:

(
0, 1

2

)
and

(
1,− 1

2

)
. The corresponding two coupling constants

gkJMP are given by

gk10(+1) = 2e

√
πω

h̄R0

∫
ψ2(x)γψ1(x) · g1(kr)Y110(θ, ϕ) d3x, (11a)

gk11(+1) = 2e

√
πω

h̄R0

∫
ψ2(x)γψ1(x) · g1(kr)Y111(θ, ϕ) d3x. (11b)

As described above, the quantum number m of ψ1 is taken as 1/2 in equation (11a), and taken
as (−1/2) in equation (11b).

After carrying out the integration over spatial coordinates, we get the corresponding
spectrum of correlation function as

R(ω) = R0

cπ
(|gk10(+1)|2 + |gk11(+1)|2) = |B0B

′
0|2α

5 + 2
√

2

3

π

ω
|S1(ω) + S ′

1(ω)|2 (12a)

in which

|B0|2 = Z

aB

22s 1 + s

�(1 + 2s)
, (12b)

|B ′
0|2 is given by equation (10) and

S1(ω) = 1

2k

(
Za

aB

)s (
1 − Za

aB

)s {
A′

0

ika

�(2s − 1)

(1 − ika)2s−1

+

[
A′

1

ika

(
1 − Za

aB

)
− A′

0

]
�(2s)

(1 − ika)2s
− A′

1

(
1 − Za

aB

)
�(2s + 1)

(1 − ika)2s+1
+ c.c.

}
,

(13a)

S ′
1(ω) = − 1

2k

Zα

1 + s

(
Za

aB

)s (
1 − Za

aB

)s {
1

ika

�(2s − 1)

(1 − ika)2s−1

+

[
B ′

1

ika

(
1 − Za

aB

)
− 1

]
�(2s)

(1 − ika)2s
− B ′

1

(
1 − Za

aB

)
�(2s + 1)

(1 − ika)2s+1
+ c.c.

}
,

(13b)

with

a = aB/Z

1 +
√

(1−s)/2
Zα

, (14)

and aB denotes Bohr’s radius.
We note in passing that S1(ω) and S ′

1(ω) come from the integrals∫ ∞

0
g1(kr)G1(r)F2(r) dr

and ∫ ∞

0
g1(kr)F1(r)G2(r) dr,

respectively.
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If we just keep the leading order term in Zα, we will get the corresponding non-relativistic
correlation spectrum:

R(ω) = 29

37
(5 + 2

√
2)Z2α3 ω

π

(
ω2a2

c2

)3

(
1 + ω2a2

c2

)6 , (15)

in which a is reduced to

a = 2aB

3Z
. (16)

We see that in equation (15) the leading term of the last factor is proportional to
(

ωa
c

)6
,

contrasting with the electric-dipole result: ∼ (
ωa
c

)0
(cf equation (42a) of [1]). The reason is

that the magnetic-dipole moment has an extra factor v
c

∼ ω0a

c
as compared with the electric-

dipole moment, and R(ω0) is proportional to the square of the relevant moment (hence in the
unhindered case the leading term will be

(
ω0a

c

)2
). Now in the transition 2S1/2 to 1S1/2 the

magnetic-dipole moment is zero, which is reflected in the above relativistic calculation that
the leading terms from S1(ω) and S ′

1(ω) cancel each other. The next terms in non-relativistic

S1(ω) and S ′
1(ω) are proportional to

(
ωa
c

)3
. Since R(ω)/ω ∝ |S1(ω) + S ′

1(ω)|2, an additional

factor
(

ωa
c

)6
will appear in the leading term of R(ω) as compared with electric-dipole results.

In sum, the R(ω) of equation (15) has taken into account the finite size effect of magnetic-
dipole, and in equation (12) further correction of relativistic effect is included.

Next we consider the single photon transition from 3D3/2 to 1S1/2. In this case both
photons with (J = 1, P = +1) and (J = 2, P = 1) may be emitted. The former corresponds
to magnetic-dipole emission similarly as in the above discussion; the latter corresponds to
electric-quadrupole emission which will be discussed in the next section for comparison.

