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Abstract
The random laser represents a non-conventional laser whose feedback is
mediated by random fluctuation of the dielectric constant in space. Depending
on whether the feedback is intensity or field feedback, random lasers are
classified into two categories: a random laser with incoherent and non-resonant
feedback, and a random laser with coherent and resonant feedback. This paper
reviews some of the latest developments in the latter, including experiments and
theories on the ‘classical’ and ‘quantum’ type of random lasers with coherent
feedback, the photon localization lasers. The quantum theories of random
lasers are briefly introduced, followed by a discussion of the recent studies on
the interplay between light localization and coherent amplification.

PACS number: 42.55.Zz

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. ‘LASER’ versus ‘LOSER’

A photon, unlike an electron, can stimulate an excited atom to emit a second photon into
the same electromagnetic mode. This stimulated emission process is the foundation for
light amplification and oscillation (i.e. self-generation). The initials of LASER refer to
light amplification by stimulated emission. Nowadays, laser often means light oscillation
by stimulated emission, which literally should be called ‘LOSER’ instead of ‘LASER’. To
distinguish the above two devices, the former is called a laser amplifier, the latter a laser
oscillator (Siegman 1986).

In a laser amplifier, input light is amplified when the net gain coefficient geff = ga −
αr > 0, where ga and αr represent gain and absorption coefficients, respectively. In the absence
of input light, photons spontaneously emitted by excited atoms are amplified instead, giving
amplified spontaneous emission (ASE).
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Laser oscillation occurs when the photon generation rate exceeds the photon loss rate
in a system, i.e., geff � γesp, where γesp is the photon escape coefficient. For example, in
a Fabry-Perot cavity γesp = (1/2dm) ln(R1R2), where R1 and R2 are the reflectivities of the
two mirrors and dm is the distance between them. If gain saturation were absent, the photon
number in a laser oscillator would grow to infinity in time. In other words, the rate equation
for photon number would acquire an unstable solution above the oscillation threshold. In
reality, gain saturation reduces geff to γesp so that the photon generation rate is balanced by the
photon loss rate and the number of photons in the oscillator reaches a finite steady-state value.

1.2. Random laser

For a long time, optical scattering was considered detrimental to laser because such scattering
removes photons from the lasing modes of a conventional laser cavity. However, in a disordered
medium with gain, light scattering plays a positive role in both laser amplification and laser
oscillation. Multiple scattering increases the path length or dwell time of light in an active
medium, thus enhancing laser amplification. In addition, recurrent light scattering could
provide coherent feedback for laser oscillation.

Since the pioneering work of Letokhov and co-workers (Ambartsumyan et al 1970), lasing
in disordered media has been the subject of intense theoretical and experimental studies. It
represents the process of light amplification by stimulated emission with feedback mediated by
random fluctuation of the dielectric constant in space. There are two kinds of feedback: one is
intensity or energy feedback, the other is field or amplitude feedback (Cao et al 2001). The field
feedback is phase sensitive (i.e. coherent), and therefore frequency dependent (i.e. resonant).
The intensity feedback is phase insensitive (i.e. incoherent) and frequency independent (i.e.
non-resonant). Based on the feedback mechanisms, random lasers are classified into two
categories: (i) random laser with incoherent and non-resonant feedback; (ii) random laser
with coherent and resonant feedback (Cao et al 2000a, 2003b). This paper summarizes the
latest developments in (ii). A brief review on (i) can be found in, e.g., Cao (2003).

Random lasers have been realized mostly in disordered dielectric media of finite size.
They differ from the chaotic cavity lasers which have been a focus of many theoretical
studies (Beenakker 1999, Tureci et al 2005). In the latter, the cavity is nearly closed with
metallic boundary. Its dimension is much larger than the wavelength λ of radiation. There
are a few openings at the boundary but their size is smaller than λ. Owing to the irregular
shape of the boundary and/or scatterers placed at random positions inside the cavity, the
intra-cavity ray dynamics is chaotic. The small leakage rate allows light to ergodically
explore the entire cavity volume. In contrast, the random lasers considered in this paper
have completely open boundaries, and light can escape from the dielectric random media
via any point on the boundaries. Hence, they are open systems with strong coupling to the
environment.

1.3. Characteristic length scales for a random laser

1.3.1. Correlation radius Rc. In a disordered dielectric medium, the dielectric constant ε(r)
fluctuates randomly in space. The spatial variation of ε(r) can be characterized statistically by
the correlator K(�r) ≡ 〈ε(r)ε(r + �r)〉, where 〈· · ·〉 represents ensemble average. When the
random medium is isotropic, the width of K(�r) is called the correlation radius Rc. It reflects
the length scale of spatial fluctuation of dielectric constant. If Rc � λ, light is deflected by
long-range disorder. When Rc is comparable to or less than λ, light is scattered by short-range
disorder.
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1.3.2. Scattering mean free path ls and transport mean free path lt. The relevant length scales
that describe light scattering process are the scattering mean free path ls and the transport mean
free path lt. The scattering mean free path ls is defined as the average distance that light travels
between two consecutive scattering events. The transport mean free path lt is defined as the
average distance a wave travels before its direction of propagation is randomized. These two
length scales are related by

lt = ls

1 − 〈cos θ〉 . (1)

where 〈cos θ〉 is the average cosine of the scattering angle, which can be found from the
differential scattering cross section. Rayleigh scattering is an example of 〈cos θ〉 = 0 or
lt = ls, while Mie scattering may have 〈cos θ〉 ≈ 0.5 or lt ≈ 2ls.

1.3.3. Gain length lg and amplification length lamp. Light amplification by stimulated
emission in a random medium is described by the gain length lg and the amplification length
lamp. The gain length lg is defined as the path length over which light intensity is amplified by
a factor e. The amplification length lamp is defined as the (rms) average distance between the
beginning and ending points for paths of length lg. In a homogeneous medium, light travels
in a straight line, thus lamp = lg. In the diffusive sample, lamp = √

Dτamp, where D is the
diffusion coefficient, τamp = lg/v, v is the speed of light. In a three-dimensional (3D) system,
D = vlt/3, thus

lamp =
√

ltlg

3
. (2)

The gain length lg is the analogue of the inelastic length li defined as the travel length over
which light intensity is reduced to 1/e by absorption. Hence, the amplification length lamp is
analogous to the absorption length labs = √

ltli/3.

1.3.4. Dimensionality d and size L. Light transport in a random medium depends on its
dimensionality d and size L. For a random medium of d > 1, L refers to its smallest dimension.
The average trapping time of photons in a diffusive random medium is τd = L2/D. In an
active random medium, the gain volume may be smaller than the volume of the entire random
medium, e.g., when only part of the disordered medium is pumped. The gain volume is
characterized by its dimension Lg, and Lg � L.

1.4. Light localization

There are three regimes for light transport in a 3D random medium: (i) ballistic regime, L ∼ lt;
(ii) diffusive regime, L � lt � λ; (iii) localization regime, klt � 1 (k is the wave vector in
the random medium) (John 1991).

Light localization can also be understood in the mode picture. Quasimodes, also called
quasi-states, are the eigenmodes of the Maxwell equations in a passive random medium. Due
to the finite size of a dielectric medium and its open boundary, the frequency of a quasimode
is a complex number: � = ωr + iγ . γ is the decay rate of a quasimode as a result of its
coupling to the environment. It also represents the linewidth of the quasimode in frequency.
The Thouless number δ is defined as the ratio of average linewidth δν = 〈γ 〉 to average
frequency spacing dν of quasimodes, δ ≡ δν/dν. In the delocalization regime, quasimodes
overlap in frequency, δ > 1. In the localization regime, quasimodes do not overlap, δ < 1.
The localization threshold is set at δ = 1, that is the Thouless criterion. Thus, the localization
transition corresponds to a transition from overlapping modes to non-overlapping modes.
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The openness of a random laser, namely, its coupling to the environment, can be
characterized by δ. Note that the value of δ is obtained in the absence of gain or absorption
so that it describes solely light leakage from the random system. Typical chaotic cavity lasers
and photon localization lasers have non-overlapping modes, δ < 1, whereas in the diffusive
random lasers most quasimodes overlap, δ > 1.

1.5. ‘Classical’ versus ‘quantum’ random lasers

Random lasers with coherent feedback can operate either in the classical optics regime or in the
wave optics regime (Polson et al 2002). In the former Rc � λ, whereas in the latter Rc ∼ λ.
They have analogues in chaotic cavity lasers whose cavity shape is irregular. In the classical
regime, the spatial variation of chaotic cavity shape is much larger than the wavelength of
radiation, whereas in the quantum/wave regime the spatial variation is comparable to or
smaller than the wavelength.

In a random medium, when the dielectric constant varies over length scale much larger than
λ, geometrical optics can be applied to describe light propagation in terms of ray trajectories.
The majority of the ray trajectories are chaotic and open, yet unstable periodic orbits exist
when the sample size is large enough. In an open system, unstable periodic orbits might trap
light for a longer time than chaotic trajectories. Thus, lower optical gain is needed to realize
lasing oscillation in certain ‘scar’ modes that concentrate on some unstable periodic orbits.

When the dielectric constant fluctuates over length scales comparable to or even smaller
than λ, ray optics no longer holds. It is replaced by wave optics that not only describes
light scattering by short-range disorder but also takes into account interference of scattered
waves. The interference effect is crucial to light localization in a random medium, which
is analogous to the (quantum) Anderson localization of electron in a short-range potential.
Even when lt > λ, light may still be trapped partially in a random medium via the process of
multiple scattering and wave interference. The incomplete confinement can be compensated
by photon amplification when optical gain is introduced to a random medium, leading to lasing
oscillation.

2. Classical random laser with coherent feedback

The classical type of random lasers with coherent feedback were first demonstrated by Vardeny
and co-workers in weakly disordered media such as π -conjugated polymer films (Frolov et al
1999a, Polson et al 2001b), organic dye-doped gel films (Frolov et al 1999b), synthetic opals
infiltrated with π -conjugated polymers and dyes (Frolov et al 1999b, Yoshino et al 1999,
Polson et al 2001a). The long-range fluctuations of refractive index in their polymer films are
most likely caused by inhomogeneity of the film thickness. Since light is confined within a
film due to waveguiding, larger thickness leads to higher effective index of refraction.

2.1. Lasing phenomenon

Experimentally, the samples are excited by short laser pulses. The broad photoluminescence
band at low pumping narrows drastically with increasing pump intensity. As the excitation
intensity increases even further, the emission spectrum transforms into a fine structure that
consists of a number of sharp peaks. The spectral width of these peaks is less than 1 nm. When
the pump light excites a different sample or a different part of the same sample, the narrow
peaks change completely. However, when the same part of the sample is excited repeatedly
by different pump pulses, the spectral peaks are reproducible.
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Polson et al (2002) suggest that the lasing modes in the polymer films are formed by
total internal reflection at the boundaries of high refractive index regions. The long-range
fluctuation of the refractive index is similar to a ring resonator, in the sense that it gives rise
to a number of localized modes having close frequencies and quality factors. These modes
are revealed in the emission spectrum. Since the frequencies of such modes are correlated,
they can estimate the size, Lr, of the underlying resonators from the power Fourier transform
(PFT) of lasing spectra. They indeed find Lr � λ in their samples.

Along with the long-range fluctuation of refractive index, short-range disorder is also
present in the polymer films. The ability of most random resonators to trap light by total
internal reflection is suppressed by the short-range disorder. The dramatic consequence of
this suppression is that the resonators that ‘survive’ the short-range disorder are sparse, and
consequently almost identical. Experimentally, despite the PFT of individual random lasing
spectra exhibiting position-specific multi-peak structures, averaging the PFTs over the sample
positions does not smear these features, but in contrast yields a series of distinct transform
peaks. Moreover, the shape of the averaged PFT is universal, i.e., increasing the disorder
and correspondingly reducing lt do not change this shape: the average of the PFT spectra at
different lt scales with lt to a universal curve (Polson et al 2002).

2.2. Almost localized states

To understand the classical type of random laser with coherent feedback, Apalkov, Raikh and
Shapiro have made a comprehensive theoretical analysis (Apalkov et al 2003). They believe
that the lasing modes are the almost localized states in the passive medium. Such states
are formed due to some rare disorder configurations that can trap light for a long time in a
sub-mean-free-path region in space. The almost localized states are non-universal, i.e., their
character and formation probability depend on not only the average strength of disorder, but
also the microscopic details of disorder (Apalkov et al 2004a).

In the case of a continuous random potential, the almost localized states are confined
to small rings of a sub mean-free-path size. Apalkov, Raikh and Shapiro calculate the areal
density of the almost localized states in a film with fluctuating refractive index (Apalkov et al
2002). The rings formed by disorder can be viewed as waveguides that support the whispering-
gallery type modes. Because of the azimuthal symmetry, these modes are characterized by
the angular momentum, m. The areal density of ring resonators with quality factor Q can
be expressed as Nm(klt,Q) = N0 exp[−Sm(klt,Q)] for klt > 1. In the case of smooth
disorder kRc � 1, Sm ∼ lt(ln Q)4/3

/(
kR2

c m
1/3

)
. In the opposite limit of short-range disorder,

Sm ∼ klt ln Q. Therefore, when on average the light propagation is diffusive, the likelihood
for finding an almost localized state increases sharply with the disorder correlation radius Rc

for a given klt. Note that this conclusion applies only to a continuous (Gaussian) random
potential. In the presence of discrete lattice (the Anderson model), a new type of almost
localized state is formed, whose formation probability is reduced by correlation in disorder
(Patra 2003b, Apalkov et al 2004b).

