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   Abstract:  A recent development in the fabrication of quantum dot based 
microdisk lasers is the ability to reduce their dimensions to approximately 
the emission wavelength. In this chapter we show that deforming the 
cross-sectional shape of such disk lasers can lead to highly directional 
light output from high-quality modes. The directional emission results 
from weak coupling of isotropic high-quality modes to anisotropic low-
quality modes, combined with chiral symmetry breaking of clockwise and 
counterclockwise propagating waves. The fact that the quality factor stays 
high is explained by the existence of partial barriers in the phase space 
of ray dynamics. These two mechanisms make it possible to control the 
output properties of wavelength-scale lasers.  
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 7. 1     Introduction 

 Optical microcavities have been extensively studied to probe cavity quan-
tum electrodynamic effects in the solid state and to provide useful on-chip 
integrated optical devices such as add-drop fi lters, modulators and laser 
light sources. However, for over a decade, another focus of microcavity, and 
specifi cally microlaser, research has been on novel effects relating to clas-
sical/ray and quantum/wave chaos, which affect the emission patterns and 
quality ( Q ) factors of such lasers. The key idea, introduced by Nöckel, Stone 
and Chang in 1994 (Nöckel  et al ., 1994), and extended and tested by Nöckel 
and Stone in 1997 (Nöckel, 1997), was to regard microdisk cavities as ‘leaky’ 
billiards, for which the emission patterns and lifetimes could be calculated, 
at least in useful limits, via a simple ‘ray escape’ model. 

 A billiard is a planar region with perfect specularly refl ecting walls, confi n-
ing the motion of a point particle; such systems have been studied extensively 
in the non-linear dynamics community as a tractable model for understanding 
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chaos and the transition to chaos in conservative Hamiltonian dynamics. In 
the formal analogy to optics, the point particles become light rays, which are 
specularly refl ected from the walls of the microcavity, but unlike standard 
billiards, can refractively (or evanescently) escape at each bounce, in addi-
tion to the probability of specular refl ection. Of particular interest are optical 
cavities that are obtained by smoothly deforming a circle (or cylinder). In this 
case the ray motion undergoes the well-known Kolmogorov–Arnold–Moser 
transition to chaos, in which the system passes through the regime of ‘mixed 
phase space’ or ‘soft chaos’, where the phase space has a combination of cha-
otic and regular regions. As the chaotic regions increase, large scale ‘chaotic 
diffusion’ in the phase space becomes possible, both allowing enhanced ray 
escape and breaking the emission isotropy of the modes of circular micro-
disk lasers, which had been well-studied prior to this work. Surprisingly, the 
initial work on this problem found that relatively highly directional emission 
became possible due to this chaotic ray diffusion, raising the possibility of 
using this approach to enhance the coupling of laser light out of the cavity in 
preferred directions, without adding additional guiding elements and with-
out reducing the cavity  Q  to unacceptable levels. Such smoothly deformed 
microdisk and microcylinder cavities are termed ‘asymmetric resonant cavi-
ties’ (ARCs) (Nöckel, 1997), and there is by now a substantial body of both 
experimental and theoretical work studying such ARC lasers. 

 The initial theory consisted of a sampled ray model (henceforth ‘the 
ray model’), along with an adiabatic approximation for phase space fl ow 
(Nöckel, 1997), which assumes that the curvature of the cavity boundary var-
ies slowly on the length scale set by the distance between successive refl ec-
tions of a ray at the boundary. In this ray model, a set of initial rays were 
distributed uniformly in the relevant region of phase space and then propa-
gated forward in time using the ‘billiard map’ for a specifi c cavity shape, 
which was modifi ed to allow refraction and refl ection, according to the laws 
of Fresnel and Snell, until most of the rays had escaped. The mean escape 
time was measured, yielding an average  Q  of the resonator, and a histogram 
of escaping ray density in the far-fi eld provided a ‘classical’ prediction for 
the emission pattern of ARC lasers, which agreed remarkably well with full 
electromagnetic solutions for the high- Q  resonances (Nöckel, 1997). The 
high emission directions were described qualitatively in the frame of the 
adiabatic approximation initially, but turned out to be much more robust 
than expected from that model, which should fail when the system is too 
chaotic. Schwefel  et al . (2004) identifi ed a mechanism for robust and univer-
sal directional emission from ARC lasers, based on the ‘unstable manifolds’ 
of short trapped periodic orbits (ray trajectories), which defi ne the paths in 
phase space for rapid and hence dominant escape. This approach was able 
to predict and explain the high emission directions from ARC lasers just 
from the studying of a few short periodic orbits (Schwefel  et al ., 2004), and 
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also clarifi ed why ARC shapes with highly chaotic dynamics might nonethe-
less exhibit very directional emission patterns. It should be noted the util-
ity of the ray model is highest for relatively large microcavities, for which 
the deformation cannot be treated perturbatively, and for which numerical 
solutions are diffi cult, although feasible. In these cases, in which, due to non-
separability of the wave equation, there are no simple solutions in terms 
of special functions, nor any conserved quantum numbers, such as angular 
momentum, the ray model provides a critical understanding of the numeri-
cal solutions as well. 

 However, the ray model, augmented by the unstable manifold picture, 
is still a classical model, which neglects interference effects and other non-
classical effects such as photon tunneling (evanescent leakage). This was 
pointed out in the initial work on ARCs (Nöckel, 1997), and becomes a more 
salient shortcoming when one begins to study ARCs that are approaching 
the wavelength scale, as seen in the current work. In fact restoring wave 
effects, while still maintaining the useful understanding provided by classi-
cal dynamics, is precisely the problem of quantum chaos (Stöckmann, 2000) 
(when using the Schrödinger equation), or ‘wave chaos’ when applied to 
classical wave equations, such as those of electromagnetism. In particular, in 
the study of quantum/wave chaos it is well-known that classical structures 
that do not prevent phase space fl ow, nonetheless reduce the fl ow of waves, 
crudely speaking, because the waves fi nd it diffi cult to penetrate subwave-
length regions. This is a major effect in the systems we investigate here. 

 Although there were extensive experimental studies of ARC lasers in 
the years after they were proposed, all of the initial studies were focused 
on cavities that retained two discrete refl ection symmetry planes, and were 
found to emit multiple output beams. For applications it is of course desir-
able to design an ARC that emits a unidirectional beam, like a conventional 
laser. However, there appeared to be a basic problem with obtaining such 
a cavity. ARCs are dielectric cavities, which exploit the high refl ectivity of 
a dielectric boundary near the total internal refl ection condition to achieve 
relatively high- Q  resonances. Thus the relevant ray trajectories must have a 
reasonably high angle of incidence. If such trajectories are associated with 
periodic orbits, then the opposite sense of rotation, which should also con-
tribute to the laser emission, would produce an output beam in a second, 
distinct direction. 

