
Optical properties of 1D photonic crystals with correlated and uncorrelated disorder

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Opt. 12 024011

(http://iopscience.iop.org/2040-8986/12/2/024011)

Download details:

IP Address: 128.36.14.115

The article was downloaded on 25/08/2010 at 04:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/2040-8986/12/2
http://iopscience.iop.org/2040-8986
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF OPTICS

J. Opt. 12 (2010) 024011 (8pp) doi:10.1088/2040-8978/12/2/024011

Optical properties of 1D photonic crystals
with correlated and uncorrelated disorder
Seng Fatt Liew1 and Hui Cao1,2

1 Department of Applied Physics, Yale University, New Haven, CT 06511, USA
2 Department of Physics, Yale University, New Haven, CT 06511, USA

E-mail: sengfatt.liew@yale.edu

Received 30 July 2009, accepted for publication 25 September 2009
Published 11 January 2010
Online at stacks.iop.org/JOpt/12/024011

Abstract
We introduce both correlated disorder and uncorrelated disorder to one-dimensional dielectric
periodic structures and investigate their effects on light transmission, localization length,
density of photonic states and decay rate of resonant modes. The photonic bandgaps are more
robust against uncorrelated disorder due to the preservation of long-range structural order.
While correlated disorder enhances light localization near the band edges, uncorrelated disorder
causes a divergence of localization length near the gap edges. The correlated disorder induces a
larger fluctuation of decay rates for the bandgap modes than the pass band modes. In contrast,
the resonant modes near the pass band center experience the strongest fluctuation of decay rates
in the presence of uncorrelated disorder.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since its invention 20 years ago [1, 2], photonic crystals
have attracted a great deal of attention with the promise
of full control of light propagation and localization [3–5].
Rapid developments in nanotechnology have made the
fabrication of photonic crystals operating at optical frequencies
possible. However, structural disorder which is introduced
unintentionally during the fabrication process limits the
widespread application of photonic crystals [6]. The
performance of two-dimensional (2D) photonic crystal
waveguides for slow light applications is degraded by
scattering loss from the fabrication disorder [7–9]. The
omnidirectional photonic bandgap (PBG), which allows
ultimate control of the spontaneous emission of atoms, is
sensitive to the non-uniformity in three-dimensional (3D)
inverted opal structures [10, 11]. Hence, a thorough
understanding of the effects of structural disorder is essential
for improving photonic crystal devices.

Recently, there have been many experimental and
theoretical studies on how disorder influences light propagation
and localization in one-dimensional (1D) [12–15], 2D [16–18]
and 3D photonic crystals [19–25]. The types of disorder
depend on the fabrication processes. The ‘top-down’ approach

including lithography and etching has been widely used in
fabrication of 2D photonic crystals. The typical disorder
is random variation in size and shape of building blocks,
and the randomness is usually uncorrelated. The ‘bottom-
up’ approach, such as self-assembly, introduces randomness
in both position and size of building blocks. The positions
of neighboring building blocks are often correlated in the
closely packed structures. Most theoretical studies on disorder
in photonic crystals are focused on uncorrelated disorder.
Recently it has been shown that correlation of disorder may
result in strong anomalies of light localization [26–29]. The
difference between correlated and uncorrelated disorder is not
well understood, except in metallic photonic crystal slabs [30].

In this paper, we introduce both correlated randomness
and uncorrelated randomness in position and size of building
blocks, and study how they modify light transmission,
localization length, density of photonic states and decay rate of
resonant modes in 1D dielectric photonic crystals. The results
highlight the different effects that correlated disorder and
uncorrelated disorder have on photonic crystals. The photonic
bandgaps are more robust against uncorrelated disorder due
to the preservation of long-range structural order. The
dips in the spectra of transmission and density of photonic
states that correspond to PBGs become narrower in the
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presence of uncorrelated disorder, but wider in the case of
correlated disorder. Correlation of disorder enhances light
localization near the band edges, while uncorrelated disorder
causes a divergence of localization length near the gap edges.
The resonant modes near the pass band center experience
the strongest fluctuation of decay rates in the presence of
uncorrelated disorder. In contrast, the correlated disorder
induces a larger fluctuation of decay rates for the bandgap
modes than the pass band modes.

