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We investigate numerically rotation-induced changes of optical resonances in wavelength-scale dielectric cavities
that are deformed from a circle. The relative change in the quality factor due to rotation is usually larger than that
of the resonant frequency, even though both exhibit a threshold behavior, i.e., they barely change at low rotation
speed. This threshold is increased at large deformation, which lowers the sensitivity to rotation. Presence of wave
chaos can further increase the threshold for rotation-induced changes in resonant frequencies. Unlike the resonant
frequency and quality factor, the change in far-field emission pattern by rotation does not display a threshold
behavior, thus having a higher sensitivity at low rotation speed. The threshold behavior can be eliminated by
designing the cavity shape with special symmetry, and the response of the far-field emission to rotation is also
enhanced. © 2015 Optical Society of America
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1. INTRODUCTION

Optical microcavities have been explored for various applica-
tions such as coherent light sources in integrated photonic cir-
cuits, single-photon emitters, and biochemical sensors [1,2].
One potential application that has received attention recently
is an ultrasmall on-chip optical gyroscope [3–18]. Almost all
conventional optical gyroscopes rely on the Sagnac effect for
rotation sensing [9,11,19,20]. The Sagnac effect refers to
rotation-induced phase shift between two counter-propagating
waves in an optical loop. In a resonant cavity, the Sagnac effect
causes frequency splitting between a pair of degenerate or quasi-
degenerate modes. Since the Sagnac effect scales linearly with
the cavity size [19,21], microcavities have much lower fre-
quency response to rotation. As such, rotation-induced changes
in other characteristics of microcavity resonances, such as the
quality (Q) factor and the emission pattern, have been inves-
tigated in recent years [6,14,16–18].

Stationary microcavities with shape deformed from a circle
have generated a lot of interest in the past two decades, with the
quest to achieve optimal directional radiation from microlasers.
Deformed microcavities also have been explored for rotation
sensing, with the focus on rotation-induced changes in resonant
frequencies of closed cavities [4,5,8,16,19]. Unfortunately, the
shape deformation often lifts the frequency degeneracy of cavity
modes, causing a threshold behavior for the rotation-induced

change of the resonant frequencies. Recently, we proposed to
use rotation-induced change in the emission directionality of
an open deformed microcavity as a more sensitive measure of
the rotation speed than that of the resonant frequency [17].

In this paper, we present a detailed numerical study on the
effects of rotation on optical resonances in deformed microcav-
ities with an open boundary. In particular, we investigate how
the resonant frequencies, Q factors, and far-field emission
patterns are modified by rotation in two-dimensional (2D)
dielectric microcavities of various shapes. The Q factor, which
determines the lasing threshold and the output power, is gen-
erally more sensitive to rotation than the resonant frequency.
The wave chaos [22,23], which is common in deformed micro-
cavities, increases the threshold for the rotation-induced change
of the resonant frequencies. This threshold can be removed by
designing the cavity shape to have degenerate stationary reso-
nances. By investigating the dependence of rotation-induced
far-field change on the cavity shape, we find the directional
output from the deformed microcavities is a more sensitive
signature of rotation. The cavity shape can actually be used
as a parameter to tune the magnitude of the rotation-induced
changes of cavity resonances.

Various methods have been developed to study photonic
structures in a rotating frame [24–30]. In this work, we numeri-
cally calculate the cavity resonances using the finite-difference
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time-domain (FDTD) method and the scattering matrix
method, which are adapted to the rotating frame. More details
about these simulation methods can be found in [14,16,17].
Below, we consider a dielectric microdisk in free space; the disk
thickness is much less than its radius, so it can be approximated
as a 2D cavity with an effective index of refraction n. We present
the results of the transverse magnetic (TM) resonances with the
electric field perpendicular to the disk plane (parallel to the z
axis) and the magnetic field parallel to the plane (the x–y plane).
The disk rotates about the z axis in the counterclockwise
direction with a constant angular velocity of rotation Ω. The
rotation is slow enough thatΩR ≪ c, where R is the disk radius,
and we keep only the leading-order terms of ΩR∕c in the wave
equation. In the rotating frame where the disk is stationary,
the Maxwell equations retain their form, but the constitutive re-
lations are modified [14,24,25,31].

