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In this dissertation, a methodology for experimentally creating and controlling random

light in free space and in diffusive media is presented.

In free space, we develop and demonstrate the ability to arbitrarily customize the in-

tensity statistics and spatial-correlations of spatially-incoherent light. First, we present a

general method for customizing the intensity statistics of speckle patterns on a target plane.

Specifically, we show that by judiciously modulating the phase-front of a monochromatic

laser beam, we can experimentally generate speckle patterns with arbitrarily-tailored in-

tensity probability-density functions. Then, we experimentally demonstrate and theoret-

ically develop a general method for creating fully-developed speckles with strong ‘non-

local’ intensity correlations. The tailored correlations are considered non-local because

the functional form of the spatial intensity correlations can be arbitrarily manipulated

without altering the field correlations. Afterward, we develop an experimental method

for customizing the intensity probability density function of speckle patterns while simul-

taneously introducing non-local spatial correlations among the speckle grains. The various

families of tailored speckle patterns –created by our general method– can exhibit radically

different topologies, statistics, and variable degrees of spatial order. Irrespective of their

distinct statistical properties, however, all of these speckles are created by appropriately

encoding high-order correlations into the phase front of a monochromatic laser beam with

a spatial light modulator. In addition to our experimental demonstration, we explore both

the theoretical and practical limitations on the extent to which the intensity PDF and the

spatial intensity correlations can be manipulated concurrently in a speckle pattern. Fi-



nally, we perform a proof of principle super-resolution imaging demonstration; where we

design and create bespoke speckle patterns for parallelized nonlinear pattern-illumination

microscopy based on fluorescence photoswitching. In our demonstration, we obtain a spa-

tial resolution three times higher than the diffraction limit of the illumination optics in

our setup. Furthermore, we show that tailored speckles vastly outperform standard speck-

les, and therefore, customized speckles are a potent tool in parallelized super-resolution

microscopy.

In diffusive media, we demonstrate the ability to coherently control wave transport

through –and throughout– multiple scattering systems. We develop a unique experimental

platform based on the synthesis of nanofabricated on-chip structures and interferomet-

ric wavefront-shaping. With our setup, we investigate the fluctuations and correlations

of transmission eigenchannel depth-profiles in optical diffusive media. Specifically, we

find that the depth profiles of high-transmission eigenchannels exhibit low realization-to-

realization fluctuations. Furthermore, our experimental and numerical studies reveal the

existence of inter-channel correlations, which are significant for low-transmission eigen-

channels. Next, using our experimental platform’s unparalleled access to the optical field

inside on-chip diffusive structures; we introduce and experimentally investigate the depo-

sition matrix, Z: which maps any input wavefront to its internal field distribution over

a specific region. Concurrently, we develop a theoretical formalism to predict the ulti-

mate limitations on energy deposition at any depth inside a diffusive medium. Finally,

we introduce the remission matrix, R, which maps the wavefronts input over a finite re-

gion of a diffusive medium’s surface to the resulting diffusive waves re-emitted from a

displaced region on the same surface. Furthermore, we experimentally demonstrated that

remission eigenchannels can enhance the remitted signal strength without sacrificing the

penetration-depth of the collected light.
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grains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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5.3 Circumventing the diffraction limit. A diffraction-limited spot of the

405 nm illumination/photoconversion optics is presented in (a). In (b), an

example fluorescent spot produced by a vortex in the delta speckle pattern

is illustrated. Its size is much smaller than the diffraction-limited spot. Its

shape can be fit by an ellipse of major axis width a = 6.1 µm and minor

axis width b = 5 µm. The aspect-ratio, b/a, histogram of all fluorescent

spots produced by the delta speckles is shown in (c). The inset illustrates

an ellipse with the average aspect ratio 〈b/a〉 = 0.86. In (d), the box-

plot analysis of the major and minor axes widths is shown. The white

line marks the mean value, and the black whiskers represent the upper and

lower bounds of the data. The edges of the blue and red shaded regions

mark the upper and lower quartiles (25%, 75%) of the ensemble. The green

dashed line indicates the FWHM of the diffraction-limited spot in (a). . . 74

5.4 Customized Speckle Statistics. An example delta speckle pattern is pre-

sented in (a) and the corresponding phase distribution of its complex field

is shown in (b). The phase is randomly distributed between −π and π,

indicating that the speckle pattern is fully developed. The intensity PDF

(purple solid line) of the delta speckle pattern is shown in (c) and com-

pared with a Rayleigh PDF (green dashed line). The spatial correlation

functions of the intensity (red dashed line) and the field (blue solid line) in

the delta speckle pattern are shown in (d). The spatial fluctuations of the

intensity are faster than those of the field. The anti-correlation (CI < 0)

originates from the bright ring surrounding each vortex core. The plots

both in (c) and (d) are obtained from an ensemble of 100 speckle patterns. 76
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5.5 Optical Vortex Characteristics. Two example vortices from a delta speckle

pattern, (a), and from a Rayleigh speckle pattern, (b), are shown. While

the vortices in the delta speckles are nearly circular, the Rayleigh speck-

les’ vortices have highly irregular shapes. This property is reflected in

(c) where we plot the average intensity profile of light around vortices

in 1,000 delta speckle patterns (purple solid line) and around vortices in

1,000 Rayleigh speckle patterns (green dashed line). The edge of the pur-

ple and green shaded regions indicates one standard deviation away from

the corresponding mean profile. In (d), we plot the probability density of

the equal-intensity contours’ aspect-ratio around the vortices in 1,000 delta

speckle patterns (purple) next to the theoretical prediction for Rayleigh

speckle patterns (green). . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Photoconversion simulation. When a delta speckle pattern is used for

photoconversion (a), the unconverted regions near the vortices quickly

evolve into isotropic and isomeric islands as seen in (b) at t = 1/q. At long

timescales the islands remain, as shown in (c) where t = 10/q, yet they

have considerably smaller size and higher spatial frequencies (d). When

a Rayleigh speckle pattern is used for photoconversion (e), an intercon-

nected web forms instead of isolated islands at t = 1/q as shown in (f).

Even at long time scales isolated and isotropic islands are rarely seen in

(g) and fewer high-spatial frequencies are present when compared to (c),

as shown in (h). The power spectra in (d,h) are ensemble-averaged over

100 realizations, and normalized to have a mean value of 1 over the spatial

frequencies plotted. Note, the values at k = 0 are not plotted. . . . . . . . 82
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5.7 Axial Propagation. Axial intensity cross-sections, I(x = x0, y,∆z), of

both delta (a) and Rayleigh (c) speckles are juxtaposed with a simulation

of the corresponding unconverted protein density in a uniform sample,

ρ(x = x0, y,∆z, 10/q), (b,d) over one Rayleigh axial-decorrelation length

Rl. In (e), the axial intensity correlation function CI(∆z) of the delta

speckles (purple line) is three times narrower than that of the Rayleigh

speckles (green dashed line). In (f), the axial correlation function of the

unconverted protein density Cρ(∆z) generated by delta speckles (purple

line) has almost same width as that generated by Rayleigh speckles (green

dashed line). We ensemble average over the propagation of 100 speckle

patterns to create the curves in (e,f). . . . . . . . . . . . . . . . . . . . . 84

5.8 Photoconversion of live yeast cells with a customized speckle pattern.

In (a), we present an optical image of the fluorescent light emitted from

a sample of live yeast cells before they are photoconverted by the delta

speckle pattern shown in (b). The white circles in (b) indicate the vortices

which overlap with the yeast cells. An image of the fluorescent light emit-

ted by the live-cell sample after photoconversion is shown in (c). The red

circles in (c) correspond to the white circles in (b). . . . . . . . . . . . . 86

6.1 Waveguide structure and optical setup. A composite SEM image of

a diffusive waveguide is shown in (a). The matrix mapping the field in

the buffer region to the end region, tbuff→end, is related to the matrices

tslm→buff and tslm→end. In (b) the simplified sketch of the experimental

setup illustrates how we wavefront shape a laser beam with a spatial light

modulator (SLM) while performing an interferometric measurement of the

light scattered out of the waveguide. . . . . . . . . . . . . . . . . . . . . 93
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6.2 Determining the sample transport parameters. Determining the trans-

port mean free path `t and the diffusive dissipation length ξa of the dif-

fusive waveguides by fitting the experimentally-measured average depth

profile for random incident wavefronts, 〈I(z)〉, (blue) to theoretical pre-

dictions from the diffusion equation (red). . . . . . . . . . . . . . . . . . 95

6.3 Depth profiles of transmission eigenchannels. High (α = 1) and low

(α = 20) transmission eigenchannel profiles are presented in (a,b) while

the 22 measured eigenchannel profiles are juxtaposed in (c). The exper-

imentally measured profiles (blue lines) agree well with the profiles cal-

culated from numerical simulations using the transmission matrix t (black

dashed lines) and the matrix tbuff→end (red lines). . . . . . . . . . . . . . 98

6.4 Eigenchannel fluctuations. In (a), the spatially-averaged depth-profile

fluctuations of the eigenchannels, C̃α, increase monotonically with the

channel index α. The green dashed line indicates the experimentally ob-

served fluctuations for random incident wavefronts: 0.59. In (b), ex-

perimentally observed depth-resolved intensity fluctuations, var[Iα(z)],

of high (α = 1) and low (α = 20) transmission eigenchannels (cir-

cles) are closely reproduced by the numerical simulations of transmission

eigenchannels from tbuff→end (solid lines) and t (dashed lines). In (c),

var[Iα(z)] is divided by 〈Iα(z)〉2 for the high/low-transmission eigenchan-

nels of t. In (d-e), the experimentally-observed and numerically-calculated

depth-resolved intensity fluctuations for individual eigenchannels show

how var[Iα(z)] evolves with α. . . . . . . . . . . . . . . . . . . . . . . 100
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6.5 Inter-channel correlations. The covariance C̃αβ between any two pairs

of eigenchannels, α and β, is calculated from experimental data (a) and

numerical simulations (b,c). The cumulative covariance
∑

β 6=α C̃αβ ex-

ceeds the variance C̃αα in (d). The blue symbols represent experimental

data and red lines represent numerical simulations based on tbuff→end. . . 102

7.1 Schematic of the experimental platform for investigating energy depo-

sition in a diffusive system. A spatial light modulator (SLM) shapes the

incident wavefront of a monochromatic laser beam, and the field distribu-

tion inside a two-dimensional disordered waveguide is probed from above.

This setup allows measurement of the deposition matrix that relates the in-

coming field pattern to the spatial field distribution inside a target region

(marked by the cyan box). Selective coupling of light into the deposition

eigenchannels can enhance or suppress energy inside the target region, as

confirmed by the CCD camera image of the spatial intensity distribution. 107
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7.2 Numerical simulation and analytic prediction of deposition eigenval-

ues. (a) Probability density function of normalized deposition eigenvalues

ζ/ 〈ζ〉 for a thin slice at varying depths zD inside a diffusive waveguide

(see inset). Analytical FRM predictions (solid lines) agree with numerical

simulations (dots) averaged over 1000 disorder configurations. For most

depths, P (ζ/ 〈ζ〉) is very different from the bimodal distribution of the

transmission eigenvalues P (τ/ 〈τ〉), although it converges to bimodal at

the end (shaded area at zD/L = 1). The theoretical prediction for the up-

per edge of P (ζ), which sets the limit for energy enhancement 〈ζmax〉 / 〈ζ〉,

is marked by dashed purple line in the horizontal plane. (b) Energy en-

hancement in two diffusive waveguides (WG1, WG2), given by the ra-

tio of the largest ensemble-averaged deposition-eigenvalue 〈ζmax〉 over the

mean eigenvalue 〈ζ〉, increases with depth zD and reaches its maximum

at zD/L ∼ 3/4. Analytical predictions for the upper edge of P (ζ/ 〈ζ〉)

(solid lines) are compared to numerical data (symbols). The energy en-

hancement 〈τmax〉 / 〈τ〉 exceeds the transmission enhancement 〈ζmax〉 / 〈ζ〉

(horizontal dotted line) at most depths. In (a), the waveguide (WG1) has

a length L = 50µm, width W = 15µm, and transport mean free path

`t = 3.3µm. (b) includes a second waveguide (WG2) of L = 50µm,

W = 30µm, and `t = 1.6µm. . . . . . . . . . . . . . . . . . . . . . . . 110
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7.3 Experimental measurement of deposition eigenchannels. (a) A com-

posite scanning electron microscope (SEM) image of a disordered waveg-

uide of width W = 15 µm. Randomly distributed air holes (each 100 nm in

diameter) are etched throughout a designated L = 50 µm long region. Su-

perimposed are four target regions used for energy deposition; each is 10

µm× 10 µm. (b,c) The depth profiles (cross-section integrated intensities)

of two deposition eigenchannels with enhanced and suppressed energies

in the target region R1 centered at depth zD = 10 µm (b), and R2 at zD

= 20 µm (c) are shown. The experimental data (red circle, purple dia-

mond) agrees with the numerical simulations (red solid line, purple dotted

line). The black dashed line is the averaged intensity profile generated by

random input wavefronts. Each experimental data point is averaged over

∆z = `t to reduce fluctuations. (d,e) The experimentally measured energy

enhancement in the target region ηt (blue-circles) and in the surround-

ing area ηs (brown-diamonds) of two deposition eigenchannels α = 2 (d)

and α = 24 (e) are compared with numerical data (light-blue and orange

lines): for the case of energy deposition into four target regions centered at

10, 20, 30, and 40 µm. In (d) the green line corresponds to 35C2(zD), and

its agreement with the experimental/numerical results of ηt(zD) confirms

the essential contribution of long-range intensity correlations to energy

deposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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7.4 Relation between deposition eigenchannels and transmission eigen-

channels. (a,c) The projection of a deposition eigenchannel with index

α = 1 (a) or 25 (c) onto transmission eigenchannels with index β gives

the coefficients dαβ . Four curves denote |dαβ|2 for four target regions

R1−R4 [inset of (a)] in the same disordered waveguide as in Fig. 7.3. (b,d)

Comparison between the coherent sum (red/purple) and incoherent (green)

sum of the transmission eigenchannels describing deposition eigenchannel

profiles, with coefficients given in (a,c). For each deposition region, the

enhancement/suppression above/below the random input intensity profile

(black dashed line) has two distinct contributions from selective excitation

of transmission eigenchannels (green areas) and constructive/destructive

interference between them (cyan areas). . . . . . . . . . . . . . . . . . . 116

8.1 Remission eigenchannel concept. By coherently controlling the wave-

front of light injected into a slab-geometry diffusive-medium with a spatial

light modulator; we can couple into a remission-eigenchannel to enhance

the signal of the emitted light, without sacrificing the penetration depth.

We can directly observe the spatial profile of the remission-eigenchannel

by capturing the light scattered out-of-plane with a CCD camera. . . . . 122

8.2 On-chip diffusive-slab SEM images. A SEM image of the full on-chip

slab-geometry diffusive system used in our experiments is shown in (a).

Magnifying by an order of magnitude, in (b) the 15 µm-wide input waveg-

uide is shown at the buffer-region diffusive-region interface. Further mag-

nification shows the trigonal photonic-crystal lattice of air holes (radius =

155 nm, lattice constant = 440 nm) and examples of the randomly arranged

100-nm-diameter holes in the diffusive region. . . . . . . . . . . . . . . 123
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8.3 Remission of random input wavefronts. The average intensity pattern

produced by random input wavefronts 〈I(y, z)〉 is shown in (a). An ex-

ample conditional probability distribution, 〈I(y, z)〉〈I(y + ∆y, z)〉, of re-

mitted random light is presented in (b) for ∆y = 25`t. The black dots

represent the maxima of 〈I(y, z)〉〈I(y+∆y, z)〉 along the z-axis, for each

value of y, and the purple curve is the best fit of an ellipse to the data. The

ellipse gives the trajectory of randomly-generated remitted-light traveling

from the input to the displaced region. In (c) the trajectory of remitted

light in the (y, z) plane is plotted as a function of separation ∆y. . . . . . 125

8.4 Field-reconstruction matrix validation. An experimentally measured

intensity distribution within the diffusive slab –generated by a random

phase pattern on the SLM– is presented in (a) next to the field-reconstruction

matrix prediction (b). The intensity patterns have a Pearson correlation co-

efficient of 0.94 without any data manipulation or noise reduction. . . . . 128

8.5 Remission eigenchannel intensity distribution. An example ensemble-

averaged remission eigenchannel intensity distribution is shown in (a) for a

remission region displaced ∆y = 17.2`t along the input surface. For refer-

ence, the trajectory of the random-light-generated conditional probability

distribution from the input to the emission region (white dashed curve)

is shown. To illustrate the directionality of remission eigenchannels, and

their ability to redistribute energy inside the diffusive system, in (b) we

show the difference between the lower and upper remission eigenchannel

intensity distributions: 〈I+∆y(y, z)〉−〈I−∆y(y, z)〉. For reference, the cor-

responding random-light conditional probability distributions are shown.
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8.6 Difference between remission eigenchannels and random illumina-

tion patterns. In (a-c), the ensemble-averaged “open” remission eigen-

channel pattern subtracted by the ensemble-averaged random input pattern

〈I∆y(y, z)〉 − 〈I(y, z)〉 is shown for a target region (black square) located

at ∆y = 12.5`t, 18.8`t, & 25`t away from the input source. The solid-

green lines show the trajectory of the conditional probability distribution

generated by random light, in each panel, while the black dashed lines

show the trajectory the remission eigenchannel’s conditional probability

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1 Transmission matrix validation. An example customized speckle pat-

tern predicted by our transmission matrix (a) is juxtaposed with the cor-

responding experimentally measured speckle pattern (b). The difference

between the two intensity patterns is 9.7%. In (c) we compare the intensity

PDF of predicted speckle patterns, green dashed line, with the intensity

PDF of the corresponding measured speckle patterns, purple solid line, for

an ensemble of 100 speckles patterns like those shown in (a) and (b). The

difference between the two intensity PDFs is 3.7%. In (d) we present a

measured image of the speckles in both the target region and the junkyard

region. The white square denotes the boundary of the target region. . . . . 144

A.2 Measured speckle pattern error in Chapter 2. The statistical distribu-

tion of (Ie − Id)/
√
Id, extracted from the experimental data in Chapter 2

(symbols), is fit well by the Gaussian distribution G(Ie, Id) in Eq. A.19

(lines). The fitting parameter is given by a = 0.020 for the uniform PDF

(black), a = 0.019 for the linearly increasing PDF (red), a = 0.037 for the

PDF with a single peak (blue) and a = 0.029 for the bimodal PDF (green). 146

xxvii



A.3 Predicted effect of error on PDFs. The deviation (shaded area) of the

intensity PDF (blue solid line) from the target one (black dashed line) is

reproduced numerically by Eq. A.21. (a-d) for the four PDFs shown in

Fig. 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.1 Scanning electron microscope (SEM) images of a 2D diffusive waveg-

uide. In (a) we show a composite SEM image which outlines the structures

we etch into a silicon-on-insulator wafer when fabricating our structures.

