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4.4.1 Introduction

Light scattering is usually regarded detrimental to optical confinement in conventional 
lasers. In contrast, in random lasers, the confinement is caused by disorder-induced scatter-
ing. In strongly scattering media, the lasing is defined by the high-quality modes of the 
passive system. Thus, by incorporating and optimizing a degree of order, one can dramati-
cally reduce the threshold of a random laser to the values comparable to those of photonic 
crystal (PhC) lasers. Unlike the latter, where the optical cavity has to be carefully designed 
and impeccably fabricated, in disordered systems the modes originate from the structure 
imperfections unintentionally introduced during the fabrication process. Optical gain 
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selectively amplifies the high-quality modes of the passive system. Consequently, in PhC 
slab geometry, for example, the in-plane and out-of-plane leakage rates of the lasing modes 
can become automatically balanced in the presence of disorder. Such self-optimization of 
optical confinement makes disordered PhC structures a competitive platform for large-
scale low-cost production of microlasers with fabrication requirements much less stringent 
than those of PhC lasers with designed cavities.

4.4.2 Lasing in Random Media

4.4.2.1  Light Propagation in a Random Medium with Optical Gain

Incorporating optical gain in a random medium adds a new dimension to studies of light 
transport. In 1968, Letokhov1 considered the effect of light amplification on the photons 
propagating through a scattering medium. It was predicted that under some conditions 
the number of photons will increase exponentially similar to neutron reaction in an atomic 
bomb. One can understand this incoherent process, called random lasing, within the 
framework of one of the following two pictures.

Semiclassically, repeated scattering of a spontaneously emitted photon increases its path-
length inside the medium. When the system dimensions are increased beyond a certain criti-
cal size, every photon, on an average, generates another photon before escaping radiatively. 
This random walk process can be described by models based on diffusion equations.1,2

A modal picture provides another intuitive description of the process of random las-
ing.3,4 Spatially and spectrally overlapping leaky modes of the random medium compete 
for gain. Compensating the radiative losses for a large number of such modes by gain 
results in a narrowing of the gain spectrum. However, unlike conventional lasers the lim-
iting linewidth is still broad, commonly, in a range of several nanometers, and the emis-
sion is not fully coherent.

4.4.2.2  Random Lasing in Strongly Scattering Media

For a little over a decade, there have been many studies on random lasers with coherent 
feedback.5,6 In a strongly scattering active medium, light may return to a coherence volume 
it has visited before, and self-interference provides resonant feedback for lasing. With suf-
ficient gain, lasing oscillation might occur at discrete frequencies that are determined by 
the interference of scattered light.

Similar to the incoherent random lasing introduced above, both semiclassical and modal 
descriptions can provide valuable insights. Indeed, the photons with semiclassical loop 
trajectories would have to experience a self-interference effect.7 The resulting process of 
wavelength selectivity resembles that in a distributed feedback resonator.

Alternatively, a finite open system of scattering particles can be characterized by a set of 
quasistationary (leaky) optical modes. When optical gain is introduced to such a system 
and it is sufficient to compensate the loss in at least one mode, lasing occurs. Thus, the 
mode with the smallest loss or the highest quality tends to lase first, and its quality factor 
Q determines the lasing threshold.

Both semiclassical and the highest-Q modal pictures oversimplify the real problem—
coherent random lasing and, in particular, its threshold, also depends on many factors. 
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A realistic estimate should involve a detailed account of the gain material properties and 
its spatial distribution, the variation of the local density of states in the system and its 
effect on light-matter interaction, the pumping scheme, the reabsorption of laser light, and 
so on. Therefore, finding the threshold of random laser theoretically is a complicated prob-
lem. Nevertheless, in the important case of a uniform gain and strong scattering, Q can 
become the determining factor. Studies of the high-Q modes supported by a random 
medium advanced our understanding of coherent random lasing.8–14

4.4.2.3  Absorption-Induced Confinement

Coherent random lasing has been realized also in weakly scattering random media.15 Tight 
focusing of pump light was necessary to observe discrete lasing peaks, namely, the pump 
beam had to be focused to a region of size much smaller than the entire sample. Imaging 
of laser light on the sample surface revealed that the lasing modes were not extended over 
the entire random medium but instead were located inside the pumped region with an 
exponential tail outside it.16 As the quasimodes of a random system far from the onset of 
localization are usually extended states, the lasing modes were initially regarded as some 
types of anomalously localized states, either almost-localized states17 or prelocalized 
states.16,18 Although the anomalously localized states should be rare in the diffusive sam-
ples, the experiments always showed lasing modes that are spatially confined in the 
pumped region independent of where on the sample the pump beam is focused. Moreover, 
the lasing threshold did not fluctuate much as the pump spot was moved across the ran-
dom medium.

In the study by Yamilov et al.,19 it was shown that the above contradiction to the theory 
of anomalously localized states originates from the assumption that lasing occurs in the 
quasimodes of the passive random medium. This assumption is not valid when absorption 
at the emission wavelength is significant outside the pumped volume. The reabsorption of 
emitted light suppresses the feedback from the unpumped part of the sample and effec-
tively reduces the system size. The lasing modes are dramatically different from the qua-
simodes of the whole system without gain or absorption. Even if all the quasimodes of a 
passive diffusive system are extended across the entire sample, the experiments find that 
the lasing modes are still confined in the pumped volume with only an exponential tail 
outside it.