In a stationary circular cavity, clockwise (CW) and counter-
clockwise (CCW) propagating waves do not couple, and they
form two degenerate resonant modes of the cavity, which are
characterized by the azimuthal number m and radial number l.
The superposition of these two modes can form standing waves
(with sine and cosine angular dependence), which are also res-
onant modes of the cavity. With rotation, the CW and CCW
waves experience different refractive indices, and their frequen-
cies start to split [4]. This frequency splitting is linearly propor-
tional to the rotation velocity Ω. Since rotation makes the
CW and CCW waves nondegenerate, the only resonances of a
rotating circular cavity are the nondegenerate CW and CCW
resonant modes.

In deformed stationary cavities, however, the CW and CCW
waves may be coupled by scattering from the nonisotropic cavity
boundary, and they form two quasi-degenerate resonances of
frequency splitting Δk0. With rotation, the frequency difference
between these two quasi-degenerate resonances can be written
as [4]

Δkr�Ω� �
�
Δk20 �

�
g
c
Ω
�

2
�1

2

; (1)

where g is a coupling constant that is proportional to the size of
the cavity. Only when the rotation velocity Ω exceeds a certain
threshold value Ωc � cΔk0∕g , the rotation-induced frequency
shift gΩ∕c becomes comparable with the intrinsic splitting
Δk0. For Ω < Ωc, Δkr is approximately equal to Δk0 and is
barely changed by rotation. Hence, there exists a “dead zone”
at low rotation speed for the rotation-induced change of the res-
onant frequencies. Once the rotation-induced frequency shift is
much larger than the intrinsic splitting, Δkr approaches its
asymptote gΩ∕c and increases linearly with the rotation speed.
Nonmonotonic behavior of the frequency splitting is also pos-
sible due to rotation-induced mode coupling in open microcav-
ities [16]. The threshold rotation speed, Ωc , usually decreases
with the cavity size, as intrinsic splitting, Δk0, reduces exponen-
tially with the cavity size, whereas g increases linearly [32].

2. ELLIPTICAL CAVITIES

In this section, we begin with a simple deformed cavity shape,
the ellipse [32–37], as drawn in Fig. 1(a). In Cartesian
coordinates, the cavity boundary is given by �x∕a�2�

�y∕b�2 � 1, where 2a and 2b are the lengths of the minor
and major axes, respectively (a < b). We vary the ratio a∕b,
while keeping the area πab constant. For the results presented
below, we set R �

ffiffiffiffiffi
ab

p
� 0.54 μm, and the wavelength (in

vacuum) λ is around 0.72 μm. The refractive index is equal
to 3.0 inside the cavity and 1.0 outside. For a∕b close to 1,
the high-Q modes resemble the whispering-gallery (WG)
modes in a circular disk, and they each can be assigned a dom-
inant azimuthal numberm and a radial number l. The coupling
between CW and CCW waves in the ellipse results in a fre-
quency splitting Δk0. The quasi-degenerate pair of modes have
even and odd symmetry with respect to the major or minor
axes, as seen in an example given in Figs. 1(b) and 1(c).