 Nonetheless, a few years ago, Wiersig and Hentschel showed that an ARC 
microcavity exists that leads to high- Q  resonances with unidirectional emis-
sion, both within the ray model and in agreement with electromagnetic 
simulations (Wiersig and Hentschel, 2008). The cavity boundary is defi ned 
by the limaçon of Pascal, which represents a dipolar distortion of the cir-
cle. Although the intracavity ray dynamics is predominantly chaotic, wave 
localization on the unstable periodic orbits (this effect is called ‘scarring’; 
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Heller, 1984) above the critical angle for total internal refl ection leads to 
the formation of high- Q  modes. The output directionality is universal for all 
of these high- Q  ‘scarred’ modes because the corresponding escape routes 
of rays are along the unstable manifolds (Schwefel  et al ., 2004; Wiersig and 
Hentschel, 2008). These manifolds are not symmetric under reversal of the 
sense of rotation, and so can produce unidirectional emission, unlike ray 
emission directly from unstable periodic orbits. 

 Several experiments quickly followed, including some by the cur-
rent authors, and confi rmed this prediction with various material systems 
(Shinohara  et al ., 2009; Song  et al ., 2009b; Yan  et al ., 2009; Yi  et al ., 2009). In 
our initial experiments on limaçon ARC lasers, we studied a GaAs microdisk 
with embedded InAs quantum dots (QDs) as the gain medium with lateral 
dimensions slightly less than 5 µm. The measured  Q -factor is about 22 000, 
signifi cantly higher than all the previously reported  Q  values of deformed 
microcavities (Chern  et al ., 2003; Gao  et al ., 2007). The high-quality factor 
and small modal volume result in very low lasing threshold, allowing con-
tinuous wave operation. The inhomogeneously broadened gain spectrum of 
InAs QDs leads to lasing in multiple modes well separated in wavelength. All 
the lasing modes have single output beam in the same direction, regardless 
of their wavelengths and intracavity mode structures. The unidirectionality is 
robust against cavity sidewall roughness and small shape deviation, allowing 
fabrication by standard photolithography and wet chemical etching. 

 Although the above-mentioned microcavity laser (Song  et al ., 2009b) 
is smaller than the limaçon -shaped microcavities made by other groups 
(Shinohara  et al ., 2009; Yan  et al ., 2009; Yi  et al ., 2009), its dimensions are still 
signifi cantly larger than the wavelength of the emitted light. Thus we were 
motivated to push the cavity size down to wavelength scale, to check if and 
when the universal directional emission predicted by the ray model would 
break down. As noted wave corrections to the ray model are expected to 
appear as the wavelength approaches the cavity size. It is therefore interest-
ing to see if smoothly deformed  wavelength-scale  cavities can still achieve 
simultaneously unidirectional emission and high  Q -factor, and under what 
conditions. In recent experiments (Song  et al ., 2010) we did observe unidi-
rectional emission from wavelength-scale lasers, and we found that it arises 
from the coupling of relatively high- Q  resonances to more directional 
 lower- Q  scarred resonances based on specifi c unstable periodic orbits. In 
contrast to the prediction of the ray model, the directionality has turned 
out to be non-universal, with bidirectional emission also seen, in agreement 
with electromagnetic simulations. These experiments and their interpreta-
tion led to generalizations of the ray model that break the chiral symmetry 
of emission based on periodic orbits, as will be explained below. Thus we 
fi nd the classical phase space picture, suitably modifi ed, can give insight into 
the behavior of wavelength-scale ARC lasers.   
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 7. 2     Ray-wave correspondence in microdisk cavities 

 In the effective-index approximation for (deformed) microdisks Maxwell’s 
equations reduce to a two-dimensional scalar mode equation (Jackson, 
1962)  

−∇ = ( )2 2
2

2
ψ ω2

ψn (2

c
,) 2

ψ   [7.1]  

 with piece-wise constant effective index of refraction  n ( x ,  y ), frequency 
ω = ck, wave number  k  in vacuum (outside the disk), and the speed of light 
in vacuum  c . For simplicity we neglect a possible frequency dependence of 
the refractive index. The mode equation [7.1] is valid for both transverse 
magnetic (TM) and transverse electric (TE) polarization. For TM polariza-
tion the electric fi eld 

�
E y i t( ,x , )t ( , ,Re[ ]i t )∝ ( )x, y0, ψ ttt  is perpendicular to 

the cavity plane. The wave function  ψ  and its normal derivative ∂  v  ψ are con-
tinuous across the boundary of the cavity. For TE polarization,  ψ  represents 
the  z -component of the magnetic fi eld vector  H z  . Here,  ψ  and n( x ,  y ) −2 ∂  v  ψ 
are continuous across the boundaries (Jackson, 1962). At infi nity, outgoing 
wave conditions are imposed that result in quasibound states (resonant 
modes) with complex frequencies  ω  in the lower half-plane. The imaginary 
part determines the lifetime τ = 1/[2Imω] and the quality factor  Q  = −Reω/
[2Imω].  

 As discussed in the introduction much understanding about the wave 
dynamics in microcavities can be gained by studying the ray-wave corre-
spondence. A convenient tool to investigate the ray dynamics is the Poincaré 
surface of section (SOS) (Lichtenberg and Lieberman, 1992). It is a plot 
of the intersection points of a set of trajectories with a surface in phase 
space. This is illustrated in   Fig. 7.1 . Starting with a given trajectory, its posi-
tion in terms of the arclength coordinate along the circumference  s  and the 
quantity  p  = sin χ ( χ  is the angle of incidence) are recorded always directly 
before or after the particle is refl ected at the cavity’s boundary. With the 
total momentum being normalized to unity, sin χ ∈ [−1, 1] can be inter-
preted as tangential momentum component with respect to the boundary 
curve at the position  s  ∈ [0,  s  max ]. We adopt here the convention that sin χ > 
0 means counterclockwise (CCW) rotation and sin χ < 0 means clockwise 
(CW) rotation. In the so-called Birkhoff coordinates ( s , sin χ) (Birkhoff, 
1913) the mapping from bounce to bounce, ( s   i  , sin χ i ) → ( s   i +1 , sin χ  i +1 ), is 
area-preserving (Berry, 1981). The key difference between a billiard (closed 
cavity, with vanishing wave function ψ along the boundary) and an opti-
cal microcavity is that in the former case the ray stays inside the interior 
of the domain enclosed by the boundary, and in the latter case the ray can 
leave the cavity when it enters the leaky region where the condition for total 
internal refl ection is not fulfi lled; see position (4) in   Fig. 7.1 .  
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   Figure 7.2a  illustrates a ray trajectory in a circular billiard. The corre-
sponding modes are called whispering-gallery (WG) modes named after 
the whispering gallery at the St. Paul’s Cathedral in London (Rayleigh, 
1945). In the case of the integrable circular billiard, the conserved angular 
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 7.1      Light ray trajectory in a deformed microdisk in real space (a) and in 