The reduction of the effective volume of the system Veff as a result of absorption leads to 
a decrease of an important parameter that characterizes wave transport—Thouless num-
ber δ ≡ δν/Δν, where δν and Δν are the average mode linewidth and spacing, respectively.20 
In a three-dimensional (3D) diffusive system, δν ∝ − /Veff

2 3  and ∆ ∝ −ν Veff
1 , therefore, δ ∝ /Veff

1 3. 
The smaller the value of δ, the larger the fluctuation of the decay rates γ of the qua-
simodes.18,21 The variance of the decay rates18 σ γ δγ

2 2= / , where the average decay rate 
γ ∼ /D V/ eff

2 3.  Broadening of the decay rate distribution along with the decrease of the 
total number of quasimodes within Veff should reduce the number of lasing modes 
(besides nonlinear mode competition via spatial hole burning, discussed in the study by 
Tureci et al.4), and, therefore, should be responsible for the observation of discrete lasing 
peaks in the tight focusing experiments. Despite its reduced value, the effective Thouless 
number is still much larger than unity owing to weak scattering. As a result, the lasing 
modes are the extended states within the effective volume. Because σγ/〈γ〉 << 1, the mini-
mum decay rate is still close to 〈γ〉, leading to high threshold for lasing and its relatively 
small fluctuations.9,10,22
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4.4.2.4 From Random Medium to PhCs with Disorder

Random lasing has generated great excitement in the physics community.6,23 One of the 
most formidable problems on the way to practical applications is that lasing thresholds are 
too high because of incomplete confinement of light. To improve the confinement, one 
approach that has been used with some success is to maximize the scattering strength by 
using Mie resonances.24–26

Another approach can be traced back to the pioneering work by John27 who proposed to 
manipulate the effective momentum of light by introducing periodicity into the system. 
Ioffe-Regel criterion28 for light localization in the presence of periodicity is replaced by 
kc ∼ 1, where kc is crystal momentum,29 which is much smaller than the optical wavevec-
tor k near the band edge. This criterion compares the scattering mean free path  to the 
effective wavelength ∝ −kc 1; it originates from the semiclassical description of light propa-
gation. In the language of modes, the disorder creates high-Q defects states10,12,13,30 in the 
spectral tails that extend into the residual photonic band gap (PBG).31

4.4.3 Confinement in Disordered PhCs

4.4.3.1  Disorder in Passive and Active PhC Structures

In passive PhC devices, uncontrollable disorder introduced during the fabrication process 
has a detrimental effect32–35 as it contributes to optical losses and limits light propagation 
length even in the highly precise PhC slab waveguides.36–39 However, it is not immediately 
clear how the disorder would affect the performance of an active device such as, for exam-
ple, a PhC slab laser.

Below we show that structural disorder in a PhC laser may not be as detrimental as it is 
in a passive PhC waveguide. In Section 4.4.3.2, we demonstrate theoretically that weakly 
disordered PhC structures can support high-Q optical cavities.10,12–14 Such cavities can be 
observed experimentally40 and they can also facilitate lasing action.14,41–43

A disordered PhC can be considered as a transition from a perfectly ordered structure to 
a completely random medium. In Section 4.4.3.2, we systematically investigate this disorder-
induced transition in two-dimensional (2D) PhCs. We find that there exists an optimal 
degree of disorder that leads to the maximum (on average) confinement.10 In fact, we esti-
mate that Q factor and mode volume of the quasimodes in such spontaneously formed 
microcavities is comparable to those in carefully designed defect modes in the perfectly 
ordered PhC. Of course, when making the generalizations one has to take into a consider-
ation the particular type of disorder at hand, for example, correlated or uncorrelated disor-
der, particle size, and/or position disorder.44 However, we believe that the main conclusion 
about the existence of the optimal degree of disorder remains generally valid. This can be 
understood with a simple argument. The localization length is shortest at the frequency in 
the middle of the PBG.27 A disorder affects the PBG by making it spectrally broader and shal-
lower—that is, increasing the localization length at the center of the gap.45 However, because 
we are interested in creating an active device—a microlaser—we also have to take into con-
sideration the probability of creating an optical cavity in any given configuration of disorder. 
When disorder is weak, the local fluctuations of the photonic band edge create so-called tail 
states31 that are the photonic equivalent of the Lifshitz states in the condensed matter 
systems.46 The density of these states falls off rapidly, exponentially, for the frequencies deep 
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inside the PBG where the localization length is the shortest. This means that, at weak 
disorder, the tail states cannot take advantage of the maximum confinement. Therefore, the 
optimum degree of disorder appears as a balance between density of the tail states and their 
degree of confinement that show opposite trends with an increase of the disorder strength.10

The argument outlined above does not account for a possibility of purposefully creating 
a defect state in the middle of the PBG via certain PhC structure modifications. In Section 
4.4.4.3, using a more realistic example of PhC slabs, we show that in the presence of disor-
der such a defect state may not be superior when other factors such as mode volume and 
vertical leakage are taken into account. Indeed, we show that because spatially uniform 
optical gain selectively amplifies the high-Q modes of the passive system, in PhC slabs the 
in-plane and out-of-plane leakage rates may be automatically balanced in the presence of 
disorder. The spontaneous optimization of in-plane and out-of-plane confinement of light 
in a PhC slab can lead to a reduction of the lasing threshold. Our experiments support 
these conclusions. Furthermore, concentration of the modes in the vicinity of the photonic 
band edge can enable an efficient extraction of gain. It also offers a possibility to fine-tune 
the lasing wavelength by, for example, changing the lattice constant (c.f. Section 4.4.4.3).