A SEM image of the interface between the buffer and diffusive regions is

marked by the blue dashed line in (b). Close-up images of the photonic

crystal sidewall and randomly-distributed holes are shown in (c) and (d). 155

B.2 A depiction of our experimental setup. Monochromatic light from our

laser is linearly polarized and split into two beams. One beam illuminates

the phase modulating surface of a spatial light modulator (SLM), while the

other is used as a reference beam. The SLM is used to control the input

wavefront in our diffusive waveguide structures. A beam splitter merges

the light collected from the top of our sample with the reference beam on

an IR CCD. The focal length of the three lenses used in this setup are:

f1 = 400 mm, f2 = 75 mm, and f3 = 100 mm. . . . . . . . . . . . . . . 157

B.3 Waveguide structure and full-field measurement. A composite SEM

image of a diffusive waveguide is shown in (a). In (b) the 2D intensity

pattern of a measured high-transmission eigenchannel is shown. Using

our interferometric setup, we can reconstruct the phase of the light field

inside the diffusive waveguide in (c). In (b-c) the edges of the diffusive

region are marked by the vertical dashed lines. . . . . . . . . . . . . . . 159
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B.4 Transmission eigenvalue mapping. Calculated transmission eigenvalues,

as a function of eigenchannel index α, are shown in (a). In (b), we show

the mapping between the experimentally-measured eigenchannel profiles

with index αE and the first 22 (in the order of decreasing transmittance)

eigenchannels with index α found in the numerical simulations based on
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B.6 Comparison between deposition eigenvalue definitions. Comparison of

the eigenvalue distributions p(ζ) of the operatorsZ†Z defined by Eq. (7.1)

and Eq. (7.2), evaluated at different depths zD/L of a disordered waveg-
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B.7 Width-dependence of deposition eigenvalues. Deposition eigenvalue

distribution p(ζ) at depth zD = 0.8L of a disordered waveguide of length

L = 50µm and width W = 15, 30, 50µm. Analytical FRM predictions
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Chapter 1

Introduction

The goal of this dissertation is to develop a methodology for experimentally creating and

controlling random light in free space and in diffusive media. In free space, the objec-

tive is to arbitrarily customize the intensity statistics and spatial-correlations of spatially-

incoherent light [1–4]. In diffusive media, the aim is coherently controlling wave transport

through –and throughout– multiple scattering systems [5,6]. In both cases, the lynchpin is

coherent wavefront shaping.

1.1 Coherent Wavefront Shaping

Any static linear scattering-system, from a lens to a diffusive medium, will have a deter-

ministic response to a given input wavefront. In principle, therefore, the response of a

static linear scattering-system to any input complex-field can be mapped by a linear op-

erator. Furthermore, this response operator can be represented by a “field reconstruction”

matrix which transforms any input wavefront into the corresponding response field-pattern

generated by the system: where both wavefronts are defined by complex-valued vectors.

The response field pattern of interest can range from a transmitted wavefront, to a reflected

wavefront, to the internal field distribution of the system. In practice, a field reconstruction
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matrix can be experimentally measured using a phase-only spatial light modulator (SLM)

and a CCD camera. Using the 106 phase-modulating pixels on a SLM, a complete-set

of input wavefronts can be generated and sequentially illuminate a system to produce a

complete set of response wavefunctions: which can be interferometrically measured by

the CCD. With a field reconstruction matrix and the ability to precisely control the input

wavefront of a system, a diverse range of both fundamental and applied physics research

is possible.

1.2 Random Light In Free Space

In free space, spatially random light fields have the hallmark appearance of intricate –yet

highly irregular– mosaics of diffraction-limited speckle grains. Because of their speckled

appearance, random light fields are commonly referred to as speckle patterns. A speckle

pattern can be characterized by the twofold complexity of its optical field. On one hand,

the spatial-distribution of light in a speckle pattern is sufficiently complicated that speckles

are described by a statistically stationary and ergodic random process. In this context,

stationarity requires the statistical properties of an ensemble of speckle patterns to be the

same as those of an individual speckle pattern within the ensemble. Ergodicity requires

the statistical properties of two spatial positions –separated by more than one speckle grain

size– to be independent and identical to those of the ensemble. On the other hand, speckle

patterns are categorized by the joint probability-density function (PDF) of their complex-

valued field. For example, a speckle pattern is said to be “fully developed” if its joint PDF

is circularly invariant. In a fully-developed speckle pattern, therefore, the phase PDF is

uniformly distributed between 0 and 2π. Additionally, in a fully-developed speckle pattern

the amplitude and phase profiles are statistically independent. Rayleigh speckles –the most

common family of speckle patterns– obey a circular-Gaussian field PDF which results in
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a negative exponential intensity PDF. See Fig. 1.1 for an example. Furthermore, they only

possess short-ranged spatial intensity correlations which are determined by the average

speckle grain shape: which is dictated by the diffraction limit. For more information on

standard speckle patterns, consult Refs. [7–11].

Rayleigh Speckles: Intensity 
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

0 −𝜋𝜋

𝜋𝜋
Rayleigh Speckles: Phase

Figure 1.1: An example of Rayleigh speckles.

Until recently, Rayleigh intensity statistics were considered close to a universal prop-

erty of speckle patterns. This is because in most cases, non-Rayleigh speckles can be

classified as either under-developed (the sum of a small number of scattered waves, or the

phases of the waves are not fully randomized) or partially-coherent (the sum of incoherent

partial waves) [12–20]. In both cases, the diversity of the intensity PDF’s functional-form

is limited. Similarly, adherence to the Siegert relation is another common assumption

made about random light fields. Specifically, that the spatial intensity correlation function

of a complex-field is proportional to the squared magnitude of the spatial filed correla-

tion function: also known as the local correlation function. Based on this assumption, the

spatial intensity correlation function of a speckle pattern is typically modified by altering

the local correlation function: via amplitude modulation of the field’s Fourier compo-
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nents [2, 15, 21–31]. Because the local correlation function is effectively the diffraction-

limited point spread function of a system, this approach can be quite limiting in terms of

the range of possible correlation functions. Despite these limitations on controlling the

PDF and spatial-correlations of speckle patterns, there has been a plethora of interest in

creating speckle patterns with tailored statistics and correlations [29, 30, 32–39]. This is

due to the many potential applications of customized speckles. In structured-illumination

imaging, for example, tailored speckles can be used for dynamic speckle illumination mi-

croscopy [40, 41], super-resolution imaging [42, 43], and as pseudo-thermal light sources

for high-order ghost imaging [44–46]. Furthermore, a general method for customizing

the statistics, topology and spatial order of laser speckle patterns would be a valuable tool

for synthesizing optical potentials for cold atoms [47], microparticles [48–51], and active

media [52–54].

In the second chapter of this dissertation, a general method for arbitrarily customiz-

ing the intensity PDF of a speckle pattern on a target plane is presented. By judiciously

modulating the phase-front of a monochromatic laser beam with a SLM, different families

of speckle patterns with tailored intensity PDFs can be experimentally generated. Rela-

tive to Rayleigh speckles, the customized speckles exhibit radically different topologies

yet maintain the same spatial correlations. Additionally, the customized speckles are fully

developed, ergodic, and stationary: with circular non-Gaussian statistics for the complex

field.

In the third chapter, a method for creating fully-developed speckles with strong non-

local intensity correlations is experimentally demonstrated and the resulting speckles are

theoretically analyzed. This technique is denoted “introducing non-local correlations” be-

cause the functional form of the spatial intensity correlations can be arbitrarily tailored

without altering the field correlations. Furthermore, the introduction of non-local corre-

lations can be accomplished while preserving the circular-Gaussian field-statistics of a
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speckle pattern.

In the fourth chapter, an experimental method for customizing the intensity probability

density function (PDF) of speckle patterns –while simultaneously introducing non-local

spatial correlations among the speckle grains– is presented. The various families of fully-

developed tailored speckle-patterns created by this method can exhibit radically different

topologies, statistics, and variable degrees of spatial order. Irrespective of the distinct

statistical properties, all of the speckle patterns are created by appropriately encoding

high-order correlations into the phase front of a monochromatic laser beam with a spa-

tial light modulator. In addition to the experimental demonstration, both the theoretical

and practical limitations on the extent to which the intensity PDF and the spatial intensity

correlations can be manipulated concurrently in a speckle pattern are explored.

In the fifth chapter, a family of “delta” speckle patterns are designed and used for par-

allelized nonlinear pattern-illumination microscopy: based on fluorescence photoswitch-

ing. In the proof-of-principle experimental demonstration, a spatial resolution three times

higher than the diffraction limit of the illumination optics is obtained. In addition to the

demonstration, the manner in which the delta speckles outperform standard speckles is il-

lustrated: establishing that delta speckles are a potent tool in parallelized super-resolution

microscopy.

1.3 Random Light In Diffusive Media

Controlling random wave scattering in disordered systems is essential in a wide range of

applications involving light, microwaves, and acoustic waves [55,56]: such as deep-tissue

imaging [57, 58], optogenetically controlling neurons [59, 60], non-invasive ultrasound

surgery [61], and optimization of photoelectrochemical processes in strongly-scattering

systems [62]. The fundamental challenge to overcome in disordered systems is the mul-
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tiple scattering of waves, which results in a diffusive spread of the wave energy. For

light, when a coherent wave enters a disordered system the photons scatter in random di-

rections and, as a function of depth, the number of unscattered photons decays to zero

exponentially. Past a certain depth –called the transport mean free path (`t)– the photons

are equally likely to travel in any direction [55, 56, 58, 63–68]. For visible light this tran-

sition from a beam into a diffuse glow occurs at `t ≈ 1 mm in living cells [69], `t ≈ 10

m in clouds [70], and `t ≈ 1 µm in white paint [71]. Until recently, the transport mean

free path has been a fundamental barrier preventing non-invasive wave-based applications

deep within disordered systems.

Transmission Eigenchannels

Generally, studies aimed at controlling wave scattering through a diffusive system rely on

the field transmission matrix, t, of the system: which maps the incident waves to the trans-

mitted waves [5,71–80]. The utility of the transmission matrix lies in its ability to connect

input wavefronts to the corresponding output wavefronts. Specifically, the eigenvectors of

t†t are the orthogonal set of input wavefronts which excite a set of disorder-specific wave-

functions –spanning the system– known as the transmission eigenchannels: each with a

transmittance given by the corresponding eigenvalue τ . One of the striking theoretical

predictions of diffusive systems is the bimodal distribution of the transmission eigenval-

ues: with maxima at τ = 0 and τ = 1 [56, 81–86]. While transmission eigenvalues are

intensely studied topics, transmission eigenchannels are relatively unstudied: due to the

simultaneous theoretical and experimental complexity of the task.

The sixth chapter of this dissertation experimentally explores transmission eigenchan-

nels inside nano-fabricated planar diffusive waveguides. The individual depth profiles of

transmission eigenchannels within diffusive systems are directly observed, and the sec-

ond order statistics are studied. The depth profiles of high-transmission eigenchannels
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are shown to exhibit low realization-to-realization fluctuations. Furthermore, the experi-

mental and numerical studies reveal the existence of inter-channel correlations, which are

significant for low-transmission eigenchannels.

Energy Deposition Eigenchannels

A significant challenge in fundamental physics and practical applications is depositing

energy into a target region deep inside a diffusive system. Currently, it is known that

coherently controlling the incident wavefront allows diffraction-limited focusing inside a

diffusive system [64, 65, 87–91]. Typically, the appropriate incident wavefront is obtained

via the time-reversal principle [92]: that the phase conjugate of an output field generated

by a point source will focus back to that point [64]. Targets in many applications like neu-

rons or early-stage tumors, however, are much larger than an optical-diffraction-limited

focal spot and therefore wavelength-scaled light focusing does not corresponds to maxi-

mal energy deposition into an extended target. Since the optimal spatial field distribution

across the target is not known a priori, neither time reversal nor phase conjugation can

be used to find the optimal incident wavefront. Furthermore, while feedback-based itera-

tive optimization of the input wavefront [65] is efficient at reaching the global maximum

when focusing light [93]; currently, this is not the case for energy delivery into a target of

arbitrary size and shape.

In the seventh chapter the “deposition matrix” is introduced relating any input wave-

front to its internal field distribution over a specified region inside the system. Deposition

matrices are experimentally measured in diffusive waveguides and their eigenstates are

excited to enhance/suppress the energy within different extended target regions. In addi-

tion to the experimental demonstration, a theoretical formalism for prediction the energy

enhancement is developed.
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Remission Eigenchannels

Diffusive-waves have been used for sensing and imaging [94–103] in a diverse variety

of random media: ranging from the earth’s crust [104–106] to the human brain [101,

107–109]. Often, in theoretical investigations and lab-based experiments, waves transmit-

ted through diffusive media are utilized and studied for imaging and sensing. In many

real-world applications, however, transmitted waves are unavailable and directly reflected

waves cannot penetrate beyond one transport mean-free-path into the system. Therefore,

in many applications remitted waves must be used: diffusive waves actively generated

by an external source and emitted from the medium on the same side, from a separate

location.

In the eighth chapter, an experimental study on diffusive-wave remission eigenchan-

nels in open disordered systems is presented. The remission matrix, R, of a diffusive

system is introduced; which maps the wavefronts input over a finite region of a diffusive

medium’s surface to the resulting diffusive waves re-emitted from a displaced region on the

same surface. Using a modified version of the on-chip platform and experimental setup

presented in Chapters 6 & 7, various remission matrices are experimentally measured.

Subsequently, the individual remission eigenstates are excited, and their spatial structures

are observed as a function of separation between the input and remission regions. We

show that “open” remission eigenchannels enhance the output signal without sacrificing

the light’s penetration-depth into the system.
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Chapter 2

Customizing Speckle Intensity Statistics

2.1 Introduction

1Speckle formation is a phenomenon inherent to both classical and quantum waves. Char-

acterized by a random granular structure, a speckle pattern arises when a coherent wave

undergoes a disorder-inducing scattering process. As discussed in Chapter 1, the statis-

tical properties of a speckle pattern are generally considered universal –commonly re-

ferred to as Rayleigh statistics– featuring a circular-gaussian distribution for the complex-

field joint probability density function, and a negative-exponential intensity probability

density function (PDF) [7–10]. Typically, non-Rayleigh speckles are classified as either

under-developed (either the sum of a small number of scattered waves, or the phases of

these waves are not fully randomized) or partially-coherent (the sum of incoherent partial

waves) [12–20]. In both cases, the diversity of the intensity PDF’s functional form is lim-

ited. Recently, however, a simple method of creating non-Rayleigh speckle patterns with

a phase-only spatial light modulator (SLM) was developed [33]. High-order correlations

were encoded into the field by the SLM, leading to a redistribution of the light intensity

1The chapter material is primarily taken from reference [1]: Nicholas Bender, Hasan Yilmaz, Yaron
Bromberg, and Hui Cao, “Customizing speckle intensity statistics”, Optica, vol. 5, 595-600, (2018).
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among the speckle grains in the far-field. In this method, the speckle pattern could either

possess an intensity PDF with a tail decaying slower or faster than a negative-exponential

function. It was not known, however, if it was possible to have an intensity PDF of any

functional form, such as increasing with intensity, or double-peaked at specific values.

In this chapter, we present a general method for tailoring the intensity statistics of

speckle patterns by modulating the phase front of a laser beam with a SLM. Starting with

a Rayleigh speckle pattern, we numerically apply a local intensity transformation to ob-

tain a new speckle pattern which is governed by a target intensity PDF. Subsequently this

pattern is experimentally generated in the far field of the SLM, where the requisite phase

modulation is determined numerically via a nonlinear optimization algorithm. Via this

process, we can create speckle patterns governed by arbitrary intensity PDFs: within a

predefined intensity-range of interest. Such speckle patterns exhibit distinct topologies

relative to Rayleigh speckles, while retaining the same spatial correlation length. A thor-

ough study of the statistical properties reveals that the different ensembles of speckles

created are unique relative to previously studied families of speckle patterns. Despite be-

ing fully-developed, ergodic, and stationary, the joint complex-field PDFs of the speckle

patterns are circular non-Gaussian; with higher-order intensity moments differing from

those of Rayleigh speckles. Both the intensity statistics and speckle topology evolve with

beam propagation away from the target plane, wherein the speckle patterns eventually

revert back to Rayleigh speckles. The technique outlined in this chapter provides a ver-

satile framework for customizing speckle patterns for varied applications in microscopy,

imaging and optical manipulation.

10



SLM

Lens

Camera

Figure 2.1: A caricature of the experimental setup. Light reflected by a spatial light
modulator is Fourier transformed by a lens, and then imaged onto a detector.

2.2 Experimental Setup

The experimental setup described in this section, and characterized in Fig. 2.1, is used in

the following four chapters to create customized speckle patterns. A reflective, phase-only

SLM (Hamamatsu LCoS X10468) is illuminated with a linearly-polarized monochromatic

laser beam with a wavelength λ = 642 nm (Coherent OBIS). The laser beam is expanded

and clipped by an iris to uniformly illuminate the SLM phase modulation region. The

central part of the phase modulating region of the SLM is partitioned into a square array of

32× 32 macro-pixels, each consisting of 16× 16 pixels. The pixels on the SLM can mod-

ulate the incident light’s phase between the values of 0 and 2π in increments of 2π/170.

However, a small portion of reflected light from the SLM is unmodulated. To bypass

the unmodulated light, we write a horizontal binary-phase diffraction-grating within each
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macropixel –with a grating period of 8 pixels– and work with the light diffracted to the

first-order. The remaining illuminated pixels outside the central square diffract the laser

beam away from the target plane via a vertical phase-grating. The SLM is placed at the

front focal plane of a lens, f = 500 mm, and the intensity pattern at the back focal plane

is recorded by a charge-coupled device (CCD) camera (Allied Vision Prosilica GC660).

