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Temporal response of a random medium from
speckle intensity frequency correlations
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We reconstruct the temporal response of a random medium by using speckle intensity frequency correlations.
When the scattered field from a random medium is described by circular complex Gaussian statistics, we show
that third-order correlations permit retrieval of the Fourier phase of the temporal response with bispectral

techniques.

Our experimental results for random media samples in the diffusion regime are in excellent

agreement with the intensity temporal response measured directly with an ultrafast pulse laser and a streak

camera.

Our speckle correlation measurements also demonstrate sensitivity to inhomogeneous samples,

highlighting the potential application for imaging within a scattering medium. © 2003 Optical Society of

America

OCIS codes: 030.6140, 290.4210, 290.1990, 290.7050, 100.5070.

1. INTRODUCTION

The study of wave propagation in random media is impor-
tant for atmospheric and other environmental sensing
applications.! Also, of recent importance is the study of
near-IR light within biological tissue for imaging and
spectroscopy,? especially for tumor detection. Biological
tissue belongs to an important class of random media
where the transport of light is well described by the dif-
fusion approximation. A random medium in the diffu-
sion regime has a mean free path much greater than the
wavelength (also called the weak-scattering limit), with a
sample size much larger than the mean free path, such
that a large amount of multiple scattering is present.?
Coherent light propagating through a random medium
will produce fluctuations in the measured intensity due to
interference of the multiply scattered partial waves,
which is the well-known speckle phenomenon.* The sta-
tistical properties of the speckle field carry information
about the scattering properties of the random medium
and the coherence properties of the illumination. For ex-
ample, Parry® investigated the relationship between sur-
face roughness and the coherence length of a laser source,
Bellini et al.® studied the effect of finite laser coherence
for light propagating through a dynamic random medium,
and Genack’ measured the autocorrelation of intensity
fluctuations from light propagating through a random
medium as the laser frequency was tuned, i.e., the
second-order intensity correlation in frequency was mea-
sured. In recent studies, Thompson et al.?® determined
the dependence of the speckle contrast as a function of the
diffusive random medium thickness for a finite coherence
source, and McKinney et al.'® measured the speckle con-
trast as a function of a variable source coherence, synthe-
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sized by scanning the center frequency of a laser diode
rapidly relative to the detector integration time.

The intensity temporal response of a random medium
provides important information about the scattering
properties, such as the mean free path of a random me-
dium, and can be used as the basis for imaging in diffu-
sive media such as biological tissue.'™® We recently in-
troduced the use of third-order intensity correlations in
frequency as a means to determine the temporal
response.'® In this paper, we provide details of this ap-
proach and supporting streak camera data.

Our key result is the experimental demonstration of
the use of third-order intensity frequency correlations of
speckle patterns to obtain the temporal response. Third-
order correlations can provide the Fourier phase of the
temporal response, which is not available from the com-
monly used second-order correlations. It has been dem-
onstrated that the temporal response of a random me-
dium can be obtained from second-order intensity
correlations only when a priori information is used, such
as in assuming a form for the temporal response, based on
a diffusion model for example, and fitting unknown
parameters.'®”  No such assumptions are necessary
with third-order correlations. For our work, any
multiple-scattering random medium can be studied, pro-
vided that the fields obey circular Gaussian statistics.

Third-order correlations have been investigated in the
past for several different applications. An extension to
the intensity interferometer of Hanbury Brown and
Twiss'® was proposed for measuring the optical power
spectrum of a light source by Gamo.'%?° Lohmann
et al.?! used third-order correlations in a speckle masking
technique for astronomical imaging. The recovery of the
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intensity pulse shape from a short pulse laser by using
third-order correlations was proposed by Blount and
Klauder,?? who also established that third-order correla-
tions are sufficient to fully characterize the intensity
pulse shape.

For random media in the strong-scattering limit (where
the mean free path is comparable with the wavelength),
there have been many studies on intensity correlations
investigating the contributions of short-range, long-
range, and infinite-range terms to the measured
correlation.>?*26  For optical experiments in the weak-
scattering limit and the diffusion regime, which we inves-
tigate here, the long-range and infinite-range correlation
effects are negligible?® and ignored for this study.

In Section 2 of this paper, a model for the scattered field
from a random medium is developed, and the conditions
for Gaussian statistics to apply are established. The fre-
quency correlation behavior is presented, the intensity
temporal response is derived, and the diffusion approxi-
mation is discussed. Section 3 discusses the bispectrum
and its application to reconstructing the temporal re-
sponse with third-order intensity correlation measure-
ments. Section 4 details the experimental results for
both the speckle intensity correlations and the direct
measurement of the intensity temporal response with an
ultrafast pulse laser and a streak camera.

2. THEORY

A. Scattered Field from a Random Medium

When a monochromatic field illuminates a random me-
dium, the total field at a particular point after traversing
the medium can be expressed as the superposition of
many scattered partial waves. Each of these partial
waves has a random magnitude and a random phase,
relative to the incident wave, thus allowing the total field
to be described by a random phasor sum. This random
phasor sum model is the foundation for the statistical de-
scription of speckle discussed by Goodman,* and it was
developed for light reflected from (or transmitted
through) a rough surface but applies equally to a random
medium consisting of many scatterers.

Using the random phasor sum model, we obtain a con-
venient and general expression for the scattered field
from a time-invariant random medium. We assume a
scalar model for the scattered electric field, which physi-
cally means that we consider only a single linear polariza-
tion. However, it should be possible to extend this ap-
proach to a generalized vectorial model.

At some specified source location on the random me-
dium, the applied monochromatic electric field of fre-
quency v is

ein(t) = E;exp(j2mvt) + c.c., (1)

where E; is the complex amplitude and c.c. represents the
complex conjugate. Then, at some specified detector lo-
cation, the resultant linearly polarized electric field is
represented as

eont(t) = E (v)exp(j2mvt) + c.c., (2)

where the output electric field complex amplitude E,(v) is
a random variable dependent upon the frequency of the
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applied field. The statistical properties of the random
medium can be studied by using the statistics of E (v).
The random phasor sum model represents E,(v) as®’

N

1
E,(v) = J_ﬁk; Ay expl—jdu(v)], 3)

where A, is the random magnitude and ¢,(v) is the ran-
dom phase of the kth elementary partial wave. The num-
ber of elementary partial waves is given by N, which is
assumed to be large so that the limit NV — <« can be used.
The random magnitudes A, are modeled independent of
frequency, because we assume that the scattering cross
sections of the scatterers do not vary with small changes
in frequency and can therefore be considered frequency
independent. The random phase, on the other hand, is
very sensitive to small changes in frequency. Each ran-
dom phase ¢.(v) is modeled as an accumulated phase
from traversing the kth path whose random “time of
flight” is ¢, , resulting in

dp(v) = 270t (4)

We therefore assume elastic scattering.