The magnetic-dipole transition is also a hindered one with zero non-relativistic magnetic
moment, as can be seen from the factor δl1l2 in the following formula:∫

	∗
j2l2m2

(L̂ + σ)	j1l1m1 d	 = δl1l2(−1)m1−m2 n(m1−m2)

×
1/2∑

s=−1/2

C
j1,m1

l1,m1−s; 1
2 ,s

(√
l1(l1 + 1)C

j2,m2

l1,m2−s; 1
2 ,s

C
l1,m2−s
l1,m1−s;1,m2−m1

+
√

3C
j2,m2

l1,m1−s; 1
2 ,m2−m1+s

C
1
2 ,m2−m1+s
1
2 ,s;1,m2−m1

)
. (17)

This situation will make the electric-quadrupole emission dominate in the 3D3/2 to 1S1/2

transition, as shown in section 3.
In the relativistic theory, we take, by will, m′ = 3/2 for the initial state 3D3/2; so the

initial wavefunction is

ψ2(x) =




1

r
G2(r)	 3

2 2 3
2
(θ, ϕ)

1

r
F2(r)	 3

2 1 3
2
(θ, ϕ)


 = B ′

0

(
(1 + B ′

1ρ)ρs2 e−ρ	 3
2 2 3

2

−(A′
0 + A′

1ρ)ρs2 e−ρ	 3
2 1 3

2

)
, (18a)

with

s2 =
√

4 − Z2α2, ρ = 1√
5 + 2s2

Z

aB
r, (18b)

A′
0 = Zα

2 − s2
, (18c)
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A′
1 = − 2Zα(9 + 2s2 − 4

√
5 + 2s2)

(1 + 2s2)
(
14 − 2s2

2 − 3s2 + 3(s2 − 2)
√

5 + 2s2
) , (18d)

B ′
1 = − 2

1 + 2s2

2 − √
5 + 2s2

3 − √
5 + 2s2

, E2 = m0c
2 1 + s2√

5 + 2s2
(18e)

and

|B ′
0|2 =

(
Z

aB

)
1√

5 + 2s2

21+2s2

�(1 + 2s2)

× 1[(
1 + A′2

0

)
+ (B ′

1 + A′
0A

′
1)(1 + 2s2) + 1

2

(
B ′2

1 + A′2
1

) · (1 + s2)(1 + 2s2)
] . (18f )

The emission frequency of this transition is

ω
(R)
0 = m0c

2

h̄

(
1 + s2√
5 + 2s2

− s1

)
, (19)

where s1 = s. In the magnetic-dipole emission the only allowed value of the third components
of angular momenta for photon and for final atomic state, namely (M,m), is just (1, 1/2);
hence only one coupling constant need be calculated:

gk11(+1) = 2e

√
πω

h̄R0

∫
ψ2(x)γψ1(x) · g1(kr)Y111(θ, ϕ) d3x (20)

in which the value m for ψ1 takes 1/2.
After carrying out the integration over spatial coordinates, we get the relevant correlation

spectrum in the two-level approximation as

R(ω) = R0

cπ
|gk11(+1)|2 = |B0B

′
0|2α

ω

2π
|S1(ω) + S ′

1(ω)|2. (21)

|B0|2 is still given by equation (12b). As before, S1(ω) and S ′
1(ω) come from the radial

integrals ∫ ∞

0
g1(kr)G1(r)F2(r) dr

and ∫ ∞

0
g1(kr)F1(r)G2(r) dr

respectively, and are given by

S1(ω) = 1

2k

[
1 +

1√
5 + 2s2

]−s1 [
1 +

√
5 + 2s2

]−s2

{
A′

0

ika

�(s1 + s2 − 1)

(1 − ika)s1+s2+1
+

A′
1

ika

1

1 +
√

5 + 2s2

× �(s1 + s2)

(1 − ika)s1+s2
− A′

0
�(s1 + s2)

(1 − ika)s1+s2
− A′

1

1 +
√

5 + 2s2

�(s1 + s2 + 1)

(1 − ika)s1+s2+1
+ c.c.

}
,

(22a)

S ′
1(ω) = − 1

2k

Zα

1 + s1

[
1 +

1√
5 + 2s2

]−s1 [
1 +

√
5 + 2s2

]−s2

{
1

ika

�(s1 + s2 − 1)

(1 − ika)s1+s2−1
+

1

ika

× B ′
1

1 +
√

5 + 2s2

�(s1 + s2)

(1 − ika)s1+s2
− �(s1 + s2)

(1 − ika)s1+s2

− B ′
1

1 +
√

5 + 2s2

�(s1 + s2 + 1)

(1 − ika)s1+s2+1
+ c.c.