The laser beam incident upon the SLM is linearly polarized and the incident angles on the

camera are too small to introduce a significant polarization component in the axial direc-

tion. Thus, the light waves incident on the camera can be modeled as scalar waves. To a

good approximation, the field pattern on the camera chip is the Fourier transform of the

field on the SLM surface.

2.3 Method

2.3.1 Local Intensity Transformation

Next, we describe how to determine a target speckle intensity-pattern governed by an

arbitrary intensity-PDF. When a random phase pattern (uniformly-distributed between

0 and 2π) is displayed on the SLM, the intensity pattern recorded by the camera is a

Rayleigh speckle pattern. We numerically perform a local intensity transformation on a

recorded Rayleigh speckle pattern which converts it into a speckle intensity-pattern gov-

erned by the desired PDF, F (Ĩ). The intensity PDF of the Rayleigh speckle pattern,

P (I) = exp[−I/〈I〉]/〈I〉], can be related to the target PDF, F (Ĩ), by:

P (I)dI = F (Ĩ)dĨ. (2.1)

This relation is the starting point for determining the local intensity transformation Ĩ =

f(I), which is applied to the intensity values of a Rayleigh speckle pattern to create a new
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speckle pattern with the desired PDF. To solve for the specific intensity transformation

associated with the PDF F (Ĩ), we write Eq. 2.1 in integral form with 〈I〉 = 1:

∫ I

0

e−I
′
dI ′ =

∫ Ĩ

Ĩmin

F (Ĩ ′)dĨ ′. (2.2)

Evaluating the integrals and solving for Ĩ as a function of I gives the desired local

intensity transformation Ĩ = f(I). In addition to altering the intensity PDF, such a trans-

formation provides the freedom to regulate the maximum and minimum intensity values

of the transformed pattern. We may arbitrarily set Ĩmax or Ĩmin, as long as the following

normalization conditions hold:

∫ Ĩmax

Ĩmin

F (Ĩ ′)dĨ ′ = 1 (2.3)

and

〈Ĩ〉 =

∫ Ĩmax

Ĩmin

Ĩ ′F (Ĩ ′)dĨ ′ = 〈I〉. (2.4)

This regulatory ability is useful in practical applications, such as those using speckle il-

lumination, where without altering the total power of illumination the maximal intensity

value can be set below the damage threshold of a sample or the minimum intensity value

can be set to exceed the noise floor.

The local intensity transformation is typically nonlinear and therefore produces spatial

frequency components that are higher than those in the original pattern, and therefore,

outside the range of spatial frequencies accessible in the experiment. Nevertheless, these

components can be removed from the intensity pattern by applying a digital low-pass

Fourier filter, where the allowed frequency window is a square.2 The high frequency

cut-off of the filter is determined by the average value of the maximum spatial-frequency

2See Chapter 4 for a more sophisticated technique.

13



component present in Rayleigh speckle patterns generated by our setup. The resulting

filtered-pattern, however, will have an intensity PDF, F̃ (I), slightly deviating from the

target one, F (Ĩ). Such deviations can be eliminated by applying an additional scalar

intensity transformation, Ĩ = f̃(I), that is obtained from

∫ I

Imin

F̃ (I ′)dI ′ =

∫ Ĩ

Ĩmin

F (Ĩ ′)dĨ ′. (2.5)

The process of performing a local intensity transformation, and subsequently applying a

digital low-pass Fourier filter, can be iteratively repeated as a conventional Gerchberg-

Saxton algorithm [110] until the target PDF is obtained for a speckle pattern obeying the

spatial frequency restrictions. Repetition of this procedure with different initial patterns

of Rayleigh speckles creates a statistical ensemble of independent customized intensity

patterns which possesses the same PDFs. It is important to note, however, that certain

PDFs cannot be generated experimentally because of the finite range of spatial frequen-

cies allowed in a speckle pattern due to the diffraction limit. One example, is the black

Figure 2.2: A physically impossible intensity PDF. The black curve is the original desired
PDF, and the blue curve is the numerically obtained one after a local intensity transforma-
tion algorithm. Their difference (shaded area) is due to the limited range of the spatial
frequencies in the speckle pattern.
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bimodal intensity PDF shown in Fig. 2.2. The original function used to generate this PDF

is sin2(πI/〈I〉) over the intensity range 0 ≤ I ≤ 2, and 0 elsewhere. This PDF is not

physically possible for classical light because if P (I/〈I〉) is zero –or has a discontinu-

ity at any intensity value in-between the minimum and maximum values– it requires a

corresponding discontinuity in the spatial profile of the speckle pattern. Consequently,

when sin2(πI//〈I〉) is use in the iterative PDF transformation algorithm, the resulting

PDF converges to the blue curve plotted in Fig. 2.2. The blue shading in this figure high-

lights the regions where deviations occur, primarily centered around I/〈I〉 = 1, where

sin2(πI/〈I〉) = 0.

2.3.2 Experimental Speckle Generation

Having created an ensemble of intensity patterns obeying a desired PDF, the next step is

to determine the phase patterns –which when displayed on the SLM– generate the desired

intensity patterns on the camera plane.

Speckle Spatial-Sampling

Assuming the SLM consists of a N × N array of macro-pixels, a discrete Fourier trans-

form gives a N × N array of independent elements, each representing a speckle grain.

To avert the effects of aliasing and uniquely define the spatial profile measured by the

camera, it is necessary to sample the speckle pattern at or above the Nyquist limit. This

means every speckle grain should be sampled at least twice along each spatial axis. Thus

the N ×N speckles generated on the camera chip must be sampled by at least 2N × 2N

points when defining a target intensity pattern to create. It is important to note, however,

that this 2N × 2N intensity array –representing a speckle pattern– contains correlations

between adjacent elements. Furthermore, higher spatial-sampling does not alter the infor-

mation content of the pattern, and therefore, we can record the experimentally measured
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speckle patterns well above the Nyquist limit with the CCD camera: ∼ 6 camera pixels

per speckle grain along each axis. Because the phases on the SLM are transcendentally

related to the intensity values on the Fourier plane, there is no closed form solution for the

N2 independent phases of the SLM macropixels to generate the minimally required 4N2

partially correlated intensity values of the target speckle pattern. Thus, we have to find

the solution numerically. To facilitate the convergence to a solution, we reduce the area

we attempt to control –on the camera plane– to the central quarter region representing the

Fourier transform of the phase modulating region of the SLM.

Field Transmission Matrix

Experimentally the Fourier relation between the field reflected off the SLM and that in

the camera plane is only approximate. We characterize the precise relation by measuring

the field transmission matrix. In addition to encapsulating the experimental imperfections

induced by optical misalignment, SLM surface curvature, lens aberrations, and nonuni-

form laser illumination of the SLM, employing the transmission matrix provides a general

formalism that can be adapted to other setups (e.g., holographic optical tweezers [111]) or

to tailor the speckle statistics on a different plane than the Fourier. It also enables speckle

tailoring after a disordered scattering medium; however, the degree to which this can be ac-

complished will depend on the number of degrees-of-freedom in the customization plane.

In this work, the transmission matrix is measured with a common path interference method

akin to those in [72, 79, 112]; for details see Appendix A. Briefly, the phase modulating

region of the SLM is divided into two equal parts. We sequentially display a series of

orthogonal phase patterns on one part while keeping the phase pattern on the second part

fixed, which generates a reference pattern. Simultaneously, we record the resulting in-

terference patterns on the camera. Subsequent to this, we exchange the role of each part

and repeat the measurement. Using all the interference patterns we can construct a linear
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mapping between the field on the SLM and the field on the camera: namely, the trans-

mission matrix. The measured transmission matrix only slightly deviates from a discrete

Fourier transform in our setup. For a given phase pattern displayed on the SLM, the av-

erage differences between the speckle intensity-pattern measured by the CCD camera and

that predicted by the field transmission matrix is less than 10%.

Non-Linear Optimization Algorithm

Using the measured transmission matrix with a nonlinear-optimization algorithm, we find

a solution for the SLM phase array which generates a given target intensity pattern in the

camera plane. To find a solution for the SLM phase array, we numerically minimize the

difference between the target pattern, Ĩ(r), and the intensity pattern, IM(r), obtained after

applying the field transmission matrix to the SLM phase array: as a function of the SLM

phases. Specifically, the intensity pattern generated by the transmission matrix is given by

IM(r) = |
∑
n

tn(r)eiθn|2, (2.6)

where θn represents the phase displayed on the nth SLM pixel and tn(r) is the element of

the transmission matrix mapping the nth SLM pixel to the r position on the camera. The

cost function we use in our algorithm,

∑
r

|Ĩ(r)− IM(r)|2, (2.7)

is minimized by tuning the SLM phases: θn. Furthermore, the gradient of our cost function

can easily be defined by taking the derivative with respect to θn. We use the original SLM

phase-pattern –that generates the Rayleigh speckle pattern used to seed the local intensity

transformation– as the initial condition in our algorithm. Because the N2 intensity values

in the target region are partially correlated, the number of degrees of freedom in the target
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region is effectively less than the number of degrees of freedom we have available on the

SLM. Due to this we can use a local-search algorithm, the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm, [113, 114] to solve for the SLM phase array and will always

obtain a solution in a relatively short amount of time. For example, using Matlab on a

laptop with an Intel i7-4910MQ processor (2.9 GHz base frequency) and N = 32; it takes

about 45s on average to obtain a SLM phase-array which generates a customized speckle

pattern. In the process of solving for a SLM phase array, our local-search algorithm ap-

propriately encodes high-order correlations into the phase values of the SLM phase array.

Irrespective of the specific optimization method used to generate a phase pattern on

the SLM –which creates customized speckles on the camera plane– the problem is non-

convex and the search’s parameter-space is vast. Therefore, while it is possible to directly

search for a SLM phase-pattern which generates a customized speckle pattern with the

desired statistical properties –without using a target intensity pattern– this approach is not

necessarily ideal. For example, if such a method fails to converge to an acceptable solution

it would be difficult to determine if this was because the algorithm was not optimal or if

the desired statistics were fundamentally impossible to encode into a speckle pattern. By

partitioning our method into two steps –first generating a speckled intensity pattern with

the desired statistics and then creating the speckle pattern with the SLM– this can be

differentiated. Furthermore, this division reduces the parameter space of our search for a

solution while also enabling us to use a local, as opposed to a global, search algorithm. As

a result, our algorithm always converges to an acceptable solution in a reasonable amount

of time.
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2.4 Customized Speckle Patterns

Examples of experimentally generated speckle patterns with customized intensity statistics

are shown in Figs. 2.3(b-e) with 〈I〉 normalized to 1. In (b) the speckle pattern was

designed to have a uniform intensity PDF, between the predefined intensity range of I = 0

and I = 2. This example illustrates that it is possible to create speckle patterns with

non-decaying PDFs in addition to confining the speckle intensities within a finite range.

Taking this one step further in (c), we first make the PDF increase linearly with intensity,

P (I) = I , then have it drop rapidly to zero above the specified threshold of I =
√

2.

To demonstrate that our method is not restricted to monotonic functions, in (d) we create

a speckle pattern with a unimodal intensity PDF given by sin[(π
2
)I]2 between Imin = 0

and Imax = 2. To further increase the complexity of the speckle statistics, (e) shows an

example of a bimodal PDF.

Figure 2.3: Example customized speckles. A Rayleigh speckle pattern (a) and cus-
tomized speckle patterns with distinct intensity statistics (b-e). In the top row, each pattern
is 504 µm by 504 µm, and the maximum intensity is normalized to 1. The associated PDF,
shown in the lower row, is uniform (b), linearly increasing (c), peaked at a non-zero in-
tensity (d), and bimodal (e), over a predefined range of intensity. The red solid curves are
experimental data, the blue dashed curves are from numerically generated target speckle
patterns. Both are the result of spatial and ensemble averaging over 50 independent speckle
patterns.
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In all cases, the experimentally generated speckle patterns possess intensity PDFs

which follow the target functional form over the intensity ranges of interest and converge

to zero, quickly, outside. Small deviations between the experimental PDFs and the tar-

get ones are caused by error in the transmission matrix measurement due to experimental

noise and temporal decorrelations. We modeled these effects and numerically reproduced

the deviations (see Appendix A for a full description of our model). Our model describes

why the deviations are stronger at higher intensity values or where the PDF varies rapidly

with intensity.

Additionally, Fig. 2.3 illustrates how the topology of the customized speckle patterns

changes in accordance with the PDF. The spatial intensity profile of a Rayleigh speckle

pattern in (a) can be characterized as a random interconnected web of dark channels sur-

rounding bright islands. Conversely for speckles with a linearly increasing PDF in (c), the

spatial intensity profile is an interwoven web of bright channels with randomly dispersed

dark islands. Similarly, the spatial structure of speckles with a bimodal PDF in (e) consists

of interlaced bright and dim channels. The continuous network of high intensity in the

customized speckle pattern, which is absent in the Rayleigh speckle pattern, will be useful

for controlling the transport of trapped atoms or microparticles in optical potentials.

Figure 2.4: The topological change of a customized speckle pattern. A Rayleigh
speckle pattern in (a) is transformed to the speckle pattern in (b) via a local intensity
transformation. Application of a digital low-pass Fourier filter results in the pattern in (c).
Multiple iterations of intensity transformations and filtering result in the final pattern in (d)
which obeys the desired intensity PDF and spatial frequency constraints. The maximum
intensity is normalized to 1.
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The topological changes in the customized speckles result from the local intensity

transformation and digital low-pass Fourier filtering. An example of this transformation is

shown in Fig. 2.4. The original Rayleigh speckle pattern in (a) has a maximal probability-

density of vanishing intensity, I = 0, leading to the dark channels surrounding bright

islands in the spatial profile of the speckle pattern. Application of a local intensity trans-

formation –to make the PDF increase linearly with intensity and then rapidly converge to

zero above a threshold– results in the speckle pattern shown in (b). Due to the enhanced

probability-density of high intensity and reduced probability-density of low intensity, the

bright grains are enlarged while the dark channels are narrowed. The application of a

digital low-pass Fourier filter blurs the narrow dark lines in between the bright grains (c).

After iterating the process of a local intensity transformation followed by a low-pass filter,

neighboring bright grains are merged to form channels that encompass dark islands (d).

2.5 Statistical Properties Of Customized Speckle Patterns

In this section, we analyze the statistical properties of the customized speckle patterns to

illustrate their stark difference relative to previously studied speckles.

2.5.1 Phase-PDF & Spatial Correlations

We start by verifying that the speckle patterns are fully developed and the phase distribu-

tion, Φ(θ), of the generated speckled fields is uniform over a range of 2π. To find Φ(θ),

we use the measured transmission matrix and the SLM phase-patterns to recover the fields

associated with the intensity patterns recorded by the CCD camera. Figure 2.5(a) plots

Φ(θ) in the target region for the four customized PDFs shown in Figure 2.3(b-e), in addi-

tion to the case of a Rayleigh PDF. All cases have nearly constant values over [0, 2π], thus

our speckle patterns are fully developed. This property differentiates our speckle patterns
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Figure 2.5: Characteristics of customized speckle patterns. (a) The phase histogram
of the speckled fields demonstrates that they are all fully developed. (b) The spatial
field correlation function |CE(|∆r|)|2 and (c) the spatial intensity correlation function
CI(|∆r|), of the customized speckles, remain the same as in Rayleigh speckles. In (a-
c), the four customized speckle patterns have constant (black), linearly increasing (red),
unimodal (blue), bimodal (green) PDFs, and the purple is for Rayleigh speckles. (d) Com-
paring |CE(|∆r|)|2 (black curve) to CI(|∆r|) (blue dashed curve), both averaged over the
5 curves in (b) and (c) respectively, to confirm they have the same correlation width.

with a unimodal PDF, shown in Figure 2.3(d), from partially developed speckle patterns

which possess a similar intensity PDF [8].

Next, we check whether additional spatial correlations are introduced into the cus-

tomized speckle patterns, relative to Rayleigh speckles. To this end, we calculate the 2D

spatial correlation function of the speckled field: CE(∆r) = 〈Ẽ(r)Ẽ∗(r + ∆r)〉/〈Ĩ〉. As

shown in Fig. 2.5(b), the customized speckles have a field correlation function similar to a

Rayleigh speckle pattern. This means the way we tailor the speckle statistics does not af-

fect the spatial field-correlation function. Furthermore, the 2D spatial intensity-correlation

22



function, CI(∆r) = (〈Ĩ(r)Ĩ(r + ∆r)〉− 〈Ĩ〉2)/(〈Ĩ2〉− 〈Ĩ〉2), plotted in Fig. 2.5(c) for the

four customized speckles, has the same width as a Rayleigh speckle pattern. Hence, we

can manipulate the speckle intensity-PDF without altering the spatial correlation length.

Similar to the Rayleigh speckles, the customized speckle patterns have the same width

for 〈|CE(∆r)|2〉 and 〈CI(∆r)〉, as shown in Fig. 2.5(d). Relative to 〈|CE(∆r)|2〉, how-

ever, 〈CI(∆r)〉 exhibits small oscillations on the tail. These are attributed to the low-pass

Fourier filtering of the intensity pattern, which we use to remove the high spatial frequency

components introduced during the nonlinear transformation of a Rayleigh speckle pattern.

For confirmation of this, we applied the digital low-pass Fourier filter to Rayleigh speckle

patterns and the same oscillations appeared in the spatial intensity correlation function,

shown in Fig. 2.5(c).

2.5.2 Higher-Order Statistics

Now we investigate whether the generation of tailored speckle patterns can be described

statistically as a stationary and ergodic process. For a target intensity PDF, we numerically

create 2500 speckle patterns consisting of 2500 speckle grains each. Fig. 2.5(a,b) shows

the results for the bimodal PDF. In (a), the intensity PDF obtained for each of the 2500

ensembles is invariant as a function of ensembles, indicating the speckle patterns are sta-

tionary. In (b), the ensemble-averaged intensity PDF for individual spatial positions in the

speckle patterns is also invariant as a function of spatial position and statistically identical

to (a), demonstrating the ergodicity of the speckle patterns.