For the random phasor sum model to be practical for
gaining insight into the response of a random medium,
several assumptions need to be made about the statistical
properties of the scattered partial waves. As did
Goodman,* we assume the following: (i) The random
magnitudes A, are statistically independent and identi-
cally distributed, (ii) the random phases ¢,(v) are statis-
tically independent and uniformly distributed over the in-
terval — 7 to = when taken mod 2, and (iii) the random
magnitude A, and the random phase ¢,(v) of each el-
ementary partial wave are statistically independent.
These assumptions are equivalent to specifying that the
elementary partial waves, represented by the magnitude
and phase terms in the random phasor sum model in Eq.
(3), are all statistically independent.

In Eq. (4), we relate the random phases to the random
(independent and identically distributed) times of flight
t; , which in general will not be uniformly distributed but
have a probability density function that we denote by
p(t). As long as the width of p(#) is broad compared
with 1/v, the random phases will be approximately uni-
form when taken mod 2, supporting assumption (ii).
For our study, the optical frequency v is approximately
3.5 X 10* 57! (a wavelength of 850 nm), and, for the
samples studied, p(#) has a width of the order of 107 s
or greater.

B. Statistics of the Scattered Field

Under assumptions (i)—(iii) listed in Subsection 2.A, the
output field E,(v) from a random medium, measured at a
single frequency v and modeled by the random phasor
sum in Eq. (3), has first-order statistics that are zero-
mean circular complex Gaussian. In this case, the
speckle field statistics are also called “fully developed.”*
When we write E,(v) = x + jy, the joint probability den-
sity function for the real and imaginary parts is

1 122+ y2
exp| —— ———
2mo? P 2 o2

Dy, y) = , (5)
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where

1y A
Nijpz1 2

(6)

g

The brackets (-) represent the ensemble average over all
possible scatterer configurations of the random medium.
By assuming that the random magnitudes A, are identi-
cally distributed, we further simplify the expression in
Eq. (6) to 02 = (A%)/2. The output intensity from a ran-
dom medium is given by I(v) = |E,(v)|%, whose ensemble
average is calculated from Eq. (5) to give (I(»)) = 202,
This result shows that assuming that the random magni-
tudes are frequency independent (for small frequency
variations), along with assumptions (i)—(iii), implies that
the ensemble average output intensity is also frequency
independent:

(I) = (A?). (7

We show that the temporal response of a random me-
dium can be obtained by determining the correlations be-
tween the speckle intensity patterns measured at two or
more different frequencies. This development requires
knowledge of the higher-order field statistics. As shown
in Appendix A, under assumptions (i)—(ii), the statistics
for the set of scattered fields E,(vy), E (vs),..., E (v31)
measured at different frequencies are jointly zero-mean
circular complex Gaussian. The output field random vec-
tor measured at M discrete frequencies is

Eo(Vl)

Eo(.VZ) (8)

7 =
EO(VM)

The joint probability density function for the random vec-
tor z is, from Appendix A,

1
- HO-1

p.(2z) C| exp(-z°C, "z), 9)
where z! is the Hermitian transpose of z and C, is the
complex covariance matrix whose (i, j)th element is
given by [C,]; ; = (E,(v;)E}(v;)). Because z is circular
complex Gaussian, as shown in Appendix A, the Gaussian
moment theorem of Reed?® can be used to express high-
order moments as a sum of products of second-order mo-
ments, which are the elements of C, .

C. Frequency Correlations of the Scattered Field

The scattered partial waves in a random medium have a
distribution for the times of flight that we denote by the
probability density function p(¢). Let the spread in the
time-of-flight distribution be A¢, where, for instance, A¢
= (t?) — (t)2. From the uncertainty relation, E (v)
will become uncorrelated with E, (v + Av) when the
change in frequency Av satisfies the condition AvA¢ ~ 1.
Genack'”?® gives the second-order correlation between
two fields at different frequencies:

(E,(v + Av)E*(v)) = (I)P(Av), (10)

where P(Av) is the Fourier transform of p(¢), given by
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P(Av) = f dt p(t)exp(—j2mAvt). (11)
A derivation of this result, based on assumptions (i)—
(iii) in Subsection 2.A, is given in Appendix B.
The samples studied in this paper have a spread in the
time-of-flight distribution in the range At ~ 0.1-1.0 ns.
Hence the frequency bandwidth after which the fields in
Eq. (10) become uncorrelated will be approximately Av
~ 1-10 GHz.

In practice, it is usually quite difficult to measure the
field second-order correlation of Eq. (10) directly at optical
frequencies for light scattered by a random medium. On
the other hand, it is convenient to measure the intensity
second-order correlation (I(v + Av)I(v)). This correla-
tion is fourth order in field, and since the field statistics
are circular complex Gaussian, the Gaussian moment
theorem?® can be applied with Eq. (10) to give

(I(v + Av)I(v)) = (I)? + ()?|P(Av)|%. (12)

The second-order intensity correlation contains informa-
tion only about the Fourier magnitude of p(¢). Since the
Fourier phase information is lost, it is not possible to
reconstruct p(¢) from measurements of second-order in-
tensity correlations without wusing a priori infor-
mation, which was the approach investigated in previous
studies. %17

It was recently shown'® that third-order intensity cor-
relations do contain sufficient information about the Fou-
rier phase of p(¢) to allow reconstruction of p(¢) from
intensity-based measurements without recourse to an as-
sumed model for p(¢). The third-order intensity correla-
tion, which is a sixth-order field correlation, can again be
evaluated by the Gaussian moment theorem?® and the
use of Eq. (10) to give

I(W)I(v + Av)I(v + Avy))
= (D)® + (I)’|P(Avy)|? + (I)’|P(Avy)|?
+ (I>3|P(Av1 + AV2)|2 + 2([}3 Re{P(Av,)
X P(Avy)P*(Avy + Avy)}. (13)

It is mathematically convenient to define a normalized
intensity I = (I — (I)/(I), in which case the second-
order and third-order correlations of the normalized in-
tensity respectively become

(I(v + Av)I(v)) = |[P(AD)|?, (14)
T()I(v + Av)I(v + Avy + Avy))
= 2 Re{P(Av;)P(Avy)
X P*(Avy + Avy)}. (15)

Identifying that the normalized intensity third-order cor-
relation in Eq. (15) is equal to the real component of the
bispectrum?® of p(¢) is a key observation.’® This result
permits a bispectral technique®®! to be used for recon-
structing p(¢), and this is described in Section 3.

D. Intensity Temporal Response
We show that the normalized ensemble average intensity
temporal response is equal to the time-of-flight distribu-
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tion p(#). In Subsection 4.D, we present measured
streak camera data in excellent agreement with the re-
sults obtained from speckle correlations.