(b) (c)

Fig. 1. Rotation-induced changes in the resonances of elliptical
cavities. (a) A 2D microcavity of elliptical shape. The lengths of
the minor and major axes are 2a and 2b, respectively. The deformation
is characterized by the ratio a∕b < 1. (b) and (c) Spatial distribution of
the electric field magnitude (jEz j) for a pair of quasi-degenerate modes
in the elliptical cavity with a∕b � 0.88 and refractive index n � 3.0.
The two modes, resembling the whispering-gallery modes in a circular
cavity, are characterized by the dominant azimuthal number m � 11
and radial number l � 1. They possess even and odd symmetry with
respect to the minor axis (x axis). (d) Schematic showing the frequency
splitting Δk0 of a quasi-degenerate pair of modes (solid lines) in an
elliptical cavity without rotation, and the frequency splitting Δkr with
rotation. The higher-frequency (lower-frequency) mode of the quasi-
degenerate pair is blueshifted (red) by rotation (dashed lines).
(e) Normalized frequency shift ΔkrR as a function of the normalized
rotation speed ΩR∕c for a pair of quasi-degenerate modes with m �
11 and l � 1 in the ellipse with a∕b � 0.88 (red dashed line) and
0.92 (black solid line). Their normalized frequencies are approximately
the same, kR ≃ 4.73, where k � 2π∕λ and R �

ffiffiffiffiffi
ab

p
is the average

radius of the cavity. (f ) Magnitude of rotation-induced changes in
Q , jΔQj, for the same pair of modes in (b). Black solid line and
red dashed line correspond to a∕b � 0.92 and 0.88, respectively.
(g) Relative changes in the resonant frequency Δkr∕k0 and the quality
factorΔQ∕Q0 for the corresponding modes in (e) and (f ). The vertical
axis is shown in log scale to demonstrate the difference in magnitude
between Δkr∕k0 and ΔQ∕Q0.
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The stronger the deformation, i.e., the smaller the ratio a∕b,
the larger the splitting Δk0.

When the ellipse rotates, the higher-frequency mode of the
quasi-degenerate pair is blueshifted, and the lower-frequency
one is redshifted [Fig. 1(d)]. We numerically calculate the fre-
quency splitting Δkr in the rotating ellipse using the FDTD
method. A spatial grid size of 4 nm is used, and each time step
is 6.6 × 10−18 s. The simulation is run typically for 20 × 106

time steps to resolve the frequency shift by rotation. At very
low rotation speed, the frequency shift is so small that extremely
long running time is required. In such a case, we resort to the
scattering matrix approach. Figure 1(e) plots the value ofΔkr as
a function of rotation speed Ω for a pair of quasi-
degenerate modes with m � 11 and l � 1 in the ellipse with
a∕b � 0.88 (dashed line) and 0.92 (solid line). Their normal-
ized frequencies are approximately the same, kR ≃ 4.73, where
k � 2π∕λ and R �

ffiffiffiffiffi
ab

p
is the average radius of the cavity. The

threshold values, expressed as ΩcR∕c, are on the order of ∼10−7
and ∼10−9 for the ellipses with a∕b � 0.88 and 0.92, respec-
tively, below which the frequency spacing of the two resonances
remains nearly unchanged from Δk0. Thus, the larger deforma-
tion leads to a wider dead zone. For Ω > Ωc, Δkr increases
linearly with Ω in both cavities, as it is dominated by rotation-
induced frequency splitting.

The cavity shape deformation also causes a dead zone in the
rotation-induced change ofQ, as shown in Fig. 1(f ). The quasi-
degenerate pair of resonances have slightly different Q even at
Ω � 0. ForΩ ≫ Ωc, the Q for one mode increases with Ω and
decreases for the other. The magnitude of the change in Q due
to rotation, jΔQj, is the same for the pair (to the leading order
of RΩ∕c [16]). The larger the deformation (smaller a∕b), the
wider the dead zone for jΔQ j. Beyond the dead zone, the larger
slope of jΔQj versus Ω for a smaller value of a∕b indicates the
cavity with weaker deformation is more responsive to rotation.

In Fig. 1(g), we compare the relative changes in resonant
frequency and Q factor due to rotation, i.e., Δkr∕k0 and
ΔQ∕Q0, where k0 and Q0 are the average frequency and qual-
ity factor for the quasi-degenerate pair of modes at Ω � 0.
ΔQ∕Q0 is more than one order of magnitude higher than
Δkr∕k0, indicating the relative change ofQ by rotation is much
larger than that of frequency in the wavelength-scale elliptical
cavity.