2. Correlation of disorder

Our structures consist of N dielectric layers separated by air
gaps. In the absence of disorder, the period of 1D photonic
crystal is a. The position of the mth dielectric layer is
xm = ma. The thickness of each dielectric layer is d .
Randomness is introduced to either position or thickness of the
dielectric layers. In the case of position disorder, the position
of each dielectric layer is perturbed while its thickness remains
constant. If every dielectric layer is shifted randomly from its
position in the periodic system, the positions of neighboring
dielectric layers are uncorrelated. The position of the mth
dielectric layer is xm = ma + δxm , where δxm is a random
number distributed uniformly between −�a and �a, and �

represents the degree of disorder. Alternatively, the positions of
neighboring dielectric layers can be correlated by introducing
randomness to their spacings. Namely, xm = xm−1 + a + δxm .
Thus xm includes all position variations of the preceding layers,
xm = ma + ∑m

j=1 δx j .
In the case of size disorder, the thickness of dielectric

layers is varied, while their positions do not change. If the
thickness of each dielectric layer is varied independently from
d , the size disorder is uncorrelated. The thickness of mth
dielectric layer is given by dm = d + δdm , where δdm is a
random number distributed uniformly between −�d and �d .
The size disorder becomes correlated if the thickness of the
mth dielectric layer is fluctuated around that of the m − 1th
layer, dm = dm−1 + δdm = d + ∑m

j=1 δd j .
For structural characterization of the disordered photonic

crystals, we computed correlation functions and spatial Fourier
spectra. The spatial correlation function is C(�x) ≡
〈δn(x)δn(x + �x)〉, where δn(x) = n(x)/n̄ − 1, n(x) is
the refractive index at position x , n̄ is the average refractive
index for one configuration and 〈· · ·〉 represents averaging
over many configurations with the same degree of disorder �.
Figures 1(a) and (b) show the correlation functions for position
disorder and size disorder. In the case of uncorrelated disorder,
C(�x) is independent of �x as long as �x �= 0. Hence,
the structure has a long-range order. With increasing disorder
�, the value of C(�x) decreases, indicating the structural
correlation is reduced by disorder. In the case of correlated
disorder, C(�x) decays with increasing distance �x . Thus
the structural correlation or order is short-ranged. For the
same value of �, the structural correlation in the presence
of size disorder is larger than that of position disorder. This
suggests the position disorder reduces structural correlation
more dramatically.

A Fourier transform of n(x) gives the spatial Fourier
spectrum (figures 1(c) and (d)). The peaks in Fourier spectra
correspond to the spatial periods of structures. The peak height
reflects the strength of spatial periodicity and the peak width
is inversely proportional to the dimension of ordered regions.
In the case of uncorrelated disorder, we find the Fourier peak
height decreases as � increases while the peak width remains
nearly constant. This behavior reflects long-range order of the
structure. In the case of correlated disorder, the peak height
decreases more quickly and the peak width increases with �.
The peak broadening indicates the ordered regions shrink in
size and the structural order becomes short-ranged.

3. Transmission and localization length

We used the transfer matrix method to calculate the
transmission spectra of 1D disordered photonic crystals. The
parameters in the numerical simulations are n = 1.05, N = 81,
a = 300 nm and d = 100 nm. Scattering is weak due to
small refractive index contrast. For each type of disorder, the
transmission spectra are obtained by averaging over 103–104

configurations with the same degree of disorder. We focus on
the transmission dip that corresponds to the fundamental PBG
and investigate how disorder changes the gap width and depth.
D is the depth of transmission dip normalized to that in the
absence of disorder (inset of figure 2(a)) and W is the full width
at half-minimum (FWHM) of the transmission dip normalized
to that without disorder (inset of figure 2(b)).

With the introduction of disorder, the transmission dip
becomes shallower. For both position disorder and size
disorder, the reduction of D is larger if the disorder is
correlated. Figure 2(a) shows that the correlated disorder
causes a rapid drop of D when � < 0.3. Once � exceeds
0.3, the falling of D slows down. The uncorrelated disorder
leads to a different behavior, D decreasing slowly at smaller �

then faster at larger �.
Figure 2(b) shows that the gap width W evolves in the

opposite way between the correlated disorder and uncorrelated
disorder. For both position and size disorder, the correlated
disorder makes the gap wider, while the uncorrelated disorder
makes it narrower. The position disorder causes a larger change
of W than the size disorder for the same �. We attribute
the larger effect of position disorder to the relatively small
refractive index contrast in our structures. For larger n, the
trend may be different [10].