the Poincaré surface of section (b);  s  is the arclength coordinate (nor-

malized to the perimeter  s  max ) and χ is the angle of incidence (measured 

with respect to the normal  n̂  ). The critical line sin χ  c   = 1/ n  marks the 

border of the leaky region where the condition for total internal refl ec-

tion is not fulfi lled.  
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 7.2      (a) Circular billiard: whispering gallery ray trajectory in real space 

and in the Poincaré surface of section. Typical trajectories in this 

cavity fi ll a line of constant sin χ. (b) Chaotic trajectory and Poincaré 

surface of section for the limaçon billiard defi ned in Equation [7.2] 

with ε = 0.43.  
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momentum is proportional to sin χ. Hence rays are confi ned to invariant 
lines of constant sin χ. This has important consequences for the ray dynam-
ics in a microdisk. Consider a ray that initially fulfi lls the condition for total 
internal refl ection |sin χ| > 1/ n . Since the ray does not leave the invariant line 
sin χ = const, it cannot enter the leaky region. Hence, the quality factor in 
a circular microdisk predicted by ray dynamics is infi nitely large. However, 
the (small) wave correction to this picture is given by evanescent leakage, 
the optical analogue of quantum tunneling, which leads to fi nite but very 
high  Q -factors even in the case of an ideal disk. 

 The rotational symmetry of a circular microdisk results in a uniform far-
fi eld emission pattern, which is a considerable disadvantage for most appli-
cations, in particular for microlasers. Breaking the rotational symmetry, for 
example, by deforming the boundary, leads in almost every case to a cavity 
with partially or fully chaotic ray dynamics and an improved far-fi eld emis-
sion pattern (Nöckel  et al ., 1996; Nöckel and Stone, 1997; Gmachl  et al ., 1998; 
Lebental  et al ., 2006, 2007; Tanaka  et al ., 2007). To illustrate the ray dynamics 
in a deformed microcavity, we consider a specifi c boundary curve, the lima-
çon of Pascal that reads in polar coordinates (ρ, ϕ)  

 
ρ( )φ = ( )ε φR ε+ .   [7.2]  

 The limiting case of vanishing deformation parameter  ɛ  is the circle with 
radius  R . For suffi ciently large deformation parameter  ɛ  the dynamics 
is predominately chaotic; see   Fig. 7.2b . Only small ‘islands of regularity’ 
can be observed in the ‘chaotic sea’. A trajectory starting in the chaotic 
region diffuses in phase space in a chaotic fashion as indicated by the 
small dots.   

 7. 3     Modified ray-wave correspondence in 
wavelength-scale cavities 

 Ray models have been highly successful in predicting the properties, in par-
ticular the output directionality, of microcavities; however, as smaller cavi-
ties are fabricated, wave effects become more important and the ray model 
can be expected to break down. In the following we discuss two aspects 
close to this breakdown: (a) recent attempts to amend the ray dynamics by 
including fi rst-order wave corrections and (b) localization of waves due to 
partial barriers.  

 7. 3.1     Extended ray dynamics  

 Two wave corrections that appear naturally in dielectric cavities are the 
Goos–Hänchen shift (GHS) (Goos and Hänchen, 1947) and the Fresnel 
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fi ltering (FF) effect (Tureci and Stone, 2002). Both corrections arise because 
at fi nite wavelengths, rays have to be replaced by beams. In the case of 
the GHS, the different partial waves in such a beam accumulate different 
phases upon refl ection at an interface, which leads to a lateral shift Δ s  along 
the interface due to interference. In the case of the FF, partial waves with 
angles of incidence below the critical angle for total internal refl ection χ  c   
are (partially) refracted out of the cavity, giving rise to a shift Δχ (or Δ p , if 
one considers the dimensionless momenta  p  = sin χ of the partial waves) 
between the incident and outgoing angles – that is, a violation of Snell’s law. 
  Figure 7.3  illustrates the two effects. Note that both corrections are absent 
in billiards. 

 It is important to mention that if one considers in the ray dynamics 
not only individual rays but ray  densities  in phase space then the FF is 
always present. In that sense the FF can be considered as a ray dynami-
cal effect, which is in contrast to the GHS where interference of partial 
waves is the essential ingredient. Nevertheless, including the FF explicitly 
in the extended ray dynamics is a powerful tool, as it often allows a descrip-
tion of dynamical properties in terms of a few or even a single ray as we 
will see later.  

 A simple analytical formula for the GHS is due to Artmann (1948); how-
ever, it exhibits singularities at the critical angle and at sin χ = 1, both of 
which are unphysical for beams. Moreover, it is only applicable above the 
critical angle. For Gaussian beams, there is an analytical result due to Lai  et al . 
(1986), which is unfortunately only valid if the beam width σ is much larger 
than 1/ k . In the regime of  k σ ≈ 1, in which we are interested in, Lai’s for-
mula also shows unphysical singularities (Unterhinninghofen and Wiersig, 
2010). For the FF, no analytical results exist so far for the  p  dependence of 
Δ p . Hence, it is practical to calculate both the GHS and the FF numerically 
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 7.3      Goos–Hänchen shift Δ s  and Fresnel fi ltering Δ p  = sin χ′ − sin χ as 

wave corrections to the ray dynamics. A beam is not refl ected at the 

same position on the boundary, but the outgoing beam is shifted by Δ s ; 

the outgoing angle χ′ is not the same as the incident angle χ.  
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by refl ecting Gaussian beams with minimal and equal uncertainties in posi-
tion and momentum directions on a fl at interface (Unterhinninghofen and 
Wiersig, 2010).   Figure 7.4  shows a typical example for the GHS and FF. 
Measurements of the GHS in the microwave regime have been done by 
Unterhinninghofen  et al . (2011). 