The electric field of an ultrafast pulse applied to the
random medium is given by a;,(¢), and the output field is
given by a,.(¢). Both these real signals have an optical
center frequency v, and are written as

an(t) = u(t)exp(j2mvot) + c.c., (16)
aou(t) = v(t)exp(j2mvet) + c.c., (17

where u(¢) and v(¢) are the pulse complex amplitude en-
velope functions of the input and output signals, respec-
tively. The function v(¢) is the complex stochastic output
field envelope from a random medium in response to the
deterministic input complex envelope u(¢). The output
intensity measured by a photodetector will have an en-
semble average value

I(@0)) = (Jv@)]*. (18)

Remaining consistent with linear system theory,®? if
the response of a linear system to the input signal
exp(j2mut) is the output signal H(v)exp(j2mut), then
H(v) is the transfer function of the linear system. Refer-
ring to Eqgs. (1) and (2), we see that the transfer function
of a random medium is the output field: H(v)
= E,(v)/E;. Therefore the second-order correlation of
the random medium transfer function can be written, by
using Eq. (10), as

(H(v + An)H*(v)) = (H(»))P(Av),  (19)

where the quantity (|H(»)|2) = (I)/|E;|? is a constant.

Denoting the Fourier transforms of v(¢) as V(v) and of
u(t) as U(v), we can use the relation V(v) = U(v)H(v
+ vg) to express v(¢) as

v(t) = J'°° dvU(v)H(v + vg)exp(j2mut). (20)

Substituting Eq. (20) into Eq. (18) gives the ensemble av-
erage intensity

(I(t)) = <F dv' U(v ) H(v' + vo)exp(j2mv't)

XJ dv" U* (V") H* (V" + vg)exp(—j2mv"t) ).

(21)

After we interchange the order of integration, perform the
ensemble averaging, and make the variable substitutions
Av =" — v and v = V", Eq. (21) becomes

I(t)) = fx vaw dAv(H(v + vy + Av)

X H*(v + vo))U(v + Av)U* (v)exp(j27Avt).
(22)

With the use of Eq. (19), (H(v + vy + Av)H*(v + vy))
= (|H(v + vy)|®)P(Av). Also, if the bandwidth of the
input pulse is broad compared with the frequency range
over which P(Av) is nonzero, then U(v + Av) = U(v).
This approximation can be interpreted as having the tem-
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poral width of the input pulse much smaller than the tem-
poral features in the time-of-flight distribution p(¢).
This requirement is necessary if we wish to accurately
probe the structure of p(¢). Under these conditions, Eq.
(22) simplifies to

I(t)) = fw dv<|V(v)|2>F dAv P(Av)exp(j2mAvt).

(23)
From Eq. (11), the second integral in Eq. (23) is by defini-
tion equal to p(¢). By applying Parseval’s theorem, we
obtain

F d{|[V(v)|?) = F de{|v(t)[?). (24)

When Eq. (18) is used, together with Eqgs. (23) and (24),
the normalized ensemble average intensity temporal re-
sponse is equal to the time-of-flight distribution for the
scattered partial waves in the random medium and is
given by

I(t)
p(t) = ;—> (25)

f,wdtU(t))

E. Diffusion Approximation

The transport of light in a random medium in the weak-
scattering limit (the transport mean free path is large
compared with the wavelength) is well described by the
Boltzmann transport equation, often called the radiative
transfer equation (RTE) for light."3® The RTE models
the transport of average intensity through the random
medium, where the interference of partial waves along
different paths can be neglected. In practice, the RTE is
usually difficult to solve analytically, but in many circum-
stances, the transport of light in a random medium can be
modeled by the diffusion approximation to the RTE.!
The conditions for validity of the diffusion approximation
require the sample size be large compared with the trans-
port mean free path and the absorption length be much
larger than the transport mean free path. As will be
shown by experimental data, the diffusion approximation
accurately describes the samples used in this study.

It should also be pointed out that the conditions re-
quired to obtain zero-mean circular complex Gaussian
statistics to describe the speckle field are independent of
those required for the diffusion approximation to be valid.
For example, a slab of ground glass readily produces a
scattered field with Gaussian statistics, but the light
transport is not well described by the diffusion approxi-
mation. Therefore, the second-order and third-order cor-
relation techniques discussed in Subsection 2.C are gen-
eral and not limited to random media in the diffusion
regime.

The diffusion equation governing the radiative flux
density ®(r, ¢) (in units of Wm™2) is®*

J
E(I)(r, t) top,P(r,t) =V - DVO(x, t) = vSy(r, t),

(26)
where v is the transport velocity, D = v/3(u. + u,) is the
diffusion coefficient (in units of m2s™1), u/ is the reduced
scattering coefficient and u, is the absorption coefficient
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(both in units of m™ 1), and S o(r, t) is the source. For va-
lidity of the diffusion approximation, u, > u,. The
transport mean free path is given by 1/(u. + n,) = 1/u,
for the materials that we have studied. The radiative
current density J(r, ¢) (in units of Wm™2) can be found
under the diffusion approximation from Fick’s law,3* re-
sulting in

D
J(r, t) = —Vd(r, ¢). @7
v

The intensity temporal response of a random medium
under the diffusion approximation is related to the
Green’s function for Eq. (26). We use a source term
So(r, t) = §(r', t), where r' is the source location, to
solve Eqgs. (26) and (27) and obtain an expression for the
radiative current density at a particular observation
point. The intensity at the observation point measured
by a photodetector is Ip(¢) = @ - J, where 1 is the detec-
tor normal unit vector.’® Normalizing this result gives

Ip(t)
pp(t) = ———
f dt Ip(¢)

) (28)

which is identical in form to Eq. (25). Therefore the
time-of-flight distribution for a random medium under
the diffusion approximation can be found by using p(¢)
= pp(t). For a homogeneous slab of diffusely scattering
random media, a quasi-analytic solution to the Green’s
function for Eq. (26) can be found by using image
theory.®36

3. BISPECTRAL TECHNIQUE FOR
RECONSTRUCTING THE TEMPORAL
RESPONSE

A. Bispectral Theory
Third-order correlations provide many advantages over
second-order correlations for signal recovery by allowing
phase information about the underlying signal to be ob-
tained, as reviewed by Lohmann and Wirnitzer.’® Here
it is shown that third-order frequency correlation mea-
surements of speckle intensity permit the temporal re-
sponse of a random medium to be reconstructed.

