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Finite-Difference Time-Domain Formulation of
Stochastic Noise in Macroscopic Atomic Systems
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Abstract—A numerical model based on the finite-difference
time-domain method is developed to simulate fluctuations
which accompany the dephasing of atomic polarization and the
decay of excited state’s population. This model is based on the
Maxwell–Bloch equations with -number stochastic noise terms.
We successfully apply our method to a numerical simulation of
the atomic superfluorescence process. This method opens the door
to further studies of the effects of stochastic noise on light-matter
interaction and transient processes in complex systems without
prior knowledge of modes.

Index Terms—Finite-difference time-domain (FDTD) methods,
Maxwell equations, noise, spontaneous emission, stochastic
processes.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method [1]
has been extensively used in solving Maxwell’s equations

for dynamic electromagnetic (EM) fields. The incorporation
of auxiliary differential equations, such as the rate equations
for atomic populations [2], the Bloch equations for the density
of states of atoms [3], and the multi-subband semiconductor
Bloch equations [6], [7], has lead to comprehensive studies
of light-matter interaction. Although the FDTD method has
become a powerful tool in computational electrodynamics, it
has been applied mostly to classical or semiclassical problems
without noise.

Noise plays an important role in light-matter interaction.
Marcuse solved the rate equations for light intensity and elec-
tron population including noise terms [6] to illustrate the effect
of noise on lasing mode dynamics [7]. Gray and Roy extended
the formulation by adding noise to the field equation in order
to study the laser line shape [8]. Starting from a microscopic
Hamiltonian, Kira et al. developed a semiconductor theory in-
cluding spontaneous emission to describe semiconductor lasers
[9]. While considerable progress has been made, these models
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remain in the modal picture. Knowledge of mode properties is
required to characterize the noise, making it difficult to study
complex systems in which the mode information is unknown a
priori . Without invoking the modal picture, Hofmann and Hess
obtained the quantum Maxwell–Bloch equations including spa-
tiotemporal fluctuations [10]. Although it was useful to study
spatial and temporal coherence in diode lasers, this formalism
was based on the assumption that the temporal fluctuations
of carrier density and photon density were statistically inde-
pendent, which often breaks down above the lasing threshold.
A FDTD simulation of microcavity lasers including quantum
fluctuations was also done recently [11]. This simplified model
added white Gaussian noise as a source to the electric field. The
noise amplitude depended only on the excited state’s lifetime.
The dephasing process, which was much faster than the excited
state’s population decay, should have induced more noise but
was neglected.

Our goal is to develop a FDTD-based numerical method
to simulate fluctuations in macroscopic systems caused by
interactions of atoms and photons with reservoirs (heatbaths).
Such interactions induce temporal decay of photon number,
atomic polarization, and excited state’s population, which can
be described phenomenologically by decay constants. The fluc-
tuation-dissipation theorem demands temporal fluctuations or
noise to accompany these decays. We intend to incorporate such
noise in a way compatible with the FDTD method, that allows
one to study the light-matter interaction in complex systems
without prior knowledge of modes. In a previous work [12],
we included noise caused by the interaction of the light field
with an external reservoir in an open system. In this paper, we
we develop a numerical model to simulate noise caused by the
interaction of atoms with reservoirs such as lattice vibrations
and atomic collisions. As an example, we apply the method to
a numerical simulation of superfluorescence in a macroscopic
system where the dominant noise is from the atoms rather than
the light field.

We start with the Bloch equations for two-level atoms in one
dimension where the direction of light propagation is along the

-axis

(1)

where is the Rabi frequency, the atomic tran-
sition frequency, the electric field which is parallel to the
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-axis, the dipole coupling term. Phenomenological decay
times due to decoherence and the excited state’s lifetime
(which includes spontaneous emission and non-radiative recom-
bination) are appended. In the absence of strong light confine-
ment, which holds for macroscopic systems, and can be
considered independent of the local density of states (LDOS).
Hence, they do not have a dependence on spatial location nor
frequency. We also include incoherent pumping of atoms from
level 1 to level 2. The rate is proportional to the population in
level 1, and can be written as . represents the steady-
state value of when .