 The extended ray dynamics including GHS and FF has been successfully 
applied to shed some light on the origin of certain peculiar spectral prop-
erties of elliptical microcavities (Unterhinninghofen  et al ., 2008), of local-
ization properties of mode patterns in spiral microcavities (Altmann  et al ., 
2008) and in other deformed microdisks (Unterhinninghofen and Wiersig, 
2010).   
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 7.4      (a) Goos–Hänchen shift and (b) Fresnel fi ltering calculated for a fl at 

dielectric interface as functions of sin χ for n = 3.3, TE polarization and 

different values of the normalized frequency (ω/c) R  =  kR . The Goos–

Hänchen shift curves have been scaled with  k , the Fresnel fi ltering 

curves with k R( )R .1  The effects are most pronounced near the critical 

line sin χ  c   = 1/ n .  
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 7.3.2     Whispering-gallery modes trapped by partial barriers  

 In this section we discuss another interesting aspect that becomes highly 
relevant for wavelength-scale microdisks, namely the confi nement of WG 
modes by partial barriers. To start with, consider a WG mode in a circu-
lar microcavity. It has a defi nite value of angular momentum due to the 
rotational symmetry. When the corresponding ray trajectory is plotted 
on the phase space section using the Birkhoff coordinates, this conserved 
angular momentum appears as a horizontal line with a specifi c sin χ value; 
see   Fig. 7.2a . Hence, a given initial condition can reach points only on the 
same line and there is no trajectory connecting two points on different lines 
(  Fig. 7.5a ). Effectively, the trajectory lines in the phase space section play a 
role of barriers and are accordingly called  dynamical barriers . 

 However, if the rotational and the radial degree-of-freedom are non-lin-
early coupled through deformation of the cavity, the phase space section 
becomes chaotic. One of the most important features in this chaotic tran-
sition is that the dynamical barriers become broken to open new diffusive 
trajectories. In a unifi ed chaotic area of the phase space, a trajectory that 
connects infi nitesimal areas around two arbitrary points can be found in any 
case (  Fig. 7.5b ). 

 If the deformation or the non-linear coupling is given by a smooth func-
tion, the chaotic transition progresses transiently. For example, if the shape 
of a microcavity is given by the multipolar expansion  

 ρ( )φ = ( )ε φ η φ+φ
=

∞

∑(εεR∑ ε φε ηηεεε
n

η+φφ ηη+φ
0

  [7.3]  

 its internal ray dynamics becomes slowly chaotic depending on the defor-
mation parameters ε  n   and η  n  . In this process, the dynamical barriers in the 
phase space do not break abruptly but slowly disappear through an inter-
mediate status, where the dynamical barriers turn into structures similar 
to Cantor’s set, that is, lines with many holes that are fractally distributed. 
The chaotic diffusion proceeds passing through these holes. Because every 
dynamical barrier breaks at a different value of the system parameter ε  n   or 
η  n   in Equation [7.3], a slightly broken barrier can still suppress the chaotic 
diffusion considerably, even if the chaotic area is unifi ed (compare   Fig. 7.5c  
and   7.5d ). 

 Now, let’s imagine a situation where a wave is launched on the phase 
space and follows the chaotic diffusion. In phase space, the amount of tra-
jectories passing through the broken barrier can be measured by a phase 
space area. Such an area is given in the unit of action. The whole process 
is therefore called  action transport . The comparison of this action with the 
wave resolution determines how smoothly the wave function follows the 
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chaotic diffusion. If the action of a broken barrier is very tiny in comparison 
with the resolution limit of the wave, the wave feels this broken barrier as 
a complete barrier (Shim  et al ., 2008). From this reasoning, we can deduce 
that partial barrier’s suppressing chaotic diffusion is more conspicuous in 
wave dynamics and this suppression effect gets stronger with increasing 
wavelength (or decreasing cavity size).  

 In this section, the formation of WG modes by partial barriers and their 
optical properties are discussed in the deep wave regime, that is, in a very 
tiny microdisk cavity that has a diameter comparable with the vacuum wave-
length. In this case, even a periodic orbit with a low period can play a role 
of a partial barrier to suppress chaotic diffusion. This suppression from the 
partial barriers induces the unexpected formation of high- Q  modes. Using a 
semiclassical approach the criteria for those high- Q  modes can be derived. 
The discussion starts with a numerically obtained spectrum of a subwave-
length-scaled deformed microcavity.   Figure 7.6a  shows the numerically cal-
culated spectrum of limaçon shaped microcavity, the boundary of which is 
given by Equation [7.2]. As can be seen by the comparison with Equation 
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 7.5      Phase space portraits of the limaçon shaped microcavity, see 

Equation [7.2]: (a) ε = 0 (circle): regular motion. There is no trajectory 

connecting A and B. (b) ε = 0.28: a single trajectory (thick gray dots) 

starting from A by 1000 iterations. The trajectory diffuses to the lower 

part of phase space. (c) ε = 0.25: single trajectory starting from A by 

20 000 iterations. Chaotic diffusion is blocked by a partial barrier (thick 

black dots). (d) ε = 0.25: further progress of the trajectory in (c) by 

30 000 iterations. The trajectory penetrates the partial barrier.  
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[7.3], the limaçon shape is the lowest term of the multipolar expansion. A 
microcavity with this shape is known to have a relatively high  Q -factor and 
unidirectional light emission. These advantageous features of the limaçon 
shape can be understood by chaotic diffusion (Wiersig and Hentschel, 2008). 
For the calculation of the spectrum, we set the deformation parameter, ε 
equal to 0.43 and the refractive index as  n  = 3. The calculation is performed 
from  kR  = 2  to 25 using the boundary element method (Wiersig, 2003). 

 The fi rst noticeable feature in the spectrum is that the local maximum 
of high- Q  modes are formed by convex curved series of modes and these 
convex curved series appear repeatedly in the spectrum (denoted by dif-
ferent symbols in   Fig. 7.6 ). Interestingly, the emission directionality of the 
high- Q  modes display the strongest deviation from the unidirectionality 
measured by  

 U f ( )∫ ff ( ) φ
π

cos ,φ
0

2

  [7.4]  

 where  f (ϕ) is the normalized far-fi eld emission distribution of a mode. This 
observation implies that the chaotic diffusion is suppressed in some way and 
we assume the effect of partial barrier is the reason.  

 A convincing clue for this phenomena can be found in confi guration 
distributions of the high- Q  modes.   Figure 7.7a  shows the confi gurational 
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distribution of a mode around the top of the second mode series in   Fig. 7.6a . 
As a striking feature, this distribution is regular. In general, a mode in a sys-
tem with underlying chaotic ray dynamics does not have well-defi ned mode 
numbers along each degree-of-freedom; however, the mode in   Fig. 7.7a  shows 
a reasonably countable number of nodes along the radial and the axial direc-
tion. Also an interesting correlation between this regular distribution and a 
pair of periodic orbits with four bounces is observed. In   Fig. 7.7a  it can be 
seen that the internal decay of the mode distribution is well described by a 
pair of period-4 orbits whose existence is supported by Poincaré–Birkhoff’s 
theorem (Meiss, 1992). More interestingly, each curved mode series in 
  Fig. 7.6a  has a corresponding periodic orbit in increasing order as such con-
fi ning structure. For instance, all the modes in the fi rst curved series have a 
pair of period-3 orbit and the third curved series have period-5 orbit, etc. 