To review some of the basic concepts, we consider the
arbitrary real signal f(¢) whose third-order temporal cor-
relation is given by

g, 1) = f dt f()f(t + 7)f(¢ + 73).  (29)

The Fourier transform of g® (7, 75),

G(3)(V1, vy) = f d7'1f deg(3)(7'1, )

X exp[ —j2m(vy7y + vaTe)], (30)

is defined as the bispectrum of the function f(¢). The
function f(¢) can be expressed in terms of its Fourier
transform F(v) by
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f(t) = f d¢ F(v)exp(j2mvt). (31)
Substituting Eq. (31) into Eq. (29) allows the bispectrum
of f(¢), defined in Eq. (30), to be written as

G(s)(Vl, vy) = F(v)F(vo)F(—vy — v). (32)

Since f(t) is real, its Fourier transform is Hermitian, al-
lowing the identity F(—v; — vy) = F*(v{ + vy) to be
used in Eq. (32), giving

G®(vy, vy) = F(v))F(vo)F* (v + vy). (33)

We shall express the Fourier transform of f(¢) in terms of
its magnitude and phase as F(v) = A(v)exp[ jd(v)], and
the bispectrum in terms of its magnitude and phase as
G®(vy, vy) = B(vy, vy)explji(vy, v9)]. Then the rela-
tionship between the Fourier phase and the bispectral
phase of f(¢), obtained from Eq. (33), is

P(vy, vo) = d(v1) + P(ve) — d(v1 + vy).  (34)

Equation (34) shows that the bispectral phase is a linear
combination of Fourier phases. Also, if we add an arbi-
trary linear phase component to the Fourier phase of f(¢),
replacing ¢(v) by ¢(v) = H(v) + av, then from Eq. (34),
we see that the bispectral phase is independent of the lin-
ear phase component av. For this reason, the bispectrum
of f(¢) is blind to linear Fourier phase. In the time do-
main, this equates to all real functions f(¢) that differ by
an arbitrary time offset having the same bispectrum.

Equation (34) can be exploited to reconstruct the Fou-
rier phase of f(¢) from its bispectral phase with a simple
explicit scheme.® Writing the Fourier and bispectral
phases in discrete notation, where ¢, = ¢(k Sv) is the kth
Fourier phase and ¢; ; = ¢/(idv, jov) is the (i, j)th com-
ponent of the bispectral phase, where 6v is the sample fre-
quency increment, allows the Fourier phase to be recon-
structed by using®!

k-1

1
=" b+ b — bin-is

k=2,..,N
E—1i5

i LR

(35)

where ¢q = 0, 1 = ¢(Sv) is arbitrary, and N, is the
number of samples. The arbitrary value for ¢; gives the
reconstructed Fourier phase 1 degree of freedom that is
equivalent to an indeterminate linear Fourier phase,
which in the time domain gives an arbitrary time offset.
We apply this scheme in our work. Alternatively, writing
Eq. (34) as an overdetermined system of linear equations
for the unknown Fourier phase ¢;, we can apply a least-
squares reconstruction technique.’”"

B. Reconstruction of the Temporal Response

From a comparison of Eqs. (15) and (33), the speckle in-
tensity third-order frequency correlation from a random
medium is equal to twice the real part of the bispectrum
of the temporal response p(¢). Therefore, by using
bispectral techniques, we can reconstruct the Fourier
phase, and when this is combined with the Fourier mag-
nitude obtained from the speckle intensity second-order
frequency correlations in Eq. (14), we obtain the Fourier
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transform of the temporal response, P(Av). Taking an
inverse Fourier transform recovers the temporal response
p(t).

The normalized intensities I; = I(vy), I, = I(v,
+ Av;), and 73 = 7(1/0 + Avy + Avy), when used in the
third-order correlation in Eq. (15) and the second-order
correlation in Eq. (14), allow the bispectral phase of p(#)
to be written as

(I,1,15)
2((I I (T I ) (I51 1))
(36

W(Avy, Avg) = *cos !

The bispectral phase from Eq. (36) is then used with Eq.
(34) to reconstruct the Fourier phase by the method of Eq.
(35).

Note in Eq. (36) that the speckle correlation measure-
ments provide only the cosine of the bispectral phase.
The main consequence of this is a sign ambiguity in the
total reconstructed Fourier phase, leading to time-
reversal indeterminacy in the temporal response. This is
not a severe limitation, provided that the bispectral phase
does not rapidly change sign, which is the case when, for
example, the Fourier phase is monotonic. In this case,
we can take the inverse cosine operation in Eq. (36) to
produce all positive (or all negative) values for the bispec-
tral phase. The form of the temporal responses for the
random media used in this study are all observed to have
a monotonic Fourier phase.

4. EXPERIMENTAL RESULTS

A. Measured Speckle Patterns

The experimental setup used to obtain the speckle inten-
sity frequency correlation data is shown in Fig. 1. The
tunable laser source used was an external cavity
(Littman—Metcalf design) laser diode that has a single-
mode output with a narrow linewidth (nominally 5 MHz)
and a center wavelength of A = 850 nm. The output
light from this source was linearly polarized with an av-
erage power of 10 mW. An optical isolator was used to
prevent backreflections destabilizing the laser diode out-
put. The center frequency can be tuned over a range of
approximately 60 GHz. A small portion of the output
power was coupled into a scanning Fabry—Perot interfer-
ometer, using the half-wave plate (HWP) retarder and po-
larizing beam-splitter (PBS) combination, to monitor the
laser diode center frequency as it was tuned. Most of the
optical power was focused onto the front face of the scat-
tering random medium by the lens L1 of focal length f7,
= 50 mm. The random media used for this study were
commercial white acrylics (Cyro Industries, Acrylite FF)
that consist of a transparent acrylic background embed-
ded with a homogeneous concentration of small TiO, par-
ticles approximately 50 nm in diameter.

A small area on the back face of the scattering random
medium, approximately 1.2 mm X 1.5 mm in size, was
imaged onto a cooled CCD camera with 1000
X 800 pixels of size 15 um X 15 um. We assume sta-
tionary statistics over this area. The imaging optics con-
sist of a spatial filter in a 4f telescope configuration that
gives unity magnification at the plane P1 and a lens L2
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that provides a magnification of M = 10 from the plane
P1 to the CCD image plane. The spatial filter was
formed from two identical achromatic lenses of focal
length f = 50 mm and an adjustable iris aperture with a
typical diameter of D = 2 mm, located at the Fourier fo-
cal plane. The aperture was used to control the spatial
feature size in the random structure of a measured
speckle pattern. The lens L2 was an achromatic lens of
focal length f15 = 75 mm.

The light emerging from the random medium was no
longer linearly polarized on account of the multiple scat-
tering. Therefore, the imaged scattered light was passed
through a polarizer to analyze the same linear polariza-
tion as that of the input light for detection with the CCD
camera, since a single linear polarization (scalar) model
was assumed for the scattered field. Exposure times of
approximately 1 s were used by the CCD camera to ac-
quire a speckle image. A typical measured speckle inten-
sity pattern is shown in Fig. 2.