In the above, we approached the problem of minimization of the threshold of a random 
laser from the perspective of the optimal degree of disorder in a PhC. In fact, in our prior work 
we followed the opposite approach by searching for the optimal degree of order in random 
medium. This can be accomplished by studying the milestones in the transition from a 
random to periodic medium. First, we investigated experimentally and theoretically the 
effect of the zinc oxide (ZnO) scatterer size dispersion.24 Also, we noted that PBG effects 
may become already noticeable in the randomly packed monodisperse spheres as a result 
of a short-range order—formation of the small ordered clusters.47 This supposition was 
further confirmed in ZnO nano-structured dielectric films,48 which exhibited a varying 
degree of short-range order.25 ZnO structures with 2D long-range order14,42,49 and 3D long-
range order43,50 were the third step in our systematic study of lasing in disordered media 
with variable degree of order. Small feature size, required in order to overlap the PBG with 
the gain spectrum of ZnO at near-ultraviolet frequency, resulted in relatively large degree 
of the residual fabrication disorder. Systems with 2D periodicity—PhC slab—gave us par-
ticularly many degrees of freedom to perform the combined experimental and theoretical 
studies of the effect of disorder. In the following, we will concentrate on the last step in our 
three-step study of the transition from random to ordered media—weakly disordered PhC 
slabs.

4.4.3.2  Optimal Degree of Disorder

In this section, we use the finite-difference time-domain method51 to find the highest-
quality modes in open passive 2D random systems with various degrees of ordering. We 
consider a 2D L × L (up to 9λ × 9λ) PhC made of N (∝L2) cylinders with diameter d = 98 nm 
and refractive index n0 = 2.2. The cylinders were arranged into a hexagonal lattice with 
nearest-neighbor distance a = 140 nm. In the absence of disorder, the infinite system with 
these parameters has full band gap in the range [361 nm, 426 nm] for transverse magnetic 
modes (electric field along the cylinder axis). The disorder in the system is introduced in 
two ways: by uniformly randomizing the refractive index n of different cylinders in the 
range [n0 − wn(n0 − 1), n0 + wn(n0 − 1)] and diameter [d(1 − wd), d(1 + wd)]. Special care should 
be taken to avoid the uncontrollable disorder due to discretization of the grid. Disorder in 
the system is characterized with parameter δε ε ε ε= ∫ − ∫/( ( ) ( )) /( ( ) ) /r r r r r0

2 1 2
0
2 1 2d d , where 

ε0(r) and ε(r) are the dielectric constant distributions in ordered and disordered samples, 

K13299_C404.indd   399 3/22/2012   10:26:13 AM



400 Optical Properties of Photonic Structures

respectively; 〈. . .〉 stands for the average over different disorder configurations. Here we 
study the systems with 11 different disorder strengths: 1 to 10 had wn from 0.1 to 1.0 with 
the increment 0.1 and wd = 0, the 11th has wn = 1.0, and wd = 0.43. This leads to variations of 
dielectric constant from weak δε = 0.08 to strong δε = 0.95 disorder. Later we will discuss 
the effect of this particular choice of the types of disorder. To mimic an open system, a buf-
fer layer of air (150 nm thick) is kept around the sample, followed by uniaxial perfectly 
matched absorbing layers.51 To excite the system, we initially launched a short ~10 fs pulse at 
every grid point. The frequency ωe of the pulse is chosen to lie at the center of the band gap 
(391 nm) of the ordered structure. In the frequency domain, the full-width at half-maxi-
mum of the excitation pulse is of the order of the band-gap width. Thus, the pulse excites 
all the modes within the stop band and near the band edges.

Right after the initial pulse, the competition between the modes52 with different life-
times leads to the complicated evolution of total electric energy E(t) = 1/2 ∫ε(r)e2(r)dr. 
However, after a sufficient time only the mode with the longest lifetime (highest quality 
factor) survives. E(t) followed a monoexponential decay Re[exp2iωm(1 + i/2Qm)t], from 
which we extract the frequency ωm and quality factor Qm of the longest-lived mode in this 
particular realization of disorder. At the same time, the spatial pattern, e(r), stabilizes and 
the mode profile can be seen. Generally, the time needed to reach the monoexponential 
decay regime varies from about 0.5 ps for the smallest system to 10 ps for the largest. 
Finally, the Qm is averaged over 1000 (N = 75), or 100 (N = 137, 188, 261, 368, 449, 608) disor-
der realizations.

Figure 4.4.1 shows the dependence of 〈Qm〉 normalized by N as a function of the disorder-
ness δε; different curves correspond to different system sizes. This particular normaliza-
tion makes it easy to see the deviation from diffusion-predicted1 dependence 〈Qm〉 ∝ L2 ∝ N. 
One can see that significantly different scalings at different δε lead to a maximum of 〈Qm〉 
at the finite disorder strength.10

The understanding of this behavior comes from observing the frequencies ωm of the 
highest-quality modes in Figure 4.4.2. For small δε the frequencies are concentrated at 
lower (long wavelength) band edge, and they (as well as Qm) are independent of the fre-
quency ωe of the excitation pulse. The reason for this is the way the disorder was intro-
duced into the system. The long-wavelength modes are mostly concentrated in the 
dielectric cylinders, which are disordered by the refractive index fluctuations. At wn = 0.1, 
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FIGuRe 4.4.1 
 〈Qm〉 normalized by total number of scatterers N (∝L2) as a function of disorderness δε. The figure shows that 
with an increase of the system size a maximum of 〈Qm〉 develops at a finite value of disorder strength δε. 
(Reprinted from A. Yamilov and H. Cao Phys. Rev. A 69, 031803 (2004).)
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ωm fell in the immediate vicinity of the band edge (Figure 4.4.2a). Lasing from the band-
edge modes is well studied in the case of ordered structures,63–65 with Qm ∝ L3.11 The latter 
indeed gives a good fit to our results.