The relations between the Bloch vector and the density matrix
are

(2)

The total polarization of atoms in a volume is
and inserted into the Maxwell’s equations

(3)

The atom-reservoir interactions not only cause decay of
the Bloch vector, but also introduce noise according to the
fluctuation-dissipation theorem. In Section II, we describe the
model developed to include noise in the Maxwell–Bloch equa-
tions. The FDTD implementation of this model is presented in
Section III. In Section IV, we simulate atomic superfluores-
cence and compare the results to previous experimental data
and quantum-mechanical calculations.

II. NOISE MODEL

Starting from the quantum Langevin equation within the Mar-
kovian approximation, Drummond and Raymer derived a set of
stochastic -number differential equations describing light prop-
agation and atom-light interaction in the many-atom limit [13].
The noise sources in these equations are from both the damping
and the nonlinearity in the Hamiltonian. The latter represents
the nonclassical component of noise, giving rise to nonclassical
statistical behavior. Since our primary interests lie with clas-
sical behavior of macroscopic systems, such as superfluores-
cence and lasing, we neglect the nonclassical noise in this paper.
The amplitude of classical noise accompanying the field decay
is proportional to , where is the thermal photon number.
At room temperature the number of thermal photons at visible
frequencies ( eV) is on the order of . This can be
interpreted in a quantum mechanical picture as that most of the
time there are no thermal photons at visible frequencies in the
system. Thus, the noise related to field decay is neglected in this
paper. At higher temperatures or longer wavelengths, this noise
becomes significant and it can be incorporated into the FDTD
algorithm following the approach we developed in our previous
work [12].

The classical noise related to the pumping and decay of the
atomic density matrix can be expressed as

(4)

These noise terms are associated with , , and , respec-
tively. . The terms are real, Gaussian,
random variables with zero mean and the following correlation
relation:

(5)

where . The noise terms and represent fluc-
tuations corresponding to decoherence by dephasing, while
is the fluctuation corresponding to relaxation of and pumping
to the excited state’s population. Only the linear term for pump
noise is included here, a common first order approximation [14].
Furthermore, because we assume , pump fluctuations
are neglected in and since they are orders of magnitude
smaller than noise due to dephasing. According to (2), the noise
terms for the Bloch vector are reduced to real variables as

(6)

They can be added directly to (1).
In a 1-D system, the total number of atoms are split equally

among grid cells, giving the number of atoms per cell
. All quantities are defined at each individual grid cell,

e.g., the term is the number of inverted atoms in one cell
at position . The number of atoms in each cell is assumed to be
constant assuring . We forcibly keep constant
via the relation and only calculate the excited
state’s population . The final stochastic equations to be
solved are

(7)

In the above equation, the steady-state value of in (1) is
substituted by , an expression
obtained by setting the time derivatives in (1) to zero. in the
expression of in (4) can be replaced by .

III. NUMERICAL IMPLEMENTATION

The most commonly used method of solving the
Maxwell–Bloch equations is the “strongly coupled method.”
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With being the time step, , and are both computed at
, , etc., while is computed at ,

, etc. This produces equations with coupled terms
such as that must be solved by a predictor-corrector
scheme (as used in [3]) or a fixed-point procedure, both of
which are computationally inefficient. Therefore, we use a
weakly coupled method that is easily implemented and efficient
for 1-D systems.

The weakly coupled method was put forth by Bidé-
garay [15]. The electric field is computed at times ,

, but is calculated at , ,
thereby decoupling those discretized equations and creating
a simple leap-frog type propagation system for 1-D. The
noise terms in (7) are present throughout the entirety of
the simulation and thus, should be incorporated efficiently.
After discretization, the terms are correlated according
to , and can be
generated quickly with the Marsaglia and Bray modification of
the Box–Müller Transformation [16]. Because the noise terms
contain , as seen in (4) and (6), we are not able to use the
weakly coupled scheme to solve for and as precisely
as possible. Instead, the approximation of using the previous

time step value is employed. It is valid as long as
the atomic population is varying slowly. For the simulation of
superfluorescence in Section IV, the maximum change of
over one time step is only 0.0007%.