We calculated the intensity histogram for the speckle
image in Fig. 2, which is presented as a semilogarithmic
plot in Fig. 3. This provides an estimate of the first-order
statistics of the speckle intensity, and it closely models
the ideal negative exponential probability density func-
tion for intensity expected for fully developed (circular
complex Gaussian) speckle field statistics,* which is given
by

1
pi) = meXp(—I/U)), 37

where the mean intensity is given by (/). However, there
was a small intensity offset, 7;, which we have found to
be well modeled by 7; = B(I), where 8 = 0.13 for our ex-
perimental setup. We could not eliminate this intensity
offset, and we believe that it was scattered laser light en-
tering the imaging domain, possibly from multiple reflec-
tions, and behaving as background light. It was not am-

Isolator

Tunable
Laser Diode
\
Fabry—Perot To Computer
HWP = Interferometer A
1
1
1
PBS : D ------- |
I
I
I
I
1
|
cco |,
Camera

Random Medium

Fig. 1. Experimental setup used to measure the speckle inten-
sity patterns as a function of the laser diode center frequency.
The Fabry—Perot interferometer is used to monitor the change in
the laser diode center frequency as it is tuned. Lens L1 (fi;
= 50 mm) focuses the laser output onto the front face of the
scattering random medium. The spatial structure of the speckle
pattern at plane P1 is controlled by the unity magnification spa-
tial filter. Lens L2 (f15 = 75 mm) provides a magnification fac-
tor of M = 10 from plane P1 to the CCD image plane, where the
resultant frequency-dependent speckle pattern is obtained.
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random medium obtained by the CCD.

0 1 2 3 4 5 6
Intensity 1/1)

Fig. 3. Intensity histogram of the speckle pattern given in Fig. 2
plotted on a semilogarithmic scale (solid curve). Also shown is
the ideal negative exponential intensity probability density func-
tion in Eq. (37) expected for zero-mean circular complex Gauss-
ian field statistics (dashed curve).

bient light, since that was rigorously eliminated from the
experiment, as confirmed by obtaining background (no la-
ser light) images. We also found that it was sample in-
dependent, because we obtained the identical offset for a
ground-glass reference sample and other random media
with different scattering properties. For all subsequent
measurements, we subtracted the intensity offset #; from
the intensity data before processing. This did not affect
our frequency correlations because the offset behaved as a
statistically independent background intensity. The dip
seen in Fig. 3 for the low-intensity values is due to the
combined effect of the small intensity offset and the read
noise of the CCD camera. In a previous study,'® we did
not observe such an intensity offset because it was
masked by a small drift in the reference level of the
analog-to-digital converter in the CCD camera.

Assuming that the speckle statistics are ergodic, we es-
timated the ensemble average quantities in Egs. (14) and
(15) by spatial sampling of the speckle intensity. To en-
sure accurate sampling of the underlying speckle field,
the detection area (CCD pixel size) needs to be small com-
pared with the width of the speckle intensity spatial au-
tocorrelation function.“®*! The spatial autocorrelation
function provides a measure of the average “speckle size”
and is defined by*

(I(ro + Ar)I(ry))

RI(Ar) = <I>2 )

(38)
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where I(r) is the speckle intensity at spatial location ry
in the image plane and Ar is a small spatial offset. The
speckle intensity spatial autocorrelation in Eq. (38) is de-
pendent upon the point-spread function of the imaging
optics and the spatial structure of the speckle field in the
object plane.*>*® For our imaging optics shown in Fig. 1,
we calculate R;(Ar) for a circular complex Gaussian field
in the object plane whose spatial structure is very small
compared with the point-spread function of the imaging
optics using scalar diffraction theory under the Fresnel
approximation:

aDAr\ |2
J1
M\f

R (Ar)=1+ |2——| , 39
1(Ar) —DAr (39)

M\f

where J(x) is the Bessel function of the first kind and or-
der 1. The calculated spatial autocorrelation function of
the measured speckle image in Fig. 2 is plotted in Fig. 4,
which is very accurately modeled by the theoretical result
given by Eq. (39), for our imaging geometry with f
= 50 mm, D = 2mm, and M = 10. In this case, the
speckles have an average diameter of 250 um, large com-
pared with the CCD pixel area of 15 um X 15 um that is
required for accurate sampling of the speckle intensity.
To ensure accurate statistics, a large number of inde-
pendent measurements are usually required. For our
measurements, this equates to having a large number of
independent speckles in an image obtained by the CCD.
The number of independent samples is given not by the
number of CCD pixels but by the ratio of the CCD area to
the average area of an individual speckle. If we approxi-
mate the average speckle area by 250 um X 250 um and
compare this with the CCD imaging area of 15 mm
X 12 mm, we have approximately 2880 independent in-
tensity samples in a measured speckle pattern. This
proved to be sufficient for estimating the ensemble statis-
tics. Of course, one could make the speckle size smaller
by increasing the aperture diameter D of the spatial filter
in the imaging optics in Fig. 1. However, if the average
speckle size begins to approach the CCD pixel size, then

2 ¢°t°
° \
= 4 <
'%_1 5 al b\
dooe
1 | esco0000a00n0? %Mm

-600 -400 -200 O
Ar (um)

200 400 600

Fig. 4. Measured intensity spatial autocorrelation function of
the speckle image shown in Fig. 2 (circles). The theoretical re-
sult in Eq. (39) is also plotted, showing good agreement (dashed
curve). The average speckle diameter, taken as the distance
from Ar = 0 to the first minimum, is estimated to be approxi-
mately 250 um.
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Fig. 5. Plot of the measured second-order intensity frequency
correlation defined in Eq. (40) for two slab thicknesses of a scat-
tering random medium (symbols). Excellent agreement with
the second-order intensity correlation in Eq. (14), calculated with
an analytic diffusion model for the temporal response p(¢), with
values of u, =13cm ! and negligible absorption (g,
= 0cm!) was obtained (dashed curves).

the speckle intensity will not be accurately sampled. We
recommend that the average speckle size be 10-20 times
that of the CCD pixel linear dimension.

B. Measured Frequency Correlations

Speckle images were measured for 25 discrete laser fre-
quencies in order to calculate the intensity frequency cor-
relations in Eqs. (14) and (15). These measurements
were performed for two homogeneous sample thicknesses
ofd = 6 mm and d = 12 mm. (The sample of thickness
d = 12 mm was made from two identical slabs of thick-
ness d = 6 mm.) For the sample thickness of d
= 6 mm, frequency increments of §v = 1 GHz between
each measured speckle pattern were used, and for the
sample of thickness d = 12 mm, frequency increments of
6v = 0.4 GHz were used.