At the increased disorder, wn = 0.2−0.3, the dependence of 〈Qm〉 on the system size L 
became exponential, as expected for localized modes.66 In the unit of wavelength the local-
ization length ξ , obtained by fitting, decreased from 1.44λ to 1.27λ as wn increased from 0.2 
to 0.3. Figure 4.4.2b provides an insight into the physics behind the varying ξ. The quality 
factor can be estimated as 〈Qm〉 ∝ exp[L/2ξ(ωm)], where ξ(ωm) is the “typical” value of the 
localization length at the frequency ωm. From Figure 4.4.2b one can see that even for the same 
disorder strength, the increase in system size leads to the advance of ωm toward the band-
gap center, where ξ is the smallest. This peculiar behavior should lead to superexponential 
dependence of 〈Qm〉 on L even for fixed disorder strength. The frequency migration with the 
increase of the system size can be explained by the fact that in the small system it is unlikely 
to find the modes deep into the band gap owing to the low density of states there. An 
Urbach-like behavior can be expected.31,67 This is also qualitatively supported by Figure 
4.4.2b where the exponential dependence is apparent. Assuming Urbach-like dependence 
of the density of states, the advancement of ωm can be estimated from the condition that the 
total number of defect states (proportional to the number of cylinders N) times the probabil-
ity of having a state located Δω(N) away from the band edge, exp[−α(δε) . Δω(N)], is equal to 
one. Here, α(δε) is the exponential slope of the density of states that should decrease with 
the increase of the disorder δε. For small disorder α−1(δε) << ΔEPBG, where ΔEPBG is the width 
of the PBG. Therefore, for weak disorder (or small system size) the band-edge-type modes 
have the highest Q. The crossover to the superexponential dependence of 〈Qm〉 occurs when 
the Q of the localized states with the shortest localization length ξ[Δω(N)] available for this 
size N exceeds that of the band-edge-type mode: exp[N1/2a/ξ(Δω(N))] ~ N3/2. Stronger size 
dependence in the superexponential regime means that the N3/2 band-edge-type depen-
dence observed at smaller disorder would eventually switch to the superexponential 
dependence as N increases. However, the latter can be expected to saturate at larger size 
or  disorder when ωm reaches the band-gap center: N . exp[−α(δε)ΔEPBG/2] ~ 1, where the 
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FIGuRe 4.4.2
 Qm versus the corresponding mode wavelength for 20 realizations of disorder. Circles, squares, and triangles 
correspond to N equal to 75, 188, and 608, respectively. Four graphs correspond to different disorder parame-
ters: (a) wn = 0.1 (δε ≃ 0.08), (b) wn = 0.2 (δε ≃ 0.15), (c) wn = 0.6 (δε ≃ 0.45), and (d) wn = 1.0 and wd = 0.43 (δε ≃ 0.95). 
Concentration of the modes near one of the band edges of the photonic band gap (PBG) (361–426 nm) demon-
strates the presence of the residual gap at weak disorder (a, b). Migration of the modes toward the PBG center in 
(b) with the increased system size causes the decrease of the localization length ξ. (Reprinted from A. Yamilov 
and H. Cao Phys. Rev. A 69, 031803 (2004).)
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 localization length is the smallest. Therefore, we expect the limiting scaling of 〈Qm〉 to be 
exponential: 〈Qm〉 ∝ exp[N1/2a/2ξ(ΔEPBG/2)].

The sharp drop in 〈Qm〉 at δε ≃ 0.34 in Figure 4.4.1 is attributed to the removal of the 
residual band gap. This can be seen from the loss of the hexagonal symmetry of the 
observed mode profiles as well as the sensitivity of the modes to the excitation pulse posi-
tion ωe. In this regime, ωm is not associated with the PBG, which does not exist anymore. 
However, to make a direct comparison with the ordered case, we kept the excitation pulse 
the same as before. The exact mechanism of the band-gap removal can depend on the dis-
order.10,31,33,34,68 In our particular case, we found a simple explanation for the behavior of 
〈Qm〉 in the way the disorder was introduced. Indeed, the fluctuating index of refraction 
leads to the fluctuation of the frequency of the Mie resonances of the particles. For box 
distribution of n, there exists a value of wn = 0.6 when the Mie resonance of some defect 
cylinders falls into the gap. This value matches the value of disorder parameter δε, where 
the sharp decrease of 〈Qm〉 is observed in Figure 4.4.1. Moreover, Figure 4.4.2c shows that at 
this crossover disorder, the modes avoid the region of strong single-particle scattering. 
This is the consequence of the sharp boundary in the distribution of n. It also indicates the 
presence of the residual band gap, where the ωm are concentrated.

At wn ≥ 0.7 the PBG ceases to exist, and 〈Qm〉 acquires the diffusion1 scaling dependence: 
〈Qm〉 ∝ L2 ∝ N (c.f. Figure 4.4.1). Deviations from this dependence can be seen in the same 
figure at the largest sizes studied, where L > ξAnderson = 2.54λ is inferred and the states 
become localized again as a result of Anderson localization.66 The exponential dependence 
of 〈Qm〉 on L becomes especially pronounced at the largest disorder studied, where the tran-
sition from L2 to exponential dependence comes at small system sizes. We want to point out 
that even at such strong disorder, the obtained modes had a collective nature, rather than 
the single particle’s high-order resonances, which are concentrated at higher frequencies. 
Comparing the localization length of these states to that of band-gap nature we see a differ-
ence of a factor of two, which makes the latter preferable (c.f. Figure 4.4.1).

To summarize the results of this section, by varying the strength of disorder, we 
identified five different scaling regimes of the ensemble-averaged 〈Qm〉 with the system 
size: (a) photonic band edge, L3, (b) transitional superexponential, (c) band-gap-related 
exponential, (d) diffusive, L2, and (e) disorder-induced exponential, due to Anderson local-
ization, regimes. The difference in scaling behavior allows one to draw the following 
conclusions that provide an intuitive phenomenological picture of the disorder-induced 
transition: (i) For sufficiently wide band gaps, 〈Qm〉 reaches a maximum at some finite 
strength of disorder; (ii) at this “optimal” degree of disorder, 〈Qm〉 is determined by the 
localization length similar to that of single defect in the ordered structure, leading to a 
similar quality factor; (iii) with an increase of the system size the optimal disorder strength 
decreases; (iv) near this optimal disorderness, 〈Qm〉 should scale superexponentially with 
the sample size, owing to the frequency migration of the highest-quality modes toward the 
band-gap center and the associated decrease of their localization lengths.