Figure 2.6(c) shows the joint complex-field PDF of the bimodal speckles is circular

non-Gaussian, in contrast to the circular Gaussian PDF of Rayleigh speckles. Circularity

reflects the fact that the amplitude and phase of the speckled field E –at a single point

in space– are uncorrelated [8, 10]. Figure 2.6(d) shows the joint PDF P (I1, I2) for two

speckle intensities at locations separated by more than the average speckle grain size.
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Figure 2.6: Some higher-order statistical properties of the customized speckle pat-
terns with a bimodal intensity PDF. (a) The spatially averaged intensity PDF PS(I) of
2500 speckle patterns verifies that the speckle patterns are stationary. (b) The ensemble-
averaged intensity PDF PE(I) –within the area of a single speckle grain– for each spatial
position in a pattern confirms the speckles are ergodic. (c) The complex-amplitude joint-
PDF for the speckled field P (Re[E], Im[E]) displays circular non-Gaussian statistics. (d)
The joint PDF for two intensities P (I1, I2) at spatial positions separated by approximately
one speckle grain size (twice the spatial intensity correlation width) are uncorrelated. The
results in (c,d) are obtained from averaging over space and 100 speckle patterns, a digital
low-pass Fourier filter is applied to remove noise.
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Because P (I1, I2) = P (I1)P (I2) the two intensities are statistically independent, which is

consistent with the spatial correlation length of the speckled intensity. The other types of

customized speckle patterns display similar characteristics.

2.5.3 Intensity-Moment Analysis

The non-Gaussian statistics of the tailored speckle patterns also emerge in their high-order

intensity moments, 〈In〉 =
∫∞

0
InP (I)dI , which differ from those of Rayleigh speckles:

shown in Table 2.1. For the case of Rayleigh speckles generated by a Gaussian-random

process, the high-order moments are related by 〈In〉 = n!〈I〉n [9]. For the customized

speckles, 〈In〉 deviates from n!〈I〉n, because of high-order correlations among the partial

waves that generate these patterns [33].

Table 2.1: Intensity moments of speckle patterns with different intensity PDFs
PDF 〈I〉 〈I2〉 〈I3〉 〈I4〉 〈I5〉 〈I6〉

Negative Exponential 1.00 2.00 6.00 24.0 120 720
Constant 1.00 1.35 2.06 3.39 5.87 10.51

Linearly Increasing 1.00 1.16 1.45 1.92 2.64 3.77
Unimodal 1.00 1.18 1.55 2.22 3.40 5.50
Bimodal 1.00 1.29 1.9 2.99 4.93 8.42

The nature of the high-order correlations dictating the divergence from Rayleigh statis-

tics in the higher-order intensity moments can be illustrated in a relatively straightforward

manner with the second-order intensity moment 〈I2〉. Consider a 1D speckled field E(r),

of length L, with spatial Fourier components, ε(ρ), where ρ corresponds to the spatial

position on the SLM plane:

E(r) =
1√
L

L−1∑
ρ=0

ε(ρ)ei
2π
L
rρ. (2.8)
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With this expression, the second moment can be written as:

〈I2〉 = 〈E(r)E∗(r)E(r)E∗(r)〉r (2.9)

= 〈 1

L2

L−1∑
ρ1,ρ2,ρ3,ρ4=0

ε(ρ1)ε∗(ρ2)ε(ρ3)ε∗(ρ4)ei
2πr
L

(ρ1−ρ2+ρ3−ρ4)〉r. (2.10)

The quadruple summation can be broken into 4 terms

〈I2〉 = I1 + I2 + I3 + I4 (2.11)

where the subindex of In indicates the number of independent indices in the summation

contributing to the term. For example, I1 consists of elements in the sum where ρ1 = ρ2 =

ρ3 = ρ4, and I4 consists of elements in the sum where ρ1 6= ρ2 6= ρ3 6= ρ4. While the

expressions are a tad cumbersome, they are simplified considerably by spatial averaging

and using the Kronecker-delta identity δ(ρ, ρ′) = 1/L
∑L−1

r=0 exp[i2πr(ρ−ρ′)/L] to obtain

the following after re-indexing:

I1 =
1

L2

L−1∑
ρ1=0

|ε(ρ1)|4

I2 =
2

L2

L−1∑
ρ1,ρ2=0
ρ1 6=ρ2

|ε(ρ1)|2|ε(ρ2)|2

I3 =
2

L2
<
[ L−1∑
ρ1,ρ2=0
ρ1 6=ρ2

ε(ρ1)2ε∗(ρ2)ε∗(2ρ1 − ρ2)
]

I4 =
1

L2

L−1∑
ρ1,ρ2,ρ3=0
ρ1 6=ρ2 6=ρ3

ε(ρ1)ε∗(ρ2)ε(ρ3)ε∗(ρ1 − ρ2 + ρ3). (2.12)

Of the four terms, I1 and I3 converge to zero while I2 converges to 2〈I〉2 as a function of

1/L. So, for large speckle patterns the second moment of the intensity is approximately
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given by:

〈I2〉 ' 2〈I〉2 +
1

L2

L−1∑
ρ1,ρ2,ρ3=0
ρ1 6=ρ2 6=ρ3

ε(ρ1)ε∗(ρ2)ε(ρ3)ε∗(ρ1 − ρ2 + ρ3). (2.13)

The equation demonstrates that the presence of high-order correlations in the Fourier-

components of the speckle pattern enable the intensity statistics to deviate from Raleigh

statistics. While the expression for the higher-order correlations required to modify 〈I2〉

has been derived, other higher intensity moments will have functionally different higher-

order correlations. For example, 〈I3〉 will require additional 6-th order correlations be-

tween the Fourier components of the field and 〈I4〉 will require additional 8-th order cor-

relations.

2.6 Axial Propagation

Finally, we study how the tailored speckle patterns evolve as they propagate axially along

the z-axis. Our method gives the target PDF for speckle patterns on the Fourier plane

of the SLM. Outside of the Fourier plane, however, the intensity statistics and topology

may change. In the case of a Rayleigh speckle pattern, the spatial pattern changes upon

propagation while the intensity PDF remains a negative exponential. We define Rl as

the axial correlation length of the intensity pattern, which corresponds to the Rayleigh

range and gives the longitudinal length of a single speckle grain. In our setup, this corre-

sponds to translating the CCD camera ≈ 1 cm away from the Fourier plane. Alternatively,

the speckle pattern can be propagated by multiplying the phase-pattern on the SLM by a

quadratic phase-parabola, with a scalar prefactor proportional to the propagation along z.

Experimentally, we verified that the two techniques are equivalent up to 3Rl away from

the Fourier-plane of the SLM.
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Figure 2.7: Evolution of customized speckle patterns upon axial propagation. The in-
tensity PDF at the Fourier plane of the SLM (z = 0) is linearly increasing (a) and bimodal
(e). The distance from the Fourier plane is Rl/5 (b, f), (2/5)Rl (c, g), and (10/7)Rl (d, h).

The top row of Fig. 2.7 shows the axial evolution of speckles that have a linearly

increasing PDF at the Fourier plane, z = 0, in (a). As the speckle pattern propagates to

z = Rl/5, the PDF becomes bell-shaped in (b). With further propagation, the maximum

of the PDF migrates to a smaller intensity value, as shown in (c) for z = (2/5)Rl, until

it reaches I = 0. The speckles revert to Rayleigh statistics at z ≈ Rl, beyond which the

PDF maintains a negative exponential, as shown in (d) for z = (10/7)Rl. The topology

of the speckle pattern evolves together with the intensity PDF: the interconnected web of

bright channels first attenuates upon propagation, then breaks into isolated islands.
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In Fig. 2.7(e-f), we show the axial evolution of a speckle pattern with a bimodal PDF

at z = 0 in (e). As the pattern propagates to z = Rl/5 in (f), the peaks are asymmetrically

eroded, with the high intensity peak diminishing first. Further propagation to z = (2/5)Rl

results in a unimodal PDF in (g). Once the axial distance z exceeds Rl, the speckles re-

turn to Rayleigh statistics, as shown in (h) for z = (10/7)Rl. A corresponding change of

speckle topology is seen: the bright channels disappear first, then the dim channels frac-

ture, while neighboring dark islands merge to form channels. Therefore, axial propagation,

within the range of Rl, alters the intensity PDF and the speckle topology.

This behavior can be understood in the Fresnel approximation, where the axial prop-

agation of a field pattern adds a quadratic phase to its spatial Fourier spectrum [8]. Be-

cause the changes in the intensity PDF result from high-order correlations encoded into

the phases of the Fourier components, the phase parabola accompanying axial-propagation

erodes away the customized statistics as the speckles propagate axially (along z-axis).

2.7 Discussion & Conclusion

In conclusion, we have presented a general method for customizing speckle intensity-

statistics using a phase-only SLM. The generated speckle patterns possess radically dif-

ferent intensity PDFs and topologies relative to Rayleigh speckles. However, they are

fully developed speckles which maintain the basic characteristics of stationarity and er-

godicity. Their unusual statistical properties engender a new type of speckle pattern with

non-Gaussian statistics. Our method is versatile and compatible with a broad range of

optical setups. Given the plethora of potential applications, it paves the way for new direc-

tions in both fundamental research (many-body physics in random optical potentials with

tailored statistics) and applied research (speckle-illumination-based imaging and speckle

optical tweezers).
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Chapter 3

Introducing Non-Local Correlations
Into Laser Speckles

3.1 Introduction

1A bedrock principle of statistical physics is the Siegert equation, which relates the first

and second-order correlation functions. It is the foundation of common techniques such as

Hanbury-Brown Twiss interferometry [115] and dynamic light scattering [116]. Despite

its general use, it is not universal. In quantum optics, for example, photon anti-bunching

violates the Siegert equation. This violation has been widely explored in studies of non-

classical light [117]. For classical wave transport in mesoscopic systems, the violation

of the Siegert equation is a hallmark of non-local correlations. Not only do non-local

correlations reflect a proximity to Anderson localization, they are also responsible for

universal conductance fluctuations [118]. Non-local correlations originating from crossed

scattering paths in a disordered medium [119–128], however, are significantly weaker than

the local correlations.

While previous mesoscopic physics studies have retrieved information about disor-
1The chapter material is primarily taken from reference [2]: Nicholas Bender, Hasan Yilmaz, Yaron

Bromberg, and Hui Cao, “Introducing non-local correlations into laser speckles”, Optics Express, vol. 27,
6057-6067, (2019).
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dered systems from speckle correlations in scattered light [129]; this chapter explores the

inverse process, namely, we design the scattering structure itself to obtain desired speckle

intensity-correlations in the far field. In particular, we aim to enhance and manipulate

non-local correlations by drastically, yet controllably, violating the Siegert relation so

the local-correlations are unaffected. The simplest “scattering” structure –which can be

facilely controlled– is a spatial light modulator (SLM) in the configuration described in

Chapter 2. Although incident light is scattered once by the SLM, we have shown in the

previous chapter that arbitrary correlations can be encoded among the SLM pixels. Such

correlations can be significantly stronger and more versatile than correlations built among

partial waves during the process of multiple scattering in a random medium.

In this chapter, we experimentally demonstrate that the speckle intensity-correlation

length can be augmented to significantly exceed the field correlation length, with non-local

intensity correlations comparable in strength to the local intensity correlations. Further-

more, we show that it is possible to arbitrarily tailor the long-range intensity correlation

function –for example making it anisotropic and oscillating– while keeping the field cor-

relation function isotropic and untouched. Finally, a theoretical analysis reveals that the

non-local intensity correlations in the far-field speckle patterns originate from high-order

phase correlations encoded into the light field on the SLM plane.

The ability to manipulate the intensity correlations of speckles has a plethora of po-

tential applications. Speckle illumination has been used for computational imaging and

compressive sensing. In this context, tailoring the speckle correlations would be essential

for “smart” illumination of the target [130]. In speckle-based fluorescence microscopy, the

spatial intensity correlation function corresponds to the point spread function [131, 132],

and thus customizing speckle correlations enables one to engineer the point spread func-

tion. Furthermore, laser speckle patterns with designed intensity correlations can be used

as bespoke disordered optical-potentials in transport studies of cold atoms [133], colloidal
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particles [134], and active media [53].

In this chapter we will define the spatial intensity correlation function as:

CI(∆r) ≡ 〈I(r)I(r + ∆r)〉/〈I(r)〉〈I(r + ∆r)〉 − 1 = CL(∆r) + CNL(∆r). (3.1)

Here CL(∆r) is the local correlation function, and it is related to the field correlation

function, CE(∆r) ≡ 〈E(r)E∗(r + ∆r)〉/〈|E(r)|2〉, by CL(∆r) = |CE(∆r)|2 [8, 10, 11,

120]. CNL(∆r) represents the non-local correlation [135], and it vanishes when the Siegert

relation holds: CI(∆r) = |CE(∆r)|2.

Previous studies dedicated to altering speckle intensity-correlations [15,21–27,38,136]

generally rely on the Siegert relation, and modulate the spatial field correlations. It is more

challenging to violate the Siegert relation and control the intensity correlations without

affecting the field correlations. Such a modification requires the field and intensity to fluc-

tuate spatially on different length scales. Although speckled-speckles produced by double

scattering haveCI(∆r) 6= |CE(∆r)|2, the differenceCI(∆r)−|CE(∆r)|2 representing the

non-local intensity correlations CNL(∆r) is rather small [31, 137]. In the near-field zone

of a scattering medium, the Sigert relation does not hold, but the speckles are not fully

developed and have a low contrast [138]. Here we develop a flexible yet robust method to

introduce arbitrary non-local intensity correlations into fully-developed speckle patterns

without altering the field correlations.

3.2 Enhanced Non-Local Correlation Length

First, we demonstrate how to increase the intensity correlation length of the speckles in

the far field of the SLM in our setup without altering the field correlation length. We

begin by measuring a generic Rayleigh speckle pattern, Figs. 3.1(a & c), created in the far
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Figure 3.1: Enhancing non-local correlations in speckles. A Rayleigh speckle pattern
(a,c) with CI(∆r) = |CE(∆r)|2 (e), is compared to an “enlarged Rayleigh” speckle
pattern (b,d) with CI(∆r) much broader than |CE(∆r)|2 (f). The non-local intensity
correlations, CNL(∆r), have comparable strength to the local correlations, CL(∆r) =
|CE(∆r)|2, in (f). The correlation functions in (e,f) are obtained by averaging over 100
independent speckle patterns. Similar to the Rayleigh speckle pattern, the customized
speckle field is fully developed with a uniform phase distribution between 0 and 2π.
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field with a random phase pattern is displayed upon the SLM. In this case, the speckled

field obeys a circular Gaussian probability density function for the complex amplitudes,

and possesses only short-range intensity correlations, CI(∆r) = |CE(∆r)|2, as confirmed

in Fig. 3.1(e). We then magnify the speckled intensity-pattern numerically by a factor

α to increase the intensity correlation length by the same factor. We use the nonlinear-

optimization algorithm presented in Chapter 2 to determine a phase pattern –which upon

application to the SLM– generates the enlarged speckled intensity pattern on the camera

plane. Again, to facilitate the convergence to a solution, we reduce the area we attempt to

control –on the camera plane– to the central quarter of the region representing the Fourier

transform of the phase modulating region of the SLM. Since the SLM does not change

the field amplitude –due to the Wiener-Khinchin theorem– the spatial field correlation

function in the CCD plane remains identical to that of the unmagnified speckle pattern.

Therefore, so do the local intensity correlations CL(∆r) = |CE(∆r)|2.

After finding the appropriate two-dimensional (2D) SLM phase-patterns we display

them, and record the speckle patterns incident upon the CCD camera. Figure 3.1(b &

d) present one demonstration of an “enlarged Rayleigh” speckle pattern. The intensity

fluctuates on a length scale α = 2.5 times longer than the Rayleigh pattern in Fig. 3.1(a).

While the width of CI(∆r) is increased 2.5 times, |CE(∆r)|2 remains the same as the

original Rayleigh speckles, as shown in Fig. 3.1(f). This means that the speckled field,

more precisely, the phase of the field plotted in Fig. 3.1(d), fluctuates faster in space than

the intensity: on average. Still, the phase pattern is significantly modified relative to that

of a Rayleigh speckle pattern such as in Fig. 3.1(c). It exhibits distinct features such as

elongated equiphase lines, which can be seen in Fig. 3.1(d). Nevertheless, these features

are masked by the spatial averaging inherent to calculating the field correlation function.

The dramatic difference between CI(∆r) and |CE(∆r)|2 demonstrates the profound non-

local intensity correlations present in the speckle pattern.
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Since the Rayleigh speckles are magnified by the same factor α = 2.5 in both x and y

directions, the intensity correlation functions, both CL and CNL, are isotropic and depend

only on ∆r = |∆r| =
√

(∆x)2 + (∆y)2. Figure 3.1(f) compares CNL(∆r) to CL(∆r)

and CI(∆r). Unlike CL, CNL does not decay monotonically with ∆r, instead it rises to

its maximum when CL almost dies out, and subsequently CNL dominates the functional

form of CI(∆r). The maximum value of CNL is comparable to that of CL at ∆r = 0. In

this example, the speckle intensity-correlations become long-ranged but remain isotropic,

namely, the correlation lengths are identical in both the x and y directions. We can easily

make the correlations anisotropic, by setting the amplification factor in x different from

that in y, thereby tuning the intensity correlation lengths in x and y separately.