The second-order intensity correlation of Eq. (14) is de-
pendent only upon the frequency difference between mea-
surements. Therefore we averaged each frequency com-
bination pair from the available data set that gave the
same frequency difference to form the intensity second-
order frequency correlation data point for that particular
frequency difference. Denoting the normalized intensity

sample at each frequency increment by Ti =T1(v + idv)
for i =0,1,..,N — 1, with N = 25, we then estimated
the second-order correlation in Eq. (14), averaged over all
possible combinations, by

N-1-i
(7( V)T(V + AV))meas e — E <7j7j+i>’ (40)
N — 1 j=0

with Av =1i6v and i = 0,1,..., N — 1. This averaging
procedure will reduce the sampling error of the small fre-
quency differences more than for the larger frequency dif-
ferences because there are more frequency pairs to aver-
age. Of course, one may increase the range of the laser
diode frequency scan to be much greater than the fre-
quency range of interest, increasing the number of avail-
able frequency pairs used to form the average.

The results for the measured second-order intensity
correlations in Eq. (40) are plotted in Fig. 5 for the two
slab thicknesses of d = 6 mm and d = 12mm. Also
plotted is the second-order intensity correlation in Eq.
(14), evaluated by using the temporal response p(¢) cal-
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culated from Eq. (28) under the diffusion approximation
for a homogeneous slab and taking a Fourier transform to
obtain the Fourier magnitude |P(Av)|. There is very
good agreement between our measured speckle correla-
tions and the analytic diffusion model, with u,
= 13 cm™! and negligible absorption (u, = 0 cm™!) for
each slab thickness d.

To calculate the third-order intensity correlation in Eq.
(15), we averaged each frequency triplet from the avail-
able data set of measured intensities that gave the same
frequency differences for Av; and Av, to form each mea-
sured third-order correlation data point. Averaging all
possible combinations gives the measured third-order cor-
relation

(T(»)I(v + Av)I(v + Avy + Av))meas

N-1-i—j
1 J

SN

— LIy idpsisg), (41)
N—Z—J = <kk+ k++]>
where Avy = idv, Avg = jév, and i,j =0,1,..,N — 1,
withi + j < N — 1. Figure 6 shows a plot of the third-
order intensity correlation of the measured data for the
homogeneous slab of thickness d = 6 mm.

C. Reconstructed Temporal Response

To reconstruct the temporal response of a random me-
dium, we first determined the Fourier magnitude by us-
ing second-order correlations, and second, calculated the
Fourier phase from third-order correlations; then we com-
bined these results and performed an inverse Fourier
transform. Figure 7(a) shows the reconstructed Fourier
magnitude for the two sample thicknesses. The Fourier
magnitude is related to the second-order intensity corre-
lation by Eq. (14) and was obtained by taking the square
root of the measured second-order correlation calculated
by Eq. (40) and shown in Fig. 5. The reconstructed Fou-
rier phase is plotted in Fig. 7(b) for both sample thick-
nesses. We obtained this result by using the measured
second-order and third-order correlations in Eqs. (40) and
(41) in Eq. (36) to estimate the bispectral phase. Then
we calculated the Fourier phase from the bispectral phase

10

Fig. 6. Plot of the measured third-order intensity correlation de-
fined by Eq. (41) for the sample of thickness d = 6 mm. These
data are equal to twice the real part of the bispectrum of p(¢).
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Fig. 7. (a) Reconstructed Fourier magnitude of the temporal re-
sponse for the two sample thicknesses with the use of measured
data (symbols) and the Fourier magnitude calculated with an
analytic diffusion model for the temporal response with wu,
= 13cm ! and u, = 0 cm™! for each thickness (dashed curves).
(b) Reconstructed Fourier phase of the temporal response with
the use of measured data (symbols) and the Fourier phase calcu-
lated with the diffusion model for each sample thickness (dashed
curves).
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Fig. 8. Reconstructed temporal response obtained by taking an
inverse fast Fourier transform of the Fourier magnitude and
phase data presented in Fig. 7 (solid curves). Each sample
thickness gives excellent agreement with a diffusion approxima-
tion model for the temporal response (dashed curves).

by using Eq. (35). The arbitrary linear phase was chosen
to overlap the reconstructed Fourier phase with the Fou-
rier phase obtained from using an analytic diffusion ap-
proximation solution for the temporal response, which is
also shown in Fig. 7(b).
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There is a noticeable deviation of the reconstructed
Fourier phases from the analytic results for the diffusion
approximation above approximately 12 GHz for the
sample thickness of d = 6 mm and above 5 GHz for the
sample thickness of d = 12 mm. This is due to the mea-
sured second-order and third-order intensity correlations
becoming very small and susceptible to experimental
noise, thus causing errors in the bispectral phase calcu-
lated by using Eq. (36).

We applied an inverse fast Fourier transform to the re-
constructed Fourier magnitude and phase data, giving
the reconstructed temporal responses shown in Fig. 8(a)
for the sample thickness of d = 6 mm and in Fig. 8(b) for
the sample thickness of d = 12 mm. These results agree
very well with those expected from the diffusion approxi-
mation model. We can also see that the width of the tem-
poral response scales with sample thickness in a manner
predicted by a diffusion approximation model. The oscil-
lations in the reconstructed temporal response are arti-
facts due to the finite frequency range over which the
Fourier phase was reconstructed. With reference to Fig.
7(b), a bandwidth of 12 GHz was used for the sample of
thickness d = 6 mm, and of 5 GHz for the sample of
thickness d = 12 mm.

D. Direct Measurement of Intensity Temporal Response
We confirmed the validity of the temporal response ob-
tained with third-order speckle correlations by directly
measuring with a streak camera the intensity temporal
response defined in Eq. (25). An ultrafast mode-locked
Ti:sapphire laser with a pulse width of approximately 200
fs was used as the input excitation. The center wave-
length of the laser was 835 nm, which is a 2% difference
in wavelength from the 850 nm used for the speckle fre-
quency correlation experiments. This small difference in
wavelength will cause a slight change in the scattering
properties of the random medium (approximately 7%
based on the A~* dependence of Rayleigh scattering).
The data show that these effects are minimal, and we
shall neglect this small difference.

A streak camera was used to obtain the intensity tem-
poral response data. The imaging optics used for the
streak camera measurements are different from the con-
figuration shown in Fig. 1 for the speckle measurements.
A single achromatic lens, of focal length 50 mm, was used
with an adjustable iris aperture of diameter 4 mm, placed
at the lens. The lens was positioned to give a magnifica-
tion factor of 10 from the object place (output face of the
random medium sample) to the image plane (5-mm
X 60-um input slit of the streak camera). This permit-
ted us to collect sufficient light from a small area on the
output face of the random medium. Figure 9(a) shows
the measured streak camera data for the sample of thick-
ness d = 6 mm, with the reconstructed result from the
third-order speckle correlation technique overlaid. The
measured streak camera data for the sample of thickness
d = 12 mm are shown in Fig. 9(b). These results clearly
show that the two measurement techniques are in excel-
lent agreement.