}
, (22b)
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Figure 1. The relativistic correlation spectra of magnetic-dipole emission for atomic transition
2S1/2 to 1S1/2. I: Z = 92; II: Z = 50; dashed lines—the corresponding non-relativistic results.
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Figure 2. The relativistic correlation spectra of magnetic-dipole emission for atomic transition
3D3/2 to 1S1/2. I: Z = 92; II: Z = 50; dashed lines—the corresponding non-relativistic results.

in which case

a = aB/Z

1 + 1√
5+2s2

. (23)

Similarly, we may just keep the term of leading order in Zα to get the corresponding
non-relativistic spectrum, the result is

R(ω) = 3

320
Z2α3 ω

π

(
ω2a2

c2

)3

[
1 + ω2a2

c2

]8 . (24)

In this case, the leading term in S1(ω) also cancels with that in S ′
1(ω), hence this non-relativistic

R(ω) has the same form of leading term as that in equation (15), but the numerical coefficient
in equation (24) is much smaller.

Now the value of a is reduced to its non-relativistic value

a = 3aB

4Z
. (25)

We plot in figure 1 and figure 2 the correlation spectrum of magnetic-dipole emission in
atomic transition 2S1/2 to 1S1/2 and 3D3/2 to 1S1/2 respectively.
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Figure 3. The small peak of relativistic correlation spectra of magnetic-dipole emission in a low
frequency region for the transition 2S1/2 to 1S1/2. I: Z = 92; II: Z = 50; dashed lines are the
corresponding non-relativistic R(ω).

The abscissa is taken as ω/ω0, where the ω0’s denote the corresponding non-relativistic
value. For 2S1/2 to 1S1/2, ω0 is given by

ω0 = 3

8
Z2α

c

aB
, (26a)

and for 3D3/2 to 1S1/2

ω0 = 4

9
Z2α

c

aB
. (26b)

It is seen that, in the transition 2S1/2 to 1S1/2, R(ω) spread over a range somewhat larger than
the range of those of electric-dipole emission. In the transition 3D3/2 to 1S1/2, the range is
smaller than that of 2S1/2 to 1S1/2 for the same Z.

We note that beyond the main peak of relativistic R(ω), there is a very small peak in the
low frequency region which is invisible in figures 1 and 2. We plot it separately in figures 3
and 4. These small peaks are very important, since the key values ω = ω

(R)
0 are located in

these small peaks. The numerical values of ω
(R)
0 calculated up to three significant digits are

given by

ω
(R)
0 =

{
1.13ω0, for Z = 92,

1.03ω0, for Z = 50
(27a)

for transition 2S1/2 to 1S1/2, and

ω
(R)
0 =

{
1.16ω0, for Z = 92,

1.04ω0, for Z = 50
(27b)

for transition 3D3/2 to 1S1/2.

These small peaks do not appear in the non-relativistic spectrum (see the doted line of
figure 3 and 4), hence their appearance is a characteristic of relativistic theory.

We also define the correspondent decay coefficient γ for magnetic-dipole emission by

γ = 2πR
(
ω

(R)
0

)
. (28)
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Figure 4. The small peak of relativistic correlation spectra of magnetic-dipole emission in a low
frequency region for the transition 3D3/2 to 1S1/2. I: Z = 92; II: Z = 50; dashed lines are the
corresponding non-relativistic R(ω).

For transition 2S1/2 to 1S1/2, calculated up to three significant digits

γ =
{

5.66 × 10−3γA, for Z = 92,

9.43 × 10−5γA, for Z = 50.
(29a)

γA is the Einstein A coefficient, characterizing the order of magnitude of the decay rate of
electric-dipole emission. Equation (29a) may be compared with the non-relativistic values
calculated by equation (15) for ω = ω0:

γ =
{

6.69 × 10−4γA, for Z = 92,

1.94 × 10−5γA, for Z = 50.
(29b)

We see that the relativistic values are about 8.4 times and 4.9 times of non-relativistic values.
The differences are quite large.