We also calculated the variation of transmission T with
structure length L. In the case of correlated disorder, T
decreases with increasing L both inside and outside the PBG.
Figure 3(a) shows the transmission spectra for various lengths
L of structures with a fixed degree of correlated position
disorder, � = 0.3. The frequency ω is normalized to
the center frequency ω0 of the fundamental PBG. From the
decay of T with L, we obtained the localization length, ξ =
−L/〈ln T 〉 [31]. Figure 4(a) is a plot of ξ versus ω/ω0 for
several values of �. The vertical lines mark the edges of the
fundamental PBG. With increasing disorder, ξ increases inside
the gap and decreases in the pass bands. Near the band edges,
ξ first decreases then increases with �. Therefore, correlated
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Figure 1. Spatial correlation functions C(�x) and Fourier spectrum for 1D photonic crystals with position disorder (a), (c) or size disorder
(b), (d). The solid curves represent correlated disorder, while the dashed curves show uncorrelated disorder. The degree of disorder � = 0.1.
Note that the second peaks in spatial Fourier spectra are magnified.

Figure 2. Depth D (a) and width W (b) of the transmission dip as a function of degree of disorder �. Squares and circles represent position
disorder and size disorder, respectively. Solid symbols are for correlated disorder and open symbols for uncorrelated disorder.

disorder weakens the interference effect that suppresses light
transmission in the gap of a periodic structure, leading to an
increase of transmission. In the pass bands, the effect of
disorder is opposite, it enhances light localization and reduces

transmission. Near the band edge, a small degree of disorder
improves localization but large disorder suppresses it.

The dependence of T on L is quite different in the
case of uncorrelated disorder. Figure 3(b) is a log–linear
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Figure 3. ln T versus ω/ω0 for several lengths L of structures with a fixed degree of position disorder � = 0.3. The randomness is correlated
in (a) and uncorrelated in (b).

Figure 4. Localization length ξ as a function of normalized frequency ω/ω0. The position disorder is correlated in (a) and uncorrelated in (b).

plot of T versus ω/ω0 for different lengths L of structures
with a fixed degree of uncorrelated position disorder � =
0.3. Unlike the case of correlated disorder where the shape
of transmission spectra remains qualitatively the same with
increasing L, the uncorrelated disorder modifies the shape of
transmission spectra. The edges of transmission dip become
much sharper at larger L. In the presence of long-range order,
the interference effect becomes stronger in the larger system,
making the transmission dip steeper. Near the gap center T
decreases quickly with increasing L. The decrement slows
down as the frequency moves away from the gap center. Close
to the edges of PBG the transmission curves for different L
cross (left inset of figure 3(b)). Around the crossing points,
T changes little with L. Beyond the crossing points, T
oscillates with frequency. Further away from the crossing
points, the oscillation dies out and T again decreases with
increasing L (right inset of figure 3(b)). The crossing points
move towards the gap center with increasing �. Figure 4(b)
shows the localization length ξ within the PBG. ξ increases
with �, similar to the case of correlated disorder. The major
difference is that ξ rises rapidly as ω moves towards the gap

edges and diverges at the crossing points. This result reflects
the underlying long-range order.

4. Density of photonic states

Next, we studied the effects of disorder on the density
of photonic states ρ(ω). We follow the definition for
density of states in a 1D finite-length structure in [32] and
obtain ρ(ω) from the complex transmission coefficient t =√

T exp(iφ) [32, 33]. The effective wavevector is keff = φ/L,
where φ is the total phase accumulated by the light propagating
through the structure and L is the total length of the finite
structure. It gives ρ(ω) = dkeff/dω. ρ(ω) is normalized by
the density of states (DOS) for a homogeneous medium with
an effective group velocity veff = c[ f/n + (1 − f )], where f
is the filling fraction of the dielectric material with refractive
index n [32].

In a periodic structure, the DOS is depleted within the
PBG and peaked near the band edges. Disorder creates defect
states inside the gap. ρ(ω) is obtained by ensemble averaging
over 103–104 configurations with the same type and degree of
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Figure 5. Normalized density of states (DOS) ρ(ω) versus ω/ω0 in 1D structures with various degrees � of uncorrelated position disorder (a)
and correlated position disorder (b).