3.3 Anisotropic Long-Range Correlations

Next, we demonstrate how to synthesize speckles with significantly more complex spatial

intensity correlations. Figure 3.2(a) shows CI(∆r) with an oscillating non-local correla-

tion function CNL(∆r) = (1/10) cos[(∆x + ∆y)/20], where x and y are spatial coordi-

nates. To generate speckles possessing such correlations, we first find speckle intensity-

patterns I(r) which adhere to the desired CI(∆r). Since the Fourier transform of I(r) is

related to that of CI(∆r) by F [CI(∆r) + 1] = |F [I(r)]|2, |F [I(r)]| is known. As plotted

in Fig. 3.2(b), it is a sparse function. We then solve for I(r) with a Gerchberg-Saxton

algorithm. Starting with a Rayleigh speckle intensity-pattern, J(r), we modify the ampli-

tude of its Fourier components, such that |F [J(r)]| is equal to |
√
F [CI(∆r) + 1]|, without

altering the phase values. The inverse Fourier transform of the modified Fourier spectrum

gives a complex valued function for J̃(r). Since intensity values must be positive real

numbers, we ignore the phase values and set J̃(r) = |J̃(r)|.
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Figure 3.2: Creating speckle patterns with spatially oscillating, anisotropic long-range
intensity correlations. The intensity correlation function CI(∆r) (a), determines the
Fourier amplitude profile of I(r) (b). An experimentally generated speckle intensity-
pattern I(r) (c) possessing the correlations given in (a), and the corresponding phase pro-
file θ(r) (d). θ is uniformly distributed between 0 and 2π, confirming that the speckle
pattern is fully developed. The local intensity correlation function CL(∆r) (e) has a
maximum value of 1, while the non-local intensity correlation function CL(∆r) (f) has
a maximum/minimum value of ±0.1. The correlation functions in (a,e,f) are obtained
by averaging over 100 speckle patterns. The origins in (a,b,e,f) are located at the plots'
centers.
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Cyclical repetition of this process will eventually result in an intensity pattern which

adheres to the desired correlation function. Starting with different initial Rayleigh speckle

patterns will produce uncorrelated intensity patterns that satisfy the same CI(∆r). Using

the nonlinear optimization algorithm discussed previously, we obtain the SLM phase pat-

terns to create the desired intensity patterns on the camera. Figure 3.2(c) presents one such

intensity pattern recorded experimentally. Its phase profile is predicted by the measured

transmission matrix and shown in Fig. 3.2(d). The local intensity correlation function

CL(∆r) = |CE(∆r)|2, shown in Fig. 3.2(e), remains isotropic and identical to that of the

original Rayleigh speckles. However, the non-local correlation function CNL(∆r), plotted

in Fig. 3.2(f), oscillates along the diagonal direction.

Figure 3.3: Tuning the speckle contrast independently from the spatial intensity cor-
relation function. Two experimentally generated speckle patterns (a,c) with congruent
intensity correlation functions (b,d). The intensity contrast is 0.68 in (a) and 1.35 in (c).
The origin for (b) and (d) is located at the center of the plots.
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A useful feature of our method is its ability to vary the contrast of the speckled intensity

without altering the functional form of the long-range intensity correlation function. For

the example given in Fig. 3.2(b), we can adjust the magnitude of the zeroth-order spatial

frequency component, in order to change the constant background of the speckle intensity-

pattern in real space and thus modify the speckle contrast. Speckle patterns with identically

shaped, i.e. congruent, CNL but different intensity contrasts are presented in Fig. 3.3(a)

and 3.3(c). Given that the speckle contrast is directly related to the second moment of the

intensity probability density function, this property illustrates the relative independence of

the non-local correlations with respect to the intensity probability density function. We

will explore this relation in greater detail in the next chapter.

Although the above method excels at generating speckle patterns when the desired

non-local correlation function has sparse Fourier components, it fails to converge to a

speckle pattern when the desired non-local correlation function is sparse in real space,

such as the one shown in Fig. 3.4(a). While the correlations are positive at (0, 100 µm)

and (0, -100 µm), they become negative at (100 µm, 0) and (-100 µm, 0). Rather than

producing a random intensity pattern, the Gerchberg-Saxton algorithm converges to an or-

dered pattern, g(r) in Fig. 3.4(d), which adheres to the desired CI(∆r) in Fig. 3.4(a). To

produce a speckle intensity-pattern, we simply convolve g(r) with a speckle pattern with-

out non-local correlations, such as J(r) in Fig. 3.4(e), and obtain I(r) = g(r) ~ J(r).

This results in a speckle pattern with F [I(r)] = F [J(r)]F [g(r)], and F [CI(∆r)] ∼=

F [CJ(r)]F [Cg(r)]. Since the local correlation length of the convolving speckle pattern

is set by the diffraction limit, its correlation function can be approximated by a δ func-

tion [139]. Consequently, F [CI(∆r)] ≈ F [Cg(r)], and I(r) possesses the same intensity

correlations as g(r). Once the target intensity-pattern I(r) is obtained, a corresponding

speckle-pattern can be created experimentally using our nonlinear optimization algorithm:

for example Fig. 3.4(f). Here the corresponding local and non-local intensity correlation
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Figure 3.4: Introducing spatially simple anisotropic non-local correlations into speck-
les. The spatial intensity correlation function (a) is sparse. The local correlation function
(b) has a maximum amplitude of 1, while the non-local correlation function (c) has a max-
imum/minimum amplitude of±0.2. An ordered intensity pattern g(r) (d), produced by the
Gerchberg Saxton algorithm, is convolved with super-Rayleigh speckle pattern J(r) (e) to
generate a speckle intensity-pattern I(r) (f) with the desired non-local correlations given
in (c). The correlation functions in (a,b,c) are obtained by averaging over 100 speckle
patterns and the origins are located at the plots' centers.

functions are shown in Figs. 3.4(b & c). Just as before, one has the freedom to increase

or decrease the speckle contrast of the target pattern, by convolving g(r) with either a

super-Rayleigh or sub-Rayleigh speckled intensity pattern [33].

3.4 Origins Of Non-Local Correlations

Next, we illustrate that the non-local intensity correlations introduced into the speckle pat-

terns, CNL(∆r) = CI(∆r) − |CE(∆r)|2, originate from high-order correlations encoded

in the phase patterns on the SLM. As in the previous chapter, we consider a 1D speckled
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field E(r), of length L, and its spatial Fourier components, ε(ρ), where ρ corresponds to

the spatial position on the SLM plane.

E(r) =
1√
L

L−1∑
ρ=0

ε(ρ)ei
2π
L
rρ (3.2)

After simplification, the spatial field correlation function is given by:

CE(∆r) =
1

L

L−1∑
ρ=0

|ε(ρ)|2e−i 2πL ∆r ρ. (3.3)

Taking the absolute-value squared of this expression gives the local intensity correlation

function CL(∆r):

CL(∆r) =
1

L2

L−1∑
ρ1,ρ2=0

|ε(ρ1)|2|ε(ρ2)|2ei 2πL ∆r(ρ2−ρ1).

With an expression for the local correlations in hand, we turn to the spatial intensity cor-

relations:

I(r)I(r + ∆r) =
1

L2

L−1∑
ρ1,ρ2,ρ3,ρ4=0

ε(ρ1)ε∗(ρ2)ε(ρ3)ε∗(ρ4)ei
2π
L

[
r(ρ1−ρ2)+(r+∆r)(ρ3−ρ4)

]
.

(3.4)

Along the lines of the calculation in the previous chapter, grouping the summation into

four terms according to the number of different ρ’s summed over and spatial averaging

gives:

CI(∆r) = C1(∆r) + C2(∆r) + C3(∆r) + C4(∆r)− 1 (3.5)
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where:

C1(∆r) =
1

L2

L−1∑
ρ1=0

|ε(ρ1)|4

C2(∆r) =
1

L2

L−1∑
ρ1,ρ2=0
ρ1 6=ρ2

|ε(ρ1)|2|ε(ρ2)|2(1 + ei
2π
L

∆r(ρ2−ρ1))

C3(∆r) =
2

L2
<
[ L−1∑
ρ1,ρ2=0
ρ1 6=ρ2

ε(ρ1)2ε∗(ρ2)ε∗(2ρ1 − ρ2)ei
2π
L

∆r(ρ2−ρ1)
]

C4(∆r) =
1

L2

L−1∑
ρ1,ρ2,ρ3=0
ρ1 6=ρ2 6=ρ3

ε(ρ1)ε∗(ρ2)ε(ρ3)ε∗(ρ1 − ρ2 + ρ3)ei
2π
L

∆r(ρ2−ρ1). (3.6)

Since C1 and C3 are on the order of 1/L, they are negligible for large L, and CI is domi-

nated by C2 and C4:

CI(∆r) ' C2(∆r) + C4(∆r)− 1. (3.7)

Comparing the expression of CL(∆r) to that of C2(∆r) − 1, we notice their difference

scales as 1/L. When L is large, CL(∆r) ' C2(∆r)− 1, and

CI(∆r) = CL(∆r) + C4(∆r) (3.8)

Therefore, the non-local correlation function CNL(∆r) ' C4(∆r). The expression for

C4(∆r) reveals that the non-local correlations originate from only the fourth-order cor-

relations between different Fourier components of the speckled fields. Furthermore, the

correlations for ∆r 6= 0 are different than those in the second moment of the intensity PDF

in Eq. 2.13.
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3.5 Axial Evolution Of Speckle Correlations

As in the last chapter, the tailored speckles will lose their customized properties as they ax-

ially propagate away from the Fourier plane of the SLM. Because the non-local intensity

correlations result from fourth-order correlations encoded into the Fourier components;

the phase parabola accompanying axial-propagation erodes away such correlations as the

tailored speckles propagate (along the z-axis). Eventually only the local intensity correla-

tions remain in the speckle pattern.

Figure 3.5: Axial evolution of a customized speckle pattern. An example customized
speckle pattern (a), on the plane of customization z = 0, is juxtaposed with its corre-
sponding spatial intensity correlation function (d). The speckle pattern (b) and its inten-
sity correlation function (e), after axially propagating to z = Rl/3, are presented. At this
distance, the magnitude of the non-local correlations has reduced by half. The speckle
pattern (c) and its intensity correlation function (f) are shown after further propagation to
z = 2Rl/3. At this point, the non-local correlations are completely erased and only the
local correlations remain. The correlation functions in (d,e,f) are obtained by averaging
over 100 different speckle patterns, and the origins are located at the center of the plots.
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In Fig. 3.5 we experimentally demonstrate the attenuation of non-local correlations

in the customized speckles, as a function of axial propagation. Again, we define Rl as

the axial correlation length of a speckle intensity-pattern. Figure 3.5(a) shows an example

speckle pattern which is customized to have the oscillatory intensity-correlation function

shown in Fig. 3.5(d) at z = 0. After the speckle pattern propagates a fraction of the

Rayleigh-range to z = Rl/3, Figs. 3.5(b), the non-local correlations attenuate to nearly

half of their original magnitude, Fig. 3.5(d). Further propagation away from the plane

of customization removes the remaining non-local correlations from the speckle pattern

entirely, as can be seen in Figs. 3.5(c & f) for z = 2Rl/3. Beyond this point, the statistical

properties of the customized speckles revert back to those of Rayleigh speckles.

3.6 Discussion & Conclusion

In conclusion, we presented a general approach for introducing strong non-local intensity-

correlations into fully-developed speckle patterns using classical light in conjunction with

a single scattering surface (SLM). By encoding fourth-order correlations into the phase of

light reflected from the SLM, the second-order coherence function of the far-field speckles

can be arbitrarily tailored without altering the respective first-order coherence function.

Doing so, we drastically violate the Siegert relation: a fundamental principle in optical

coherence theory.

Our method of encoding speckle correlations using the transmission matrix of an op-

tical system is simple, yet versatile, and therefore can readily be incorporated into a broad

range of optical experiments. For example, it would benefit studies of cold atom trans-

port in correlated potentials [140–142], because the spatial correlations of the speckled

optical potentials could be arbitrarily customizable and re-configurable without the need

for mechanical motion. Furthermore, our method can generate speckle patterns with de-
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sired correlations for illumination in compressive correlation imaging and stochastic op-

tical sensing [130]. Since the spatial intensity correlation function determines the photon

coincidence counting rate, it is possible to create spatially correlated photon sources with

tailored speckle patterns and engineer the coincidence counting rate for photon pairs as a

function of their spatial separation.

Finally, it is worth mentioning the advantage of breaking the Siegert relation when

controlling the intensity correlations of speckles. Methods relying on the Siegert relation

modify the amplitude of light in the near field to control the spatial field correlations in

the far field. Therefore, the total power of the far-field speckle pattern can be drastically

reduced, which will degrade the sensitivity of imaging/sensing modalities using speckle

illumination. Our method only requires phase modulation of the near field light; thus, the

total energy of the far-field speckle pattern is conserved.
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Chapter 4

Creating And Controlling Complex
Light

4.1 Introduction

1In this chapter, we experimentally demonstrate a method of simultaneously customiz-

ing the intensity PDF of speckle patterns and introducing long-range spatial correlations

among the speckle grains. Various families of speckles are created by encoding high-order

correlations into the phase front of a monochromatic laser beam with a spatial light modu-

lator (SLM): using a two-stage method. In addition to our experimental demonstration, we

explore both the theoretical and practical limitations on the extent to which the intensity

PDF and the spatial intensity correlations can be manipulated simultaneously in a speckle

pattern without modifying the spatial field correlation function.

As discussed previously, the ability to independently control the intensity PDF and cor-

relations of speckles –arbitrarily– has many potential applications. For example they can

be used as a form of ‘smart’ illumination in high-order ghost imaging [44–46], dynamic

speckle illumination microscopy [40, 41], super-resolution imaging [42, 43, 143–145],

1The chapter material is primarily taken from reference [3]: Nicholas Bender, Hasan Yilmaz, Yaron
Bromberg, and Hui Cao, “Creating and controlling complex light”, APL Photonics, vol. 4, 110806, (2019).
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compressive sensing [130, 146], and optical sectioning microscopy [132]. Furthermore,

using speckle patterns with customized intensity statistics as bespoke disordered optical

potentials in transport studies of cold atoms [133], colloidal particles [134], and active

media [53] could induce novel transport behaviors.
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Figure 4.1: Speckle customization method. We show a flowchart visualization of our
speckle customization method. ID(r) represents an intensity pattern obeying the desired
PDF and Ĩ(r) is an intensity pattern with the desired correlations.

4.2 Method

Our method of creating and controlling complex light, by simultaneously controlling the

intensity PDF, P (I), and the spatial intensity correlation function, CI(∆r), in a speckle

pattern has two fundamental stages as depicted in Figure 4.1. Along the lines of the pre-
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vious chapters, first, a target speckle intensity-pattern which obeys the desired intensity

statistics –both P (I) and CI(∆r)– is numerically generated by transforming a Rayleigh

speckle pattern. Once a target intensity pattern is known, the next stage is using the

field-transmission-matrix based nonlinear optimization algorithm to obtain a correspond-

ing speckled field –possessing the desired target intensity profile– which can be created

in our experimental setup using a phase-only SLM. Repeating our method with differ-

ent/uncorrelated initial Rayleigh speckle patterns enables us to create a stationary and

ergodic ensemble of speckle patterns obeying the desired custom statistics.

To complete the first stage of our method we generate a speckle intensity-pattern, I(r),

which adheres to a desired intensity probability density function, P (I), and has a spatial

intensity correlation function, CI(∆r), with a tailored functional form: by transforming

an experimentally measured Rayleigh speckle pattern. In order to successfully encode

both desired statistical properties into our target intensity pattern, we use an individual

transformation for each property using our previously developed methods for customizing

either P (I) or CI(∆r). To begin with, we can modify the intensity PDF of a speckle

intensity-pattern by performing a local intensity transformation on it. To recap, a local

intensity transformation is defined such that if I0(r) is an initial speckle intensity-pattern

adhering to the intensity PDF, P0(I), then the scalar transformation f(I0(r)) = ID(r) will

produce a new intensity pattern ID(r) which adheres to the desired intensity PDF, PD(I).

The specific local intensity transformation associated with the target PDF, PD(I), can be

found from the integral

∫ I0

0

P0(I ′)dI ′ =

∫ ID

0

PD(I ′)dI ′. (4.1)

By expressing ID as a function of I0, we obtain the local intensity transformation f(I0) =

ID as shown in Chapter 2. While this enables us to customize the intensity PDF of a
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speckle pattern, long-range spatial intensity correlations are not modified by this opera-

tion. To introduce the desired CI(∆r) into a speckle intensity-pattern, we employ the

relation between the Fourier transform of a speckle intensity-pattern F [I(r)] and its spa-

tial intensity-correlation function CI(∆r): F [CI(∆r) + 1] = |F [I(r)]|2 shown in Chap-

ter 3. Therefore by modifying a speckle intensity-pattern’s Fourier amplitude according to

|F [I(r)]| = |
√
F [CI(∆r) + 1]|, we can create a speckled intensity pattern, Ĩ(r), which

obeys the desired intensity correlation function: as shown in Chapter 3. Because informa-

tion related to customizing the intensity PDF is encoded into the spatial representation of

a speckle pattern –via the local intensity transformation of I(r)– and the desired intensity

correlation function information is encoded in the Fourier representation of the speck-

led intensity pattern –by imposing |
√
F [CI(∆r) + 1]|– we can merge both customization

methods into a single Gerchberg-Saxton algorithm as illustrated in Figure 4.1(b). In this

process, the only constraint on the statistical properties encoded into the speckle pattern

is the fundamental relationship between the speckle correlation function and the intensity

PDF: CI(0) = C0 = 〈I2〉/〈I〉2 − 1. Beyond this, however, the functional form of CI(∆r)

may be chosen independently from P (I).

The first step of our Gerchberg-Saxton algorithm is to perform a local intensity trans-

formation on a Rayleigh speckle pattern which converts it into a speckle intensity-pattern,

ID(r), governed by the desired PDF. Next, we modify the amplitude of its Fourier com-

ponents, such that |F [ID(r)]| is equal to the desired |
√
F [CI(∆r) + 1]|, without altering

the phase values. The inverse Fourier transform of the modified Fourier spectrum gives

a complex valued function for the intensity pattern, Ĩ(r), which obeys the desired corre-

lation function. Since the intensity values must be positive real numbers, we ignore the

phase values and set Ĩ(r) = |Ĩ(r)|. In the process of encoding correlations into ID(r), the

intensity PDF that the resulting pattern, Ĩ(r), obeys is altered slightly relative to that of

ID(r). This deviation from the desired PDF is corrected for by applying an appropriate
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local intensity transformation to Ĩ(r). While the modified intensity pattern now obeys the

desired speckle intensity-PDF, the application of a local intensity transformation to Ĩ(r)

has slightly altered the spatial intensity correlations previously encoded into the speckle

pattern. The small deviation from the desired CI(∆r) can be corrected by resetting the

Fourier amplitude of the intensity pattern to |
√
F [CI(∆r) + 1]|. Cyclical repetition of

this process results in an intensity pattern which adheres to both the desired correlation

function and the desired PDF: therefore, we have ID(r) = Ĩ(r). Starting with different

initial Rayleigh speckle patterns produces uncorrelated intensity patterns that satisfy the

same CI(∆r) and PD(I), and therefore by using a stationary and ergodic ensemble of un-

correlated Rayleigh speckle patterns we can create a stationary and ergodic ensemble of

uncorrelated customized speckle patterns.