Apalkov and Raikh also investigate the fluctuation of the random lasing threshold
(Apalkov and Raikh 2005). They find that the distribution of the threshold gain over the
ensemble of statistically independent finite-size samples is universal. This universality stems
from two results: (i) the lasing threshold in a given sample is determined by the highest
quality mode of all the random resonators present in the sample; (ii) the areal density of
the random resonators decays sharply with the quality factor of the mode that they trap.
In a 2D sample of area S, the distribution function of the threshold excitation intensity
Ith is
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FS(Ith) = βS

Ith

(
Ith

IS

)−βS

exp

[(
Ith

IS

)−βS

]
. (3)

The typical value IS is related to the sample area S:

IS ∝ exp

{
−

[
ln(S/S0)

G

]1/α
}

. (4)

S0 is the typical area of a random resonator. The parameters α and G are determined by the
intrinsic properties of the disordered medium and are independent of S. These two parameters
play different roles: α is determined exclusively by the shape of the disorder correlator and G
is a measure of the disorder strength. βS ∝ [ln(S/S0)](α−1)/α . Parameter βS decreases with
klt as a power law, and the exponent depends on the microscopic properties of the disorder.
For a weakly scattering medium, βS � 1, and FS(Ith) is close to a Gaussian distribution,
FS(Ith) ∝ exp

[−(
β2

S

/
2
)
(Ith/IS − 1)2

}
. When βS is small, the distribution FS(Ith) is broad

and strongly asymmetric. It has a long tail towards the high thresholds and falls off abruptly
towards low thresholds.

3. Quantum random laser with coherent feedback

In the classical type of random lasers with coherent feedback, formation of (closed) periodic
orbits with small leakage results in light confinement. The interference effect plays a secondary
role as it only determines the resonant frequencies in the periodic orbits. However, in the
quantum type of random lasers with coherent feedback, the random media have discrete
scatterers and strong short-range disorder, thus the interference of scattered waves is essential
to light trapping in a random medium. The active random media used for the quantum
type of random lasers can be divided into two categories: (i) aggregation of active scatterers;
(ii) passive scatterers in continuous gain media. Both have their advantages and disadvantages.
In (ii), gain media and scattering centres are separated, which allows independent variation of
the amounts of scattering and gain. However, the scattering strength in (i) is usually higher
than that in (ii), owing to larger contrast of refractive index and higher density of scatterers.
In the following subsections, lasing in both types of random media is discussed with some
examples.

3.1. Lasing oscillation in semiconductor nanostructures

Figure 1 shows the scanning electron microscope (SEM) images of some semiconductor
nanostructures that are used in our random laser experiments. The ZnO nanorods in figure 1(a)
are grown on a sapphire substrate by metalorganic chemical vapour deposition (MOCVD).
The rods are uniform in diameter and height, but randomly located on the substrate. The
average rod diameter is about 50 nm. The ZnO nanorod array is a two-dimensional (2D)
scattering system, as light is scattered by the nanorods in the plane perpendicular to the rods.
When the layer of ZnO nanorods has larger refractive index than the substrate, index guiding
leads to light confinement in the third direction parallel to the rods. Figure 1(b) shows the ZnO
nanoparticles synthesized in a wet chemical reaction. The particles are polydisperse with an
average size ∼100 nm. They are closely but randomly packed with a filling fraction ∼50%.
Since light is scattered by ZnO nanoparticles in all directions, the ZnO powder represents a
3D scattering system. The above two examples of random media have discrete scatterers of
subwavelength size. The short-range disorder results in strong light scattering. In the ZnO
powder, the transport mean free path lt ∼ λ.
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Figure 1. SEM images of (a) ZnO nanorods on a sapphire substrate and (b) closely packed ZnO
nanoparticles.

To introduce optical gain, the ZnO samples are optically pumped by the frequency-tripled
output (λ = 355 nm) of a mode-locked Nd:YAG laser (10 Hz repetition rate, 20 ps pulse
width). The ZnO nanorods and nanoparticles become active scatterers. We simultaneously
record the emission spectrum and image the spatial distribution of emitted light intensity on
the sample surface.

We observe lasing with coherent resonant feedback in both ZnO nanorods and
nanoparticles. Since their lasing phenomena are similar, the measurement results of ZnO
powder are presented next. Figure 2 shows the measured spectra and spatial distribution of
emission in a ZnO powder film at two pumping intensities. At low pumping level, the spectrum
consists of a single broad spontaneous emission band. Its full width at half maximum (FWHM)
is about 12 nm (figure 2(a)). In figure 2(b), the spatial distribution of the spontaneous emission
intensity is smooth across the excitation area. Due to the pump intensity variation over the
excitation spot, the spontaneous emission in the centre of the excitation spot is stronger. When
the pump intensity exceeds a threshold, discrete narrow peaks emerge in the emission spectrum
(figure 2(c)). The FWHM of these peaks is about 0.2 nm. Simultaneously, bright tiny spots
appear in the image of the emitted light distribution in the film (figure 2(d )). The size of
the bright spots is between 0.3 and 0.7 µm. When the pump intensity is increased further,
additional sharp peaks emerge in the emission spectrum, and more bright spots appear in
the image of the emitted light distribution. Above the threshold, the total emission intensity
increases much more rapidly with the excitation intensity.

The frequencies of the sharp peaks depend on the sample position. As we move the
excitation spot across the sample, the frequencies of these peaks change completely. However,
at a fixed sample position, the peak frequencies remain the same, while the peak heights vary
from shot to shot due to fluctuation of pump pulses. These phenomena suggest that the discrete
spectral peaks result from spatial resonances for light in the ZnO powder, and such resonances
are related to the local configurations of ZnO particles. Due to local variation in particle
density and spatial configuration, there exist small regions of stronger scattering. Light can
be trapped in these regions through the process of recurrent scattering and interference. For a
particular configuration of ZnO nanoparticles, only light at certain frequencies can be confined,
because the interference effect is frequency sensitive. In a different part of the sample, the
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Figure 2. (a) and (c) are the measured spectra of emission from the ZnO powder. (b) and (d ) are
the measured spatial distribution of emission intensity on the sample surface. The incident pump
pulse energy is 5.2 nJ for (a) and (b), and 12.5 nJ for (c) and (d ).

particle configuration is different, thus light at different frequencies is confined. However, the
confinement is incomplete as light can escape through the sample surface. When the photon
generation rate reaches the photon escape rate, lasing oscillation occurs at the local resonant
frequencies, that gives discrete lasing peaks in the emission spectrum.

We investigate the dependence of random laser on the pump area Ap. The lasing threshold
decreases with increasing Ap, as it is more likely to find a stronger trapping site for light within
a larger gain volume. At a fixed pump intensity, more lasing peaks appear when Ap increases.
It is simply because there are more trapping sites for light. Eventually at very large pump area,
the lasing peaks are so close to each other in frequency that they can no longer be resolved.
Instead, they merge into a broad band. However, when Ap is reduced to below a critical value,
lasing oscillation stops. The critical pump area decreases with increasing pumping level. The
higher the pumping level, the less confinement of light is required to reach the lasing threshold,
the more likely to find such an incomplete trapping site in a smaller region.

The temporal evolution of emission is measured by a streak camera (Soukoulis et al
2002). Below the lasing threshold, the decay time of the emission is 167 ps. When the pump
intensity exceeds the threshold, the emission pulse is shortened dramatically. The initial decay
of emission intensity is very fast; the decay time is 27 ps. After about 50 ps, the fast decay is
replaced by a slow decay. The later decay time is 167 ps, which is equal to the decay time below
the threshold. We believe that the initial fast decay is caused by rapid stimulated emission, and
the later slow decay results from spontaneous emission and nonradiative recombination. As
the pump intensity increases further, the initial stimulated emission becomes much stronger
than the later spontaneous emission. We also investigate the dynamics of individual lasing
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Figure 3. Spectrally integrated intensity of emission from the ZnO microcluster as a function of
the incident pump pulse energy. The inset is the SEM image of the microcluster.

modes by combining a spectrometer with a streak camera. The time traces of individual
lasing modes reveal that lasing in different modes is not synchronized. Just above the lasing
threshold, relaxation oscillation is observed for some of the lasing modes. Since the pump
pulse is shorter than both radiative and nonradiative recombination times of ZnO particles,
lasing is in the transient regime. Recently, lasing in ZnO powder has been realized with
10 ns pump pulses (Markushev et al 2005). Since the pumping time is much longer than all
the characteristic time scales in the ZnO powder, the lasing oscillation could be regarded as
quasi-continuous.

The quantum statistical property of laser emission from the ZnO powder is also probed in
a photon counting experiment (Cao et al 2001). For a single-mode coherent light, the photon
number distribution satisfies the Poisson distribution, whereas for a single-mode chaotic
light the photon number distribution meets the Bose–Einstein distribution. However, for a
multimode chaotic light, the photon number distribution approaches the Poisson distribution
as the number of modes increases to infinity. Hence, it would be difficult to distinguish
coherent light from chaotic light in the multimode measurement. Experimentally, we count
photons in a single electromagnetic mode, i.e. the counting time is shorter than the inverse
of frequency bandwidth of a lasing mode, and the collection angle in the far-field zone is
less than one angular speckle. We find that the photon number distribution in a single mode
changes continuously from the Bose–Einstein distribution near the threshold to the Poisson
distribution well above the threshold. The second-order correlation coefficient G2 decreases
gradually from 2 to 1. It is well known that for a single-mode chaotic light G2 = 2, while for
a single-mode coherent light G2 = 1. Hence, coherent light is indeed generated in the highly
disordered ZnO powder.

3.2. Micro random laser

Employing a spectrally resolved speckle technique (Cao et al 2002), we find that the lasing
modes in closely packed ZnO nanoparticles can be as small as a couple of microns. This
means strong optical scattering not only supplies coherent feedback for lasing, but also leads
to spatial confinement of laser light in micron-size volume (Cao et al 2000b). This allows us
to realize a new type of microlasers that are made of disordered media (Cao et al 2000c).

The inset of figure 3 is a SEM image of a microcluster of ZnO nanoparticles. The
size of the cluster is about 1.7 µm. It contains roughly 20 000 ZnO nanoparticles. A
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Figure 4. (a), (c) and (e) are the spectra of emission from the ZnO microcluster shown in figure 3.
(b), (d ) and (f ) are the corresponding spatial distribution of emission intensity in the microcluster.
The incident pump pulse energy is 0.26 nJ for (a) and (b), 0.35 nJ for (c) and (d ), and 0.50 nJ for
(e) and (f ).

single cluster is optically pumped by the third harmonics of a pulsed Nd:YAG laser. At low
pumping level, the emission spectrum consists of a single broad spontaneous emission speak
(figure 4(a)). Its FWHM is 12 nm. The spatial distribution of the spontaneous emission
intensity is uniform across the cluster (figure 4(b)). When the pump intensity exceeds a
threshold, a sharp peak emerges in the emission spectrum (figure 4(c)). Its FWHM is 0.2 nm.
Simultaneously, a couple of bright spots appear in the image of the emitted light distribution
in the cluster (figure 4(d )). When the pump intensity increases further, a second sharp peak
emerge in the emission spectrum (figure 4(e)). Correspondingly, additional bright spots appear
in the image of the emitted light distribution (figure 4(f )). Note that the frequencies of the
sharp peaks and the positions of the bright spots do not change from pump pulse to pulse
(shot).

The total emission intensity is plotted against the pump intensity in figure 3. The curve
exhibits a distinct slope change at the threshold where sharp spectral peaks and bright spots
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appear. Well above the threshold, the total emission intensity increases almost linearly with
the pump intensity. These data reveal lasing oscillation in the micron-size cluster.

Since the cluster is very small, optical reflection from the boundary of the cluster may
have some contribution to light confinement in the cluster (Wiersma 2000, Kretschmann and
Maradudin 2004). However, the laser cavity is not formed by total internal reflection at the
boundary. Otherwise, the spatial pattern of laser light would be a bright ring near the edge of
the cluster (Taniguchi et al 1996). We believe that the 3D optical confinement in a micron-size
ZnO cluster is realized through multiple scattering and interference. Since interference effect
is wavelength sensitive, only light at certain wavelengths can be confined in a cluster. In
another cluster of different particle configuration, light at different wavelengths is confined.
Therefore, the lasing frequencies are fingerprints of individual random clusters.