Figure 6. (a) Normalized ρ(ω) as a function of degree � of correlated position disorder (solid symbols) and uncorrelated position disorder
(open symbols) at the frequency ω1 of the PBG center (squares) and the frequency ω2 of the largest DOS peak at the band edge (circles).
(b) Total number of depleted states Ns as a function of � (symbol notation is the same as in figure 2).

disorder. Figure 5(a) shows the normalized ρ(ω) for various
degrees of uncorrelated position disorder. ω is normalized to
ω0. With increasing �, the depletion of DOS inside the PBG
is diminished. Outside the PBG, the high peaks of DOS at the
band edges are reduced, and at large disorder the normalized
ρ(ω) approaches unity. Since ρ(ω) never reaches below one
outside the PBG, the DOS dip gets narrower at larger �.
The correlated disorder has a more dramatic effect on DOS.
As shown in Figure 5(b), the DOS gap is quickly filled by
defect states and the large peaks at the band edges diminish
rapidly while being broadened. At certain �, the normalized
ρ(ω) is reduced to below unity outside the PBG, resulting in a
broadening of the DOS gap. Eventually at large disorder, the
DOS dip disappears and the normalized ρ(ω) becomes unity at
all frequencies.

Figure 6(a) plots the normalized DOS at the frequency
ω1 of the PBG center and the frequency ω2 of the largest
DOS peak at the band edge versus the degree of position
disorder. The correlated disorder causes a much faster rise of
ρ(ω1) with �. ρ(ω2) first decreases then increases with �

for the correlated disorder, while it decreases monotonically

with increasing � in the case of uncorrelated disorder. Similar
behaviors are observed for the size disorder.

For a quantitative description of the depletion of photonic
states, we computed the area of DOS dip (inset of figure 6(b))
to obtain the total number of depleted states Ns. Figure 6(b)
is a plot of Ns, normalized by its value in the absence of
disorder, as a function of �. With increasing disorder, more
defect states appear in the gap and Ns is reduced. For both
correlated position and size disorder, Ns decreases first rapidly
with increasing �, then gradually at large �. The trend
is opposite for uncorrelated position and size disorder. Ns

decreases slowly at smaller �. Once � exceeds a critical value,
Ns drops quickly. Hence, the PBG is more robust against small
uncorrelated disorder. This is attributed to the preservation of
long-range order.

5. Decay rates of resonant modes

Finally we investigated the modification of resonant modes
by disorder. γ is the imaginary part of eigenfrequency that
is calculated with the outgoing boundary condition [34]. In
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Figure 7. (a) Average decay rate of resonant modes in 1D structure with different degree � of uncorrelated position disorder (a) and
correlated position disorder (b).

Figure 8. (a) Variance of decay rate of resonant modes in 1D structure with different degree � of uncorrelated position disorder (a) and
correlated position disorder (b).

a finite-sized periodic structure, the modes at the band edges
have the lowest decay rates. γ increases as the frequency
moves towards the pass band center. Structural disorder
perturbs both the frequency and decay rate of resonant modes.
Their values fluctuate from one configuration to another.
We ensemble-averaged the decay rates of modes within a
small frequency window, �ωn = (ωn+1 + ωn)/2 − (ωn +
ωn−1)/2, centered at each mode of frequency ωn in the periodic
structure. Every data point in figures 7(a) and (b) represents the
decay rate γ̄ averaged over 103–104 configurations with the
same degree of position disorder. In the pass bands the modes
with frequencies around the band center have reduced γ̄ with
increasing �, while the modes near the band edges have higher
γ̄ at larger disorder. The defect modes appear inside the PBG,
and they have lower γ̄ than the modes outside the gap. At large
disorder, the decay rate is nearly constant for all modes as the
PBG disappears. The trends are similar for correlated disorder
and uncorrelated disorder, though the latter modifies the decay
rates more than the former. Similar results are obtained for the
size disorder.

To quantify the decay rate fluctuation, we computed the
variance of γ , var(γ ) = 〈(γ /γ̄ − 1)2〉, where 〈· · ·〉 represents
the ensemble average over modes within the small frequency
window �ωn. Figures 8(a) and (b) show the variance of decay
rates for correlated and uncorrelated position disorder.