4.4.4  Lasing in a Disordered PhC slab

4.4.4.1 PhC Slab Laser: Design Considerations

A PhC slab utilizes index guiding to confine light to the plane of the slab.69–71 In-plane 
confinement is realized either via a defect state located inside a PBG72–77 or a band-edge 
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state with vanishing group velocity.64,65,78–81 Over the past decade, tremendous progress 
has been made in design and fabrication of PhC slab lasers that operate at infrared or near-
infrared frequencies.65,72–77,80,82 To realize a near-ultraviolet PhC slab laser, the feature size 
has to be reduced roughly by a factor of four42,49 compared to the infrared PhC. Fabrication 
of such fine structures inevitably generates random deviations from the perfectly ordered 
structures.

Design of a PhC slab laser involves determination of structural parameters to ensure 
spectral overlap between the PBG and the gain spectrum. In addition, lasing mode volume 
optimization is required owing to a planar geometry of the device. This is because light 
may escape from the PhC slab vertically through the top/bottom interfaces or laterally via 
the edge of the periodic pattern into air or unpatterned part of the slab. The vertical leak-
age rate is characterized by the out-of-plane energy loss per optical cycle Q⊥

−1, and the lat-
eral by Q||

−1. A defect state spatially localized in the vicinity of an intentionally introduced 
structural defect typically has large leakage in the vertical direction, that is, Q Q⊥

−
||
−1 1 . For 

a band-edge state, the lateral leakage usually dominates over the vertical one, Q Q||
−

⊥
−1 1 . 

The total loss is described by Q Q Qtot
1−

⊥
−

||
−= +1 1. Low lasing threshold demands maximiza-

tion of Qtot, which is hindered by Q⊥ for a defect state and Q∙ for a band-edge state. Several 
designs aim at optimization of PhC slab lasers by balancing Q⊥ and Q∙ via “gentle localiza-
tion,”75 for example, phase-slip,74,83 double-heterostructure.77

Using disorder-induced defect modes allows one to relax stringent requirements for the 
residual fabrication disorder. Furthermore, the last step in optimization—mode–volume 
optimization—can be accomplished spontaneously by the disorder. Therefore, disorder 
optimization appears as an additional design parameter that can maximize Qtot without 
the need to repeat previous optimization steps. Below we illustrate the above approach 
with the combined experimental and theoretical study of ZnO-based disordered PhC slab 
near-ultraviolet lasers.

4.4.4.2 Structure Parameters and the PBG

A typical PhC slab made of III–V semiconductors is a free-standing membrane structure, 
whose substrate is selectively etched away so that there is air both above and below the 
photonic layer. Although such a structure can achieve wider in-plane PBG and better light 
confinement in the vertical direction, it poorly dissipates heat and it is usually mechani-
cally fragile. Also it is difficult to make a large area fabrication and cannot be applied to 
on-chip fabrication easily. In our case, the ZnO photonic layer is fabricated on a lattice-
matched sapphire substrate. Such a structure is much more robust and easier for large-
scale on-chip applications. On the other hand, owing to the lower refractive index contrast 
between the photonic layer and the substrate, light confinement in the vertical direction is 
worse than that in the free-standing layer, and the in-plane PBG is also narrower. In this 
case, the defects introduced during fabrication are supposed to be even more detrimental 
to PhC slab lasers.

To simulate a PhC slab on a dielectric substrate, we modified42 the super-cell technique70 
within the plane-wave expansion method for the photonic band-structure calculation.84 
A substrate with high refractive index is expected to significantly mix the polarization of 
eigenmodes of the PhC slab. However, our calculations demonstrate that although the sub-
strate indeed induces asymmetry of wavefunctions, they still remain strongly transverse 
magnetic- or transverse electric-polarized for low-order bands.42 A high filling fraction air-
hole-in-ZnO-matrix geometry can possess a complete PBG for transverse electric bands; 
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meanwhile, ZnO film with c-axis along the growth direction emits mainly into transverse 
electric-polarized modes. This enabled us to build a near-ultraviolet PhC slab laser.42 In the 
photonic band-structure calculation, we find the optimum set of parameters for maximum 
PBG: R/a ≃ 0.24 and t/a ≃ 1.45, where R is the hole radius, a is the lattice constant, and t is 
the slab thickness. These parameters are significantly different from the typical parame-
ters for infrared PhC slabs. This is because of several factors: (i) the presence of the sap-
phire substrate breaks vertical symmetry of the PhC slab; (ii) the refractive index contrast 
of ZnO/sapphire is lower than that of InP/air commonly used in an infrared PhC slab; 
(iii) to preserve guiding in the photonic layer, the filling fraction and the thickness of the 
ZnO PhC slab need to be significantly increased.

Overlapping the PBG with the emission spectrum of ZnO requires precise control of the 
designed pattern with a ≃ 123 nm, t ≃ 180 nm, and R ≃ 30 nm. This has been achieved with 
the focused ion beam (FIB) etching technique.42 The maximum relative width of PBG that 
can be achieved via optimization is 5%. This is significantly smaller than what is used in the 
free-standing membrane in air65,72,76 or in the case of low refractive index substrate.71,85 A nar-
row gap makes it difficult to align an intentionally introduced defect mode inside a PBG. 
However, there should always be some defect modes with frequencies inside PBGs formed 
as a result of the disorder introduced unintentionally during the fabrication process.