The discretized equations with noise are

(8a)

(8b)

(8c)

(8d)

(8e)

where we have defined and .
These equations are solved to obtain the final FDTD equations
for , , , , and .

IV. RESULTS AND DISCUSSION

We apply the Maxwell–Bloch equations with noise to a
FDTD simulation of superfluorescence (SF) and compare
the results to previous data obtained experimentally [17] and
theoretically [18]. SF is the cooperative radiation of an initially

inverted but incoherent two-level medium resulting from spon-
taneous buildup of a macroscopic coherent dipole. This is an
interesting and suitable case to study with our method because
both spatial propagation of light and noise are important. Noise
caused by collisional dephasing can seriously disturb SF and
change the emission character to amplified spontaneous emis-
sion (ASE). We simulate the transition from SF to ASE with
increasing dephasing rate, corresponding to the experiment
by Malcuit et al. on super-oxide ions in potassium chloride
(KCl:O ) [17].

Experimentally, the ions inside a cylinder of diameter
m and length mm were excited by a short pulse.

The total number of excited ions is . The emis-
sion wavelength is nm. The Fresnel number for the
excitation cylinder is , where is the area of
the cylinder cross-section. ns, and was varied via
temperature change. The “cooperative lifetime” or the duration
of SF pulse is 2.7 ps. The estimated delay
time for the SF peak after the excitation pulse

(9)

is 94 ps.
Since , the EM modes propagating nonparallel to

the cylinder axis are not supported [19]. Those modes propa-
gating along the cylinder axis do not have a strong radial de-
pendence, nor are there significant diffraction losses. Thus, the
system can be considered as 1-D in our FDTD simulation. The
grid resolution is nm and the total running time is

ns. The Courant number is set to 0.999999. The
magic time step, , was seen to cause an instability in
some cases. The value , however, does not propa-
gate the large sudden impulses of the noise accurately. Set-
ting preserves the accuracy to an acceptable
degree while eliminating the instability at . There is
some numerical dispersion and reflection from the absorbing
boundary layer, but the error is of the order . Ignoring
non-radiative recombination, the atomic dipole coupling term

C m.
The simulation is started with the initial condition of all the

atoms being excited ( ). However, because the atomic
population and polarization operators do not commute, the un-
certainty principle demands a nonvanishing variance in the ini-
tial values of the Bloch vector [19]. This results in a tipping
angle of the initial Bloch vector away from the top of Bloch
sphere ( ). The value of is given by a
Gaussian random variable centered at zero with a standard de-
viation . Since there is no incoherent pumping at

, is set to 0.
Fig. 1 shows the output EM energy at a spatial grid

point outside the system for four different values of the
dephasing time . When ps , the co-
operative emission characteristic of SF is clearly seen in
Fig. 1(a). The number of atoms that emit cooperatively is
estimated to be and is
known as the Arecchi–Courtens cooperation number. Since

, the SF oscillates in time, with the maximal
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Fig. 1. Numerical results of the output EM energy from initially-inverted two-level atoms, obtained by FDTD solution of the Maxwell–Bloch equations with
noise. The left three columns show the output energy for three random realizations. The last column on the right shows the output energy averaged over 30 random
realizations. All insets in the last column magnify the temporal range � � � � � ns. Dephasing time � � ��� ps (first row), 33.3 ps (second row), 25.0 ps (third
row), and 14.3 ps (fourth row).