In the case of uncorrelated disorder, the modes close to
the pass band centers have large var(γ ). To explain the large
fluctuation of decay rates, we plot in figure 9(a) the frequency
and decay rate of all modes in 50 configurations with the same
degree of uncorrelated position disorder � = 0.1. It is evident
that, deep in the pass bands, there are some very leaky modes,
leading to large fluctuation of γ . Figure 9(b) shows the spatial
distribution of electric field intensity for one such leaky mode.
The mode is concentrated near one boundary of the system,
leading to significant leakage of light from the boundary. It
resembles the doorway state in an open cavity [35]. Hence,
the decay rates of the majority of modes near the pass band
center are reduced by disorder, resulting in an decrease of
γ̄ . However, a few of them acquire extremely large decay
rates, leading to an increase of var(γ ). Such ‘doorway states’
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Figure 9. (a) Normalized frequency ω/ω0 and decay rate γ of all modes in 50 configurations with the same degree of uncorrelated position
disorder � = 0.1. (b) Spatial distribution of electric field intensity for one leaky mode marked by an arrow in (a).

are mostly likely to be formed at a frequency close to the
pass band center where the interference effect resulting from
the structural periodicity is the weakest. As the frequency
moves away from the pass band center, the interference effect
becomes stronger due to the existence of long-range order.
It is more difficult for the ‘doorway states’ to be formed by
uncorrelated disorder, causing a decrease of var(γ ). Near the
band edges var(γ ) rises again, indicating the band edge modes
are very sensitive to disorder. This is because the band edge
modes are formed via strong interference of multiply reflected
light, and a small perturbation of structure can induce a large
modification.

In the systems with correlated disorder, the very leaky
modes can also be found near the pass band centers, leading to
similar values of var(γ ) as in the case of uncorrelated disorder.
However, var(γ ) does not decrease as the frequency moves
towards the band edges. This is attributed to the lack of long-
range order which is necessary to suppress the formation of
very leaky modes. Near the band edges, var(γ ) increases and
exhibits double peaks for small �. With increasing disorder,
the double peaks move towards the gap center and merge to
a single peak at certain �. This behavior is consistent with
the result in [14] and is related to the breakdown of single-
parameter scaling. Therefore, the correlated disorder causes
larger fluctuation of γ for the bandgap modes than the pass
band modes, while the opposite is true for the uncorrelated
disorder.

6. Conclusion

We introduce both correlated and uncorrelated randomness
in position and thickness of dielectric layers in 1D periodic
structures, and investigate their effects on light transmission,
localization length, density of photonic states and decay rate
of resonant modes. The systems with uncorrelated disorder
maintain the long-range order, while the ones with correlated
disorder have only short-range order. Our simulation results

illustrate the differences between correlated disorder and
uncorrelated disorder.

The correlated disorder diminishes the transmission dips
that correspond to PBGs more quickly than the uncorrelated
disorder. The robustness of PBGs against uncorrelated disorder
is attributed to the preservation of long-range order of the
structures. Another difference is that the uncorrelated disorder
makes the transmission dips narrower while the uncorrelated
disorder makes them wider than those in the perfectly ordered
systems.

As the degree of structural disorder � increases, the
localization length ξ increases inside the PBG and decreases
outside the PBG. Unlike the case of correlated disorder,
ξ diverges near the gap edges in the case of uncorrelated
disorder. This divergence is attributed to edge sharpening of
the transmission dips by increasing system length.

Like the dips in the transmission spectra, the dips in
the photonic density of states are narrowed by uncorrelated
disorder and widened by correlated disorder. The total number
Ns of depleted photonic states within a PBG falls rapidly at
small degree � of correlated disorder, then slowly at large �.
The trend is just the opposite for the uncorrelated disorder: the
drop of N2 is gradual at small �, then accelerates at larger �.

The structural disorder not only produces defect states
inside the PBG, but also reduces the decay rate of resonant
modes in the pass bands. In the presence of uncorrelated
disorder, the variance of decay rates is the highest near the
pass band center due to the formation of very leaky modes. In
contrast, the correlated disorder causes a larger fluctuation of
decay rates for the bandgap modes than the pass band modes.

We think that the general conclusions presented in this
paper can be extended to higher dimensions. However, caution
must be exerted because in 2D and 3D connected networks
structure can be formed which does not exist in 1D. It has been
shown that a connected network can be more robust against
disorder than a disconnected structure [36]. Therefore, further
studies are needed to understand the effects of different types
of disorders in higher dimensions.
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