As discussed in Chapter 3, this method excels at generating speckle patterns when the

desired non-local correlation function has sparse Fourier components, it may converge to

an ordered –as opposed to speckled– intensity pattern when the desired non-local correla-

tion function is sparse in real space –therefore dense in Fourier space– such as the example

shown in Figure 4.2. In this case, rather than producing a random intensity pattern, the

Gerchberg-Saxton algorithm converges to an ordered pattern which adheres to the desired

intensity PDF and CI(∆r). In this algorithm, we can still rectify this absence of disorder

by convolving the ordered intensity pattern with a speckle pattern which does not possess

any long-range intensity correlations, such as a Rayleigh speckle pattern. This convo-

lution does not alter the functional form of CI(∆r) since Rayleigh speckles only have

short-ranged correlations, however, it may alter the speckles’ intensity PDF. In general,

this alteration can be removed by using the convolved speckle pattern as the initial speckle

pattern of a second Gerchberg-Saxton algorithm, which follows the same procedure as the

first Gerchberg-Saxton algorithm. In the event that P (I) is smooth the alteration of P (I)

is minor [1] and to a good approximation only the value of CI(0) changes: i.e. the vari-
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ance of the encoded PDF. In this case, we can use either a super-Rayleigh or sub-Rayleigh

speckle pattern in the convolution to adjust the value of CI(0): as was done for the case

shown in Figure 4.2.
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Figure 4.2: Example customized speckle pattern. A customized speckle pattern is shown
in (a) with a spatially sparse intensity correlation function (b) and a unimodal intensity
PDF (c). In (b) Cmax = 0.15 and Cmin = −0.03. In (c) the intensity PDF of the ex-
perimentally created speckles (purple solid line) closely follows the target intensity PDF
(black dashed line). The local intensity correlation function (d) remains the same as that
of a Rayleigh speckle pattern, indicating that the modification of the spatial intensity cor-
relation function is the result of introducing non-local correlations into the speckle pattern.
To obtain (b-d) we ensemble average over 100 independent speckle patterns to obtain the
PDF and the correlation functions. The origin of (b) and (d) is located at the center of each
plot.
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4.3 Example Customized Speckles

In Figure 4.2(a) we present an example of an experimentally measured speckle pattern

which is customized to simultaneously possess the spatial intensity correlation function

shown in (b) and adhere to the intensity PDF shown in (c). The experimentally obtained

intensity PDF (purple line) in (c) was tailored to have the form, P (Î) = sin2[πÎ/2], over

the range, 0 ≤ Î ≡ I/〈I〉 ≤ 2, and P (Î) = 0 for values of Î > 2 (black dashed line).

The two curves closely follow one another, except around Î = 0. This deviation occurs

because optical vortices are inherently present in the experimentally-generated speckle

patterns, and therefore the measured probability around Î = 0 must be nonzero. The

intensity correlation function shown in (b) was designed to have positive correlations,

CI(∆r) = 0.03, at ∆r = (0,±100 µm) and negative correlations, CI(∆r) = −0.03, at

∆r = (±100 µm, 0). Again, because our method is based on the use of a phase-only

SLM, which is in the Fourier plane of our camera, the Fourier amplitude profile of the

speckled fields generated in the CCD camera plane is fixed. Therefore, due to the Wiener-

Khinchin theorem, the spatial field correlation function of a customized speckle pattern in

the camera plane remains identical to that of the initial Rayleigh speckle pattern (created

by a random phase array on the SLM): as demonstrated in (d). Therefore, as discussed in

the previous chapter, the modified intensity correlations are non-local.

4.4 Higher-Order Statistics Analysis

Often, complex-light patterns are classified in terms of a defining statistical property,

such as the intensity PDF: the most common example would be a Rayleigh speckle pat-

tern. Such a characterization requires the existence of an ensemble/family of independent

speckle patterns which individually adhere to the stated statistical property. The speckle
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patterns generated using our combined method are no exception; while we present the in-

tensity PDF and spatial correlation function calculated using the entire ensemble of speckle

patterns –in Figure 4.2– each speckle pattern adheres to the stated statistical properties in-

dividually and therefore is part of a statistically stationary and ergodic ensemble. We can

verify that the intensity PDFs of the speckle patterns are stationary by calculating the av-

erage deviation of the PDF of a single speckle intensity-pattern, PS(I), from the intensity

PDF constructed using the ensemble of speckle patterns, PE(I). We quantify the differ-

ence between the PDFs using the formula: ∆PS = [〈|PE(I)− PS(I)|〉I ] /
[√
〈PE(I)〉I〈PS(I)〉I

]
.

The average deviation between the PDF of a single speckle pattern and the ensemble

PDF is ≈ 0.06 for the family of speckle patterns presented in Figure 4.2. Because this

average deviation is the same as what is obtained from an equivalent calculation using

Rayleigh speckles, we conclude that our speckle intensity-PDFs are statistically station-

ary. To verify that the intensity PDFs are ergodic, we compare the intensity PDFs of

different spatial locations Px(I), with respect to the ensemble PDF PE(I), using ∆Px =

[〈|PE(I)− Px(I)|〉I ] /
[√
〈PE(I)〉I〈Px(I)〉I

]
. To calculate Px(I) we use the ensemble of

intensity values at a given position x. For the family of speckles in Figure 4.2, the average

deviation between the PDF of a single spatial location and the ensemble PDF is ≈ 0.06.

Again, since this is equal to the value obtained from an equivalent ensemble of Rayleigh

speckles, we can conclude that our intensity PDFs are ergodic in addition to being station-

ary.

Similarly for the encoded non-local correlations, one can perform an analogous cal-

culation comparing the spatial intensity correlation function obtained from averaging over

all positions in each customized speckle pattern to that obtained from sampling over the

ensemble of speckle patterns: to verify that the encoded correlations are stationary. Addi-

tionally, one can compare the average spatial intensity correlation function of each spatial

position to that obtained from sampling all positions: to verify that the encoded correla-
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tions are ergodic. We have checked both cases and for each the average deviation was

the same as the value obtained from an equivalent ensemble of Rayleigh speckle patterns.

Thus, the intensity correlations encoded into the speckle patterns are both stationary and

ergodic. In general therefore, our customized speckle patterns are represented by a statis-

tically stationary and ergodic random process.
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Figure 4.3: Higher-order statistics. Some high-order statistical properties of the family
of customized speckle patterns in Fig. 4.2 are presented. In (a) the complex joint PDF of
the speckled field reveals that the speckle patterns are circular non-Gaussian and therefore
fully developed. In (b-d) we show the joint intensity PDF, P (I1, I2), of I1 and I2 sampled
at spatial locations separated by ∆R = (60 µm, 60 µm), (0, 100 µm), and (100 µm, 0)
respectively. In (b) the intensity values are uncorrelated and thus the joint intensity PDF is
independent, while in (c,d) the encoded non-local correlations result in a dependent joint
PDF. To obtain these results we use an ensemble of 5000 customized speckle patterns.
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In Figure 4.3, we present some of the high-order statistical properties of the family of

customized speckle patterns presented in Figure 4.2. We show the complex joint PDF of

the speckled field, P (Re[E], Im[E]), in Figure 4.3(a). Because the complex field PDF is

circular non-Gaussian, we know that the customized speckle patterns are fully developed.

Therefore, this indicates that (i) the phases of the speckled fields are uniformly distributed

from 0 to 2π; (ii) the amplitude and phase values in the complex field are uncorrelated. In

(b-d) we show the joint intensity PDF, P (I1, I2), of two intensity values, I1 and I2, sepa-

rated by a distance , ∆R. In (b) we choose the spatial separation, ∆R = (60 µm, 60 µm),

at which the spatial intensity correlation function is zero. Because the intensity values are

uncorrelated, the joint intensity PDF is independent, P (I1, I2) = P (I1)P (I2). Conversely,

when the spatial separation of I1 and I2 is chosen such that the intensity values are either

positively correlated, ∆R = (0, 100 µm), or negatively correlated, ∆R = (100 µm, 0),

the joint intensity PDF is dependent, P (I1, I2) 6= P (I1)P (I2), as shown in Figures 4.3(c

& d).

While the method presented in this section, to customize the speckle patterns, provides

a prescription for creating complex-light fields and controlling their statistical properties,

it does not provide theoretical limitations on what intensity PDFs and spatial correlations

can be realized, which will be addressed in the next section.

4.5 Theoretical Limitations

In this section, we discuss the degree to which CI(∆r) and P (I) can be controlled simul-

taneously and independently in a speckle pattern. To study this, we switch to the Fourier

basis of the speckle intensity I(r); which is distinct from the Fourier transform relation-

ship between the fields on the SLM and CCD camera planes discussed in Chapters 2 &

3. Therefore, our analysis is general and independent of the precise mapping between the
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fields on the SLM and camera planes.

For simplicity, we restrict our theoretical calculation to one dimension and consider

the speckle intensity-pattern consisting of N speckle grains, which can be described by

a discrete array with length L. We require that I(r) is statistically stationary and er-

godic; therefore, spatial averaging over I(r) and ensemble averaging over different I(r)

are equivalent processes. Additionally, we normalize our speckle patterns such that 〈I(r)〉

= 1. Finally, under our conventions the discrete Fourier transform of the speckle pattern

can be defined according to:

F [I(r)] = J(ρ) =
1√
L

L−1∑
r=0

I(r)e−i 2πrρ
L ,

F−1[J(ρ)] = I(r) =
1√
L

L−1∑
ρ=0

J(ρ)ei 2πrρ
L .

(4.2)

In our method of customizing speckle intensity-statistics, the spatial correlations are en-

coded into the speckle pattern, I(r), via modification of the Fourier amplitude of the inten-

sity pattern, |J(ρ)|. According to the discrete Wiener-Khinchin theorem, this relationship

can equivalently be written as

〈I(r)I(r + ∆r)〉 =
1

L

L−1∑
ρ=0

|J(ρ)|2 cos

(
2π∆rρ

L

)
,

|J(ρ)|2 =
L−1∑

∆r=0

〈I(r)I(r + ∆r)〉 cos

(
2π∆rρ

L

)
.

(4.3)

The above equations demonstrate that in a speckle intensity-pattern, there is a uniquely

determined relationship between the Fourier amplitudes, |J(ρ)| and the intensity correla-

tions 〈I(r)I(r + ∆r)〉. Specifically, we know that 〈I(r)I(r + ∆r)〉 is what sets |J(ρ)|.

Therefore for a given desired/arbitrary correlation function, 〈I(r)I(r + ∆r)〉, there is a

corresponding Fourier amplitude profile, |J(ρ)|, which is well defined and can be used to
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Figure 4.4: A flowchart illustration of separate control over the speckle correla-
tions and intensity PDF. The phase-only SLM generates the speckle pattern I(r), whose
Fourier transform is J(ρ) = F [I(r)]. The Fourier amplitude, |J(ρ)|, is modulated to
manipulate CI(∆r) and the phase, Arg[J(ρ)], can be used to tailor the intensity PDF.

encode the desired/arbitrary correlations into a speckle pattern.

While we cannot directly write the intensity PDF, P (I), as a function of I(r); we

can use the relationship between P (I) and its intensity moments, 〈In(r)〉 =
∫
P (I)IndI

where n is a positive integer. We relate 〈In(r)〉 to the Fourier amplitudes of I(r), using

the Fourier transformation relation in Eq. 4.2:

〈In(r)〉 =

〈 n∏
k=1

[ L−1∑
ρk=0

J(ρk)√
L

ei
2πrρk
L

]〉
r

. (4.4)

This expression can be simplified by using the delta function identity 〈ei 2πr
L

(ρ−ρ′)〉r =

δ(ρ, ρ′), and written as

〈In(r)〉 =
1

Ln/2

L−1∑
ρ1...ρn−1=0

J(ρ1)...J(ρn−1)J∗(ρ1 + ...+ ρn−1) (4.5)
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which is valid for n ≥ 2. For the first moment n = 1, it can be shown 〈I(r)〉 = J(0)/
√
L.

Eq. 4.5 shows that the nth moment of a speckle pattern is related to the n−1 order correla-

tions among the elements of J(ρ). Comparison between Eqs. 4.5 and 4.3 reveals that while

CI(∆r), 〈I〉, and 〈I2〉 are determined by the amplitude profile of J(ρ), the higher-order

intensity moments n > 2 can be manipulated separately using the phase values of J(ρ).

Since the only relationship between the intensity moment and spatial correlation function

is 〈I2〉 = CI(0) + 1, the ∆r dependence of the spatial intensity correlation function and

the intensity PDF of a speckle pattern can be controlled independently in a speckle pattern,

as we illustrate in Figure 4.4.

While we have established a relative independence between P (I) and CI(∆r), this

does not necessitate that both can be arbitrarily customized. Next, we identify the limi-

tations on our ability to manipulate P (I) in a speckle pattern. The ability to arbitrarily

control the intensity profile of a speckle pattern with N speckle grains is equivalent to

controlling the moments of the speckles’ intensity PDF according to Eq. 4.5 wherein the

highest moment one can control is on the order of the number of speckle grains N .

The next question is “how many moments are required to uniquely define a PDF?”

To answer this question in the context of realistic speckle intensity-patterns, it is useful

to take certain experimental facts into consideration. For example, all speckle patterns

have a finite valued total power (spatially integrated intensity), which imposes a limit on

the maximum intensity that a speckle pattern can have, IM . Hence, the intensity PDF is

bounded by the maximal intensity value IM . Furthermore, a measured speckle pattern

inherently has discrete intensity values, with the discretization step determined by either

the dynamic range of the camera or the measurement noise, and therefore the intensity PDF

of the speckle pattern must also have discrete intensity values. Consequently, we define

∆I as the intensity discretization step, ∆I = Im+1 − Im, and as a result the intensity PDF

is given by a set of values P (Im), where m = 1, 2, ...,M . The integral equation relating
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the intensity moments to the PDF can therefore be written in discrete form as 〈In〉 =

∆I
∑M

m=1 I
n
mP (Im). This relationship is expressed as the following matrix operation:



〈I〉

〈I2〉
...

〈IN〉


= ∆I



I1 I2 . . . IM

I2
1 I2

2 . . . I2
M

...
... . . . ...

IN1 IN2 . . . INM





P (I1)

P (I2)

...

P (IM)


. (4.6)

From this relation, reconstructing P (I) from a given number of moments becomes a ma-

trix inversion problem. For the case where N = M , the matrix inverse in Eq. 4.6 is well

defined and can be directly calculated. Therefore, any continuous intensity PDF which

can be perfectly represented by M discrete data points is uniquely defined by its first M

intensity moments. We can further this line of reasoning beyond the case where ∆I is

dictated by the effective dynamic range of the measurement, and consider the case where

∆I is the minimum sampling rate required to accurately represent an intensity PDF. The

Nyquist-Shannon sampling theorem –which establishes the minimum number of evenly

spaced data points required to represent a continuous bandlimited-function without loss of

information– tells us that if P (I) can be represented by a continuous bandlimited-function

between I0 and IM , we need to sample P (I) with at least two data points per period of its

highest frequency component between I0 and IM ; in order to represent it with a discrete

array, P (Im), without losing any information. This means that if P (I) can be represented

by a band limited and Nyquist-sampled array of M data points, then P (I) is uniquely

defined by its first M intensity moments. In other words, if in a speckle pattern we can

uniquely control M intensity moments, then the speckle pattern can possess any intensity

PDF which: is represented by a band limited function over a finite intensity range, and

satisfies the Nyquist sampling theorem when discretized into M data points.
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Figure 4.5: The effect of reconstructing an intensity PDF from different numbers of
its moments. An example PDF, P (I), with a finite range of intensity is shown in (a).
The Fourier spectrum of P (I) is plotted in (b), demonstrating that the PDF has a limited
number of non-zero Fourier components. (c) shows the PDF reconstruction error of (a) as
a function of the number of intensity moments used for reconstruction. Two examples of
reconstructed PDFs are shown in (d); they are created using 8 intensity moments and 17
intensity moments.

In Figure 4.5 we demonstrate this principle using the example PDF shown in (a). In

this example we set IM = 2 and ∆I = 1/25, thus M = 50, as seen in (a). In (b) the

amplitude of the bandlimited Fourier spectrum of P (I) is shown, after P (I) has been

Nyquist sampled. In this case the Fourier amplitudes are non-zero between −4 ≤ ρ ≤ 4

and zero for 4 < |ρ| ≤ 8. Hence, at least 17 intensity moments are required to uniquely

define the P (I) shown in (a): in term of its intensity moments. We can verify this by

applying the pseudo-inverse of the M × N matrix in Eq. 4.6 to different numbers of
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moments of the PDF: under the condition that the number of moments used is less than

the number of data points N < M . In this case, when we have a sufficient number of

moments to uniquely define the PDF in (a), at least 17 moments, the PDF reconstructed

from its moments is identical to the original. In (c) we plot the PDF reconstruction error of

(a) as a function of the number of intensity momentsN used in the reconstruction. Around

when the number of moments reaches the critical number to uniquely define the PDF, the

error vanishes. In (d), we plot two example PDFs reconstructed from N = 8 and N = 17

moments. While the reconstruction using N = 8 intensity moments fails to reproduce the

correct PDF, increasingN toN = 17 results in a faithful reproduction of the original PDF.

In the context of using a phase-only SLM with our technique in 1D, if we modulate 2N

independent phase-values on the SLM, we can control the intensity profile of N speckle

grains, and therefore the total degree of control we have on the complex J(ρ) values is

N . Half of it, N/2, lies in the amplitude of J(ρ) which is used to manipulate spatial

correlations CI(∆r). The other half, lies in the phase of J(ρ) and translates to the ability

to control N/2 intensity moments. As long as a desired intensity PDF can be Nyquist-

sampled and represented in bandlimited form by less than N/2 data points, a speckle

pattern adhering to it can be generated. In 2D, the only practical difference is that we

require 4N independent phase values to control a speckle pattern with N speckle grains.