3.3. Collective modes of resonant scatterers

A simplified way of simulating the closely packed ZnO nanoparticles or nanorods is to
approximate individual particles or rods as dipolar oscillators (Burin et al 2001). We calculate
the quasimodes in a random ensemble of point dipoles. The kth dipolar oscillator is represented
by its resonant frequency ωk and transition dipole moments dk , where k = 1, 2, . . . , N . N is the
total number of scatterers. The gain is introduced into each scatterer by adding an imaginary
term ig̃ to its resonant frequency. A quasimode of this system represents a collective excitation
of the coupled dipoles, thus it is also called a collective mode. The equation of motion for the
kth oscillator’s polarization component pk = pkdk/dk can be written as

−�2pk = −(ωk − ig̃)2pk + 2ωkdk(dk · Ek). (5)

Ek is the local electric field,

Ek =
∑
j 
=k

Ekj + i
2

3
q3pk, (6)

where q = �/c and Ekj represents the electric field generated by the j th dipole at the location
of kth dipole. The solution to the Maxwell equations for electric field of a single dipole gives

Ekj = eiqRkj
pj − 3nkj (nkj · pj )

R3
kj

(1 − iqRkj ) + q2 eiqRkj
pj − nkj (nkj · pj )

Rkj

, (7)

where nkj = Rkj /Rkj , Rkj is the vector from the j th dipole to the kth dipole.
There are N solutions to the above equations for N coupled dipolar oscillators. Hence, there

are N collective modes, each characterized by a complex frequency �α (α = 1, 2, . . . , N).
The imaginary part of �α , γα , represents the decay rate of a collective mode caused by light
leakage out of the system. In the absence of gain g̃ = 0, all decay rates are positive and the
system is lossy. An increase of gain leads to a decrease of γα . At some finite value of gain
gth, the decay rate for some collective mode vanishes. It corresponds to the onset of lasing
instability. The collective mode with the smallest decay rate in the passive system (g̃ = 0)

turns out to be the first lasing mode.
We numerically calculate the threshold gain g̃th in 2D random arrays of dipolar oscillators

with N up to 1000. First, we assume that all the dipoles have the same resonant frequency:
ωk = ω0. They are positioned randomly within a circle of radius R0. The average inter-
dipole distance, normalized by the resonant wavelength λ0 = 2πc/ω0, is described by
η = 2πR0/

√
N . The ensemble-averaged lasing threshold decreases with increasing N as

〈gth〉 ∝ N−β , where the exponent β is a function of η. It is equivalent to 1/Aβ dependence
on the sample area A for a fixed particle density. Our numerical simulation gives β = 0.52
for η = 0.3, β = 0.51 for η = 1 and β = 0.335 for η = 3. The spatial size of the
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Figure 5. The incident pump intensity at lasing threshold Ith versus ZnO sphere diameter ds.
Squares and circles correspond to the pump spot diameter of 8 µm and 16 µm, respectively. Inset
shows the normalized scattering cross section σsc/σg of single ZnO sphere as a function of its
diameter ds.

lasing modes is usually smaller than that of the entire system. Hence, the decrease of g̃th

with the system size results from the increase in the probability of finding optimum particle
configurations for minimum γα rather than the formation of larger modes. Next, we gradually
introduce dispersion into the resonant frequencies ωk of dipolar oscillators. As the dispersion
increases, the efficiency of forming collective modes with small γα decreases. The threshold
gain g̃th becomes nearly size independent when ωk deviates from each other by more than the
near-neighbour dipolar coupling constant.

Therefore, the collective excitations can be formed most efficiently when the scatterers are
in resonance with each other (Burin et al 2001). This condition can be realized experimentally
with ZnO particles of uniform shape and size (Wu et al 2004b). We have developed a two-stage
chemical reaction process to synthesize monodisperse ZnO spheres (Seelig et al 2003). The
mean diameter of ZnO spheres is varied from 85 nm to 617 nm. The dispersion of the sphere
diameter is 5–8%. High-resolution SEM images reveal that individual spheres consist of
numerous ZnO nanocrystallites of size less than 10 nm. The porosity of ZnO spheres reduces
the refractive index to ∼1.7. The ZnO spheres are closely packed with the volume fraction
∼58%. Figure 5 is a plot of the lasing threshold pump intensity Ith versus the mean diameter ds

of ZnO spheres for two pump areas. Ith decreases drastically with increasing sphere diameter
from 85 nm to 137 nm. This rapid drop is replaced by a slow decrease as ds increases from
137 nm to 355 nm. When ds increases further to 617 nm, Ith increases slightly. The variation of
Ith with ds follows roughly the trend of scattering cross section σsc of ZnO spheres. The inset
of figure 5 shows the ratio of σsc to σg (geometrical cross section) of a single ZnO sphere as a
function of its diameter ds at the lasing wavelength 375 nm. The dotted lines mark the range of
the diameters of ZnO spheres we fabricate. The range of ds in our random lasing experiment
covers the first few Mie resonances at the ZnO emission wavelength. σsc exhibits a drastic
increase with ds before reaching the first Mie resonance at ds ∼ 200 nm. The Mie resonances
are broad owing to relatively low refractive index of ZnO spheres. The value of σsc reaches the
maximum at ds ∼ 370 nm. Then, it starts decreasing with a further increase of ds to 617 nm.
At the Mie resonances, photon dwell time within individual scatterers which have optical gain
is drastically increased, leading to a significant enhancement of light amplification. Of course
in such densely packed system as ours, scattering particles cannot be considered independent;
the resonances of individual scatterers are significantly modified by the interactions among
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them. Strong coupling of resonant scatterers lead to formation of collective modes with small
as well as large decay rates (Ripoll et al 2004, Vanneste and Sebbah 2005). The former serve
as the lasing modes. The experimental data of Ith can be explained qualitatively in terms of σsc.
The larger the scattering cross section of individual spheres, the stronger the coupling among
them, the higher the chance of forming collective modes with smaller decay rates. Thus, the
lasing threshold is lower.

3.4. Time-dependent theory of random laser

Simulation of random lasers above the threshold requires a time-dependent model that takes
into account the gain saturation effect. Jiang and Soukoulis have developed a time-dependent
theory for random laser that couples the Maxwell equations with the rate equations of electronic
population (Jiang and Soukoulis 2000). The gain medium is the four-level electronic material.
Electrons are pumped from level 0 to level 3, then relax quickly (with time constant τ32) to
level 2. Level 2 and level 1 are the upper and lower levels of the lasing transition at frequency
ωa. After radiative decay (with time constant τ21) from level 2 to 1, electrons relax rapidly (with
time constant τ10) from level 1 back to level 0. The populations in four levels (N3, N2, N1, N0)

satisfy the following rate equations:

dN3(r, t)
dt

= Pr(t)N0(r, t) − N3(r, t)
τ32

,

dN2(r, t)
dt

= N3(r, t)
τ32

+
E(r, t)
h̄ωa

· dP(r, t)
dt

− N2(r, t)
τ21

,

dN1(r, t)
dt

= N2(r, t)
τ21

− E(r, t)
h̄ωa

· dP(r, t)
dt

− N1(r, t)
τ10

,

dN0(r, t)
dt

= N1(r, t)
τ10

− Pr(t)N0(r, t).

(8)

Pr(t) represents the external pumping rate. P(r, t) is the polarization density that obeys the
equation

d2P(r, t)
dt2

+ �ωa
dP(r, t)

dt
+ ω2

a P(r, t) = �r

�c

e2

m
[N1(r, t) − N2(r, t)] E(r, t). (9)

ωa and �ωa represent the centre frequency and linewidth of the atomic transition from level 2
to level 1, respectively. �r = 1/τ21, �c = e2ω2

a

/
6πε0mc3, where e and m are electron charge

and mass, respectively. P(r, t) introduces gain to the Maxwell equations:

∇ × E(r, t) = −∂B(r, t)
∂t

, (10)

∇ × H(r, t) = ε(r)
∂E(r, t)

∂t
+

∂P(r, t)
∂t

, (11)

where B(r, t) = µH(r, t). The disorder is described by the spatial fluctuation of the dielectric
constant ε(r). The Maxwell equations are solved with the finite-difference time-domain
(FDTD) method (Taflove and Hagness 2000) to obtain the electromagnetic field distribution
in the random medium. Fourier transform of E(r, t) gives the local emission spectrum. To
simulate an open system, the random medium has a finite size and it is surrounded by air. The
surrounding air is terminated by strongly absorbing layers, e.g. the uniaxial perfectly matched
layers that absorb all the light escaping through the boundary of the random medium. Within a
semiclassical framework, the spontaneous emission can be included in the Maxwell equations
as a noise current.
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Jiang and Soukoulis simulate the lasing phenomenon in a 1D random system with the
time-dependent theory. A critical pumping rate exists for the appearance of lasing peaks in
the spectrum. The number of lasing modes increases with the pumping rate and the length of
the system. When the pumping rate increases even further, the number of lasing modes no
longer increases, but saturates to a constant value, which is proportional to the system size
for a given randomness. This saturation is caused by spatial repulsion of lasing modes that
results from gain competition and spatial localization of the lasing modes. This prediction
was later confirmed experimentally (Ling et al 2001, Anni et al 2004). The time-dependent
theory is especially suitable for the simulation of laser dynamics. Soukoulis et al simulated
the dynamic response and relaxation oscillation in random lasers (Soukoulis et al 2002). The
simulation reproduces most of the experimental observations and provides an understanding
of the dynamic response of random lasers.

Vanneste and Sebbah calculate the spatial profile of lasing modes in 2D random media with
the above method (Vanneste and Sebbah 2001, Sebbah and Vanneste 2002). They compare
the passive modes of a 2D random system with the lasing modes when gain is activated. In the
strong localization regime, the lasing modes are identical to the passive modes without gain.
When the external pump is focused, the lasing modes change with the location of the pump,
in agreement with the experimental observation. Therefore, local pumping of the system
allows selective excitation of individual localized modes. Jiang and Soukoulis also show that
knowledge of the density of states and the eigenstates of a random system without gain, in
conjunction with the frequency profile of the gain, can accurately predict the mode that lases
first when optical gain is added (Jiang and Soukoulis 2002).

The advantage of the time-dependent theory is that it can simulate lasing in a real random
structure after inputting the structure and material information. The numerical simulation
gives the lasing spectra, the spatial distribution of lasing modes and the dynamic response that
can be compared directly with the experimental measurements. The problem is that simulation
of large samples requires too much computing power and the running time is too long. So far,
the numerical simulation have been carried out only in 1D and 2D systems, even though the
method can be applied to 3D systems. Furthermore, the simulation must be done for thousands
of samples with different configurations before any statistical conclusion can be drawn (Li
et al 2001).

3.5. Quantitative dependence on scattering strength and pump area

The performance of a random laser depends critically on the scattering strength and pump area.
A quantitative study is conducted on polymers doped with dye molecules and microparticles
(Ling et al 2001). The microparticles serve as scattering centres and the excited dye molecules
provide optical gain. The separation of scattering elements from gain medium allows the
scattering strength be varied independently of the gain coefficient.

The random media in our experiment are PMMA sheets containing rhodamine 640
perchlorate dye and TiO2 microparticles. The mean diameter of TiO2 particles is 400 nm. The
particle density is varied from 8 × 1010 to 6 × 1012 cm−3. The transport mean free path is
characterized in the coherent backscattering experiment. lt varies from 0.4 µm to 17 µm. The
dye concentration is fixed at 5 × 10−2 M L−1. In the lasing experiment, the dye molecules are
optically excited by the second harmonics of a pulsed Nd:YAG laser. Figure 6(a) is a plot of
the incident pump pulse energy at the lasing threshold versus the transport mean free path. As
the TiO2 particle density in the PMMA sheet increases, the transport mean free path decreases,
so does the lasing threshold. The strong dependence of the lasing threshold on the transport
mean free path confirms the essential contribution of scattering to lasing oscillation. With
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Figure 6. (a) The lasing threshold pump intensity Ith versus lt/λ. The fitted curve (dashed line)
is Ith = 4.0(lt/λ)0.52. (b) The number of lasing peaks Np as a function of lt at the fixed incident
pump pulse energy 1.0 µJ.
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Figure 7. (a) The incident pump intensity at lasing threshold versus the area Ap of pump beam
spot on the sample surface. lt are 0.9 µm (circles) and 9 µm (crosses), respectively. The fitted
curves are Ith = 0.11A−0.5

p (solid line) and Ith = 0.15A−0.62
p (dashed line). (b) The number of

lasing modes versus the area of pump beam spot on the sample surface. lt = 0.9 µm (circles),
9 µm (crosses). The incident pump pulse energies are 0.63 µJ and 1.0 µJ, respectively.

an increase in the amount of optical scattering, the feedback provided by scattering becomes
stronger, thus the lasing threshold is reduced. Through curve fitting, we find that the lasing
threshold pump intensity Ith ∝ lt

0.52. Figure 6(b) is a plot of the number of lasing peaks Np

versus lt at a fixed pumping intensity. The shorter the transport mean free path, the more the
lasing peaks emerge.

One interesting feature in figure 6 is that when the transport mean free path approaches
the optical wavelength, the lasing threshold pump intensity drops quickly and the number of
lasing modes increases dramatically. This result agrees with John and Pang’s prediction of a
dramatic threshold reduction in the regime lt → λ of incipient photon localization (John and
Pang 1996). Figure 6 also demonstrates lasing with resonant feedback in the diffusion regime
lt � λ. Despite the fact that the coherent feedback supplied by scattering is rather weak,
lasing oscillation can still occur as long as the optical gain is high enough. However, tight
focusing of pump light is necessary to observe discrete lasing peaks, e.g., the pump beam is
focused to a 50 µm spot on the sample surface in figure 6. Hence, the gain volume is much
smaller than that of the entire random medium, Lg  L.