Next, we investigate the rotation-induced changes in the
output intensity patterns of elliptical cavities with the FDTD
method. As the radius of curvature varies along the cavity
boundary, the strongest emission occurs at the locations of
the highest curvature. The main emission directions for the
elliptical cavities are therefore parallel to the minor axis of the
ellipse (x axis, θ � 0°, 180°). As shown in Fig. 2(a), the far-field
intensity patterns for a stationary quasi-degenerate pair of
modes have even and odd parity with respect to the major
and minor axes of the ellipse, and there are several lobes around
θ � 0°, 180° as a result of the interference of the emission from
CW and CCW waves in the cavity. By decomposing the field
outside the cavity into CW and CCW wave components,
we identify the far-field patterns for CW and CCW waves
[Fig. 2(b)]. The CW and CCW in the stationary resonances
do not emit exactly in the same directions, even though they

are symmetrical about the major and minor axes. This differ-
ence is caused by wave effects, including the Goos–Hänchen
shift and Fresnel filtering, which become significant in the
wavelength-scale cavities [38–41].

With increasing rotation speed, the standing-wave modes
evolve to CW and CCW traveling-wave resonances, and the
interference fringes in the far-field patterns vanish in Fig. 2(c).
Moreover, output directions for CW and CCW waves are no
longer symmetric with respect to the major and minor axes,
as both rotate slightly in the direction of rotation (CCW).
This behavior is attributed to the rotation-induced change in
the refractive index, namely, the index increases with for the
co-propagating wave (propagating in the same direction as
the rotation) and decreases for the counterpropagating wave.
In the elliptical cavity with smaller a∕b, the difference between
the CW and CCW output directions at Ω � 0 is larger, and
the rotation-induced change in the far-field pattern is smaller
[Figs. 2(d)–2(f )].

To quantify the far-field change by rotation, we compute
using the scattering matrix method, ΔI �Ω� ≡

R jIΩ�θ�−
I 0�θ�j2dθ, where IΩ�θ� (I0�θ�) represents the angular
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Fig. 2. Evolution of far-field emission patterns of elliptical micro-
cavities with rotation. The deformation of the ellipse is a∕b � 0.92 in
(a)–(c) and 0.88 in (d)–(f ). (a) and (d) Angular distribution of far-field
intensity I�θ� (at r � 50R) of quasi-degenerate pairs of modes shown
in Fig. 1 at ΩR∕c � 0. The blue solid (green dashed) curve represents
the mode with even (odd) symmetry with respect to the x axis. (b) and
(e) Angular distribution of far-field intensity for the CW and CCW
wave components in the stationary resonances shown in (a) and (d).
The solid (dashed) curve represents the CW (CCW). The output
directions of CW and CCW waves are symmetric with respect to
the horizontal axis. (c) and (f ) Angular distribution of far-field inten-
sity I�θ� (at r � 50R) of the modes in (a) and (d) at ΩR∕c � 10−4.
The interference fringes in the output intensity patterns of stationary
cavity (a) and (d) vanishes, as the modes evolve from standing wave
to traveling wave with rotation. The emission patterns of the two
traveling-wave modes at high rotation speed are not symmetric with
respect to the horizontal axis.
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distribution of far-field intensity at rotation speed Ω (without
rotation, Ω � 0), normalized by

R
IΩ�θ�dθ � R

I0�θ�dθ � 1.
Figure 3(a) is a logarithmic plot of ΔI versus Ω for the higher-
frequency mode of the quasi-degenerate pair in Fig. 1. As Ω
increases, ΔI does not exhibit a threshold behavior: it changes
linearly with the rotation speed inside the dead zone of
rotation-induced change of the resonant frequencies.