 From these fi ndings, we conjecture that each period orbit plays a role 
of a partial barrier to form high- Q  modes with the following mechanism: 
when a periodic orbit is able to hold a mode and the action transport of the 
periodic orbit is less than the resolution of the mode, a WG mode with a 
high  Q -factor can be constructed by the periodic orbit. However, when the 
mode becomes able to resolve the action transport, the periodic orbit can 
not confi ne a WG mode anymore. 

 To confi rm this hypothesis we quantify the action transport of each peri-
odic orbit.   Figure 7.7b  shows the phase space section with the Husimi distri-
bution of the mode (Hentschel  et al ., 2003; Tureci  et al ., 2005), representing 
the wave analogue of the Poincaré SOS, in   Fig. 7.7a . This smoothing of the 
Wigner function displays the ray content of the fi eld at the cavity boundary. 

(a) (b) (c)1

0.8

0.6

0.4
0 0.2 0.4 0.6 0.8 1

S/Smax

A4

W4 W4

si
n 

χ
 7.7      Computed optical mode in a limaçon microcavity: (a) confi gura-

tional fi eld distribution. The mode has well-defi ned mode numbers, 

1 in radial and 16 in azimuthal degree of freedom. The distribution is fi t 

to the pair of period-4 orbits from the inside. (b) Phase space portrait. 

From the initial line (dashed lines) the partial barrier (solid line) and 

turnstile ( W  4 ) of period-4 orbit by forward and backward iterations. The 

Husimi distribution of the mode of (a) is backgrounded. (c) Conjugate 

point search by ray tracing. Focal points marked by small circles 

 corresponds to the conjugate points.  

�� �� �� �� �� ��



238 Quantum optics with semiconductor nanostructures

© Woodhead Publishing Limited, 2012

The Husimi distribution is located above the fi xed points of the pair of 
period-4 orbits, which are denoted by crosses and circles. To quantify the 
action transport, we set the initial conditions on the line connecting two 
consecutive fi xed points (crosses) through another fi xed point (circle), as 
given by the dashed line in   Fig. 7.7b . Then this initial line is backward and 
forward iterated until it reaches the central gap marked by a triangle point-
ing upwards in   Fig. 7.7b . By the resulting images of the iteration, two areas 
are enclosed at the central gap. The action transport of the period-4 orbits 
can be defi ned by these two areas that are called ‘ turnstile ’ (Meiss, 1992) and 
marked by  W  4  in   Fig. 7.7b . 

 By the whole images of the iteration (solid lines in   Fig. 7.7b ), the par-
tial barrier of period-4 orbit can be defi ned and the phase space is divided 
into two parts, the upper and the lower with respect to the partial barrier. 
According to the Husimi distribution, the mode is located in the upper part 
and we denote its area  A  4 . 

 Using the two entities around the partial barrier, we set the entering con-
dition that indicates when a mode becomes confi ned by a periodic orbit 
and the escaping condition indicating when the confi nement of the periodic 
orbit is resolved. 

 First, we derive the entering condition using the analogy of the regular 
mode confi guration to a circular microcavity. Due to the integrability of the 
circular microcavity, the analytic criterion for a mode confi ned by a periodic 
orbit is available (Brack and Bhaduri, 2008). We modify this criterion in 
terms of the area above the partial barrier,  A p   for a  p -periodic orbit:  

 Re
cos

,p( )nkR >
( ) +

− ( )A SpA S − ( )A SpA ( )A SpA−

α) +

1
2 1

  [7.5]  

 where  S  is the total area of the phase space and α  p   is the phase shift from the 
refl ection on the cavity boundary. 

 Second, the area of the turnstile,  W  4  is semiclassically quantized to fi nd 
the minimum wave number to resolve this area in phase space. In addition, 
we have to consider conjugate points to take into account of the additional 
phase sliding (Creagh  et al ., 1990). The number of the conjugate points can 
be certifi ed by focuses from a ray-tracing simulation with a small bundle of 
rays around periodic orbits, and each conjugate point is associated with a 
π/2-phase sliding. In   Fig. 7.7c , we notice that two period-4 orbits have dif-
ferent numbers of conjugate points, that is, the diamond shaped orbit has 
three conjugate points while the square shaped orbit has four points on 
it. Characteristically, the limaçon cavity shows the difference of one in the 
number of conjugate points on each pair of periodic orbits. By taking all the 
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above factors into account the general escaping condition for a  p -periodic 
orbit can be derived as follows:  

Re .
WpWW

( )nkR ≤
π

2
  [7.6]  

 In the derivation of this inequality, it is not needed to explicitly consider 
the Goos–Hänchen effect, because the total phase slidings of the pair of 
p -periodic orbit refl ection are almost same, that is, the phase differences 
are negligible. This can be seen from the positions of the fi xed points in the 
phase space in   Fig. 7.7b . 

 The obtained entering and escaping conditions for each periodic orbit are 
compared to the spectrum. In   Fig. 7.6a  we denote the entering conditions by 
N p   and the escaping conditions by  E p   for each  p -periodic orbit. The condi-
tions indicate the point of appearance and disappearance of each curved 
series of modes very consistently. 

 By the suppression of chaotic diffusion, the worse directional emission 
from the high- Q  modes can also be understood. When the chaotic diffusion 
is hindered by partial barriers, the only available channel to emit radiation is 
evanescent leakage, which leads to bidirectional emission tangential to the 
cavity boundary. This results in the reduction of the directionality measure.    

 7.4     Wavelength-scale asymmetric resonant 
microcavity lasers 

 With the help of the formation of high- Q  modes due to partial barriers and 
the extended ray dynamics, our goal in the present set of experiments is to 
exploit new behaviors that might occur in wavelength scale ARC  microcavity 
lasers, and specifi cally in the limaçon microcavity.  