Next, we investigate the dependence of lasing threshold and number of lasing modes on
the pump area. In figure 7(a), the incident pump intensity at the lasing threshold Ith is plotted
against the area Ap of pump beam spot on the sample surface. The data are collected from
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two samples of lt = 0.9 µm and 9 µm. In both samples, Ith decreases as Ap increases. Curve
fitting reveals Ith ∝ A

−q
p , where q = 0.50, 0.62 for lt = 0.9, 9 µm, respectively. Figure 7(b)

shows the number of lasing modes as a function of the pump area. In this measurement, the
incident pump power is fixed while the pump area is varied. Thus, the incident pump intensity
also changes with Ap. The number of lasing modes stays nearly constant when the diameter
dp of the pump spot increases from 50 to 110 µm. Once dp > 110 µm, the number of lasing
modes starts decreasing quickly.

In order to understand the above experimental results, we need to find out how big
the lasing modes are. Employing the spectrally resolved speckle analysis, we are able to
map the spatial profile of individual lasing modes at the sample surface (Cao et al 2002).
Experimentally, the far-field speckle pattern of one lasing mode is recorded, then Fourier-
transformed to generate the spatial field correlation function in the near-field zone. Once
above the lasing threshold, spatial coherence is established across the entire lasing mode.
Hence, the spatial extent of the field correlation function directly reflects the mode size. We
find that even in the diffusive samples, the lasing modes are not extended over the entire
random medium; instead they are confined in the pumped region with an exponential tail
extending out.

3.6. Spatial confinement of lasing modes by absorption

In a diffusive sample (lt � λ), the quasimodes are expected to extend over the entire random
medium. However, the experimental results demonstrate that the size of individual lasing
modes is much smaller than that of the entire sample, indicating that the lasing modes are
not extended states. Our earlier speculation was that the lasing modes correspond to some
kind of anomalously localized states (Cao et al 2002). They are analogous to the prelocalized
electronic states in diffusive conductors that are responsible for the long-time asymptotics
of the current relaxation (Altshuler et al 1991, Fyodorov and Mirlin 1994, 1995, Falko and
Efetov 1995a, 1995b, Mirlin 2000). Such states exhibit an anomalous build-up of intensity in
a region of space. They are very rare in the diffusion regime. Note that the prelocalized states
differ from the almost localized states in two aspects: (i) their size is larger than the transport
mean free path; (ii) their properties are universal, in the sense that the disorder enters only via
lt. Since the number of prelocalized states is much less than that of the extended states in the
diffusion regime, the transport properties are dominated by extended states. Therefore, it is
hard to probe the prelocalized states in the transmission measurement. However, when optical
gain is introduced to a random medium, the prelocalized states are preferably amplified because
of their long lifetime. Photons in the prelocalized states stay longer in the gain medium, thus
they experience more amplification. As optical gain increases further, the prelocalized states
lase first because of their lower decay rates. Once the prelocalized states lase, their intensities
are much higher than that of the extended states. Hence, they dominate the emission spectrum
and the field pattern.

The anomalously localized states should be rare in the diffusive samples. Yet no matter
where on the sample the pump beam is focused, we always observe lasing modes that are
spatially confined in the vicinity of the pumped region. Moreover, the lasing threshold does
not fluctuate much as the pump spot moves across the random medium. These experimental
observations contradict the theory of anomalously localized states. Later, we realized that this
discrepancy originates from the assumption that the lasing modes are the quasimodes of the
passive random medium. Next, we demonstrate in a numerical simulation that this assumption
is not valid when absorption at the emission wavelength is significant outside the gain
volume.
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Figure 8. Calculated spatial intensity distribution of (a) the quasimode with the least decay rate in
a passive diffusive system, (b) the (first) lasing mode with gain inside the circular region near the
centre and no absorption outside it, (c) the (first) lasing mode with gain inside the circular region
near the centre and absorption outside it, and (d ) the (first) lasing mode with random medium
beyond one labs (dashed circle) removed.

We use the FDTD method to simulate lasing in the transverse magnetic (TM) modes of
2D random media. Dielectric cylinders (diameter dc = 160 nm, refractive index n = 2) are
placed at random in vacuum with a filling fraction ∼50%. The total size of the system is
9.2 µm × 9.2 µm. The wavelength of interest λ = 650 nm. The numerical simulation of
continuous wave (CW) transmission gives lt � 1.3 µm. Since lt/L ∼ 0.12 and klt ∼ 13,
light transport in this 2D system is diffusive.

We first calculate the quasimode with the least decay rate γmin in the passive random
medium. A short excitation pulse, whose spectrum is centred at λ = 650 nm, is launched
in the centre of the sample. After the excitation pulse is gone, the total electromagnetic
energy stored inside the random system U(t) exhibits a non-exponential decay in time as
a result of multimode excitation. However, after a sufficiently long time, U(t) changes
to an exponential decay because only one mode with the longest lifetime is left inside the
system. The exponential decay rate of U(t) is equal to γmin. The spatial profile of the
electric field becomes stable in time, and it reflects the wavefunction of this longest lived
quasimode. For one realization shown in figure 8(a), the Fourier transform of electric
field E(t) gives the wavelength of the slowest decaying quasimode λ = 646 nm. Its
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Figure 9. Radial dependence of the angularly integrated intensities of the modes (a, c, d ) in
figure 8. (a) is compared to the diffusive mode profile, the tail of (c) is fitted with an exponential
decay and the fall-off of (d ) outside the random medium is compared to r−1.

intensity distribution reveals that this quasimode is extended across the sample. When some
cylinders at the sample boundary are removed, the mode profile changes dramatically. The
sensitivity of this quasimode to the boundary confirms that it is an extended state. Figure 9
shows the radial dependence of the angularly integrated intensity, Ir(r) = ∫ |E(r, θ)|2r dθ ,
where r is the radial coordinate, θ is the polar angle and E(r, θ) is the electric field
distribution of the quasimode. For comparison, the radial profile of the lowest diffusion
mode cos[πx/(L + 2z0)] cos[πy/(L + 2z0)] is also plotted in figure 9. It describes Ir(r) quite
well.

Next, gain and reabsorption are introduced into the random medium. In the time-
dependent theory presented in section 3.4, the gain medium is modelled as a four-level
atomic system where the lasing transition is from level 2 to level 1. In the absence of pumping,
all the atoms are assumed to be in level 0. Since the electronic population in level 1 is zero,
there is no absorption at the lasing wavelength in the unpumped region. To simulate spatially
non-uniform gain and reabsorption of laser emission, we use the semi-classical Lorentz model
(Cao et al 2000b). The linear gain/absorption is modelled by negative/positive conductance.
By introducing negative conductance to the pumped region and positive conductance to the
unpumped region, we are able to describe both light amplification inside the pumped region and
reabsorption of the emitted light outside the pumped region. More specifically, the cylinders
have the conductance (Taflove and Hagness 2000)

σ(ω) = σ0/2

1 + i(ω − ω0)T2
+

σ0/2

1 + i(ω + ω0)T2
. (12)

The sign of σ0 determines light is amplified or absorbed, whereas the amplitude of σ0 sets
the magnitude of gain/absorption. ω0 and 1/T2 determine the centre frequency and width of
the gain/absorption spectrum, respectively. The absence of gain saturation in equation (12)
is not crucial in our simulation, as our goal is to find the first lasing mode at or slightly
above the lasing threshold. A seed pulse is launched at t = 0 to initiate the amplification
process. The lasing threshold is defined by the minimum gain coefficient (−σ0) at which the
electromagnetic energy stored inside the random system grows continuously in time.
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We simulate the case of local pumping without reabsorption outside the pumped region.
For comparison, we use the same random sample as in figure 8(a) and introduce gain to the
central part marked by the circle in figure 8(b). The gain spectrum is centred at 650 nm
and has a width of 52 nm. The lasing mode shown in figure 8(b) is identical to the quasimode
of the passive system in figure 8(a). Although optical gain is concentrated within the circle
near the centre, the lasing mode is extended throughout the entire sample. As we reduce
the pump area by decreasing the radius of the circle, the lasing threshold increases, but
the lasing mode profile remains the same. This result indicates that the lasing mode in a
diffusive random medium is identical to an extended quasimode of the passive system, even
when the gain region is smaller than the mode size.

However, the above statement is valid only when there is no absorption outside the
pumped region, which is not the case in most experiments. For example, rhodamine dye,
which is widely used to provide gain for random lasers, has significant overlap between
its absorption band and emission band. Therefore, photons that are emitted by the excited
rhodamine molecules inside the pumped region may diffuse into the surrounding unpumped
region and be absorbed by the unexcited rhodamine molecules there. The absorption reduces
the probability of light returning to the pumped region, thus suppresses the feedback from the
unpumped region. To simulate the reabsorption, we introduce absorption outside the pump
area, the bulk absorption length (inelastic length) li = 1.06 µm. Figure 8(c) shows the lasing
mode profile, which is very different from that in figure 8(a) or (b). The wavelength of
the lasing mode also differs by about 4 nm. Therefore, the lasing mode in the presence of
reabsorption is a new mode, completely different from the quasimode of the passive system.
Due to reabsorption outside the pump area, the lasing mode is confined more or less inside
the pumped region. The radial profile of the lasing mode, shown in figure 9, features an
exponential decay outside the pumped region. The decay length, ∼0.8 µm, is equal to the
absorption length labs = (ltli/2)1/2. To confirm this result, we simulate transmission of CW
plane wave through a slab of disordered absorbing medium and obtain the same attenuation
length.

The observed effect indicates that reabsorption, which suppresses the feedback from the
unpumped part of the sample, effectively reduces the system size. To check this conjecture,
we remove all the random medium beyond one lamp from the pump area (dashed circle in
figure 8(d )) and repeat the calculation. The frequency and spatial profile of the lasing
mode remain the same (figure 8(d )), despite the drastic change of the random system. The
radial profile of the lasing mode outside the random medium (figure 9) exhibits a trivial r−1

dependence. This result indicates that the lasing mode is an extended state within the effective
region of dimension Leff ∼ Lg + labs. It is fundamentally different from the quasimode of
the passive system. Even if all the quasimodes of a passive diffusive system are extended
across the entire sample, the lasing modes are still confined in the pumped volume with an
exponential tail outside it.

The above conclusion can be applied to 3D diffusive random media and explain the
experimental results qualitatively. When the pump beam is tightly focused, the effective
system volume is reduced due to reabsorption of emission outside the pumped region. It leads
to a decrease of the Thouless number δ ∝ Leff , as δν ∝ L−2

eff and dν ∝ L−3
eff . The smaller

the value of δ, the larger the fluctuation of the decay rates γ of the quasimodes (Chabanov
et al 2003). The variance of the decay rates σ 2

γ = 〈γ 〉2/δ (Mirlin 2000), thus σγ /〈γ 〉 ∝ L−1
eff .

We believe that the broadening of the decay rate distribution along with the decrease of the
total number of quasimodes (within the effective volume) is responsible for the observation
of discrete lasing peaks in the tight focusing condition. Despite its value being reduced, the
effective Thouless number is still much larger than 1 because of weak scattering. As a result,
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the lasing modes are the extended states within the effective volume. Because σγ /〈γ 〉  1,
the minimum decay rate γmin is still close to 〈γ 〉, leading to a relatively small fluctuation of
lasing threshold. The threshold gain can be estimated as gth = γmin ≈ 〈γ 〉 ∼ D

/
L2

eff . This
estimation gives a threshold equal to that predicted by Letokhov for random lasing with non-
resonant feedback (Letokhov 1968), lamp ∼ Leff or lg ∼ L2

eff

/
lt. Using this approximation

and taking into account the saturation of absorption of pump light, we are able to explain the
measured dependence of the lasing threshold pump intensity Ith on lt and the pump area Ap, i.e.
Ith ∝ l

1/2
t

/
A

q
p , where 0.5 � q � 1 (Burin et al 2003a). We also understand qualitatively why

the shot-to-shot fluctuation of lasing peaks gets stronger in weaker scattering samples. When
the scattering is weak, P(γ ) is narrow, thus there are many modes with similar decay rates.
Which states would lase in one shot (pump pulse) depends on the initial noise (spontaneous
emission). Therefore, the lasing peaks in different shots may not be the same.

We comment that our model does not contradict the theory of anomalously localized states,
in the sense that it does not eliminate the possibility of rare events. The anomalously localized
states, despite rare, do exist in the diffusive samples (Uski et al 2000, 2001, Nikolić 2001,
Ossipov et al 2002, 2003, Kottos et al 2003, Weiss et al 2005). If they happen to be within the
pumped volume, the anomalously localized states could serve as low-threshold lasing modes.
However, even in the absence of such rare events, the interplay between optical amplification
and reabsorption could result in spatial localization of lasing modes in the pumped region. In
other words, local pumping in an absorbing medium generates a local ‘potential well’ to trap
the lasing modes.