This is because, even within the dead zone, the balance
between the CW and CCW wave components in the cavity
resonance is already broken by rotation; such imbalance, albeit
weak, modifies the interference between the CW and CCW
waves and causes a notable change in the far-field pattern [17].
At low rotation speed, ΔI increases rapidly with Ω and then
tapers off once Ω exceeds Ωc , as the resonances already become
CW and CCW dominated and their far-field patterns barely
change further, except for a gradual rotation of the intensity
patterns in the direction of rotation as mentioned above.
Since the interference vanishes much faster in the cavity with
smaller deformation (a∕b � 0.92), the magnitude of ΔI at low
rotation speed is orders of magnitude larger when compared
with the cavity with larger deformation (a∕b � 0.88).
Figure 3(b) plots the polar angle of a far-field emission peak
for the CW-dominant mode at high rotation speed, and it in-
creases linearly with Ω. The other emission peak moves in the
same direction at the same speed.

Here, we have presented only the results for the higher-
frequency mode of the quasi-degenerate pair; the lower-
frequency mode is redshifted by rotation and the magnitude
of change is the same as that for the higher-frequency mode.

3. QUADRUPLE CAVITY

While the elliptical cavity has integrable ray motion, many de-
formed cavities support partially or fully chaotic ray dynamics.
Harayama et al. studied the rotation-induced change of the res-
onant frequencies in a rotating chaotic microcavity with a
closed boundary [5]. In this section, we investigate how wave
chaos modifies the optical resonances of an open chaotic micro-
cavity in the rotating frame. To isolate the effects of wave chaos,
we compare a similarly deformed quadruple cavity and elliptical
cavity, with chaotic ray dynamics supported only by the former

[23]. The cavity boundary of a quadruple cavity is described by
r � R�1� ϵ sin�2θ�� in the polar coordinates, where R is the
average radius and ϵ is the deformation parameter. When ϵ is
small, it is nearly impossible to distinguish a quadruple cavity
and an elliptical cavity by eye, as Fig. 4(a) shows. This is be-
cause an ellipse is approximately

r�θ� ≈
ffiffiffi
2

p
bffiffiffiffiffiffiffiffiffiffiffi

2 − F
p

�
1� F

4 − 2F
sin�2θ�

�
(2)

to the leading order of F � 1 − �a∕b�2.
It requires an extremely fine spatial grid in the numerical

simulation to capture the tiny difference in the shape of cavity
boundary; hence, the results presented in this section are
obtained by the scattering matrix method [17], which does
not rely on spatial discretization [16,17].

Since the elliptical cavity is integrable while the quadruple is
not, Kolmogorov–Arnold–Moser (KAM) transition [22] only
occurs in the latter. Figures 4(b) and 4(c) shows the
Póincare surface of section (SOS) [42,43] for the elliptical
and quadruple cavities. The SOS displays phase space trajecto-
ries as points in a 2D plot with coordinates θ and sin χ, where θ
is the azimuthal angle for the point on the cavity boundary, and
χ is the incident angle at the cavity boundary. The red dashed
lines mark the critical angle for total internal reflection.

The SOS of the quadruple cavity in Fig. 4(c) exhibits a
mixed phase space (partially regular and partially chaotic) with
islands that correspond to quasi-periodic orbits around stable
fixed points. Nevertheless, there still exist continuous KAM
curves in the Póincare surface of section in the region of large
incident angles in a quadruple cavity, due to regular ray motions
similar to those in an ellipse [Fig. 4(b)]. These KAM curves
represent WG modes in both cavities [Figs. 5(a) and 5(b)],
and one would expect these modes to behave similarly upon
the rotation of the cavity.

The above discussion, however, does not take into account
wave tunneling effects. There are two tunneling processes: one
is the tunneling between CW and CCW waves in a stationary
resonance; the other is the tunneling from the inside of the

Fig. 3. Quantitative changes in the emission patterns of elliptical
cavities by rotation. (a) Rotation-induced change in the far-field inten-
sity pattern I�θ� as a function of the normalized rotation speed ΩR∕c
for the blueshifted modes. The black solid (red dashed) line corre-
sponds to the mode in the elliptical cavity with a∕b � 0.92 (0.88).
(b) Polar angle for a major emission peak of the CW-wave-dominant
mode increases with rotation. Black solid black (red dashed) line
corresponds to the ellipse with a∕b � 0.92 (0.88).