 We fabricated GaAs microdisk lasers with embedded InAs QDs as the 
gain media. The sample is grown on GaAs substrate by molecular beam epi-
taxy. The layer structure consists of 1000 nm Al 0.68 Ga 0.32 As and 265 nm GaAs. 
Inside the GaAs layer there are three monolayers of InAs QDs equally 
spaced by 25 nm GaAs barriers. Standard photolithography is used to defi ne 
a limaçon shaped microdisk with  R  = 3.75 µm and ε = 0.43. Next GaAs and 
AlGaAs are etched nonselectively in a mixture of HBr:H 2 O 2 :H 2 O with the 
ratio 4:1:25. The etching is nearly isotropic, and decreasing the radius of 
microdisk by controlling the etching time (Song  et al ., 2009a). Finally 2.5% 
diluted HF is used to etch the AlGaAs and form a pedestal underneath the 
GaAs disk (Song  et al ., 2009a).   Figure 7.8a  is a top-view scanning electron 
microscope (SEM) image of the fabricated disk. Its shape is fi tted by  

ρ ε φ( )φ = ( )ε φ ( ) dε φR( )ε ( )φ +)ε φ+ ( 1εε−)φ ()φ ( εε ,   [7.7]  
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 where  R  = 890 nm, ε = 0.28, ε 1  = 0.06 and  d  = 60 nm. This radius is much 
smaller than all the previous reports (Shinohara  et al ., 2009; Song  et al ., 
2009b; Yan  et al ., 2009; Yi  et al ., 2009). As shown in   Fig. 7.8a , the angle ϕ 
uniquely specifi es a point on the boundary, but to avoid confusion, below we 
use ϕ FF  to designate far-fi eld directions, and the arclength  S , measured from 
the boundary point on the positive  x -axis and normalized to the perimeter, 
to specify points on the boundary. 

 Although the fabricated cavity shape slightly deviates from the limaçon, 
the ray dynamics is very similar.   Figure 7.8b  shows the result of ray tracing 
in the closed cavity (with perfect refl ection of light from the boundary). 
Similar to the case of the limaçon cavity, the ray dynamics is predomi-
nantly chaotic. Without escape from the boundary, a typical trajectory could 
explore almost the entire phase space in a random-looking fashion. In addi-
tion to the chaotic orbits, there are stable periodic orbits that correspond to 
a few tiny islands and two big islands near sin χ = 0. Unstable periodic orbits 
also exist among the chaotic sea. WG trajectories are confi ned in the narrow 
bands |sin χ| > 0.99.  

 Next we performed the (conventional) ray-tracing simulation in an open 
cavity from which light can escape via refraction at the boundary. From the 
lowest order TE waveguide mode in the GaAs layer, we computed the effec-
tive index of refraction  n e   = 3.13. The initial rays with identical amplitudes 
are uniformly distributed in the phase space above the critical line. At each 
refl ection from the boundary, the amplitude of a ray is reduced according to 
the Fresnel law. Tracing of one ray is stopped after its amplitude falls below 
a certain value.   Figure 7.9a  shows the sum of intensities of all iterations by 
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 7.8      (a) The top-view SEM image of a GaAs disk. The scale bar is 1 μm. 

The cavity shape is defi ned in polar coordinates as in Equation [7.7]. 

(b) Conventional ray tracing result with closed cavity boundary. The ray 

dynamics is predominantly chaotic with two regular regions below the 
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tracing 20 000 rays propagating CCW inside the cavity. It reveals that the 
rays diffuse along the unstable manifolds toward the leaky region of χ < 
χ  c   = arcsin(1/ n   e  ), where χ  c   is the critical angle for total internal refl ection. 
The inset of   Fig. 7.9b  is an angular plot of the far-fi eld emission intensity. 
The directed fl ow of rays in the phase space produces an output beam in the 
direction ϕ FF  = 0 ° . 

 We have seen that chaotic ray dynamics in the semiclassical region of large 
 kR  (small wavelength) can lead to highly directional emission. It is natural 
and interesting to ask whether such directional outputs can be realized in 
small cavities such as wavelength scale or subwavelength scale, where the 
 kR  is close to 1. In Section 7.3.2 it was demonstrated that in this regime WG 
modes with high-quality factor can still exist due to partial barriers in phase 
space. However, the emission is dominated by tunneling and therefore less 
directional. The lower- Q  modes with small angular momentum below par-
tial barriers will have more anisotropic emission, but these modes would 
not show up in the lasing spectrum because their lasing thresholds are too 
high.  

 Let us see what happens experimentally. In our lasing experiment, the 
sample is mounted in a liquid Helium cryostat with the substrate temper-
ature kept at 10 K and optically pumped by a mode-locked Ti: Sapphire 
laser (pulse width 200 fs, 76 MHz repetition rate). The pump wavelength is 
790 nm. A long working distance is used to focus pump beam normally to 
the microdisk from the top and collect the emitted laser emission reversely. 
Time-integrated spectra are taken by a spectrometer with a cooled charge-
coupled device (CCD) array detector. Because we measure the lasing spec-
trum, only the high- Q  modes of frequencies within the gain spectrum are 
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accessible. The gain spectrum of InAs QDs is inhomogeneously broadened 
and has a large width of about 80 nm, allowing us to observe several lasing 
modes in the small disk despite the large mode spacing. The laser emission 
spectrum depicted in   Fig. 7.10a  consists of three peaks at vacuum wave-
lengths  λ  = 908, 942 and 978 nm.   Figure 7.10b  shows the dependence of 
emission intensity on the pump intensity. When the pump intensity is higher 
than ≈ 100 W/cm2  , the output intensity increases dramatically, indicating a 
threshold behavior at ≈ 100 W/cm2.   We also measured the linewidth of the 
mode at 908 nm as a function of pump intensity. It decreases fi rst to 0.1 
nm, and then increases, mostly due to temporal shift of lasing frequency 
(Pompe  et al ., 1995). In our time-integrated measurement of lasing spec-
trum, the transient frequency shift results in a broadening of the lasing line. 
Such broadening increases with the hot carrier density and becomes domi-
nant at higher pump.  

 To measure the far-fi eld pattern of laser emission from a deformed micro-
disk cavity, we fabricated a large ring structure around each microdisk. The 
in-plane laser emission from the disk edge propagates to the ring and is scat-
tered out of the plane. The scattered light pattern is imaged by the objective 
lens to a CCD camera. Since the ring radius exceeds 4 R   2  /λ, the scattered 
light intensity along the ring refl ects the far-fi eld emission pattern of the 
microdisk. Bandpass fi lters have been placed in front of the CCD camera to 
measure the far-fi eld patterns of these three modes. The measured far-fi eld 
patterns are shown in   Fig. 7.11 . All the three lasing modes (labeled 1–3) 
have signifi cantly different far-fi eld patterns. Mode 3 has output predom-
inantly in the forward direction (ϕ FF  = 0 ° ), while mode 1 displays bidirec-
tional emission in both forward and backward (ϕ FF  = 180 ° ) directions. Mode 
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 7.10      (a) Measured laser emission spectrum at the incident pump 

intensity of 191 W/cm 2 . (b) The measured emission intensity (dots) and 
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threshold behavior can be observed at around 100 W/cm 2 . The linewidth 

decreases fi rst and increases at higher power because of the hot carrier 

effect caused by ultrashort laser pulse.  
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2 is the intermediate between 1 and 3. This phenomenon is distinct from that 
of larger limaçon cavities that have nearly identical unidirectional emission 
patterns for all lasing modes. It indicates the breakdown of ray dynamics in 
the wavelength scale cavities. The failure of the (conventional) ray model 
in wavelength-scale deformed microdisk lasers is expected; this statistical 
model is more appropriate for multimode lasing in the limit of short wave-
length  kR  ≫ 1,  k  = 2π/λ. However, the persistence of unidirectional emission 
to such small scales (mode 3) is surprising.  