The above conclusion applies not only to the diffusion regime, but also to the localization
regime. If the size of gain volume is smaller than that of localized states and strong absorption
exists outside the pumped region, the lasing modes differ from the localized states in the
passive system.

4. One-dimensional photon localization laser

4.1. Experimental realization

One problem of the 3D random lasers described in the previous sections is that multiple
scattering of pump light restricts the excitation to the proximity of sample surface. The
emitted photons readily escape through the sample surface, giving a high lasing threshold.
This problem is less serious in 2D random lasers, as the pump light incident from the third
dimension does not experience scattering (Stassinopoulos et al 2005). Yet the pump light is
not confined inside the 2D random system. Recently, Milner and Genack have realized photon
localization laser in which the pump light is localized deep inside a one-dimensional (1D)
random structure (Milner and Genack 2005).

The 1D sample is a stack of partially reflecting glass slides of random thickness between
80 and 120 µm with interspersed dye films. The stack is illuminated at normal incidence
by the second harmonics of a pulsed Nd:YAG laser. In this 1D structure, light is localized
by multiple scattering from the parallel layers which returns the wave upon itself. The
average transmittance through a stack of glass slides without intervening dye solution decays
exponentially with the number of the slides. Even though the average transport of light is
suppressed, resonant tunnelling through localized states gives spectrally narrow transmission
peaks. A large number of narrow peaks are observed in the transmission spectra. When the
pump wavelength is tuned into one of the narrow transmission lines, the pump light penetrates
deep into the sample’s interior via resonant excitation of a long-lived spatially localized mode.
Energy absorbed from this mode is subsequently emitted into long-lived localized modes
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which fall within the dye emission spectrum. Stimulated emission is enhanced when the
spatial energy distributions at both the excitation and emission wavelengths overlap. The
deposition of pump energy deep within the sample and its efficient coupling to long-lived
emission modes removes a major barrier to achieving low-threshold lasing in the presence of
disorder. The threshold is sufficiently low for lasing to be induced with a quasi-continuous
illumination by a 3 W argon-ion laser.

Another feature of the 1D photon localization laser is the large fluctuation in lasing power
when the pump beam is focused onto different parts of the sample which correspond to different
realizations of disorder. The pump transmission is strongly correlated with the output lasing
power. High pump transmission results from resonant excitation of a localized mode which is
spatially peaked near the centre of the sample. Therefore, the pump energy is exponentially
enhanced within the sample and is efficiently transferred to the gain medium. Since excitation
in the centre of the sample is likely to escape via emission into localized modes with long
lifetime, the opportunity for stimulated emission is enhanced and the laser output is high.

4.2. Analytical model

Analytical approaches have been taken to derive the conditions for coherent steady-state lasing
oscillation in 1D random media (Herrmann and Wilhelmi 1998, Burin et al 2002, Jiang and
Soukoulis 2002). In analogy to a Fabry-Perot cavity laser, the threshold conditions for coherent
lasing in a 1D random system include both the steady-state round-trip gain condition and the
round-trip phase shift condition.

According to the semiclassical laser theory, the Maxwell equation for the electric field
E(x, t) in a 1D random system is

∇2E(x, t) + µ0σ
∂E(x, t)

∂t
+ µ0ε(x)

∂2E(x, t)

∂t2
= −µ0

∂2Pg(x, t)

∂t2
. (13)

The dielectric constant ε(x) is determined by the random configuration of dielectric layers.
The permeability of a dielectric medium at optical frequency is nearly equal to that in vacuum,
µ � µ0. σ represents the loss due to light absorption and leakage out of the system. The
leakage loss can be expressed as ε0ω/Q, where Q is the quality factor. Pg is the polarization
induced by gain. The slowly varying approximation gives E(x, t) = E0(t)φ(x) exp(−iωt),
where E0(t) is the field amplitude, φ(x) is the normalized field distribution and ω is the
frequency of field oscillation. The real and imaginary parts of equation (13) give (Jiang and
Soukoulis 2002)

∇2φ(x) + µ0[ε(x) + ε0χ
′(x, ω)]ω2φ(x) = 0, (14)

dE(t)

dt
=

(
−〈χ ′′(ω)〉 − 1

Q

)
ε0ωE(t)

2〈ε〉 , (15)

where 〈ε〉 = ∫ L

0 ε(x) dx/L is the spatially averaged dielectric constant inside the system and

−〈χ ′′〉 = − ∫ L

0 φ(x)∗χ ′′(x, ω)φ(x) dx/L represents the spatially averaged gain that takes into
account the overlap between the field distribution and the active region.

Equation (14) determines the lasing frequency ω, the field distribution φ(x) and the quality
factor Q. The term ε0χ

′(x, ω) causes a shift of the lasing frequency from the eigenfrequency
of the passive system, that is the pulling effect. For a localized mode, Q � 1, a small gain is
needed to reach the lasing threshold. Then, χ ′(x, ω)  1, the pulling effect is very weak. The
lasing frequency is almost the same as the eigenfrequency of the passive system and the field
distribution is nearly identical to the eigenfunction of the passive system. Equation (15) is a
time-dependent equation for the field amplitude; it sets the threshold −〈χ ′′(ω)〉 = 1/Q for
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lasing oscillation. When the gain is over threshold, E0(t) builds up in time. The population
inversion �N gets depleted, leading to a decrease of χ ′′ until −〈χ ′′(ω,E0)〉 = 1/Q. Then,
the field amplitude becomes stable in time.

In the localization regime, the sample length L is much larger than the localization length
ξ . If the gain is uniform throughout the 1D structure, the first lasing mode is usually the most
localized mode in the middle of the random structure. Let us consider such a mode located at
x0 ∼ L/2. The random media on its left side and right side are characterized by the reflection
coefficients (rl, rr) and transmission coefficients (tl, tr). The threshold gain gth is related to the
reflection coefficients (Burin et al 2002):

|rlrr| exp[gth(d�l/dω + d�r/dω)/2] = 1, (16)

where r = |r| ei�. The frequency dependence of |r| can be neglected because L � ξ and
1 − |r|  1. The factor in the exponent of equation (16) represents a product of photon
amplification rate and the trapping time of photons inside the system τ0 = d�l/dω + d�r/dω.
Since |rl| and |rr| are very close to 1, gth can be expressed in terms of the transmission
coefficients with the linear expansion

gth ≈ |tl|2 + |tr|2
d�l/dω + d�r/dω

. (17)

In the localization regime, tl ∼ exp(−x0/ξ), tr ∼ exp[−(L − x0)/ξ ]. Hence, gth ∼
{exp(−2x0/ξ) + exp[−2(L − x0)/ξ ]}/τ0. Since x0 ∼ L/2, gth ∝ exp(−L/ξ), the lasing
threshold depends exponentially on the system length L. The photons emitted inside the
random system need an exponentially long time to escape from it, due to exponentially small
transmission in the localization regime. Therefore, an exponentially small gain is enough to
initiate lasing oscillation.

5. Quantum theory of random lasers

5.1. Photon statistics of random lasers with non-resonant feedback

The development of quantum theory on a random laser started in the 1960s when Letokhov
and co-workers investigated the statistical properties of emission from a laser with a scattering
reflector (Ambartsumyan et al 1967, 1968, 1970). In their laser, one mirror of the Fabry-Perot
cavity is replaced by a scattering surface. Light in the cavity undergoes multiple scattering,
its propagation direction or wave vector being changed constantly. Thus, the modes, defined
by the wave vectors, interact strongly via radiation exchange by scattering. Lasing occurs
simultaneously in a large number of modes with different wave vectors. In the master equations
for photon probability distribution in each mode, they added terms that phenomelogically
describe the linear interaction of modes through scattering. Their theoretical and experimental
studies lead to two conclusions. (i) The number of photons in a single lasing mode is subject to
strong fluctuations, and its distribution coincides with the Bose–Einstein distribution of black-
body radiation. (ii) The total number of photons in all lasing modes exhibits a fluctuation
much smaller than that of the black-body radiation in the same number of modes. Well above
the lasing threshold, gain saturation quenches the total photon number fluctuation, yet it fails
to stabilize the photon number in a single mode due to frequent hopping of photons from one
mode to another. That is why the photon number distribution in a single lasing mode is similar
to that of non-coherent source.

Recently, Florescu and John have developed the master equation formalism to random
lasers with non-resonant feedback (Florescu and John 2004a, 2004b). A diffusive random
medium is partitioned into a collection of hypothetical cells of dimension lt. Each cell is
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labelled by a coarse-grained position vector r. Since lt � λ, it is possible to associate a mode
with the approximate position r and wave vector k. In a random laser with non-resonant
feedback, all modes within the pumped region contribute equally on average to the overall
lasing process. Florescu and John generalize the master equations for conventional lasers
by replacing the cavity loss terms with diffusion terms that describe the multiple scattering
character of light transport. This description attributes feedback to average wave transport
that leads to lasing throughout the entire medium. By summing over k, they obtain the master
equations for photon probability distribution in each cell r. These equations allow evaluation
of the average emission coherence at different positions inside the random medium. They find
that deeper inside the sample, the Fano–Mandel parameter gets smaller. This result indicates
that the photon number fluctuation in the cells deep inside the sample is quenched, despite
exchange of photons among neighbouring cells.

5.2. Excess noise of amplified spontaneous emission

Using the Green functions to directly quantize the wave equation, Beenakker and co-workers
have established a general relation between the emission from a linear optical medium and the
underlying scattering matrix (Beenakker 1998, Patra and Beenakker 1999, Mishchenko et al
2001). A random medium, with linear gain or absorption, is coupled to the environment via
N channels at frequency ω. The input and output fields are represented by two N-component
vectors of annihilation operators ain(ω) and aout(ω). The input–output relation takes the form

aout = Sain + Ub + V c†, (18)

where S is the N × N scattering matrix, b and c† describe absorbing and amplifying media.
Beenakker obtained the general relation (Beenakker 1998)

UU † − V V † = 1 − SS†. (19)

It can be understood as a fluctuation–dissipation relation: the left-hand side accounts for
quantum fluctuations in the electromagnetic field due to spontaneous emission or absorption
of photons, and the right-hand side accounts for dissipation due to absorption or amplification
due to stimulated emission. Equation (19) represents a powerful link between the classical
optics described by the scattering matrix S and the quantum optics represented by the quantum
fluctuation matrices U,V . Combining this relation with the statistical properties of the
scattering matrix in disordered media, Beenakker derived the full photocount distribution of
the radiation emitted from random media with linear gain (Beenakker 1998). The amplified
spontaneous emission exhibits excess noise below the lasing threshold. The origin of this
excess noise lies in the presence of a large number of overlapping modes and a broad
distribution of the corresponding scattering strengths.

5.3. Quantum theory of random laser with non-overlapping modes

The scattering matrix approach cannot be applied to random laser above the threshold, as it
does not include the saturation effects of the medium. To describe photon statistics above
the lasing threshold, Patra has developed a theory that includes the nonlinear effect of gain
saturation (Patra 2002). Noise is described by Langevin terms, where fluctuations of both
the electromagnetic field and the active medium are included. His theory is valid only
for random lasers with small outcoupling, i.e. the quasimodes do not overlap in frequency
(non-overlapping modes). Since a large number of modes can be above lasing threshold
simultaneously (Misirpashaev and Beenakker 1998), mode competition for optical gain
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introduces additional noise. The amount of photon number fluctuation in each lasing mode
is increased above the Poissonian value by an amount that depends on the number of lasing
modes.

Taking a different approach, Peřinová et al consider the master equation in the Linblad
form for a random laser with non-overlapping modes (Peřinová et al 2004). They derive the
rate equations for the probability distributions as well as the equations for the means and
moments. Based on the open system theory, a new form of the Fano factor is proposed to
describe the photon statistics of a random laser.

5.4. Field quantization for open chaotic resonator with overlapping modes

The quantum theory for random laser with non-overlapping modes can be applied to the photon
localization regime where the Thouless number δ � 1, but not the diffusion regime where
δ > 1. The first step in the development of quantum theory for random laser with coherent
feedback in a random medium of δ > 1 is to quantize the electromagnetic field in such an open
system. Standard field quantization theory applies to cavities that are closed or nearly closed
(δ < 1). Hackenbroich et al have developed a quantization scheme for optical resonators with
overlapping modes (δ > 1). They employ the Feshbach’s projector technique to quantize the
electromagnetic field with arbitrary polarization. The field Hamiltonian of an open resonator
with δ > 1 reduces to the well-known system-and-bath Hamiltonian of quantum optics.

H =
∑

β

h̄ωβa
†
βaβ +

∑
m

∫
dω h̄ωb†

m(ω)bm(ω)

+ h̄
∑
β,m

∫
dω

[
Wβm(ω)a

†
βbm(ω) + Vβm(ω)aβbm(ω) + h.c.