Fig. 4. Comparison of a chaotic cavity to a nonchaotic one with a
similar boundary. (a) Boundaries of an ellipse cavity with a∕b � 0.92
and ab � R2 (black dashed line) and a quadruple cavity of r�θ� �
R�1� 0.044 sin�2θ�� (red line) in the first quadrant, which almost
overlap. (b) Poincaré surface of section of the elliptical cavity consisting
only of KAM curves, due to the integrable ray motion. Only the sec-
tion for θ ∈ �0; π� and sin χ > 0 is shown; the rest can be obtained by
symmetry operation. Red dashed lines mark the critical angle at
sin χ � 1∕n. (c) Poincaré surface of section (SOS) of the quadruple
cavity consisting of KAM curves, islands, and chaotic regions, reflect-
ing the partially chaotic ray dynamics. The horizontal coordinate θ is
the azimuthal angle for the point on the cavity boundary; the vertical
coordinate is sin χ, and χ is the incident angle at the cavity boundary.
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cavity to the outside, which leads to emission. In an ellipse, the
above tunneling processes for a WG-type mode can only be
realized via direct tunneling, which has to overcome the wide
separation of the KAM curves with opposite sin χ in the SOS
or that from the KAM curve to the leaky region below the criti-
cal line for total internal reflection. In a quadruple, however, the
presence of chaotic regions in the SOS enables the chaos-
assisted tunneling, which is a combination of tunneling over a
short distance from the KAM curve to the neighboring chaotic
region and the chaotic diffusion to the leaky region [44,45].

The chaos-assisted tunneling increases the splitting of
quasi-degenerate modes at Ω � 0 [46,47]. Consequently, the
quadruple cavity has a much larger dead zone compared with
the similarly deformed elliptical cavity, as shown in Fig. 5(c).
Beyond the dead zone, the frequency splitting, determined by
the azimuthal number m, becomes similar for these two pairs of
resonances.

Next, we examine the far-field emission from the rotating
quadruple cavity. As shown in Fig. 5(d), the output directions
of the CW and CCW wave components in the stationary
resonances slightly deviate from 0°, 180°. This is similar to the
elliptical cavity [Fig. 5(e)], but the deviation is larger in the
quadruple cavity. The rotation-induced change in far-field

intensity pattern ΔI exhibits the same trend, as discussed in
the previous section. Since the dead zone is much wider in the
quadruple due to wave chaos, the change in the far-field inten-
sity pattern by rotation is much smaller than in the elliptical
cavity at low rotation speed [Fig. 5(f )].

4. DEFORMED CAVITIES WITH DEGENERATE
MODES

The resonances of the deformed microcavities studied above
are already nondegenerate at rest, causing a dead zone for
the rotation-induced change of the resonant frequencies. To
eliminate the dead zone, Sunada and co-workers chose the
cavities with special symmetry such as Dν [4,5].

A special example is the dihedral group of ν � 3, referred
to the D3 cavity, which has the same rotation and reflection
symmetries as an equilateral triangle. The cavity boundary is
defined in the polar coordinates by r�θ� � R�1� ϵ cos�3θ��,
where R is the radius and ϵ is the deformation parameter.
Such a cavity supports degenerate resonances at Ω � 0 if their
wavefunctions do not possess simultaneous rotation and reflec-
tion symmetries or, in other words, the azimuthal numbers of
these resonances are not integer multiples of 3. As a result of
this degeneracy, the rotation-induced change of the resonant
frequencies has no dead zone for such resonances. The previous
studies of Sunada et al., however, are limited to the closed
cavities. In this section, we investigate the open D3 cavity and
track the changes in resonant frequency, Q factor, and emission
pattern due to rotation. Because a small perturbation of the
boundary of the cavity (for example, finite grid size used in
FDTD simulation) could lift the degeneracy, the calculations
in this section were done using the scattering matrix method.