E. Inhomogeneous Sample Measurements
We also measured second-order and third-order speckle
correlations for an inhomogeneous sample, whose cross
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Fig. 9. Plots of the intensity temporal response [Eq. (25)] di-
rectly measured with a streak camera for each sample thickness
(solid curves). Overlaid are the temporal responses recon-
structed by using third-order speckle correlations, given in Fig.
8, showing excellent agreement (dotted curves).
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Fig. 10. Cross section of inhomogeneous random medium
sample. The background has a scattering coefficient of ]
= 13 cm !, and the lower-scattering inhomogeneity has an esti-

mated scattering coefficient of u. = 4cm™!. The source—

detector location combinations used are A—A, B-B, and C-C,
each separated by 5 mm.

section is shown in Fig. 10. This sample, of total thick-
ness 18 mm, was constructed from three sheets of thick-
ness 6 mm and area 140 mm X 140 mm of the same scat-
tering white acrylic (with u, = 13 em™!) as that used for
the previous measurements, which provided the data for
Figs. 2-9. Centrally located within the background ma-
terial was an inhomogeneity with cross-sectional dimen-
sions of 6 mm X 6 mm and a length of 140 mm. This in-
homogeneity was lower in scattering than the background
material and was also a white acrylic but with an esti-
mated scattering coefficient of x, = 4 em™1.

Three source—detector location combinations were used
for measuring speckle correlation data and are shown in
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Fig. 10. The first source—detector location combination,
denoted by A—A, was centrally located about the inhomo-
geneity. The second combination, denoted by B—B, was
offset by 5 mm from A-A, and its “line of sight” did not
pass through the inhomogeneity. The third combination,
denoted by C—C, was offset by 10 mm from A-A.

The second-order intensity correlation measurements
for the three source—detector locations are shown in Fig.
11(a). The difference in the second-order intensity corre-
lation for each source—detector location is seen to be
small, but they display the correct trend for each plot as a
function of frequency; the source—detector location A—A
encounters a greater volume of the lower-scattering inho-
mogeneity than source—detector combination C—C, and
thus it will have a broader second-order intensity correla-
tion as a function of frequency. The source detector com-
bination B-B is geometrically between A—A and C-C,
with intermediate influence of the lower-scattering inho-
mogeneity, and hence the second-order intensity correla-
tion as a function of frequency for B—B lies between the
results for A—A and C-C, as also seen in Fig. 11(a). The
temporal responses for two source—detector locations are
shown in Fig. 11(b), which were reconstructed by using
both the second-order and third-order intensity correla-
tions. We expect that the temporal response for each
source—detector location will be different, since the time-
of-flight distributions will be different on account of the
inhomogeneous distribution of scattering properties. For
the source—detector location A—A, the presence of the
lower-scattering inhomogeneity will provide a greater vol-
ume of lower-scattering paths than for the C—C source—
detector location; thus we expect the time-of-flight distri-
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Fig. 11. (a) Measured second-order intensity correlations for the
inhomogeneous sample shown in Fig. 10 for the source—detector
location combinations A—A, B-B, and C-C. (b) Reconstructed
temporal responses for the inhomogeneous sample for the
source—detector locations A—A and C-C.



Webster et al.

bution for A—A to be narrower than that for C—C, hence
giving a narrower temporal response, as seen in Fig.
11(b).

5. CONCLUSIONS

We have shown that the proposed third-order speckle in-
tensity correlation technique can be used to obtain the
temporal response of a random medium with circular
complex Gaussian field statistics. Second-order intensity
correlations can provide information only about the Fou-
rier magnitude of the temporal response, whereas third-
order intensity correlations allow the Fourier phase of the
temporal response to be determined. Use of the third-
order correlation obviates the need for fitting parameters
in a forward model for determining the temporal re-
sponse. The measured data give results that are in ex-
cellent agreement with the direct measurement of the in-
tensity temporal response obtained with a streak camera.
We have also shown that the speckle intensity correlation
measurements are sensitive to inhomogeneities within a
homogeneous scattering domain and hence produce data
that could be useful for image reconstruction within scat-
tering media.

APPENDIX A: DEVELOPMENT OF FIELD
STATISTICS

1. Jointly Gaussian Statistics

In this appendix, we develop the joint statistics of the
scattered field from a random medium. We shall show
that under assumptions (i)—(iii) given in Subsection 2.A,
the scattered fields measured at different frequencies
have zero-mean circular complex Gaussian joint statis-
tics.

We desire to determine the joint statistics of the output
field at frequencies vy, vy,..., vy;. Using Eq. (3), we ob-
tain the output field of a random medium at frequency
v,,, form =1,2,.., M:

N

1
E,(vy) = —= >, Agexpl—jdp(vy)]. (A1)
N k=1

We express the kth elementary phasor of this sum in
terms of its real and imaginary components, given by
x,(v,,) = A cos (v, and y,(v,,) = —Ay, sin ¢ (v,), re-
spectively. For each frequency v,,, Goodman* has
shown, by using assumptions (i)—(iii) and applying the
central limit theorem, that these real and imaginary com-
ponents of E,(v,,) are distributed as zero-mean Gaussian
random variables. However, having marginal Gaussian
statistics for each frequency does not imply that real and
imaginary components for all frequencies vy, vo,..., vy
are described by jointly Gaussian statistics.**

To show that the statistics of the E (v,,) are jointly
Gaussian, we apply a multivariate form of the central
limit theorem given by Berger*® (see also Papoulis,*
Billingsley,*® and Middleton*”). Let uy, u,,..., uy be a
sequence of real, zero-mean, independent, and identically
distributed random vectors of dimension 2M with finite
second moments ({||u]|?) < «, where |.|? is the 2-norm)
and covariance matrix C,. The random vector u formed
by
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1 N
u=lim— > u, (A2)

Nﬂoo\/]vkzl

will have the Gaussian joint probability density function

1 1
Wexp( —5 uTCu lu) . (A3)
After the E (v,,) are related to u, it therefore suffices to
demonstrate a finite second moment in order to show the
jointly Gaussian nature of the E (v,,).

To show that the real and imaginary components of Eq.
(A1) are jointly Gaussian for the frequencies
Vi, Vg,..., vy, we form the vectors u;, uy,..., uy from
the real and imaginary components of £ ,(v,,) as

py(u) =

xl(_Vl) x2('1/1)
w = x1(var) w = x2(v)
1 .’)’1(.V1) 2 yz(_V1) v
y1(var) Yolva)
xN(_V1)
B xN(IVM)
" e | (A
yn(vam)

Let the covariance matrix C, be partitioned into subma-
trices:

(A5)

Cxx ny
C

yx  yy
The (i, j)th element of C,, is given by [C,,]; ;
= (p(v)q(v))), wherep = x, y andq = x, y.