]
. (20)

aβ is the annihilation operator of photons in the βth mode inside the resonator, and likewise
bm(ω) is that of photons in the (m,ω)th mode outside the resonator. Wβm and Vβm describe
the couplings between the inside modes and outside modes. The continua of outside modes
act as a ‘bath’ damping the discrete inside modes. When the bath degrees of freedom are
eliminated, the dynamics of the inside modes becomes irreversible. The Heisenberg equations
of motion for the inside amplitudes aβ take the form of Langevin equations, in which the
outside amplitudes bm(ω), b

†
m(ω) enter only with their initial values in the Langevin noise

forces. If the anti-resonant terms are neglected and the Markovian approximation is taken, the
Lagenvin equations for aβ can be simplified as

ȧβ(t) = −iωβaβ(t) − π
∑
β ′

[WW †]ββ ′aβ ′(t) + Fβ(t), (21)

where the noise operator Fβ(t) = −i
∫

dω e−iω(t−t0)
∑

m Wβmbm(ω, t0). The inside mode
operators aβ are coupled by the damping matrix WW †. As different inside modes couple to
the same outside modes, the noise operators Fβ are correlated,

〈
F

†
βFβ ′

〉 
= δββ ′ . The mode
coupling by both damping and noise can be understood as a consequence of the fluctuation–
dissipation theorem. The mode dynamics of open chaotic resonators is determined not only
by the eigenvalues of the internal Hamiltonia, but also by the coupling strength to the external
radiation field. Therefore, the spectrum of such resonators is governed by a non-Hermitian
random matrix. The master equations for the reduced density operator ρ(t) of the inside
field are also derived in the Schrödinger picture (Hackenbroich et al 2003). It is proven to
be equivalent to the Lagenvin equation for aβ . The next step would be to incorporate the
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amplifying medium into such an open resonator to simulate a random laser with overlapping
modes.

6. Interplay of light localization and coherent amplification

Without a counterpart in the electronic system, the coherent amplification of light adds a new
dimension to the fundamental study of mesoscopic wave transport. The interplay between
light localization and coherent amplification has attracted much interest. It is well known
that optical absorption hinders photon localization as it suppresses the interference effect
of scattered light. Optical amplification enhances the interference phenomena in random
media, thus it facilitates light localization. However, the criterion for Anderson localization
of light in an amplifying random medium remains to be developed. The very concept of
describing the Anderson localization transition in terms of a vanishing diffusion coefficient
as an order parameter, familiar from systems with energy or particle number conservation,
becomes questionable in active or dissipative media, where another channel for change of the
energy density exists besides diffusion (Lubatsch et al 2005). A few years ago, a new criterion
was developed for photon localization in passive and dissipative random media (Chabanov
et al 2000). Chabanov, Stoychev and Genack demonstrate that the variance of transmission
fluctuation accurately reflects the extent of localization even in the presence of absorption.
Unfortunately, this criterion does not seem to hold for active random media, because the
variance of transmission fluctuation would diverge at the lasing threshold. Gain saturation
prevents this divergence, but the actual value of transmission variance depends on the saturation
intensity which is determined by the material properties instead of wave transport. There is
also doubt in applying the Thouless criterion for light localization in a passive random system
to an active system. The ensemble-averaged spectral correlation function is dominated by
the rare lasing configurations, thus the spectral correlation width δν is equal to the lasing
linewidth which also depends on the properties of gain material. Despite of the ambiguity in
determining light localization in active random systems, there have been many studies on how
coherent amplification affects light transport in disordered media.

The modification of coherent backscattering (weak localization) by amplification is
investigated both theoretically (Zyuzin 1994, Deng et al 1997, Tutov and Maradudin 1999) and
experimentally (Wiersma et al 1995b, de Oliveira et al 1996). The shape of the backscattering
cone is determined by the transport distance of light in the medium. The intensity in an
amplifying medium grows exponentially with the path length. Consequently, gain enhances
the long path length that constitute the top of the backscattering cone. A relatively larger
contribution of long paths yields a sharper and narrower cone as compared to the passive
medium.

The effects of amplification on light reflection and transmission in a random system are
extensively studied and compared with the effect of absorption (Pradhan and Kumar 1994,
Zhang 1995, Zyuzin 1995, Beenakker 1996, Paasschens et al 1996, Burkov and Zyuzin 1996,
1997, Freilikher et al 1997, Joshi and Jayannavar 1997, Jiang and Soukoulis 1999, Jiang
et al 1999, Ramakrishna and Kumar 2000, Ramakrishna et al 2000, Kumar 2001). These
studies are carried out mostly in a 1D or quasi-1D system with the time-independent theory.
Optical gain is introduced through the imaginary part of the refractive index. Below the lasing
threshold, coherent amplification enhances light reflection and suppresses light transmission.
It also leads to an increase in the fluctuation of the transmissivity T and reflectivity R. On
approaching the lasing threshold, both the mean value and the variance of T and R diverge.
Above the lasing threshold, random amplifier becomes a random oscillator with self-sustaining
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oscillations in the quasimodes of the system. The time-independent theory no longer works,
and it is replaced by the time-dependent theory that takes into account gain saturation.

6.1. Effects of amplification on field and intensity correlations

In a passive random system, nonlocal intensity correlation reflects the closeness to Anderson
localization transition (Berkovits and Feng 1994, van Rossum and Nieuvenhuizen 1999).
Light transport in an amplifying random medium experiences enhanced contribution from
long paths, that should have a profound effect on the nonlocal intensity correlation. We
investigate the local and nonlocal correlations of light transmitted through active random
media (Yamilov and Cao 2005).

Due to formal similarity, it is tempting to treat a random system with gain as if it
had ‘negative absorption’ and directly adopt the results obtained for a dissipative system.
Such simplistic approach to correlation functions is fundamentally flawed. Theoretically, the
spatial and spectral correlation functions are obtained by average over an infinite number of
random realizations. Among them, there exist rare configurations containing anomalously
localized states that could lase in the presence of small gain. Light intensity in the lasing
configurations diverges, so do the ensemble-averaged correlation functions. Despite the
divergence is prevented by gain depletion, the lasing configurations have much higher intensity
than the non-lasing ones, thus they dominate the correlation functions. The width of spectral
correlation functions is simply equal to the lasing mode width, while the spatial correlation
functions only reflect the spatial profile of the lasing modes. This is in contrast to the ‘negative
absorption’ model, which does not contain the divergent contribution of the rare events. In
order to obtain the correlation functions that reflect light transport in amplifying random media,
we introduce the conditional average over all non-lasing configurations 〈· · ·〉 → 〈· · ·〉c. Such
replacement, together with the fact that the fraction of lasing configurations varies with the
amount of gain, makes any analytical derivation challenging. Numerical simulation turns out
to be a fruitful alternative.

We introduce a numerical method of studying correlation functions based on the FDTD
algorithm. This method allows us to solve the time-dependent Maxwell equations for the
electromagnetic field at any point inside and outside a random medium. It makes no
approximation about the scattering strength, accounts for all interference phenomena and
gives correlation functions in both diffusion and localization regimes (Chang et al 2004).
Optical gain can be incorporated into the Maxwell equations as a negative conductivity. For
the study of amplification effect on light transport, numerical simulation has two advantages
over real pump-probe experiments: (i) optical gain can be introduced uniformly across the
entire random medium; (ii) coherent amplification of an input signal is easily separated from
spontaneous emission of the active medium.

The FDTD method allows simulation of any real random structure. As an example, we
consider a quasi-1D system with parameters close to the microwave experiments performed
in Genack’s group (Sebbah et al 2002). To shorten the computation time, we simulate 2D
random medium instead of 3D random medium in a waveguide geometry. As shown in the
inset of figure 10(a), circular dielectric scatterers (refractive index = 2, diameter = 1.4 cm)
are randomly positioned in a metallic waveguide. The metallic walls of the waveguide ensure
99.9% reflectivity. The waveguide width w is between 20 and 40 cm. Since the wavelength
of interest λ ∼ 2 cm, the number of waveguide channels Nc = 2w/λ ∼ 20–40. In this
quasi-1D system, the localization length ξ = Nclt. When the length of random medium L
is smaller than ξ but larger than lt, light transport is diffusive. The transition from diffusion
to localization can be realized by increasing L to over ξ . We define go ≡ (π/2)neNclt/L

′,
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Figure 10. (a) Real part of CE(�r); (b) real (open symbols, solid line) and imaginary (solid
symbols, dashed line) parts of CE(�ν). Circles, squares and triangles represent the numerical
data for passive (τabs/amp = ∞), absorbing (τabs = −5τ cr

amp) and amplifying (τamp = 5τ cr
amp)

systems, respectively. L = 40 cm, w = 20 cm, lt = 0.18 cm. Curves represent theoretical fit with
zb/lt = 0.8. The inset is a sketch of the numerical experiment.

where L′ = L + 2zb, zb is the extrapolation length, ne = c/ve, ve is the energy transport
velocity. In the absence of gain or absorption, go is equal to the dimensionless conductance
gc when gc � 1. To demonstrate the independence of our results on microscopic structure
of the random medium, we vary both the filling fraction of scatterers and the length of the
random medium to obtain samples with go between 2.2 and 9.0. The effect of gain or
absorption (inside the scatterers) is treated by the classical Lorenzian model with positive or
negative conductivity. In the numerical experiment, a TM-polarized broadband pulse centred at
λ = 2 cm is launched via a point source at the input end of the waveguide. Temporal discrete
Fourier transform is applied to the electric fields at the output end. By virtue of the discrete
Fourier transform, we obtain the CW response of the system for a number of wavelengths. We
calculate the ensemble-averaged correlation functions for the field

CE(�r,�ν) ≡ 〈E(r + �r, ν + �ν)E∗(r, ν)〉
〈I (r + �r, ν + �ν)〉1/2〈I (r, ν)〉1/2

(22)

and intensity

C(�r,�ν) ≡ 〈I (r + �r, ν + �ν)I (r, ν)〉
〈I (r + �r, ν + �ν)〉〈I (r, ν)〉 − 1, (23)

at the output end. In the presence of gain, long after the short excitation pulse, the
electromagnetic field decays with time in the non-lasing realizations, while it keeps increasing
in the lasing ones. We exclude the lasing realizations from the ensemble average for correlation
functions.

Based on the pairing of incoming and outgoing channels, three contributions to intensity
correlation function have been identified (Berkovits and Feng 1994, van Rossum and
Nieuvenhuizen 1999): a local (short-range) C1 ≈ |CE|2, and two nonlocal C2 (long-range)
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and C3 (infinite-range) ones. For diffusive transport (go � 1) in a waveguide geometry,
C1 ∼ 1, C2 ∼ 1/go and C3 ∼ 1

/
g2

o, making the values of C2 and C3 small. The nonlocal
terms are brought about by long propagation paths which are most sensitive to the effect
of amplification. As will be shown next, the nonlocal correlations are greatly enhanced by
coherent amplification.

The spatial field correlation function in 3D bulk random media is originally derived by
Shapiro (1986). Later, Freund and Eliyahu calculate it at the output surface of a 3D random
medium (Freund and Eliyahu 1992). Similarly, we derive the corresponding expression in the
2D case (Chang et al 2004):

CE(�r) = π(zb/lt)J0(k�r) + 2 sin(k�r)/k�r

πzb/lt + 2
, (24)

where J0 is the zeroth-order Bessel function. The imaginary part of CE(�r) should vanish
due to isotropy (Sebbah et al 2000), which is confirmed by our calculation where its value
is less than 10−3. The real part of CE(�r) is found unchanged in the presence of gain or
absorption, as shown in figure 10(a) for a system of go = 2.2. Equation (24) gives an excellent
fit for passive, absorbing and amplifying systems with the same value of zb/lt. Physically, this
invariance can be explained by the local nature of CE(�r). Spatial field correlation contains
information that comes from the length scale of transport mean free path. lt is always shorter
than the gain length lg: lg/lt > (2ne/π

2) · (L′/lt)
2 � 1, because the system is below the

diffusive lasing threshold (L′ < πlamp). Since amplification occurs on the scale much longer
than lt, it has negligible effect on short-range transport and local spatial correlations.

The spectral field correlation function CE(�ν) contains an important dynamical parameter
of transport—the diffusion coefficient D = velt/2. The spectral correlation width δν is defined
as the width at half maximum of |CE(�ν)|2 divided by a numerical factor 1.46. In a passive
system, δν is equal to the average mode linewidth D/L′2. Since ve can be determined
separately through calculation of energy distribution between air and dielectric scatterers,
the transport mean free path is found by fitting of the real and imaginary parts of CE(�ν)

(figure 10(b)). The value of lt allows us to calculate go. In the presence of absorption,
the numerically calculated CE(�ν) fits well the expression derived in Pnini and Shapiro
(1991), Kogan and Kaveh (1992) and van Rossum and Nieuvenhuizen (1993). In the case of
amplification, we obtain the ‘negative absorption’ formula by replacing the absorption time
τabs = labs/v with the negative amplification time −τamp = −lamp/v:

CE(�ν) = sinh(q0a)

sinh(q0L′)
sin(L′/lamp)

sin(a/ lamp)
, (25)

where q0 = γ+ − iγ−, γ 2
± = (√

1
/
l4
amp + β4 ∓ 1/l2

amp

)/
2, β = √

2π�ν/D and the
randomization length a � l. By fitting CE(�ν) with equation (25), we obtain δν, which
is plotted in figure 11 for systems of go = 4.4 and 9.0. The narrowing of spectral correlation
width by gain is due to partial compensation of light leakage through the system boundary.
Absorption, in contrast, introduces an additional loss mechanism, that leads to an increase
of δν. For both amplifying and absorbing media, the calculated δν agrees well with the
diffusion prediction. This agreement in the case of amplification is unexpected. The ‘negative
absorption’ theory neglects the fluctuation of lasing threshold and assumes that the spectral
width of all modes decreases with gain uniformly. However, the width γ of quasimodes has
a distribution P(γ ), schematically plotted in the inset of figure 11. For a given amount of
gain, the modes with small γ in the tail (�1) of P(γ ) lase, and they are excluded from the
ensemble average. Such selective elimination of the narrowest modes should have led to an
overestimation of δν. The absence of deviation from equation (25) indicates that amplification
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Figure 11. Spectral correlation width δν as a function of amplification time τamp (triangles) or
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are given by the diffusion theory. The inset is a schematic plot of P(γ ).

not only reduces the width of all non-lasing modes, but also enhances the weight of the
quasimodes with narrower-than-average width (within �2) in the averaging.