With small deformation, the ray dynamics in the D3 cavity
is partially chaotic. The Poincaré surface of section has continu-
ous KAM curves that support high-QWGmodes. In Fig. 6, we
compare a degenerate pair of WG modes with the dominant
azimuthal number m � 16 in two D3 cavities of different de-
formations ϵ � 0.015, 0.025. The cavity radius is R � 1.6 μm
and λ ∼ 1.5 μm. Thanks to the degeneracy, each of the pair can
be represented by a CW or CCW traveling wave only and has a
smooth intensity distribution along the cavity boundary
[Figs. 6(a) and 6(b)]. Figure 6(c) plots the frequency difference
of the pair, which increases linearly with the rotation speed.

Although the magnitude of the frequency splitting is similar
for the two deformations, the rotation-induced change in Q is
very different, as seen in Fig. 6(d). The cavity of the smaller ϵ
has a higher Q at rest, and the Q change by rotation is larger by
more than one order of magnitude. The two degenerate CW
and CCW resonances in the stationary D3 cavity have the dis-
tinct far-field patterns, as shown in Fig. 7(a) for ϵ � 0.015. At
high rotation speed, the emission peak positions shift due to
rotation [Fig. 7(b)]. The rates of shifts, given by the slope
of peak position versus Ω in Fig. 7(b), are comparable for
the deformations ϵ � 0.015, 0.025. This is expected because
the modes of both cavities have the same dominant m.

Although an ideal D3 cavity is free of a dead zone, in reality
the boundary defect and roughness, generated unintentionally
during the fabrication processes, cause the coupling between
CW and CCW waves, lifting the frequency degeneracy of

Fig. 5. Rotation-induced changes in the resonances of a quadruple
cavity, which are compared with those of an elliptical cavity shown in
Fig. 4. The cavity radius is R � 1.5 μm, and the resonance wavelength
(in vacuum) is λ ∼ 1.5 μm. (a) and (b) The spatial distribution of field
intensity of the even-parity resonance about the horizontal axis in the
(a) quadruple cavity and the (b) elliptical cavity. The refractive index is
n � 3.0 inside the cavity and 1.0 outside. The modes are WG-like,
with the radial number l � 1 and the dominant azimuthal number
m � 15. (c) Frequency splitting ΔkrR as a function of the normalized
rotation speed ΩR∕c for the two modes in (a) and (b). Black dashed
line and red solid line show the resonances in the ellipse and quad-
ruple, respectively. Blue dotted line shows the frequency splitting
ΔkrR of resonances with the same radial number and azimuthal num-
ber in a circular cavity with the same refractive index and similar ra-
dius. (d) and (e) Angular dependence of the far-field intensity for the
CW (red solid line) and CCW (black dashed line) wave components in
the resonances shown in (a) and (b) of the (d) stationary quadruple
cavity and (e) elliptical cavity. (f ) Plot of the rotation-induced change
in far-field intensity pattern ΔI versus the normalized rotation speed
ΩR∕c for the modes in (a) and (d) (red solid line) and (b) and (e) (black
dashed line).
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the resonances at rest and creating a dead zone. In context to
microcavities, in general it is known that disorder, or any ran-
dom superposition of high-order harmonic perturbations, leads
to a splitting of the resonances at rest. Compared with the cir-
cular cavity, the D3 cavity is more robust against the boundary
imperfections because its mode intensity maximizes only at
three localizations on the boundary [Figs. 6(a) and 6(b)] instead
of uniformly distributed across the entire boundary as a WG
mode of a circular cavity. One possible way to further reduce

the size of the dead zone and thus increase the sensitivity to
rotation is using single crystalline cavities that can be grown
by epitaxy methods and have atomic-flat surfaces. One such
candidate is hexagon cavities, which belong to a higher sym-
metry group (ν � 6) and also support degenerate modes.