For transition 3D3/2 to 1S1/2, the relativistic results calculated by equation (28) are

γ =
{

7.54 × 10−6γA, for Z = 92,

1.78 × 10−7γA, for Z = 50,
(30a)

while the corresponding non-relativistic values calculated by use of equation (24) (with
ω = ω0) are given by

γ =
{

1.81 × 10−5γA, for Z = 92,

6.14 × 10−7γA, for Z = 50.
(30b)

We see that, in this case, the relativistic values are quite smaller than non-relativistic values,
contrary to the case 2S1/2 to 1S1/2, in which the relativistic values are much larger. So one
cannot generally say that magnetic-dipole emission is mainly caused by relativistic effect.

Having the correlation spectrum, the correspondent correlation function can be calculated
by the numerical method as described by equation (7). The absolute value of U(τ)/U(0) are
shown in figure 5 for both transitions with Z = 50 and Z = 92.

The widths τW at half the height of |U(τ)|/U(0) for Z = 92 and 50 in the transition of
2S1/2 to 1S1/2 are given by τW = 0.187/ω0 and τW = 0.149/ω0, respectively, while in the
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Figure 5. The relativistic correlation function U(τ) of magnetic dipole emission: the absolute
value. (a) For transition 2S1/2 to 1S1/2, Z = 50, U(0) = 1.98 × 10−3ω2

0 for the relativistic
case and U(0) = 1.70 × 10−3ω2

0 for the non-relativistic case. (b) For transition 2S1/2 to
1S1/2, Z = 92, U(0) = 3.19 × 10−3ω2

0 for the relativistic case and U(0) = 1.70 × 10−3ω2
0

for the non-relativistic case. (c) For transition 3D3/2 to 1S1/2, Z = 50, U(0) = 6.60 × 10−7ω2
0

for the relativistic case and U(0) = 7.00 × 10−7ω2
0 for the non-relativistic case. (d) For transition

3D3/2 to 1S1/2, Z = 92, U(0) = 5.34×10−7ω2
0 for the relativistic case and U(0) = 7.00×10−7ω2

0
for the non-relativistic case.

transition 3D3/2 to 1S1/2, the relevant values are τW = 0.607/ω0 and τW = 0.381/ω0. We see
the values of τW for 2S1/2 to 1S1/2 transition are much smaller than 1/ω0.

Figure 6 presents the correspondent arguments of U(τ) versus τ . They show a similar
behaviour as those of electric-dipole emission, but they drop much deeper in the peaked region
of |U(τ)|, which will reduce the magnitude of γ considerably.

We have noted that the small peak of R(ω) shown in figures 3 and 4 is important for the
decay behaviour, since the crucial point ω = ω

(R)
0 is located in this small peak. As to the

large peak at higher frequency, it may greatly affect the shape of correlation function. If we
just retain the small peak by removing the large peak, the curve of |U(τ)| will extend to a
quite larger region than that in figure 5, as shown in figure 7. These results are according to
expectation, since the small peak has a much narrower �ω, so its Fourier transformation will
have a much wider extension �τ.

Now turn to the decay behaviour of the upper level population N2. We have seen that
the correlation interval τc in the above discussed magnetic-dipole emissions are comparable
with or smaller than those in the electric-dipole emissions, and (1/γ ), which characterize the
decay times, are much longer than 1/γA (see equations (29) and (30)); hence the Markovian
approximation of C2(t) must be valid with more accuracy, resulting

N2(t) ∼= e−γ t (31)

with γ given by equation (28). This result shows that the decay coefficient γ actually represents
the decay rate.
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Figure 6. The relativistic correlation function U(τ) magnetic-dipole emission: θU (the argument
of U). (a) For transition 2S1/2 to 1S1/2, Z = 50. (b) For transition 2S1/2 to 1S1/2, Z = 92. (c) For
transition 3D3/2 to 1S1/2, Z = 50. (d) For transition 3D3/2 to 1S1/2, Z = 92.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

III

Figure 7. The absolute value of relativistic correlation function U(τ) of magnetic-dipole emission
if only the small peak in the low frequency region is retained. I: for transition 3D3/2 to 1S1/2, Z =
92, U(0) = 1.26 × 10−9ω2

0; II: for transition 2S1/2 to 1S1/2, Z = 92, U(0) = 1.39 × 10−6ω2
0.