From assumptions (i)—(iii), the random vectors formed
in Eq. (A4) have (u;) = 0 for all 2. Consider the vector
norm

M M
lwgl? = 3 A7 cos® dy(v,) + 2 A7 sin? dy(v,).
m=1 m=1
(A6)
Taking the expected value of this vector norm and using

assumption (iii) and the statistical independence of the
kth random magnitude and random phase gives

M M
(laaly = 3 (Af)cos® gu(rm)) + 2, (A7)

X (sin? ¢y (v,,)). (A7)

By assumption (ii), the phase is uniformly distributed
over the interval — to , resulting in (cos? ¢(v,)) = 1/2
and (sin? ¢(v,,)) = 1/2. Furthermore, by assumption (i),
the random magnitudes A, are identically distributed,
giving (AZ) = (A?). Using these results gives

(lwgl?y = M(AZ). (A8)

From Eq. (7), the quantity (A2) is equal to the ensemble
average intensity (I), which is finite by definition. Thus
the second moment (||lu,|?) is also finite. Therefore, by
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the multivariate central limit theorem, the scattered field
from a random medium E (v,,) at frequencies v,, has
zero-mean jointly Gaussian statistics.

2. Circular Complex Gaussian Statistics

When the covariance matrix in Eq. (A5) has a special
structure, the jointly Gaussian real random vector of
length 2M can be conveniently represented as a circular
complex Gaussian random vector of length M. The con-
ditions for this are?”**

C.=C,, C,=-C,. (A9)

Forming the complex vector

x(vq) "jjy(Vl)
z = : , (A10)
x(va) + Jy(vy)

we can define a complex covariance matrix C, whose
(i, j)th element is given by [C,]; ; = (z(v)z*(v)).
When Egs. (A9) hold, C, = 2(C,, — jC,,). Under these
conditions, the joint probability density function for the

complex random vector z can be written as**
! Ho-1
Z) = exp(—z"C; "z), (A11)
p.(2) C| p( )

where z" is the complex Hermitian transpose of z. Fur-
ther discussion on this form for the joint probability den-
sity function is given by Wooding*® and Grettenberg.*®
To show that the statistics of the output fields E (v,,)
given by Eq. (Al) at frequencies v,, from a random me-
dium are circular complex Gaussian, we need to show
that under assumptions (i)—(iii) the conditions given by
Eqgs. (A9) hold. Consider the (i, j)th element of C,, :

1 NN
(x(Vi)x(Vj)> = ﬁz E (ARA, cos ¢y (v;)cos ¢1(Vj)>-
k=1 1=1
(A12)

Since the random magnitudes and the random phases are
assumed statistically independent, we can write

N

1 2
(x(v)x(v)) = —2 (A )(cos ¢y (v;)cos ¢y (v)))
Niji=1

1 N N
g2 2 (AuN(ANcos dy(v)
k=1 1=1
L#k
X (cos ¢y(v))). (A13)

Under assumption (ii), the random phase is uniformly
distributed from —# to 7, and the second summation term
in Eq. (A13) is equal to zero. If we relate the random
phase to the random time of flight, as given by Eq. (4),
and expand the cosine product by using a trigonometry
identity, Eq. (A13) becomes

1 N
(x(v)x(v;)) = WZH (A2)[(cos 2m(v; — v))t))

+ (cos 2m(v; + v))tp)]. (A14)

Webster et al.

The second ensemble average cosine term is equal to zero,
because if the phases 27v;t, and 27yt are each as-
sumed uniform over — 7 to m when taken mod 27, then so
is the phase 27(v; + v))t,. (See the discussion in Sub-
section 2.A.) However, we cannot make the same as-
sumption about the phase 2m(v; — »))t;, because the
value of »; — v; may not be large when compared with the
range of values for ¢;,. Finally, since the random magni-
tudes are identically distributed and the random times of
flight are identically distributed, we obtain the result

(x(v)x(v))) = (A%)(cos 2m(v; — v)t)/2.  (Alb)

Likewise, the (i, j)th elements of C,,, C,,, and C,,
become
(y(v)y(v)) = (A%)(cos 2m(v; — v))t)/2, (A16)
(x(v)y(v))) = (A%)(sin 27 (v; — v)t)/2, (A17)

(y(v)x(v)) = —(A%)(sin2m(v; — v)t)/2.  (AlB)

Thus the expressions given in Eqgs. (A15)—(A18) satisfy
the conditions in Egs. (A9) for all i, j. Therefore the out-
put fields E (v,,) for frequencies v,, from a random me-
dium have circular complex Gaussian statistics under as-
sumptions (i)—(iii). This permits use of the Gaussian
moment theorem of Reed?® for calculating all moments of
the random output field.

APPENDIX B: FIELD CORRELATION
This appendix rigorously develops the expression for the
field second-order correlation in Eq. (10), first demon-
strated by Genack,?® utilizing assumptions (i)—(ii) pre-
sented in Subsection 2.A. Using the random phasor sum
model for the scattered field [Eq. (3)], we write the output
field at frequency v + Av as

1N

E,(v+ Av) = — D, Ayexp[—jdu(v + Av)],
N k=1
(B1)

where the random phase of the kth elementary partial
wave is given by Eq. (4), as ¢,(v + Av) = 27(v
+ Av)t,. Here t, represents the random time of flight
for the kth partial wave. Similarly, we write the output
field at frequency v as

1 N
E,(v) = — >, Ajexp[—j ()], (B2)
N i=1

with the random phase of the /th elementary partial wave
of ¢;(v) = 27vt;. With the use of Eqs. (B1) and (B2),
the second-order field correlation is

1 N N
(E (v + Av)EX(v)) = NZ > (AA,
k=1 1=1

X exp[—jép(v + Av) + jé(v)]).
(B3)

Utilizing the statistical independence of the random mag-
nitudes and the random phases and separating the sum-
mation into the two cases £ = [ and & # [ results in
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1 N
(E,(v + Av)EX(v)) = ﬁ; (A2)(exp[—jdp(v + Av)

N N

1
iGN + 52 X (AA)
k=1 1=1

1#k
X (exp(—jér(v + Av))
X (exp(j (V). (B4)

Since the random phase is assumed uniformly distributed
over —m to 7, the second summation in Eq. (B4) is zero.
Also, since the elementary random magnitudes A, are as-
sumed to be identically distributed, as are the random
times of flight ¢;,, Eq. (B4) becomes

(E,(v + Av)E*(v)) = (A%)(exp(—j27Avt)). (B5)

By definition, the expected value of the exponential term
in Eq. (B5), with probability density function p(¢) for the
random times of flight, is

(exp(—j2mAvt)) f‘” d¢ p(t)exp(—j2mAvt)

= P(Av), (B6)

where P(Av) is the Fourier transform of p(¢). Finally,
using Eq. (7), we obtain

(E, (v + Av)E: (v)) = (I)P(Av). (B7)
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