5. CONCLUSION

To conclude, we studied rotation-induced changes in the res-
onances of wavelength-scale dielectric microcavities of different
shape deformations. In elliptical cavities, the rotation-induced
frequency shifts, and Q changes show a threshold behavior be-
low a certain value of rotation speed in which the changes are
negligible. Increasing the deformation raises the threshold value
and, hence, lowers the responses to rotation. Above the thresh-
old value, both frequency and Q factor of the modes change
linearly as a function of rotation speed, and the relative changes
in Q are larger than the relative changes in resonant frequency.
Unlike the resonant frequency and Q , the change in far-field
emission pattern by rotation does not show a threshold behav-
ior, thus exhibiting higher sensitivity to rotation at low rotation
speed. The magnitude of rotation-induced changes is modified
by the presence of wave chaos in deformed microcavities such
as a quadruple cavity. Wave chaos increases the frequency split-
ting and reduces the sensitivity of the resonances to rotation
especially at low rotation speed. Hence, the resonant modes
of a quadruple cavity exhibit smaller changes by rotation than
those in the elliptical cavity, which has a nearly overlapping
boundary. We believe that this conclusion is general, i.e., for
all nonintegrable geometries the dead zone should be larger
compared with their integrable correspondence. Finally, we also
studied microcavities that possess special symmetry and support
degenerate modes, e.g., the D3 cavity. Although the Q factors
of the resonances of these cavities are relatively low, the rota-
tion-induced changes of frequencies and Qs of the modes are
free of any threshold behavior and the far-field intensity is
highly sensitive to rotation. In addition to the deterministic
cavity geometries, the structural disorder introduced due to
fabrication inaccuracies could have a significant impact on the
rotation-induced changes of cavity resonances. While the dis-
order may create a dead zone and reduce the sensitivity to ro-
tation, it may also achieve the opposite effect and increase the
sensitivity as shown recently in [48].

We note that the sensitivity of a characteristic of a micro-
cavity resonance to rotation does not necessarily reflect the
measurement sensitivity of a rotation sensor, which, in general,
depends on the detection scheme that has not been discussed
in this work. Nevertheless, the fundamental understanding
obtained from the current study on the effect of cavity shape
deformation on the sensitivity of different characteristics of a
microcavity resonance to rotation will be extremely helpful
for future design of a microcavity-based optical gyroscope.
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Fig. 6. Effects of rotation on a pair of degenerate WG modes with
the radial number l � 1 and the dominant m � �16 in two D3

cavities of same radius (kR ≃ 6.62) and refractive index (n � 3.0) but
different deformations (ϵ � 0.015, 0.025). (a) and (b) Intensity
distribution of the CW wave mode of the degenerate pair with
(a) ϵ � 0.015 and (b) 0.025. The degenerate CW and CCW resonan-
ces can be linearly superposed to create eigenstates, which are even and
odd about the symmetry axes. (c) Frequency difference of the pair as a
function of the normalized rotation speed ΩR∕c. The black solid line
is for ϵ � 0.015, and the red dashed line is for ϵ � 0.025; a slight
difference is observed for the two deformations. (d) Rotation-induced
change in Q versus ΩR∕c. The cavity of ϵ � 0.015 (black solid line)
has a larger jΔQj than the one with ϵ � 0.025 (red dashed line).

Fig. 7. Rotation-induced changes in the far-field emission patterns
for a pair of degenerate resonances of the D3 cavities shown in Fig. 6.
(a) Angular distribution of the far-field intensities of the degenerate
CW (solid line) and CCW (dashed line) resonances in the D3 cavity
of ϵ � 0.015 at rest. (b) Rotation-induced change of a major emission
peak position versus ΩR∕c for the degenerate modes in Fig. 6. Black
solid and red dashed lines show the emission peak of the CW wave
mode in the first quadrant for ϵ � 0.015, 0.025, respectively.
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