In figure 11, the diminishing correlation width δν in the amplifying system signifies that
the optical gain approaches the lasing threshold for the quasimode with average decay rate
〈γ 〉. According to equation (25), δν = 0 when sin (L′/lamp) turns to zero at L′/lamp = π .
This ‘average’ lasing threshold agrees with the diffusive lasing threshold derived by Letokhov
(1968). Our calculation shows that the (conditional) average mode linewidth δν can become
smaller than the average mode spacing dν before the diffusive lasing threshold is reached.
Namely, with increasing gain, δν decreases to dν before reaching zero. This means that the
effective Thouless number δ = δν/dν can be reduced to below 1 by coherent amplification
for a system that is diffusive in the absence of gain.

Figure 12 shows the nonlocal part of spatial intensity correlation function, C(�r) −
C1(�r), as a function of τ cr

amp

/
τamp in samples of go = 4.4 and 9.0. τ cr

amp = L′/πve is the
critical amplification time for lasing in the quasimode with average decay rate. According
to Sebbah et al (2002) and Pnini (2001), spatial variation and absorption contribution should
factorize. Accounting for terms up to 1

/
g2

o, we obtain the ‘negative absorption’ expression for
nonlocal intensity correlation (Garcia et al 1993, Pnini and Shapiro 1991, Kogan and Kaveh
1992, van Rossum and Nieuvenhuizen 1993, Sebbah et al 2002, Brouwer 1998):

C(�r, s = L/lamp) − |CE(�r, s)|2 = (1 + F(�r))

×
[

1

4gs

2s(2 − cos 2s) − sin 2s

sin2 s
+

4

g2

sin2 s

s2

×
(

2s2 − s cot s + 1

16 sin2 s
− 3

s2 + s cot s + 1

16 sin4 s
+

3s2

8 sin6 s

)]
, (26)

where F(�r) = |CE(�r)|2. The inset of figure 12 shows the profile of C(�r) − C1(�r),
normalized to its value at �r = 0. For passive, absorbing and amplifying systems, the
spatial variation of C − C1 with �r is almost the same. In particular, the value of C − C1

at �r → ∞ is exactly half of that at �r = 0, in agreement with [1 + F(�r)] dependence.
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Figure 12. C − C1 at �r = 0 and �ν = 0 in absorbing (squares) and amplifying (triangles)
systems. Solid symbols correspond to go = 4.4, open symbols to go = 9. Solid and dashed
curves are obtained from equation (26) without any fitting parameters. The inset compares the
dependence of C − C1 on �r with [F(�r) + 1]/2 (thick line). Thin solid, dotted and dashed lines
represent passive, absorbing and amplifying systems as in figure 10.
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Figure 13. Frequency dependence of nonlocal contribution to C(�ν) normalized to its value
at �ν = 0. The inset shows the local contribution C1(�ν) = |CE(�ν)|2. System parameters
and symbol notation are the same as in figure 10. The open (solid) arrow shows the direction of
increasing gain (absorption).

This suggests that amplification increases the nonlocal correlations at every �r uniformly.
Therefore, the enhancement can be characterized by a single number, e.g., the value of C −C1

at �r = 0 as shown in figure 12. In two absorbing samples of go = 4.4 and 9, the decrease
of nonlocal correlations is in good agreement with the diffusion prediction. For amplifying
media, only when the fraction of omitted lasing realizations is small, equation (26) adequately
describes the nonlocal correlations of the transmitted intensity. For high gain, we see strong
deviations: even after removing the lasing realizations, nonlocal correlation still exceeds the
‘negative absorption’ prediction (equation (26)). The deviation becomes more pronounced
as go decreases. The rapid increase of nonlocal correlation with gain is caused by enhanced
contribution from long trajectories that cross upon themselves.

Finally, we calculate the spectral correlations of transmitted intensities. Figure 13 reveals
the changes of C1(�ν) and C(�ν) − C1(�ν) caused by amplification or absorption. The
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frequency separation �ν is normalized to the average mode linewidth δν of the passive system.
C(�ν)−C1(�ν) is also normalized to its value at �ν = 0. Both C1 and C −C1 are narrowed
by amplification and broadened by absorption. While the narrowing of C1(�ν) with increasing
gain is similar to that of a passive system with decreasing go, the narrowing of C(�ν)−C1(�ν)

is just the opposite. When a passive system approaches the localization transition, the most
conducting channels dominate the transport and correlations. Thus, after normalizing �ν by
the correlation width δν, C(�ν)−C1(�ν) is widened as go decreases in a passive system, but
it is narrowed with the fixed go and increasing gain. This remarkable difference illustrates that
in a passive system near the localization transition, the quasimodes with larger-than-average
width dominate the transport, while in a diffusive system with sufficient gain, the quasimodes
with narrower-than-average width are preferably amplified and become dominant.

6.2. Statistical distribution of transmission coefficient in amplifying random medium

Our FDTD algorithm can also be applied to the numerical study on fluctuations of transmission
and reflection (Yamilov and Cao 2004b). From the numerical data, we extract the statistical
distributions of the following quantities: (i) Tab (Rab), the transmission (reflection) coefficient
from an incoming channel a to an outgoing channel b; (ii) Ta = ∑

b Tab (Ra = ∑
b Rab),

total transmission (reflection) coefficient from channel a to all outgoing channels; (iii)
gT = ∑

a,b Tab

(
gR = ∑

a,b Rab

)
, transmittance (reflectance). The dimensionless conductance

gc ≡ 〈gT 〉. Our numerical calculation reveals the quantitative changes brought by
amplification to these distributions. In the following, the numerical result of statistical
distribution of normalized transmission coefficient sab = Tab/〈Tab〉 is presented as an example.

We again consider the quasi-1D system described in the last subsection. P(sab) is obtained
by collecting the data of transmitted intensity from many random configurations. Among them,
there exist rare configurations that could lase even in the presence of low gain. Light intensity
would diverge if gain depletion were neglected. In the diffusion regime go � 1, this problem
is limited only to the immediate vicinity of the diffusive lasing threshold (Zyuzin 1995).
For the systems we consider, go < 10, strong fluctuation of the lasing threshold results in
a non-negligible percentage of lasing realizations even at moderate gain (i.e., not very close
to the diffusive lasing threshold). Although gain saturation could prevent the divergence of
light intensity, the actual value of the saturated intensity depends on the properties of the gain
material. In order to eliminate any material-dependent effect on P(sab), we disregard the
contributions of the lasing configurations to the intensity distribution. To compare the effect
of amplification to that of absorption, we also calculate P(sab) in the same random system
with absorption.

Figure 14 compares P(sab) in a quasi-1D sample (go = 2.2) with gain or absorption to
that without it. τamp = −τabs = 5τ cr

amp. Even at such low level of gain, some of the random
realizations lase, due to strong fluctuation of lasing threshold. The numerical results presented
in figure 14 contain only the contributions from non-lasing realizations. Figure 14 shows that
the presence of gain leads to an increase of P(sab) in the regions sab  1 and sab � 1, and
therefore an enhancement of intensity fluctuations. The effect of absorption is exactly the
opposite.

P(sab) in an amplifying system can be well fitted with the following distribution:

P(sab) =
∫ ∞

0

dsa

sa

P (sa) e−sab/sa , (27)

where the distribution of the normalized total transmission coefficient sa = Ta/〈Ta〉 is

P(sa) =
∫ i∞

−i∞

dx

2π i
e[xsa−�0(g

′,x)], (28)
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Figure 14. Numerically calculated P(sab) for a sample of go = 2.2 with and without
gain/absorption. The arrows mark the directions of increasing gain and absorption. Dashed
lines represent the fit with equations (27) and (28); g′ = 1.5 (absorption), 1.25 (passive) and
0.65 (gain).

with �0(g
′, x) = g′ ln2(

√
1 + x/g′ +

√
x/g′). Equation (28) is derived originally by Kogan

et al under the assumption of gc � 1, thus g′ = gc = go (Kogan et al 1993). Genack and
co-workers demonstrate that equation (28) works well even for moderate values of gc ∼ 10
and in the presence of significant absorption (Stoytchev and Genack 1997, 1999, Chabanov
et al 2000, Genack and Chabanov 2001). Based on the statistics of sab, the localization
criterion,

g′ ≡ 2
3 var(sa) ≡ 4

3 [var(sab) − 1], (29)

equal to unity is surmised, that is applicable to absorbing system (Chabanov et al 2000). The
above definition of g′ can be used, irrespective of whether equation (28) holds. However, if
equation (28) is applicable, g′ obtained from equation (29) should match the one obtained from
the fit of the entire distribution of sab with equations (27) and (28) (Kogan and Kaveh 1995).
Our numerical results demonstrate that equations (27) and (28) still hold in an amplifying
system. However, amplification reduces the value of g′, while absorption increases it.

Figure 15 shows the effect of amplification or absorption on g′ for three samples of
go = 7.6, 4.4, 2.2. δ is obtained from the calculation of CE(�ν). The superlinear increase of
1/g′ with 1/δ in figure 15 illustrates that g′ decreases significantly faster than δ with increasing
gain. This indicates that intensity fluctuations are more sensitive to amplification than the
average mode linewidth δν. In contrast, the absorption causes a reduction of fluctuations. The
sublinear decrease of 1/g′ with 1/δ in figure 15 reveals that g′ increases slower than δ with
increasing absorption. The dependence of g′ on the absorption time τabs can be determined
pertubatively from the known result for var(sab) in an absorbing system of go � 1:

4

3g′
o(go, τabs)

≡ var(sab) − 1 = 4

3go
A2(τabs) +

8

15g2
o

A3(τabs), (30)

where A2(τabs) and A3(τabs) are given in Sebbah et al (2002) and Pnini (2001). The expressions
for Ai are derived for absorbing systems, where τ is positive. In the case of amplifying media,
τamp is negative, the contribution of lasing realizations should be omitted to avoid the divergence
of var(sab). For the two samples of larger go, we compare our data to equation (30) in the
inset of figure 15. δ(go, τamp) is found from the width of |CE(�ν)|2. By eliminating τamp

from g′(go, τamp) and δ(go, τamp), we obtain g′(δ), shown as the solid lines in figure 15. The
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Figure 15. Numerical data of 1/g′ versus 1/go for samples of go = 7.6 (circles), 4.4 (squares),
2.2 (triangles). In the zeroth order of 1/go, g′(go) = go (dotted line). The dash-dotted line is g′(go)

with the first-order correction. Dashed line plots the exact solution g(go) from Mirlin (2000). The
inset shows the linear dependence of δ on go. The solid line has a slope of 1.

deviations of our data points from the solid line increase with a decrease in go, because the
contributions of the higher order terms in 1/go cannot be neglected.

Amplification results in an increase of g′ and δ, but a decrease of gc. The changes caused
by absorption are the opposite for g′ and δ, but the same for gc. With the increase of absorption,
δ increases without a bound, while g′(τabs → 0) approaches (4/3)g′(τabs → ∞) in the limit
gc � 1. In sharp contrast, in amplifying systems g′ diminishes superlinearly with τ cr

amp

/
τamp

(inset of figure 15), while δ decreases almost linearly with τ cr
amp

/
τamp as shown in figure 11.

Our numerical result in the inset of figure 15 also suggests that g′ fall below unity prior to δ

in an amplifying system. Therefore, g′ is more sensitive to amplification but less sensitive to
absorption than δ.