4.4.4.3 Spontaneous Optimization of In-Plane and Out-of-Plane Confinement

Using the parameters obtained in the previous section we realized the first near-ultraviolet 
PhC slab laser.42 ZnO films were grown on sapphire substrates by plasma-enhanced met-
alorganic chemical vapor deposition.48 Hexagonal arrays of cylindrical air voids were pat-
terned in the ZnO films by the FIB etching technique. Post-thermal annealing was used to 
remove the FIB damage. Single-mode lasing at room temperature was realized with opti-
cal pumping. The scanning electron micrograph (SEM) of a ZnO PhC slab is shown in 
Figure 4.4.3. Despite the long-range periodicity, Figure 4.4.3 reveals the deviation of the 
fabricated pattern from the ideal honeycomb structure. Such “crescent” deviation35 caused 
optical scattering on the length scale of a few lattice constants. It was expected to enhance 
radiative leakage of a PhC slab laser based on either defect state12 or band-edge mode. 
Moreover, the propagation loss in a passive PhC slab caused by random36,38,86 scattering 
was predicted to increase dramatically near a photonic band edge,37 where the band-edge-
type PhC slab laser operates. Despite these pessimistic expectations based on passive sys-
tems, we show that the performance of a PhC slab laser may be less susceptible to the 
detrimental effects of structural disorder. This is because optical gain predominantly 
amplifies the mode with the highest quality factor Qtot. For the highest-Qtot mode, the verti-
cal and lateral leakage rates may be automatically balanced in the presence of disorder. 
This implies that an appropriate amount of structural disorder could lead to spontaneous 
optimization of in-plane and out-of-plane confinement of light in a PhC slab.

To investigate how the disorder affects the rates of vertical and lateral leakages of light 
from a PhC slab, we consider a system schematically depicted in Figure 4.4.4a. A dielectric 
slab of thickness 180 nm and refractive index n = 2.35 is sandwiched between air and sub-
strate (nsub = 1.78). Within the slab, N infinitely long grooves run parallel to the y-axis. The 
width of a groove is 22 nm; the lattice constant of the disorderless structure is 100 nm. We 
consider light propagating in the x-z plane, with the electric field along the y-axis. Such a 
system is 2D, which allows numerical simulation of large statistical ensembles of random 
systems. Despite the simplification, the system in Figure 4.4.4a retains the property essen-
tial for our study of the PhC slab laser—the possibility of vertical (along z-axis) and lateral 
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(along x-axis) radiative escape. Using the finite-difference time-domain method, we find 
the mode of the passive system that has the highest Qtot.10 A Gaussian pulse was launched 
at all spatial points in the slab and the energy was allowed to leak out radiatively. Simulation 
area is terminated by a uniaxially perfectly matched absorbing layer that absorbs all out-
going waves. The pulse excites all modes within a 30 nm wavelength range around 400 nm. 
After the initial multimode decay the field distribution is stabilized and the longest-lived 
mode can be seen. This is further confirmed by observing a monoexponential decay of the 
total energy10,81,87 stored in the system that allows determination of Qtot. By integrating 
Poynting vector over the corresponding interfaces,82,87 we obtained the outgoing flux in the 
vertical and horizontal directions, and Q⊥ and Q∙. In our simulation, Q Q Qtot

1−
⊥
−

||
−= +1 1  rela-

tion was satisfied numerically to within 2%.
Fourier transform of the spatial profile of the electric field at the interface between the 

slab and substrate gives the mode’s distribution in k∙ (in-plane component of the wavevec-
tor) space. In a perfectly periodic structure, the band-edge mode has the highest Qtot. It is 
spatially extended in x (c.f. Figure 4.4.4b), and thus has a narrow distribution in k∙ (c.f. thick 
dashed curve in Figure 4.4.5a). Next, we intentionally create a defect by increasing the 
spacing between two neighboring grooves at the center of the pattern to 150 nm. The 
highest-Qtot mode is localized around this artificial defect with a localization length of 
140 nm. Strong localization in x (c.f. Figure 4.4.4c) results in a broad distribution in k∙ (c.f. 
thin dashed curve in Figure 4.4.5a), with the maximum lying closer to the edge of substrate 
light-cone (c.f. dash-dotted vertical line in Figure 4.4.5a). Its Qtot is limited by Q⊥, which is 
about three times smaller than the corresponding Q∙ in a system of N = 24. In contrast, the 

FIGuRe 4.4.3 
 (see color insert.) Top-view scanning electron micrograph (SEM) of a ZnO photonic crystal (PhC) slab. 
Difference between the digitized SEM of a real sample and the perfect honeycomb lattice (blow-out box) reveals 
the structural disorder. Superimposed is the measured intensity distribution of the lasing mode in a ZnO PhC 
slab with a = 115 nm and R = 0.25a. The pattern measures 8 × 8 μm.
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band-edge mode is concentrated well beyond the light-cone in k∙-space; thus its Q⊥ is much 
higher. However, its spatial extension makes the lateral leakage larger; hence its Qtot is 
limited by Q∙.

To simulate the position disorder of air cylinders in real structure (c.f. Figure 4.4.3), ran-
dom variation of groove position xn is introduced. We choose Δxn randomly from a uni-
form distribution with the standard deviation δx = 5, 10, and 15 nm, where δx characterizes 
the “strength” of disorder. As the disorder is introduced, the highest-Qtot state differs from 
realization to realization, and the correspondent Q∙, Q⊥ as well as the frequency vary. We 
study statistical distributions of these parameters and their dependences on disorder 
strength δx and system size N.