At this point, it is important to recall that we require speckle patterns to be stationary

and ergodic. In order to satisfy these conditions, the speckle patterns must consist of

a large number of speckle grains, because the average difference between the ensemble

PDF of a family of speckle patterns and a single realization scales as 1/
√
N . Therefore,

N is always large in practice, e.g., N ≈ 250 in our experiments. For realistic intensity

PDFs, however, the number of non-zero Fourier components is much less that N/2 due to

noise limitations [1], and therefore they can be reconstructed with significantly less than

the available N/2 intensity moments. To summarize, we have found that in a speckle
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intensity-pattern the intensity PDF and the functional form of CI(∆r) can be controlled

independently and arbitrarily except for the constraint CI(0) = 〈I2〉 − 1.
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Figure 4.6: Two customized speckle patterns (a,b) with different intensity PDFs (c,d)
but identically shaped spatial intensity correlation functions are shown in (e,f). In
(a) we present a measured speckle pattern adhering to both the PDF shown in (c), which
is flat over a pre-defined range of I/〈I〉, and the diagonally oscillating spatial intensity
correlation function shown in (e). In (b) we present a measured speckle pattern with
the same shaped intensity correlation function (f), but obeying a different intensity PDF
(d), which increases linearly over a pre-defined I/〈I〉 range. In (e) Cmax = 0.32 and
Cmin = −0.09 while in (f) Cmax = 0.14 and Cmin = −0.04 due to the different PDFs. We
ensemble average over 100 independent speckle patterns to obtain the PDF and correlation
functions in (c-f). The origin of (e) and (f) is located at the center of each plot.
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4.6 Experimental Realizations

Next, we experimentally demonstrate an independent control over the intensity PDF and

the spatial intensity correlations of a speckle pattern. In Figure 4.6 we show two examples

of speckle patterns that obey different P (I), but have congruent CI(∆r). The intensity

correlation function is designed to have non-local correlations of the form, CNL(∆r) =

(2CI(0)/7) cos[(∆x + ∆y)/20], where x and y are spatial coordinates. For the example

customized speckle pattern in (a), the intensity PDF is designed to be constant, P (Î) =

1/2, over the intensity range 0 ≤ Î ≡ I/〈I〉 ≤ 2 and zero elsewhere. The second example

speckle pattern, shown in (b), is designed to obey a different intensity PDF which linearly

increases, P (Î) = Î , over the intensity range 0 ≤ Î ≤
√

2. As a result of obeying different

intensity PDFs, 〈Î2〉 differs between the two speckle patterns and therefore CI(0) = 0.32

in (e) while CI(0) = 0.14 in (f). While there is a visible difference in the speckle con-

trast between (a) and (b) due to the different intensity PDFs, as can be seen in (e) and (f),

the spatial intensity correlations in both speckle patterns have the same functional form.

Comparison between (a) and (b) illustrates how the topology of the customized speckle

patterns changes in accordance with the PDF, while the overarching spatial order is dic-

tated by the non-local correlations. Both speckle patterns in (a,b) have an overarching

diagonal oscillation. Nevertheless, for the speckles with a linearly increasing PDF in (b),

the spatial intensity profile has the appearance of an interwoven web of bright channels

with randomly dispersed dark islands, while the speckles with a uniform PDF lack any

definite channel structure beyond the diagonal oscillations.
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Figure 4.7: Two customized speckle patterns with the same intensity PDF but dif-
ferent spatial intensity correlation functions are shown. In (a) we present a measured
speckle pattern adhering to both the bimodal intensity PDF shown in (c) and the isotropic
oscillating correlation function shown in (e). In (b) we present a measured speckle pattern
also adhering to a bimodal PDF (d) but possessing anisotropic ‘checkerboard’ correla-
tions shown in (f). In (g,h) we show the corresponding non-local correlations. In (e)
Cmax = 0.29 and Cmin = −0.05 while in (f) Cmax = 0.30 and Cmin = −0.12. We en-
semble average over 100 independent speckle patterns, to obtain the PDFs and correlation
functions in (c-h). The origins of (e-h) are located at the center of each plot.
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In Figure 4.7 we show two examples of speckle patterns that have the same intensity

PDF; however, their spatial intensity correlation functions differ. The speckle patterns in

both (a) and (b) adhere to a bimodal intensity PDF, as shown in (c) and (d). The local

intensity transformation which generates speckles with the PDF, P (Î) = sin2(πÎ) over

the intensity range 0 ≤ Î ≡ I/〈I〉 ≤ 2 and zero elsewhere, is used to create these speckle

patterns. However, because optical fields must be continuous functions, P (Î) 6= 0 over

0 < Î < IM, and therefore the experimental PDFs deviate from P (Î) = sin2(πÎ) around

Î = 1 as shown in Chapter 2. Despite having the same intensity PDF, the non-local

intensity correlation functions of (a) and (b) are designed to have different spatial varia-

tions. In (e) the spatial intensity correlation function CI(∆r) is an azimuthally-symmetric

radially-oscillating function with the appearance of a ‘bullseye’. The non-local correlation

function, shown in (g), is designed to have the form: CNL(∆r) = (CI(0)/6) sin[(∆r)/14].

In contrast, in (f)CI(∆r) is designed to be an anisotropic function having a ‘checkerboard’

form with non-local correlations, (h), of the form: CNL(∆r) = [4CI(0)/10] cos[(∆x +

∆y)/40] cos[(∆x−∆y)/40]. While both speckle patterns in (a, b) share a similar topol-

ogy, consisting of two interlaced bright and dim channels, the overarching structure differs

in both its shape and orientation. In (b) the checkerboard correlations induce the formation

of multi-speckle islands with a grid-like orientation. In (a), the bullseye correlations result

in an interwoven web-like structure.

4.7 Discussion & Conclusion

In conclusion, we have experimentally demonstrated a method of customizing the inten-

sity probability density functions of speckle patterns while simultaneously introducing

long-range spatial correlations among the speckle grains. The customized speckle patterns

exhibit radically different topologies and varying degrees of spatial order. In addition to
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our experimental demonstration, we have explored both the theoretical and practical lim-

itations on the extent to which the intensity probability density function and the spatial

intensity correlations can be manipulated separately and arbitrarily in a speckle pattern.

Although the camera is placed on the Fourier plane of the SLM in our experiment this

is not a necessity. Our method can easily be adapted to customize the statistical properties

of speckle patterns on other 2D planes, or even when a random scattering medium is

placed in between the SLM and camera. To accomplish this, we simply need to measure

the field-transmission matrix which maps the field on the SLM surface to the field incident

on our camera. Therefore, our method and theoretical description provide a systematic

approach for creating complex light fields and controlling their statistical properties with

a phase-only spatial light modulator, while also providing the upper bounds on what is

possible.

There are numerous avenues of research, related to customizing speckle patterns, that

are worth further exploration. For example, our method tailors the speckle patterns at a

specific plane defined by the camera. Such patterns, similar to Rayleigh speckle patterns,

exhibit a rapid axial-decorrelation: occurring within the Rayleigh range of an optical sys-

tem. In addition to decorrelating within one Rayleigh range, our customized speckles lose

both their tailored intensity PDFs as well as their non-local correlations as they axially

propagate away from the target plane. Whether or not it is possible to control the statis-

tical properties of speckle patterns simultaneously on multiple planes –or even in a 3D

volume– remains an open question [147].

Finally, we will discuss some of the potential applications of our customized speckle

patterns. Because our method of creating and controlling complex light is versatile –yet

simple– it can readily be incorporated into an extensive range of optical applications and

experiments. For example, the ability to arbitrarily control the non-local correlations and

intensity PDFs of speckle patterns could enhance many structured-illumination applica-

65



tions like speckle illumination microscopy [40,41,146], super-resolution imaging [42,43],

and high-order ghost imaging [44–46]. Similarly, it could also benefit studies of cold

atom [133], active media [53], and microparticle [134] transport in correlated optical po-

tentials. Our method is advantageous because both the topology and the degree of spatial

order in the speckled optical potentials are arbitrarily customizable and reconfigurable

without any mechanical motion.
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Chapter 5

Circumventing The Optical Diffraction
Limit With Customized Speckles

5.1 Introduction

1In fluorescence microscopy, a sub-diffraction-limited resolution can be obtained with

saturable structured illumination techniques. Examples include stimulated emission de-

pletion (STED) microscopy [148, 149], ground state depletion (GSD) microscopy [150],

and reversible saturable optical fluorescence transitions (RESOLFT) [151–153]. Gener-

ally, these techniques rely on spatially modulating the illumination intensity to toggle

fluorescence on and off in a spatially selective manner. For example, in RESOLFT, a

doughnut-shaped optical beam photoconverts all fluorophores in a region of a sample ex-

cept those close to the vortex center, and therefore fluorescence is only emitted from a

sub-diffraction-sized region. Usually, point scanning of the doughnut beam is required to

construct an image which can be very time consuming. Recently, this process has been

parallelized using either a one-dimensional (1D) standing wave pattern [154] or a two-

dimensional (2D) lattice of doughnuts [153]. The first method involves rotating or trans-
1The chapter material is primarily taken from reference [4]: Nicholas Bender, Mengyuan Sun, Hasan Yil-

maz, Joerg Bewersdorf, and Hui Cao, “Circumventing the optical diffraction limit with customized speck-
les”, Optica, vol. 8, 122-129, (2021).
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lating the illumination pattern, and as a result, post-processing is required for 2D super-

resolution since each individual pattern will only improve the resolution in one direction.

In the second method, two incoherently-superimposed orthogonal standing waves create a

square lattice of intensity minima, but axial uniformity of the intensity pattern hinders op-

tical sectioning. One way to circumvent this issue is to use the optical vortices in a speckle

pattern as the nonlinear structured illumination pattern [155]. Because fully-developed

speckle patterns rapidly and non-repeatably change along the axial direction, they can be

used to obtain a three-dimensional super-resolution image [146]. In this context, speckles

are advantageous because they are robust to optical distortions/aberrations while simulta-

neously enabling three-dimensional super-resolution [40–42,132,143–146,156–162]. The

problem with using Rayleigh speckles, however, is that the anisotropic and strongly fluctu-

ating shapes of their optical vortices leads to non-isotropic and non-uniform improvements

in the spatial resolution.

In this chapter, we introduce and use an ideal family of tailored speckle-patterns for

nonlinear pattern-illumination microscopy. The speckle patterns we design need to possess

the following properties in order to produce isotropic and uniform super-resolution. All of

the vortices in the speckles must have a circular shape and an identical high-intensity halo

surrounding each vortex core. Away from the randomly distributed optical vortices, how-

ever, the spatial intensity profile of the speckles should be uniform with minor fluctuations.

When this is the case, the speckles’ intensity PDF is a narrow peak that can be approx-

imated as a delta function. We thus refer to this family of tailored speckles as “delta”

speckles. To enable optical sectioning, the delta speckles’ field must be fully developed

and as a result the speckles’ intensity pattern will rapidly and non-repeatably evolve upon

axial propagation. Experimentally, we generate delta speckle patterns by modulating the

phase-front of a monochromatic laser beam with a spatial light modulator using the tech-

nique described in the last chapter. Using delta speckle patterns, we photoconvert a planar
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fluorescent gel sample and measure the fluorescence signal from the unconverted regions

in the vicinity of optical vortices. Not only do we demonstrate a 3× enhanced spatial

resolution relative to the optical diffraction limit of the illumination optics, but also, we

show the significant advantages of using customized speckles over Rayleigh speckles in

fluorescence microscopy.

5.2 Experimental Setup

5.2.1 Optical Setup

In our demonstration, the fluorescent sample is a 25-µm thick layer of the photoconvertible

protein mEos3.2, which is uniformly distributed and suspended in a gel [163] (see the next

subsection for details). A continuous-wave (CW) laser beam with a wavelength of λ = 405

nm is used to photoconvert the protein. The laser’s wavefront is modulated by a phase-only

spatial light modulator (SLM), which generates a speckle pattern in its far-field (Fourier

plane). The polarization of the far-field speckles’ field is converted from linear to circular

by a quarter-waveplate. The far-field speckle pattern illuminates and photoconverts the

sample.

A schematic of the detailed experimental setup for photoconverting a fluorescent sam-

ple with customized speckle patterns and imaging the unconverted fluorescence is shown

in Fig. 5.1. The λ = 405 nm CW laser beam is expanded and linearly polarized before it is

incident on the phase-only SLM (Meadowlark Optics). The pixels on the SLM can mod-

ulate the phase of the incident field between 0 and 2π: in increments of 2π/90. Because

a small portion of light reflected from the SLM is unmodulated, we write a binary phase

diffraction grating on the SLM and use the light diffracted to the first order for photocon-

version. In order to avoid cross-talk between the neighboring SLM pixels, 32× 32 pixels
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Figure 5.1: Experimental setup. The experimental setup used for nonlinear speckle-
illumination microscopy is shown. We use a phase-only SLM to generate a customized
speckle pattern which illuminates and photoconverts a fluorescent sample.

are grouped to form one macropixel, and the binary diffraction grating is written within

each macropixel with a period of 8 pixels. We use a square array of 32×32 macropixels in

the central part of the phase modulating region of the SLM to shape the photoconverting

laser light. The light modulated by our SLM is Fourier transformed by a lens with a focal

length of f1 = 500 mm and cropped in the Fourier plane with a slit to keep only the first-

order diffraction. The complex field on the Fourier plane of the SLM is imaged onto the

surface of the sample by a second lens, with a focal length of f2 = 500 mm. Using a λ/4

plate, we convert the linearly polarized photoconverting beam into a circularly polarized

beam before it is incident upon the sample. In this setup, the full width at half-maximum

of a diffraction-limited focal spot is 17 µm.

After the photoconversion process, a second laser, operating at a wavelength of λ =

488 nm, uniformly illuminates the sample and excites the non-photoconverted mEos3.2

proteins. The unconverted protein fluorescence has a wavelength centered around λ = 532

70



nm [163]. To collect the fluorescence, we use a 10× objective of NA = 0.25 and a tube

lens with a focal length of f3 = 150 mm. The 2D fluorescence image is recorded by a CCD

camera (Allied Vision Manta G-235B). The spatial resolution of the detection system is

estimated to be 1.1 µm, which allows us to resolve features in the sample that are smaller

than the diffraction limit of our illumination optics. The remaining excitation laser light,

which is not absorbed by the sample, is subsequently removed by two Chroma ET 535/70

bandpass filters. One filter is placed after the objective lens and reflects the excitation

beam off the optical axis of our system. The second one is placed directly in front of the

camera.

5.2.2 Purified Protein Sample Preparation

The plasmid for mEos3.2 expression is cloned with PCR and NEBuilder assembly, and

transformed into BL21-CondonPlus (DE3) competent cells. The mEos3.2 protein is pu-

rified using Ni-NTA His-Bind resin and dialyzed in dialysis buffer (20 mM Tris, pH 7.5/

10 mM NaCl/ 1mM EDTA/ 10 mM BME). To immobilize mEos3.2, a mixture containing

42 µL purified mEos3.2 (0.1 mM), 30 µL 30.8 % Acrylamide/bis-acrylamide, 0.5 µL 10 %

APS, and 0.5 µL TEMED is sandwiched between a clean coverslip and a slide to make a

25-µm-thick gel.

5.3 Photoconversion Fluorescence Microscopy

Fig. 5.2(a) shows part of an example speckle pattern used to photoconvert the fluorescent

sample. The lateral dimension of the entire speckle pattern is 600 µm. The speckle pattern

consists of two regions. Within the central region marked by the white dashed square, 300

µm × 300 µm in size, the speckle pattern obeys delta intensity statistics, i.e. a random

array of circular vortices embedded in a nearly uniform intensity background. Outside the
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Figure 5.2: Customizing speckles for nonlinear pattern illumination. An experimen-
tally recorded speckle pattern that illuminates and photoconverts a uniform fluorescent
protein sample is shown in (a). Within the white box the speckles obey delta statistics
and outside they obey Rayleigh statistics. In (b), an experimentally recorded image of the
fluorescence from the unconverted regions shows isometric and isotropic spots produced
by the vortices in the delta speckles; while the region photoconverted by the Rayleigh
speckles features large, irregular, and interconnected fluorescent grains.

square, the speckles adhere to Rayleigh statistics, featuring sparse, nearly circular islands

of high intensity, randomly distributed in a dark sea. The average speckle grain size is 17

µm.

Fig. 5.2(b) shows the fluorescence from the uniform protein gel sample after being

photoconverted by the speckle pattern presented in Fig. 5.2(a). Outside the central square,

the sample is photoconverted by the Rayleigh speckle pattern. The fluorescent pattern

consists of a sprawling anisotropic web, which reflects the topology of the low-intensity

regions surrounding the optical vortices. In stark contrast, the fluorescence pattern within

the central square, which is photoconverted by delta speckles, features isolated fluorescent

spots of a much smaller size. They are all created by the optical vortices in the central

square of Fig. 5.2(a). The high level of isotropy exhibited by the fluorescent spots origi-

nates from the high degree of rotational symmetry that is present in the vortices generating
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them. Apart from these spots, the fluorescent intensity is uniformly low. This dark back-

ground arises from the homogeneity of the delta speckle pattern’s intensity away from

optical vortices. A qualitative comparison between the distinct fluorescence patterns in-

side and outside the central square illustrates how customizing the intensity statistics of

speckles can significantly enhance the performance of speckle-based pattern illumination

microscopy.

5.4 Quantitative Analysis

Next, in Fig. 5.3, we quantitatively assess the performance of delta speckles in our appli-

cation. We compare a diffraction-limited spot, shown in Fig. 5.3(a), with the fluorescent

spots produced in the central region of Fig. 5.2(b) to quantitatively determine the resolution

enhancement. The diffraction-limited spot is created using the experimentally measured

field-transmission matrix of the 405 nm light, from the SLM to the sample, and it gives

the 2D point spread function (PSF) of our illumination optics. The full width at half max-

imum (FWHM) of the spot is 17 µm, which is in agreement with the estimated value of

18 µm from the diffraction limit λ/(2NA), where NA ∼= 0.011 is the numerical aperture

of the illumination optics. Fig. 5.3(b) shows an example fluorescent spot created by one

of the vortices in the illuminating delta speckle pattern. Its shape is close to circular. We

determine the full width at half maximum (FWHM) along both the major axis a = 6.1 µm

and the minor axis b = 5.0 µm by fitting. The average spot size, (a + b)/2 ∼= 5.6 µm, is

three times below the diffraction limit (17 µm).