7. Closing remark

Over the last few years, random lasers with coherent feedback have been realized in many
material systems such as semiconductor nanostructures (Cao et al 1998, Mitra and Thareja
1999, Thareja and Mitra 2000, Sun et al 2003, Yu et al 2004a, 2004b, Leong et al 2004, Hsu
et al 2005, Yuen et al 2005a, Lau et al 2005), organic films and nanofibres (Anni et al 2003,
Guochi et al 2004, Klein et al 2005) and hybrid organic–inorganic composites (Yokoyama
and Mashiko 2003, Anglos et al 2004, Song et al 2005). Various schemes have been proposed
to improve the performance of random lasers, e.g., application of external feedback to reduce
the lasing threshold and control the output direction of laser emission (Cao et al 1999a),
optimal tuning of random lasing modes through collective particle resonance (Ripoll et al
2004), coupled-cavity ZnO thin-film random laser for high-power one-mode operation (Yu
and Leong 2004), one-mirror random laser for quasi-continuous operation (Feng and Ueda
2003, Feng et al 2004) and waveguide random laser for directional output (Yuen et al 2005b,
Watanabe et al 2005). The progress is so rapid that it is impossible to detail all of the advances.
Next, I briefly mention a few of them.
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7.1. Partially ordered random laser

One way of reducing the random laser threshold is to incorporate some degree of order into
an active random medium (Chang et al 2003, Yamilov and Cao 2004a, Burin et al 2004).
Shkunov et al have observed both photonic lasing and random lasing in dye-infiltrated opals
(Shkunov et al 2001). However, random lasing has higher threshold than photonic lasing. We
numerically simulate lasing in a random system with variable degree of order. When disorder
is introduced to a perfectly ordered system, the lasing threshold is reduced. At a certain
degree of disorder, the lasing threshold reaches a minimum. Then, it starts rising with further
increase of disorderness. Therefore, there exists an optimum degree of order for minimum
lasing threshold. We map out the transition from full order to complete disorder and identify
five scaling regimes for the mean lasing threshold versus the system size L. For increasing
degree of disorder, the five regimes are (a) photonic band-edge, 1/L3, (b) transitional super-
exponential, (c) bandgap-related exponential, (d) diffusive, 1/L2, and (e) disorder-induced
exponential. Experimentally, we have fabricated disordered photonic crystal lasers (Wu et al
2004a). The most efficient lasing modes are localized defect states near the edge of a photonic
bandgap. Such defect states are formed by structural disorder in a 2D triangle lattice. Another
advantage of the partially ordered random laser is efficient pumping. For example, in a 1D
random stack of resonant dielectric layers, the pump wavelength can be tuned to a pass band
while the emission wavelength stays in a stop band (Feng and Ueda 2004). Then, the pump
light penetrates into the sample, while the emission is confined inside the system. As a result,
the lasing threshold can be significantly reduced.

7.2. Mode interaction

The interaction of lasing modes in a random medium is interesting but complicated. Gain
competition may lead to mode repulsion in real space for homogeneously broadened gain
spectrum or in frequency domain for inhomogeneously broadened gain spectrum (Cao et al
2003a, Jiang et al 2004). In addition, the inhomogeneity of dielectric constant ε(r) modifies the
ortho-normalization condition for the quasimodes and introduces a linear coupling between
the quasimodes mediated by the polarization of the gain medium (Deych 2005). Finally,
the overlapping quasimodes may couple via external bath, that generates excess noise and
broadens the lasing linewidth (Patra et al 2000, Frahm et al 2000, Schomerus et al 2000).

7.3. Nonlinear random laser

Random laser offers an opportunity to study the interplay between nonlinearity and
localization. Nonlinear effect is strong in a random laser because the nonlinear coefficient
is resonantly enhanced at the lasing frequency and the light intensity is high due to spatial
confinement in random media. Noginov et al demonstrate second-harmonic generation in a
mixture of powders of laser and frequency doubling materials (Noginov et al 1998). Our
recent study on the dynamic nonlinear effect in a random laser illustrates that the third-order
nonlinearity not only changes the frequency and size of the lasing modes, but also modifies
the laser emission intensity and laser pulse width (Liu et al 2003). How nonlinearity affects
random lasing process depends on how fast the nonlinear response is. We find two regimes
depending on the relative values of two time scales, one is the nonlinear response time, the
other is the lifetime of the lasing state. For slow nonlinear response, collective scattering of
many particles determines the build-up of a lasing mode. Nonlinearity changes the lasing
output through modification of spatial size of the lasing mode. However, when the nonlinear
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response is faster than the build-up of a lasing mode, the lasing mode cannot respond fast
enough to the nonlinear refractive index change. Rapid change of the phase of scattered
waves undermines the interference effect of multiple scattering. Instead, the nonlinear effect
of single particle scattering becomes dominant. Strong nonlinearity could lead to temporal
instability. One application of optical nonlinearity is upconversion lasing in random media
via two-photon or multi-photon pumping (Zacharakis et al 2002, Fujiwara and Sasaki 2004).
Small two-photon/multi-photon absorption coefficient and weak scattering at long pumping
wavelength allow deep penetration of the pump light into a 3D random medium, thus improving
the spatial confinement of laser emission (Burin et al 2003b).

The potential applications of random lasers will not be discussed here; the reader is
referred to, e.g., Lawandy (1994), Wiersma (2000), Rand (2003) and Cao (2005). The latest
theoretical and experimental studies provide insight into the physical mechanisms for lasing
in random media (Patra 2003a, Florescu and John 2004c, Kretschmann and Maradudin 2004,
Noginov et al 2004a, 2004b, 2004c, Polson and Vardeny 2004, Mujumdar et al 2004a, Gottardo
et al 2004, Li et al 2005, Lubatsch et al 2005, Vasa et al 2005). However, our understanding
of random lasers is far from complete. New ideas and surprises arise frequently, maintaining
the momentum of random laser study. For example, Rand and co-workers investigate the
electrical generation of stationary light (evanescent wave) in ultrafine laser crystal powder
(Redmond et al 2004). Dice et al report the surface-plasmon-enhanced random laser emission
from a suspension of silver nanoparticles in a laser dye (Dice et al 2005). Mujumdar et al
observe emission spikes even when the transport mean free path is much longer than the pump
spot diameter (Mujumdar et al 2004b). The emission spikes are attributed to amplification
of spontaneous emission along very long trajectories, because they are distinct from shot to
shot and thus intrinsically stochastic. However, Polson and Vardeny use the powerful PFT
technique to reveal the underlying periodicity of the emission peaks in similar random samples
(Polson and Vardeny 2005). The ensemble-averaged power Fourier transform of random laser
emission spectra contains a sharp, well-resolved Fourier component and its harmonics, which
are characteristic of a well-defined laser resonator. The formation of such resonators remain
to be understood. Nevertheless, puzzles like these make the random laser an exciting field to
explore!
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Uski V, Mehlig B, Römer R A and Schreiber M 2001 Phys. Rev. B 63 241101
Uski V, Mehlig B and Schreiber M 2000 Phys. Rev. B 62 7699
Vanneste C and Sebbah P 2001 Phys. Rev. Lett. 87 183903
Vanneste C and Sebbah P 2005 Phys. Rev. E 71 026612
van Rossum M C W and Nieuvenhuizen Th M 1993 Phys. Lett. A 177 452
van Rossum M C W and Nieuvenhuizen Th M 1999 Rev. Mod. Phys. 71 313
Vasa P, Singh B P and Ayyub P 2005 J. Phys. Condens. Matter 17 189
Viviescas C and Hackenbroich G 2003 Phys. Rev. A 67 013805
Watanabe H, Oki Y, Maeda M and Omatsu T 2005 Appl. Phys. Lett. 86 151123
Weiss M, Mendez-Germudez J A and Kottos T 2005 Preprint cond-matt/0509195
Wiersma D 2000 Nature 406 132
Wiersma D, van Albada M P and Lagendijk A 1995 Phys. Rev. Lett. 75 1739
Wu X, Yamilov A, Liu X, Li S, Dravid V P, Chang R P H and Cao H 2004a Appl. Phys. Let. 85 3657

http://dx.doi.org/10.1209/epl/i2003-00432-x
http://dx.doi.org/10.1103/PhysRevB.54.11887
http://dx.doi.org/10.1103/PhysRevA.65.043809
http://dx.doi.org/10.1103/PhysRevE.67.016603
http://dx.doi.org/10.1103/PhysRevE.67.065603
http://dx.doi.org/10.1103/PhysRevA.60.4059
http://dx.doi.org/10.1103/PhysRevA.61.023810
http://dx.doi.org/10.1088/1464-4266/6/3/017
http://dx.doi.org/10.1016/0375-9601(91)90064-F
http://dx.doi.org/10.1016/S0379-6779(00)00595-6
http://dx.doi.org/10.1063/1.1782259
http://dx.doi.org/10.1103/PhysRevB.71.045205
http://dx.doi.org/10.1103/PhysRevB.50.9644
http://dx.doi.org/10.1063/1.1759384
http://dx.doi.org/10.1103/PhysRevB.62.256
http://dx.doi.org/10.1103/PhysRevB.61.3163
http://dx.doi.org/10.1364/JOSAB.21.000214
http://dx.doi.org/10.1364/JOSAB.21.000141
http://dx.doi.org/10.1016/S0378-4371(99)00602-0
http://dx.doi.org/10.1103/PhysRevLett.88.123901
http://dx.doi.org/10.1103/PhysRevE.62.7348
http://dx.doi.org/10.1103/PhysRevB.66.144202
http://dx.doi.org/10.1016/S0254-0584(02)00492-3
http://dx.doi.org/10.1103/PhysRevLett.57.2168
http://dx.doi.org/10.1016/S0379-6779(00)00420-3
http://dx.doi.org/10.1103/PhysRevB.72.035424
http://dx.doi.org/10.1103/PhysRevB.65.041103
http://dx.doi.org/10.1016/j.apsusc.2005.01.055
http://dx.doi.org/10.1103/PhysRevLett.79.309
http://dx.doi.org/10.1063/1.1568533
http://dx.doi.org/10.1109/3.541672
http://dx.doi.org/10.1103/PhysRevB.60.12692
http://dx.doi.org/10.1103/PhysRevB.63.241101
http://dx.doi.org/10.1103/PhysRevB.62.R7699
http://dx.doi.org/10.1103/PhysRevLett.87.183903
http://dx.doi.org/10.1103/PhysRevE.71.026612
http://dx.doi.org/10.1016/0375-9601(93)90976-7
http://dx.doi.org/10.1103/RevModPhys.71.313
http://dx.doi.org/10.1103/PhysRevA.67.013805
http://dx.doi.org/10.1063/1.1904717
http://dx.doi.org/10.1038/35018184
http://dx.doi.org/10.1063/1.1808888


Random lasers 10535

Wu X, Yamilov A, Noh H, Cao H, Seelig E W and Chang R P H 2004b J. Opt. Soc. Am. B 21 159
Yamilov A and Cao H 2004a Phys. Rev. A 69 031803
Yamilov A and Cao H 2004b Phys. Rev. E 70 037603
Yamilov A and Cao H 2005 Phys. Rev. B 71 092201
Yokoyama S and Mashiko S 2003 Japan. J. Appl. Phys. 42 L970
Yoshino K, Tatsuhara S, Kawagishi Y and Ozaki M 1999 Appl. Phys. Lett. 74 2590
Yu S F and Leong E S P 2004 IEEE J. Quantum Electron. 40 1186
Yu S F, Yuen C, Lau S P and Lee H W 2004a Appl. Phys. Lett. 84 3244
Yu S F, Yuen C, Lau S P, Park W I and Yi G-C 2004b Appl. Phys. Lett. 84 3241
Yuen C, Yu S F, Leong E S P, Yang H Y and Hng H H 2005a IEEE J. Quantum Electron. 41 970
Yuen C, Yu S F, Leong E S P, Yang H Y, Lau S P, Chen N S and Hng H H 2005b Appl. Phys. Lett. 86 031112
Zacharakis G, Papadogiannis N A and Papazoglou T G 2002 Appl. Phys. Lett. 81 2511
Zhang Z Q 1995 Phys. Rev. B 52 7960
Zyuzin A Yu 1994 Europhys. Lett. 26 517
Zyuzin A Yu 1995 Phys. Rev. E 51 5274

http://dx.doi.org/10.1364/JOSAB.21.000159
http://dx.doi.org/10.1103/PhysRevA.69.031803
http://dx.doi.org/10.1103/PhysRevE.70.037603
http://dx.doi.org/10.1103/PhysRevB.71.092201
http://dx.doi.org/10.1143/JJAP.42.L970
http://dx.doi.org/10.1063/1.123907
http://dx.doi.org/10.1109/JQE.2004.833221
http://dx.doi.org/10.1063/1.1719279
http://dx.doi.org/10.1063/1.1734681
http://dx.doi.org/10.1109/JQE.2005.847903
http://dx.doi.org/10.1063/1.1850595
http://dx.doi.org/10.1063/1.1511284
http://dx.doi.org/10.1103/PhysRevB.52.7960
http://dx.doi.org/10.1103/PhysRevE.51.5274


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 467 doi:10.1088/0305-4470/39/2/C01

Erratum

Review on latest developments in random lasers with coherent feedback
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Figures 3 and 13 were inadvertently switched during the typesetting process. The figures are
shown below with correct numbering and captions.
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Figure 3. Spectrally integrated intensity of emission from the ZnO microcluster as a function of
the incident pump pulse energy. The inset is the SEM image of the microcluster.
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Figure 13. Frequency dependence of nonlocal contribution to C(�ν) normalized to its value
at �ν = 0. The inset shows the local contribution C1(�ν) = |CE(�ν)|2. System parameters
and symbol notations are the same as in Fig. 10. The open (solid) arrow shows the direction of
increasing gain (absorption).
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