We note in passing that despite the fact that correlation function changes a lot when the
large peak of spectrum is removed and hence the correlation interval τc is increased by several
times, the decay of N2 calculated by this modified correlation function is still almost the same
as the original. The reason is that in the present case γ is extremely small, leading to the
ratio of modified τc to 1/γ still much smaller than those for electric-dipole emission discussed
in [1].

3. The electric-quadrupole emission in atomic transition 3D3/2 to 1S1/2

As a comparison we finally consider the main emission way in the transition of a hydrogen-like
atom from 3D3/2 to 1S1/2—the electric-quadrupole emission.
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The allowed values of (M,m), the third components of the total angular momentum of
the photon and final state atom, are

(
1, 1

2

)
and

(
2,− 1

2

)
. The corresponding coupling constants

are given by

gk2M(+1) = 2e

√
2πω

5h̄R0

∫
ψ2(x)γψ1(x)

[√
3

2
g1(kr)Y21M(θ, ϕ) − g3(kr)Y23M(θ, ϕ)

]
d3x,

(32)

in which M takes the values 1 and 2, and the corresponding m for ψ1(x) should take 1/2 and
−1/2 respectively.

After carrying out the integration over space coordinates, we finally get the correlation
spectrum for electric-quadrupole emission as

R(ω) = R0

cπ
(|gk21(+1)|2 + |gk22(+1)|2)

= |B0B
′
0|2

3α

25

ω

2π
|5S1(ω) + S ′

1(ω) − 4S ′
3(ω)|2, (33)

in which S1(ω) and S ′
1(ω) are the same as those given by equations (22), while S ′

3(ω) comes
from the integral

∫
g3(kr)F1(r)G2(r) dr , with the expression

S ′
3(ω) = 1

2k

Zα

1 + s1

[
1 +

1√
5 + 2s2

]−s1 [
1 +

√
5 + 2s2

]−s2

{
15i

k3a3

�(s1 + s2 − 3)

(1 − ika)s1+s2−3

+
15

k2a2

(
1 +

i

ka

B ′
1

1 +
√

5 + 2s2

)
�(s1 + s2 − 2)

(1 − ika)s1+s2−2
− 3

ka

(
2i − 5

ka

B ′
1

1 +
√

5 + 2s2

)

× �(s1 + s2 − 1)

(1 − ika)s1+s2−1
−

(
1 +

6i

ka

B ′
1

1 +
√

5 + 2s2

)
�(s1 + s2)

(1 − ika)s1+s2

+
B ′

1

1 +
√

5 + 2s2

�(s1 + s2 + 1)

(1 − ika)s1+s2+1
+ c.c.

}
, (34)

in which a is still given by equation (23).
If we just keep the term of leading order in Zα, the result will transit to the non-relativistic

case. By this way we get the non-relativistic correlation spectrum for electric-quadrupole
emission in the atomic 3D3/2 to 1S1/2 transition as

R(ω) = 9

5

(
1

16

)2

Z2α3 ω

2π

(
ωa
c

)2(
1 + 3

(
ωa
c

)2)2

[
1 +

(
ωa
c

)2]8 (35)

where a is reduced to that given by equation (25).
We see that the leading term of non-relativistic R(ω)/α3ω is proportional to

(
ωa
c

)2

compared with
(

ωa
c

)0
in the electric-dipole emission. This difference reflects the fact that

quadrupole moment has an additional space dimension factor a as compared with dipole
moment.

On the other hand, this leading term is much larger than the leading term
(

ωa
c

)6
in the

non-relativistic magnetic-dipole emission of the same atomic transition, which will lead to the
dominance of electric-quadrupole emission over the corresponding magnetic-dipole emission.

The correlation spectra of electric-quadrupole emission are plotted in figure 8, the abscissa
being still taken as ω/ω0 with ω0 given by equation (26). The range of spread of R(ω) is
somewhat smaller than that of electric-dipole emission.