 To explain this interesting fi nding we solved the electromagnetic wave 
equations for the cavity resonances after extracting the actual disk shape 
and dimension from the SEM images. Three numerical methods were used: 
a fi nite-difference time-domain (FDTD) algorithm (Song  et al ., 2009b), 
the scattering matrix approach (Tureci  et al ., 2005) and boundary element 
method (Wiersig, 2003) and they give consistent results. We fi nd a set of 
high-Q modes (HQM) with constant frequency spacing and similar spa-
tial profi le; in most cases these modes look like WG modes, with vanishing 
intensity towards the disk center. However, as shown in   Fig. 7.12a , their  Q  
values have an unusual non-monotonic variation with frequency, exhibiting 
a minimum at  kR  ≈ 7.1. In addition we observe a low- Q  mode (LQM) series 
in the same frequency range, the relevance of which will be discussed below. 
Note that the LQM has lower angular momentum and is therefore localized 
below the relevant partial barriers. It is therefore not confi ned by these par-
tial barriers, which leads to a lower  Q . For the same reason it can follow the 
unstable manifold, which should result in unidirectional emission. 

 To characterize the directionality of the output we use the measure in 
Equation [7.4];  U  = 0 corresponds to isotropic or bidirectional emission, 
whereas positive (negative)  U  corresponds to emission primarily towards 
ϕ FF  = 0 ° (180 ° ). We fi nd that as the normalized frequency  kR  decreases from 
10 to 5.5, the value of  U  fi rst increases from approximately 0 to 0.6 and then 
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 7.11      (a)–(c) Measured far-fi eld patterns for the lasing modes 1, 2 and 3 
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Reprinted from Song  et al . (2010) with kind permission from  Physical 
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decreases to 0. The calculated far-fi eld patterns confi rm a transition from 
bidirectional emission to unidirectional emission, and back to bidirectional 
emission. The frequency of maximum  U  is close to but not equal to that of 
the mode with the minimum  Q  for the high- Q  mode series. Our lasing exper-
iment, however, cannot detect the lowest  Q  mode of the series (labeled 4 
in   Fig. 7.12 ) because it does not lase, instead the three modes it measures 
(  Fig. 7.10a ) are the ones on the low  kR  (long wavelength) side of the  Q  dip 
and labeled 1, 2 and 3 in   Fig. 7.12a . The calculated angular distributions of 
far-fi eld intensities of modes 1–3 resemble the measured ones, which change 
from bidirectional output to unidirectional emission. The values of  U  com-
puted from the measured far-fi eld patterns of three lasing modes are also 
plotted in   Fig. 7.12b  as crosses. They are in good agreement with the values 
calculated from the wave simulations.  

 The dip in  Q  of the high- Q  mode series is associated with the unidi-
rectional emission; we therefore analyze the highest and lowest  Q  modes 
(1 and 4 in   Fig. 7.12a ) on the long wavelength side for a clue to the mecha-
nism of the unidirectional emission. The intensity plots for these two modes 
in the upper panels of   Fig. 7.13  show that while mode 1 is a smooth defor-
mation of a WG mode with angular momentum mode number  m  = 16, 
mode 4 appears to be a superposition of a similar WG mode and a much 
lower angular momentum mode with signifi cant intensity away from the 
boundary. 

 The effect of this superposition in mode 4 is most clearly seen by taking 
the fi eld distribution (‘photon wavefunction’) and performing the Husimi 
projection onto the SOS. For mode 1 the Husimi function has four maxima 
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at specifi c locations on the boundary and specifi c ray angles of incidence cor-
responding to the ‘diamond orbit’ that is superposed on the wavefunction in 
  Fig. 7.13 . The Husimi function below the critical angle has the largest ampli-
tude near the bounce points labeled 2, 4, which are the highest curvature of 
the four bounce points and most of the emission occurs near there (ϕ FF  = 
0 °  and 180 ° ). Note that the SOS for this mode (  Fig. 7.13 ) has approximate 
symmetry around the points  s  = 0, 0.5. Such a Husimi function must lead to 
approximately equal emission into the forward and backward quadrants as 
we fi nd for this mode. The small residual symmetry breaking arises from the 
relatively small distortion of the diamond orbit from refl ection symmetry 
around the vertical axis of the limaçon. In contrast, the Husimi function for 
mode 4 (  Fig. 7.13 ) shows a large symmetry breaking around  s  = 0.5, which 
results in unidirectional emission primarily from region around  s  = 0.8 on 
the boundary in the ϕ FF  = 0 °  direction. This is in agreement with the unsta-
ble manifold in   Fig. 7.9a . Note that only the upper half (sin χ > 0) portion of 
the SOS is displayed; it corresponds to CCW circulating rays. The Husimi 
function in the lower half is refl ected around  s  = 0.5 and indicates strong 
emission from  s  = 0.2 but of the oppositely circulating ray, leading to far-
fi eld emission in the ϕ FF  = 0 °  direction as well. 

 It is not easy to tell from the Husimi functions why mode 4 is much leak-
ier than mode 1; however, this becomes evident from considering modes 
5 and 6 of the LQM series also shown in   Fig. 7.12a . This mode series has 
Husimi functions well localized on a three-bounce periodic orbit drawn on 
the spatial intensity distribution of mode 5 in   Fig. 7.13 . Since this orbit has 
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function of the cavity modes labeled 1, 4, 5 and 6 in   Fig. 7.12a . (Source: 
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two bounce points (labeled 1 and 3) much closer to the critical angle, this 
mode series is much lower  Q  than the series based on the diamond orbit, 
and does not lase experimentally. This is consistent with our expectation 
that the more directional modes would not appear in the lasing spectrum. 