In small systems (N = 12 and 24) with an artificial defect and weak disorder (δx = 5 nm), 
the highest-Qtot modes always concentrate around the defect at the center of the pattern. 
These modes become more spatially extended than those without disorder (c.f. Figure 
4.4.4d). Therefore, their k∙ distribution is narrowed and k∙ component within the light-
cone is significantly reduced (c.f. Figure 4.4.5a). This reduction leads to a decrease in the 

(a)

y
x

z

(b)

(c)

(d)

FIGuRe 4.4.4
(see color insert.) (a) Simplified model of a photonic crystal slab used in numerical simulations. Infinitely long 
grooves run parallel to the y-axis. Disorder only affects x position of the groves. Although such a system can be 
modeled in two dimensions—in the xz-plane—it already incorporates the possibilities of vertical and horizontal 
leakage. Intensity of the mode with the highest Q factor in (a) an ordered system (band-edge mode), (b) an 
ordered structure with a localized defect, and (c) a disordered structure with a localized defect. Arrows repre-
sent the amplitude and direction of the local Poynting vector. The radiative losses are dominated by in-plane 
leakage in (b) and by out-of-plane leakage in (c), whereas both loss mechanisms are comparable in the disordered 
system (d).
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vertical leakage and, thus, an increase in Q⊥. Meanwhile, Q∙ starts increasing as the mode 
gets less localized in real space. The ensemble-averaged 〈Q∙/Q⊥〉, shown in Figure 4.4.5b, 
decreases monotonously to unity with increase in disorder strength. Therefore, disorder 
removes the imbalance between vertical and lateral leakages of a single defect state, making 
〈Q∙〉 ~ 〈Q⊥〉. As a result, the ensemble-averaged quality factor 〈Qtot〉 is slightly higher than 
that without disorder. In a larger system or with stronger disorder, the highest-Qtot mode 
is no longer pinned at the artificial defect. Instead, it can explore the entire pattern to find 
the optimum configuration for the best vertical and lateral confinement. This leads to a 
further increase in 〈Qtot〉.

With the introduction of disorder, the band-edge mode becomes less extended. As its 
“tail” moves away from the boundaries of the pattern, the lateral leakage decreases, and 
thus Q∙ increases. Meanwhile, the distribution in k∙ space is broadened and shifted closer 
to the light-cone edge (c.f. Figure 4.4.5a). The increase in vertical leakage results in a 
decrease in Q⊥. The ensemble-averaged 〈Q∙/Q⊥〉, shown in Figure 4.4.5b, rises continu-
ously to unity with increasing disorder strength. Again, disorder balances the vertical 
and lateral leakages of the band-edge mode, as it does to the defect state. However, for a 
band-edge mode the increase in 〈Q∙〉 is not as large as the decrease in 〈Q⊥〉; thus 〈Qtot〉 is 
slighter lower than that without disorder. Nevertheless, as the pattern size N increases, 
the total leakage rate decreases monotonically: 〈 〉Q Ntot

− −∝1 α  (c.f. Figure 4.4.6a). The expo-
nent α decreases from 2.3 at δx = 5 nm to 1.9 at δx = 15 nm. Even with the largest disorder 
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1 2 3

FIGuRe 4.4.5
 (a) The k∙ distributions of the highest-Qtot modes at one pixel beneath the slab/substrate interface. Thin/thick 
dashed curve represents the mode found in the disorderless system (N = 24) with/without an artificial defect. 
The corresponding solid curves are representative examples of the highest-Qtot modes in these systems with 
position disorder (δx = 10 nm). The vertical line marks the substrate light-cone boundary. The inset is a sche-
matic sketch of the simulated structure. (b) Squares/circles represent 〈Q∙/Q⊥〉, averaged over 300 random real-
izations of N = 24 system with/without the artificial defect, versus disorder strength δx. (Reprinted from 
A. Yamilov et al., Phys. Rev. Lett. 96, 083905 (2006).)

K13299_C404.indd   407 3/22/2012   10:26:21 AM



408 Optical Properties of Photonic Structures

we simulated (δx = 15 nm), no saturation of 〈 〉Qtot
−1  with N is observed up to N = 48. This 

 behavior differs fundamentally from that of a PhC waveguide, where optical loss increases 
exponentially with its length. In contrast, a disordered PhC slab laser benefits from an 
increase in the pattern size, simply because a larger system provides a bigger pool of 
modes from which the highest-Qtot mode can be selected. This effect should be more pro-
nounced in PhC slab microlasers with 2D periodicity (c.f. Figure 4.4.3) as a result of the 
larger phase space compared to the numerically simulated systems with one-dimensional 
periodicity.

Experimentally, we fabricated ZnO PhC slabs of dimensions 4 × 4, 6 × 6, and 8 × 8 μm 
(c.f. Figure 4.4.3). As the complete PBG in a ZnO PhC slab without “undercut” was quite 
narrow,49 it was technically challenging to overlap the PBG with the ZnO gain spectrum. 
By adjusting the magnification of the FIB system, we were able to change the lattice con-
stant a in fine steps of 3 nm over a wide range 100–160 nm. The ratio of the air hole radius 
R to the lattice constant a was also varied from 0.20 to 0.30. In this way, we could tune the 
PBG continuously through the ZnO gain spectrum. We also introduced an artificial defect 
by missing an air hole. Structural analysis as in Figure 4.4.3 gives the average displacement 
of a hole δr ≃ 0.22R.