The relevant correlation function is shown in figure 9. The widths τW of |U(τ)|/U(0)

are 0.481/ω0 for Z = 50, and 0.631/ω0 for Z = 92, both of order 1/ω0. The curves of
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Figure 8. The relativistic correlation spectra R(ω) of electric-quadrupole emission for transition
3D3/2 to 1S1/2. I: Z = 92; II: Z = 50; dashed lines are the corresponding non-relativistic R(ω).
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Figure 9. The relativistic correlation function U(τ) of electric-quadrupole emission for transition
3D3/2 to 1S1/2: the absolute value. I: Z = 92, U(0) = 1.08 × 10−5ω2

0; II: Z = 50, U(0) =
1.08 × 10−5ω2
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Figure 10. The relativistic correlation function U(τ) of electric-quadrupole emission for transition
3D3/2 to 1S1/2: θU (the argument of U). I: Z = 92; II: Z = 50.

θU (τ), the argument of U(τ ) versus τ are plotted in figure 10. We see θU (τ) first drop
down, but not so deep as those in figure 6, then rise up linearly when ω0τ is larger than 2.5
and 4.0.
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In the present investigation, the values of γ are given by

γ = 2πR
(
ω

(R)
0

) =
{

2.27 × 10−3γA, for Z = 50
6.70 × 10−3γA, for Z = 92

(36)

calculated up to three significant digits, where ω
(R)
0 is given by equation (27b). We see that

these γ are much larger than those of corresponding magnetic-dipole emission.
As a comparison, we list the non-relativistic γ calculated by equation (35):

γ =
{

1.15 × 10−3γA, for Z = 50,

3.59 × 10−3γA, for Z = 92.
(37)

The difference between equations (36) and (37) gives the relativistic correction of decay
coefficients. Their values are about 49% for Z = 50 and 46% for Z = 92 with positive sign.

In the present case the ratio γ /ω0, which roughly measures the ratio of correlation
internal τc to the decay time 1/γ , is much smaller than the corresponding value for electric-
dipole emission, indicating the Markovian approximation should be a good approximation.
A numerical calculation confirms this assertion. Hence equation (31) holds with γ given by
equation (36).

4. Brief summary

The multi-pole em field formulation is used to study the relativistic correction and non-
Markovian correction of magnetic-dipole and electric-quadrupole emissions as we did in [1]
for electric-dipole emission. In this formulation, the magnetic-dipole emission corresponds
to the emission of a photon with J = 1 and P = +1, and the electric-quadrupole emission
corresponds to the emission of a photon with J = 2 and P = +1. The electron spin current
contribution is now fully included, even in the electric-quadrupole emission case.

The relativistic correlation spectra R(ω) are first analytically derived, then the
corresponding correlation functions U(τ) are numerically calculated. The absolute value
of U(τ) has a width smaller than 1

/
ω

(R)
0 , especially in the transition of 2S1/2 to 1S1/2. Outside

the peaked region U(τ) also oscillates with the frequency ω
(R)
0 . The general feature is similar

to the case of electric-dipole emission.
The Markovian approximation is well satisfied over the main period of decay up to an

atom of Z = 92, with the decay rate γ defined by the relativistic correlation spectrum R(ω)

as

γ = 2πR
(
ω

(R)
0

)
.

But the relativistic corrections to the decay rates are quite large. For 2S1/2 → 1S1/2

magnetic-dipole emission and 3D1/2 → 1S1/2 electric-quadrupole emission, the relativistic
corrections are positive, while for 3D3/2 → 1S1/2 magnetic-dipole emission the relativistic
correction on the contrary, is negative.

In our studied cases 2S1/2 to 1S1/2 and 3D3/2 to 1S1/2, the magnetic-dipole emission
rates are very small. This situation reflects the fact that in the non-relativistic theory the
correspondent magnetic-dipole moments are zero, namely the magnetic-dipole emission is
hindered. A new feature in the relativistic correlation spectra of the investigated magnetic-
dipole emission is the appearance of a small peak around ω

(R)
0 , which makes the relativistic

decay rate much different from the classical value.
The electric-quadrupole emission is dominant in the atomic transition 3D3/2 to 1S1/2, as

can be understood by the nonzero of non-relativistic electric-quadrupole moment. As to the
relativistic correction, in this emission it is much larger than that for electric-dipole emission.
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Lastly, the condition for the validity of Markovian approximation holds much better in these
two kinds of emissions than in electric-dipole emission, since the corresponding γ are much
smaller than that of electric-dipole emission while the correlation time τc’s are still of order
1
/
ω

(R)
0 (or smaller).
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