 The two series of HQMs and LQMs have different frequency spacing 
and thus it is possible to have particular pairs of modes (one from each 
series) that are nearly degenerate in their frequencies. This is exactly what 
happens for the modes labeled 4 and 6 in   Fig. 7.12a . In general, as two reso-
nances approach each other, they may couple either strongly or weakly. In 
the case of weak coupling, the frequencies of two modes cross and their  Q  
values anti-cross. There is no ‘exchange of identity’. For strong coupling, 
the frequencies anti-cross and the  Q s cross; there is an ‘exchange of iden-
tity’ (Wiersig, 2006; Wiersig and Hentschel, 2006; Unterhinninghofen  et al ., 
2008; Lee  et al ., 2009a, 2009b; Song and Cao, 2010). The HQM and LQM are 
weakly coupled, as their frequencies cross and  Q s anti-cross in   Fig. 7.12a . 
The spatial intensity plots in   Fig. 7.13  reveals that mode 4 is a mixture of 
modes 1 and 5; this is clear for mode 6 as well, which has ‘more’ of the 
leakier mode 5 and hence lower  Q . Moreover, the phase space structure of 
modes 4 and 6 (Husimi functions in   Fig. 7.13 ) are almost the same near and 
below the critical line. Consequently, their far-fi eld emission patterns are 
nearly identical as can be seen in the inset of   Fig. 7.12b . These data confi rm 
that they are coupled and the output is dominated by the LQM compo-
nent. Thus the violation of our expectation that HQMs would be approxi-
mately isotropic emitters arises from the weak coupling of a high- Q  mode 
to a directional LQM, which does not strongly degrade the  Q  but enables 
substantially directional output. While mode 4 is the most hybridized (and 
therefore too low  Q  to lase), the mode coupling for the experimentally 
observed mode 3 is suffi cient to obtain directional emission. Its  Q  exceeds 
10 000, high enough to lase with modest pumping. 

 We make two notes here: (i) the coupling discussed above is the linear 
coupling of two eigenvalues near a frequency crossing, not the non-linear 
coupling of modes due to spectral hole-burning, which is negligible in our 
device due to the inhomogeneous gain broadening; (ii) previously Wiersig 
and Hentschel (2006) proposed exactly this mechanism for obtaining the 
high- Q  mode with directional emission in a circular dielectric disk with an 
air hole. However, the existence of nearly degenerate modes with differ-
ent far-fi eld patterns in general smears out the output directionality. Such a 
problem does not exist in our case. 

 A fi nal intriguing question is how to explain the broken symmetry of 
emission of the LQM series based on the triangle orbit. The orbit itself 
has symmetric bounce points (labeled 1 and 3 in the spatial intensity plot 
of mode 5 in   Fig. 7.13 ) that are at lower incidence angle than bounce 2. 
Hence most of the emission occurs at bounces 1 and 3. A ray can traverse 
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the triangle either CW or CCW, and by symmetry should emit at each point 
into the forward  and  backwards directions. If this symmetry were obeyed by 
the photon wavefunction the unidirectionality would be lost; but the Husimi 
function of mode 5 in   Fig. 7.13  describing CCW rays (sin χ > 0) violates this 
symmetry and is indeed leakier at point 3 than point 1. The Husimi function 
for CW rays (sin χ > 0) has the opposite asymmetry and is leakier at point 1, 
leading to the unidirectional emission.  

 This symmetry breaking can only come from the openness of the system, 
which distinguishes incident and refl ected (emergent) rays. A qualitative 
explanation for it can be given by the two wave effects, GHS and FF, as 
discussed in Section 7.3.1. As was pointed out by Altmann  et al . (2008), the 
extended ray dynamics including GHS and FF violates the chiral symmetry 
of the periodic orbits; a periodic orbit such as the triangle will now break 
into two distinct CW and CCW periodic pseudo-orbits. To confi rm these two 
effects, we have analyzed the incident and emergent Husimi distributions of 
mode 5 (  Fig. 7.14a ). The crosses represent the bouncing points of the origi-
nal symmetric triangle orbit. It is evident from   Fig. 7.14a  that the Husimi 
intensity maxima deviate from the ray prediction. The lateral and vertical 
shifts between the maxima of incident and emergent Husimis at the same 
bouncing point originates from the GHS and the FF (Unterhinninghofen 
and Wiersig, 2000; Schomerus and Hentschel, 2006). By extracting the loca-
tion of each bouncing point from the intensity maxima in the Husimi distri-
butions, we plot in   Fig. 7.14b  the CW and CCW pseudo-orbits that compose 
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 7.14      (a) Husimi functions of incident (top) and emergent (bottom) 

waves for mode 5. (b,c) CW and CCW pseudo-orbits extracted from the 

actual bouncing points in the Husimi distributions in (a).  
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mode 5. The CW orbit has a smaller angle of incidence at bounce 1 than 
does the CCW orbit, leading to unidirectional forward emission dominated 
by the CW beam (  Fig. 7.14c ). The corresponding effect occurs for the CCW 
orbit near bounce point 3, so it dominates the emission, again in forward 
direction. 

 The conclusions drawn from   Fig. 7.14  are confi rmed independently 
by direct calculations based on the extended ray dynamics including the 
GHS and the FF effect as described in Section 7.3.1.   Figure 7.15  shows the 
period-3 orbits corresponding to the mode in   Fig. 7.14b . In the case of CW 
(CCW) motion the angle of incidence is smallest at point 1 (3) giving rise 
to the strongest emission there. In both cases the emission goes in the same 
direction leading to the unidirectional light emission.    

 7.5     Conclusions 

 The highly directional output from a wavelength-scale GaAs microdisk 
laser with embedded InAs quantum dots is demonstrated. The radius of 
the deformed microdisk is comparable to the emission wavelength. The uni-
directional light emission is traced back to the weak coupling of isotropic 
HQM to directional LQMs and chiral symmetry breaking of waves. The 
latter is described by an extended ray dynamics that includes the Goos–
Hänchen shift and the Fresnel fi ltering. The existence of HQM in such a 
strongly deformed geometry is explained in terms of partial barriers in phase 
space of rays that turn into complete barriers for waves in wavelength-scale 
microcavities. Further numerical simulations indicate that similar behavior 
occurs for a wide range of cavity deformations around that studied here and 
indices of refraction, making our design potentially useful for GaN lasers at 
blue and near-ultraviolet wavelengths as well. 
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 7.15      Expected light emission pattern from CW and CCW rays for the 

asymmetric period-3 orbits of the extended ray dynamics. Both CW and 

CCW rays emit in the forward direction.  
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 The wavelength-scale microdisks discussed in this chapter have a high 
potential to be used in nanophotonic circuits, on-chip optical interconnects, 
nanoplasmonics, and very local chemical and biological sensing. However, 
there are still several new challenges ahead. Although the obtained quality 
factors from our deformed microdisks are suffi ciently high to achieve lasing 
operation, they are too low for applications in cavity quantum electrody-
namics. It is therefore interesting to fi nd new ways to get deformed wave-
length-scale microdisks with higher quality factors while maintaining their 
original unidirectional outputs. Another technical challenge is to push the 
size of such deformed microdisks to the subwavelength scale. This further 
reduction of laser size provides an opportunity to exploit novel functional-
ities that cannot be realized in larger devices.   
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