A ZnO PhC slab was optically pumped by the third harmonics of a pulsed Nd:YAG 
laser (λ = 355 nm, 10 Hz repetition rate, 20 ps pulse width) at room temperature.42 In 
8 × 8 μm patterns without intentionally introduced structural defect, the ensemble-aver-
aged lasing threshold exhibited a pronounced minimum at a = 113−124 nm and R = 0.25a 
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FIGuRe 4.4.6
(a) 〈1/Qtot〉 for the highest-Qtot modes found numerically in a photonic crystal slab depicted in the inset of Figure 
4.4.3a. The average is taken over an ensemble of 300 random realizations. The squares and triangles represent 
the results for δx = 5 and 15 nm, respectively. Circles correspond to the disorderless system. Dotted, solid, and 
dashed lines are N−α fits with α = 2.7, 2.3, and 1.9, respectively. (b) Ensemble-averaged incident pump pulse 
energy at the lasing threshold, measured in the samples of a = 115 nm (squares) and a = 118 nm (triangles), ver-
sus the pattern size. The data are fitted with the power law dependence as in (a) with α = 2.5 (solid line) and 
α = 1.7 (dashed line). (Reprinted from A. Yamilov at al., Phys. Rev. Lett. 96, 083905 (2006).)
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(c.f. Figure 4.4.7a). To understand this phenomenon, we calculated the photonic bands in 
a ZnO PhC slab using the computational technique described by Yamilov et al.49 The 
frequency  dependence of the ZnO refractive index was taken into account. In Figure 
4.4.7b, the wavelength of the dielectric band edge λd for the fundamental PBG of trans-
verse electric modes42 is plotted against the lattice constant a. The structural parameters 
were extracted from the SEM of our samples. The ZnO slab thickness t = 180 nm, and 
R/a = 0.245. By comparing the lasing wavelength to λd in Figure 4.4.7b, we confirmed that 
the lasing modes were located in the vicinity of the dielectric band edge. This can be 
explained by two factors: (i) the electric field of the modes near the dielectric band edge 
is concentrated inside ZnO, and thus experience more gain; (ii) the vanishing group 
velocity at the band edge enhances light amplification.64,78,81 The dip in the measured las-
ing threshold (c.f. Figure 4.4.7a) is attributed to spectral overlap of the dielectric band 
edge with the ZnO gain spectrum. In Figure 4.4.6b, the measured lasing threshold 
decreases monotonously with the pattern size for a = 115 and 118 nm. These data agree 
qualitatively with the numerical simulation results shown in Figure 4.4.3a. In all pat-
terns with intentionally missed air holes, the lasing modes were not pinned at the loca-
tion of the missing hole owing to the existence of better-confined modes away from the 
defect. This observation is in line with our numerical simulation of large patterns with a 
single artificial defect.
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FIGuRe 4.4.7
 (a) Experimentally measured incident pump pulse energy at the lasing threshold (averaged over 5–10 samples) 
as a function of lattice constant a. (b) The circles are the measured mean wavelength of lasing modes; the error 
bar depicts the range of lasing wavelengths. The solid curve represents the wavelength of the calculated dielec-
tric band edge λd in a ZnO photonic crystal slab as a function of a. The shade of the background qualitatively 
describes the position and width of the ZnO gain spectrum. This demonstrates the possibility of tuning lasing 
frequency of the devices by adjusting its lattice constant. (Reprinted from A. Yamilov et al., Phys. Rev. Lett. 96, 
083905 (2006).)
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4.4.5 summary and outlook

In summary, with the combined theoretical and experimental studies, we find that the 
structural disorder may lead to self-optimization of optical confinement in a PhC slab and 
formation of high-Qtot modes that serve as the lasing modes. In a sufficiently large PhC slab 
with uncorrelated disorder, a microcavity with balanced Q⊥ and Q∙ can be formed sponta-
neously without any carefully designed structural defects. In our near-ultraviolet PhC slab 
laser, random scattering by structural disorder leads to in-plane localization of band-edge 
modes. The underlying physical mechanism is similar to that of light localization in ran-
dom media. The reduction of density of states near the photonic band edge enhances the 
localization effect. The most confined modes are selectively amplified in the presence of 
optical gain owing to long photon lifetime. We also demonstrate that despite the disorder, 
the band-edge effect allows one to fine-tune the lasing wavelength from 383 to 407 nm with 
sample-to-sample fluctuation of about 5 nm in the disordered ZnO PhC slab laser.

Our study questions the conventional wisdom that structural disorder always degrades the 
functionality of optical devices. Instead, we suggest that one needs to determine the type of 
disorder and understand its effects. Using lasing in disordered PhC slabs as an example, we 
demonstrate that a disorder can actually enhance the functionality of certain applications. 
Therefore, the strength and properties of the disorder emerge as additional tuning parameters. 
Although the above conclusions have been drawn on the basis of our analyses of PhC slabs that 
exhibit 2D periodicity, we believe they are quite general. There have been several reports of 
lasing in disordered 3D PhCs;56,88 however, much more work needs to be done to fully 
 understand the intricacies of the interplay between order and disorder in these systems.

Another aspect of our study—the interplay between light transport in disordered sys-
tems and amplification—presents a fundamental interest. Indeed, the coherent amplifica-
tion/absorption nontrivially affects the interferences of multiply-scattered waves and, thus, 
can promote/suppress localization phenomena. This observation has motivated us to begin 
systematically exploring an intriguing possibility of localization by gain—an enhancement 
of the mesoscopic phenomena with an increase of the amplification strength.89

In this work, we discussed the disorder-induced transition from a perfectly periodic 
structure to a completely random medium. Although lasers based on disordered media 
can exhibit a variety of interesting behaviors, one of their limitations to device applications 
is the lack of control and reproducibility of the lasing modes. Recently, deterministic ape-
riodic structures attracted a great deal of attention. They also lie in between the periodic 
and random structures, ranging from quasicrystals to pseudorandom structures and, 
hence, spanning the entire spectrum in a hierarchy of complexity. Because of their struc-
tural distinction and unusual physical properties, the aperiodic systems have even been 
called the third form of solid matter.90 The possibility of engineering lasing modes in 
deterministic structures with aperiodic ordering appears to be extremely promising.91
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