emission intensity at ps. This behavior agrees well
with the previous result in [18]. For ps ,
there is enough dephasing to disturb the cooperative emission.
The emitted pulse broadens and the time delay increases, as
shown in Fig. 1(b). For ps, a further damping of
superfluorescence is seen in Fig. 1(c). As decreases more,
the pulse continues to broaden but the time delay begins to
decrease. When reaches the critical value ps,
the amount of dephasing is sufficient to prevent the occurrence
of cooperative emission. No macroscopic dipole moment can
build up and the atoms simply respond to the instantaneous
value of the radiation field. Hence, SF is replaced by ASE.
Fig. 1(d) plots the ASE pulse for ps. The time delay
is almost immeasurably small and the emission intensity is
very noisy. Fig. 2 compares the delay times taken from our
FDTD simulations to previous results obtained experimentally
[17] and by full quantum-mechanical theory of SF [18]. The
excellent agreement validates our FDTD-based numerical
method. We emphasize that inclusion of the noise terms in (7)
is essential to obtain the correct variation of with . As
found in [17], the previous approach of modeling the initial
fluctuations as random tipping angles of the Bloch vector and
ignoring the noise at later times brings about good agreement
with experiment only when is large making the amplitude
of the noise terms in (7) small. As the dephasing rate increases,
fluctuations can no longer be modeled simply as an initial
noise.

We have also studied the decoherence process. The am-
plitude of the Bloch vector

. In the absence of decoherence,
, and . The presence of decoherence

Fig. 2. Comparison of delay times of emission pulse obtained by our numerical
simulation (black solid circles) with previous experimental data (red crosses)
and quantum-mechanical calculation results (blue open diamonds) taken from
[18]. Numerical delay times are obtained from the emission pulses averaged
over 30 realizations.

decreases the off-diagonal terms of the density matrix, thus
and [20]. We estimate the degree

of decoherence through the ratio , which is plotted in
Fig. 3 for four different values of . Each curve is obtained by
spatial average of and over the entire excitation region
and then ensemble-average over 30 realizations.

When the dephasing time is large ( ), a macroscopic
dipole moment is spontaneously formed. The enhanced radia-
tive decay rate results in quick depletion of the population inver-
sion . Despite , the decay of and by dephasing
is overshadowed by the decay of by SF, leading to a rapid
drop of in time. This behavior is shown by the red dotted
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Fig. 3. Ratio � �� as a function of time for � � ��� ps (red dotted line),
33.3 ps (blue dashed line), 25.0 ps (green solid line), and 14.3 ps (black dash-
dotted line).

line in Fig. 3. The non-monotonic decay is caused by SF oscilla-
tions as can be seen in Fig. 1(a). The oscillatory SF is a result of
the number of atoms being greater than the Arecchi–Courtens
cooperation number ( ). The intensity oscillation leads
to an oscillation of population inversion which is 90 out of
phase. The local maximum of at ps (red dotted
curve in Fig. 3) occurs just before the second peak of inten-
sity at ps [Fig. 1(a)]. As is reduced, the increased
amount of decoherence frustrates the buildup of a macroscopic
dipole moment and reduces the radiative decay rate. Conse-
quently, the depletion of population inversion is slowed down.
It leads to a slower decay of and the disappearance of
damped oscillations. Finally when the dephasing time is small
enough ( ), the system stays in a decoherent state,
and remains close to one for a very long time.

V. CONCLUSION

We have developed a FDTD algorithm to incorporate sto-
chastic noise in macroscopic systems into the Maxwell–Bloch
equations. Such noise, resulting from atom-reservoir interac-
tions, accompanies the dephasing of atomic polarization and
decay of and pumping to the excited state population. We
applied our algorithm to a numerical simulation of superfluo-
rescence in a 1-D system. The results are in good agreement
with previous experimental and theoretical studies. Although
our simulations only include classical noise, nonclassical noise
may be incorporated as well. Since they consist of nonlinear
terms [13], the incorporation of nonclassical fluctuations to the
FDTD algorithm may be numerically challenging. Given the
rapid progress in development of various numerical methods
of including nonlinearity in the Maxwell–Bloch equations
[21], [22], we are optimistic that the quantum noise terms
may be successfully integrated into our method. Therefore,
our FDTD-based model can be used for numerical studies of
light-matter interaction and transient processes in complex
systems without prior knowledge of modes.
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