5.4.1 Fluorescent Spot Measurement

We use the following procedure to quantitatively analyze the size and shape of the fluores-

cent spots created by the optical vortices in a photoconverting delta speckle pattern. First,
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Figure 5.3: Circumventing the diffraction limit. A diffraction-limited spot of the 405
nm illumination/photoconversion optics is presented in (a). In (b), an example fluorescent
spot produced by a vortex in the delta speckle pattern is illustrated. Its size is much smaller
than the diffraction-limited spot. Its shape can be fit by an ellipse of major axis width
a = 6.1 µm and minor axis width b = 5 µm. The aspect-ratio, b/a, histogram of all
fluorescent spots produced by the delta speckles is shown in (c). The inset illustrates an
ellipse with the average aspect ratio 〈b/a〉 = 0.86. In (d), the box-plot analysis of the
major and minor axes widths is shown. The white line marks the mean value, and the
black whiskers represent the upper and lower bounds of the data. The edges of the blue
and red shaded regions mark the upper and lower quartiles (25%, 75%) of the ensemble.
The green dashed line indicates the FWHM of the diffraction-limited spot in (a).

we locate the center of each fluorescent spot: rc =
∫

r I(r)dr/
∫

I(r)dr. Using the 38 µm

× 38 µm region surrounding each fluorescent spot, which corresponds to 61 × 61 pixels

on the CCD camera, we numerically construct a 2D interpolation of every fluorescent spot.

Next, we rotate each interpolated grid around the center rc in increments of 1◦, over a total

of 180◦, and record the 1D profile along the horizontal axis for each rotation. Then we fit

each of these 1D profiles to a Gaussian function, Ia×exp[−(x−x0)2/(2σ2)]+Ic, with Ia,

x0, σ, Ic as the fitting parameters. After determining the maximum and minimum values of

σ from all rotation angles, for each fluorescent spot, we extract both the major and minor
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axis widths from the full width at half maximum (FWHM) 2σ
√

2 ln(2). For the results

shown in Fig. 5.3, the average R2 fitting coefficient is 0.996. Generally the rotation angles

corresponding to the maximum and the minimum widths are offset by 90◦, reflecting the

elliptical shape of the fluorescent spots.

5.4.2 Fluorescent Spot Properties

To determine the isotropy of the spatial resolution enhancement produced by the delta

speckles, we measure the major axis a and minor axis b of all fluorescent spots in the

central region. The aspect ratio b/a is a measure of isotropy. Using measurements from

a total of 89 fluorescent spots stemming from two independent delta speckle patterns, we

calculate a histogram of the ratio (b/a) which is shown in Fig. 5.3(c). All of the spots are

close to circular. The mean value of b/a is 0.86. The most circular fluorescent spot has

b/a = 0.95, and the least circular spot b/a = 0.72.

The size uniformity of the fluorescent spots is reflected in the box-plot analysis of the

major and minor axis widths in Fig. 5.3(d). The mean value of major and minor axis

widths, marked by white lines, are 〈a〉 = 6.1 µm and 〈b〉 = 5.2 µm. The black whiskers

show the maximum and minimum of the ensemble. The edges of the blue and red shaded

regions denote the upper and lower quartile (25% and 75%) of the data, which are 5.7 µm

and 6.4 µm for the major axis a, 4.9 µm and 5.4 µm for the minor axis b. The green dashed

line indicates the diffraction limit, i.e., the width of the PSF in (a). Not only do all of

the fluorescent spots have a uniform size, but they are also significantly smaller than the

diffraction-limited spot size. Therefore, the spatial resolution enhancement provided by

delta speckles is homogeneous.
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Figure 5.4: Customized Speckle Statistics. An example delta speckle pattern is pre-
sented in (a) and the corresponding phase distribution of its complex field is shown in (b).
The phase is randomly distributed between −π and π, indicating that the speckle pattern
is fully developed. The intensity PDF (purple solid line) of the delta speckle pattern is
shown in (c) and compared with a Rayleigh PDF (green dashed line). The spatial correla-
tion functions of the intensity (red dashed line) and the field (blue solid line) in the delta
speckle pattern are shown in (d). The spatial fluctuations of the intensity are faster than
those of the field. The anti-correlation (CI < 0) originates from the bright ring surround-
ing each vortex core. The plots both in (c) and (d) are obtained from an ensemble of 100
speckle patterns.
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5.5 Customized Speckle Statistics

In the previous section, we established the significant advantages of creating isotropic and

isomeric vortices in the photoconverting speckle patterns used in fluorescence microscopy.

Here we characterize the customized speckles’ properties in detail and show how their

vortex characteristics are transferred to the fluorescent spots. To this end, we use the

simpler experimental setup described in the previous chapters to generate the speckles.

An example of an experimentally measured delta speckle pattern is shown in Fig. 5.4(a).

The corresponding 2D phase profile of the speckle pattern is shown in (b). While the 2D

intensity profile of the speckle pattern is relatively homogeneous apart from the vortices,

the corresponding phase profile is random and irregular everywhere. This reflects the fact

that the complex field of the delta speckles adheres to a circular non-Gaussian PDF. The

phase has a uniform probability distribution within the range of −π to π and the intensity

is independent of the phase, thus the speckles’ field is fully developed.

In Fig. 5.4(c), we compare the intensity PDF of an ensemble of 100 delta speckle

patterns like the one shown in (a) (purple line) to a Rayleigh PDF (green dashed line).

Because the Rayleigh intensity PDF exhibits an exponential decay, the most probable in-

tensity values in a Rayleigh speckle pattern are close to 0. Therefore, the spatial profile of

a Rayleigh speckle pattern is dominated by the low-intensity regions surrounding the op-

tical vortices. The high-intensity regions, which are the bright speckle grains, are sparse,

well separated, and isotropic. In many ways the spatial profile of a delta speckle pattern is

the inverse of a Rayleigh speckle pattern. Because the spatially uniform regions of high in-

tensity dominate the spatial profile of a delta speckle pattern, the intensity PDF is narrowly

peaked and centered around the mean value 〈I〉. The peak’s width is a reflection of the

intensity fluctuations associated with the speckle grains. The presence of optical vortices,

and the surrounding dark regions, in the speckle patterns result in a low-intensity tail in
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the PDF extending to I = 0 (marked by the orange arrow in (c)). Because the probability

density in this tail is low, the vortices are sparse and spatially isolated.

Using the spatial field correlation function, CE(∆r), and the spatial intensity corre-

lation function, CI(∆r), we can identify the characteristic length scales in the speckle

patterns. Here, for simplicity, the spatial correlation function of the speckles’ field is de-

fined according to the Pearson correlation function as:

CE(∆r) ≡ 〈E(r)E∗(r + ∆r)〉√
〈|E(r)|2〉

√
〈|E(r + ∆r)|2〉

(5.1)

where 〈...〉 denotes spatial averaging over r. Similarly, the spatial correlation function of

the speckles’ intensity is defined as:

CI(∆r) ≡ 〈δI(r)δI(r + ∆r)〉√
〈[δI(r)]2〉

√
〈[δI(r + ∆r)]2〉

(5.2)

where δI(r) = I(r) − 〈I(r)〉 denotes intensity fluctuations around the mean. Because

the spatial correlation function of the speckle patterns under consideration are azimuthally

symmetric and depend only on the distance ∆r = |∆r|; |CE(∆r)|2 and CI(∆r) can be

represented by |CE(∆r)|2 and CI(∆r).

As discussed previously, for a Rayleigh speckle pattern, CI(∆r) = |CE(∆r)|2, and

therefore both the field and the intensity fluctuate on the same length scale. The spa-

tial correlation length, defined as the full width at half maximum (FWHM) of CI(∆r),

is determined by the diffraction limit. For a delta speckle pattern, CI(∆r) is narrower

than |CE(∆r)|2, as can be seen in Fig. 5.4(d). In the delta speckles, |CE(∆r)|2 remains

the same as in Rayleigh speckles, because both patterns are generated by a phase-only

SLM and their spatial frequency spectra are identical. Because CI(∆r) is narrower than

|CE(∆r)|2 in a delta speckle pattern, it indicates that the intensity varies faster than the

field, spatially. Another difference is that with increasing ∆r, the delta speckles’ CI(∆r)
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exhibits a damped oscillation instead of a monotonic decay. These results can be under-

stood as follows: according to the definition ofCI(∆r), the features in the speckle patterns

that contribute the most to the intensity correlation function are those where the intensity

deviates the most from the mean value. In a Rayleigh speckle pattern, the bright speckle

grains have the greatest difference in intensity relative to the mean value. As a result, the

speckle grain size determines the FWHM of CI(∆r) in a Rayleigh speckle pattern. Con-

versely, in a delta speckle pattern, the vortices differ from the mean intensity value more

than any other element in the pattern. Therefore, the characteristic features of the optical

vortices dictate CI(∆r). For example, the high-intensity halo surrounding each vortex

core is reflected in the negative correlation CI(∆r) < 0 around ∆r = 20 µm, which

corresponds to the distance from the vortex center to the high-intensity halo.

5.6 Vortex Characteristics

In our photoconversion experiment, effectively, the inverse of the λ = 405 nm speckle

pattern is imprinted onto the uniform fluorescent sample. Therefore after photoconversion,

the measured fluorescence originates from the regions of the sample in the vicinity of

the optical vortices in the speckle pattern. Here, we investigate the shape and intensity

fluctuations of such regions in both delta speckles and Rayleigh speckles. In Fig. 5.5(a,b),

we magnify two representative vortex-centered regions in a delta speckle pattern and in

a Rayleigh speckle pattern. While the dark region surrounding the vortex cores in the

delta speckle pattern is relatively circular, it is elongated and irregular in the Rayleigh

speckle pattern. These properties are general and occur within one spatial correlation

length from the vortex center. In Fig. 5.5(c), we plot the radial intensity profiles averaged

over all vortices in ensembles of delta (purple line) and Rayleigh (green line) speckle

patterns. The intensity rises faster with distance from the vortex center in delta speckles,
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leading to a smaller region of low intensity than found in Rayleigh speckles. In (c) the

intensity fluctuations about the average profile are described by the shaded area, whose

edges represent one standard deviation from the mean. Relative to Rayleigh speckles,

the dramatically reduced intensity fluctuations in the neighborhood of the delta speckles’

vortices leads to more consistent vortex profiles.
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Figure 5.5: Optical Vortex Characteristics. Two example vortices from a delta speckle
pattern, (a), and from a Rayleigh speckle pattern, (b), are shown. While the vortices in
the delta speckles are nearly circular, the Rayleigh speckles’ vortices have highly irregular
shapes. This property is reflected in (c) where we plot the average intensity profile of light
around vortices in 1,000 delta speckle patterns (purple solid line) and around vortices in
1,000 Rayleigh speckle patterns (green dashed line). The edge of the purple and green
shaded regions indicates one standard deviation away from the corresponding mean pro-
file. In (d), we plot the probability density of the equal-intensity contours’ aspect-ratio
around the vortices in 1,000 delta speckle patterns (purple) next to the theoretical predic-
tion for Rayleigh speckle patterns (green).
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The core structure of a vortex is characterized by the equal-intensity contour immedi-

ately surrounding the phase singularity. As with the fluorescent spots analyzed previously,

this structure can be described by an ellipse whose major and minor axis lengths are a

and b. The aspect ratio b/a reflects the degree of isotropy of the vortex core structure.

In Fig. 5.5(d), we plot the PDF of b/a, P (b/a), obtained from 1,000 independent delta

speckle patterns and compare it with that of Rayleigh speckles. For Rayleigh speckles,

P (b/a) has a maximum at b/a = 0, indicating the most probable shape of the intensity

contour around a vortex is a line [164–166]. Furthermore, the probability of a circular

contour, b/a = 1, vanishes, confirming the absence of isotropic vortices in a Rayleigh

speckle pattern. Contrarily, P (b/a) for the delta speckles features a narrow peak centered

at b/a = 0.85, meaning all vortices are nearly circular. For comparison, the probability

that a vortex will have b/a > 0.6 is 99.7% in a delta speckle pattern, while the probability

is only 6% in a Rayleigh speckle pattern. Due to the circular symmetry exhibited by the

optical vortices [167] in delta speckles, the nearest-neighbor vortex spacing, ∼= 45 µm, is

larger than that in Rayleigh speckles, ∼= 27 µm. Therefore, the average vortex density is

lower in a delta speckle pattern, when compared to a Rayleigh speckle pattern.

5.7 Protein Photoconversion Simulation

In this section, we simulate the photoconversion process with a customized speckle pat-

tern. We consider the case of a uniform sample photoconverted by an intensity pattern

Ip(r), starting from t = 0. The unconverted protein density ρ(r, t) satisfies the rate equa-

tion:
dρ(r, t)

dt
= −qIp(r)ρ(r, t) (5.3)
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Figure 5.6: Photoconversion simulation. When a delta speckle pattern is used for pho-
toconversion (a), the unconverted regions near the vortices quickly evolve into isotropic
and isomeric islands as seen in (b) at t = 1/q. At long timescales the islands remain, as
shown in (c) where t = 10/q, yet they have considerably smaller size and higher spatial
frequencies (d). When a Rayleigh speckle pattern is used for photoconversion (e), an in-
terconnected web forms instead of isolated islands at t = 1/q as shown in (f). Even at
long time scales isolated and isotropic islands are rarely seen in (g) and fewer high-spatial
frequencies are present when compared to (c), as shown in (h). The power spectra in (d,h)
are ensemble-averaged over 100 realizations, and normalized to have a mean value of 1
over the spatial frequencies plotted. Note, the values at k = 0 are not plotted.

where q is a coefficient describing the photoconversion strength. The solution to this

equation is given by

ρ(r, t) = ρ0e
−q Ip(r) t, (5.4)

where ρ0 = ρ(r, 0) is the initial uniform protein density.

The fluorescence intensity from the unconverted proteins Ie(r, t) is proportional to

ρ(r, t). Thus the negative of the photoconverting intensity Ip(r, t) is nonlinearly (expo-

nentially) imprinted onto the fluorescence image Ie(r, t). In Fig. 5.6, we plot ρ(r, t) for

both delta speckles (Fig. 5.6(a)) and Rayleigh speckles (Fig. 5.6(e)). With increasing pho-

toconversion time the unconverted regions shrink. As can be seen in Fig. 5.6(b,c), for
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delta speckles the unconverted regions evolve to isolated circular spots of homogeneous

size. For Rayleigh speckles, the unconverted regions have irregular shapes and highly in-

homogeneous sizes (Fig. 5.6(f,g)). We compute the power spectra by Fourier transforming

the speckled intensity patterns in (a,e) and the unconverted protein density distributions in

(c,g). The azimuthally-averaged power spectra are shown in (d,h). Because delta speckles

possess non-local correlations, which shorten the spatial intensity correlation length, the

speckles’ intensity power spectrum contains higher spatial frequencies than those present

in Rayleigh speckles: this can be seen by comparing the blue dashed lines in (d,h). As

a result, the delta speckles produce higher spatial frequencies in the unconverted protein

density patterns, especially at long photoconversion time scales, as shown by the green

solid lines in (d,h).

Our model demonstrates that the circularity of the low-intensity region surrounding

each vortex, in a delta speckle pattern, directly translates to the circularity of the corre-

sponding fluorescent spots in the photoconverted sample. This supports our experimental

findings, where the aspect ratio of the fluorescent spots has a mean value of 〈b/a〉 = 0.86,

which agrees with the mean aspect ratio of the optical vortices, 〈b/a〉 = 0.85. Similarly,

this model explains the homogeneity in size and shape of the fluorescent spots when a delta

speckle pattern is used for photoconversion. When a Rayleigh speckle pattern is used for

photoconversion, the vanishing likelihood of having circular vortices coupled with the ir-

regular shape of the surrounding low intensity regions results in the scarcity of isotropic

fluorescent spots.
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Figure 5.7: Axial Propagation. Axial intensity cross-sections, I(x = x0, y,∆z), of both
delta (a) and Rayleigh (c) speckles are juxtaposed with a simulation of the correspond-
ing unconverted protein density in a uniform sample, ρ(x = x0, y,∆z, 10/q), (b,d) over
one Rayleigh axial-decorrelation length Rl. In (e), the axial intensity correlation function
CI(∆z) of the delta speckles (purple line) is three times narrower than that of the Rayleigh
speckles (green dashed line). In (f), the axial correlation function of the unconverted pro-
tein density Cρ(∆z) generated by delta speckles (purple line) has almost same width as
that generated by Rayleigh speckles (green dashed line). We ensemble average over the
propagation of 100 speckle patterns to create the curves in (e,f).
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5.8 Optical Sectioning

The rapid axial-decorrelation of a speckled intensity pattern, which enables parallel 3D

nonlinear patterned-illumination microscopy, is the result of the field’s uniform phase dis-

tribution. The axial decorrelation length of a speckle pattern is defined as the FWHM

of the axial intensity correlation function CI(∆z). For a Rayleigh speckle pattern, the

axial decorrelation length Rl is proportional to the Rayleigh range, which is determined

by the axial diffraction limit 2λ/NA2. With axial propagation, a delta speckle pattern

evolves into Rayleigh speckles over one Rl. In Fig. 5.7(a), an example axial intensity

cross-section, I(x = x0, y,∆z), of a delta speckle pattern over one Rl is juxtaposed with a

numerical simulation of the corresponding unconverted protein density in a uniform sam-

ple, ρ(x = x0, y,∆z, t = 10/q). For comparison, the simulation results for a Rayleigh

speckle pattern are shown in (c,d). As the illuminating speckle patterns decorrelate axially,

the fluorescent spots (corresponding to optical vortices) move laterally, enabling parallel

3D nonlinear patterned-illumination microscopy.

As shown in Fig. 5.7(e), the axial intensity correlation function CI(∆z) of the delta

speckles has a notably narrower width than that of the Rayleigh speckles. Consequently,

the axial decorrelation length of the delta speckles (FWHM of the axial intensity corre-

lation function) is Rl/3, which is three times shorter than that of the Rayleigh speckles.

This behavior can be attributed to the rapid axial evolution of a delta speckle pattern into

a Rayleigh speckle pattern, a general feature of customized speckles created with our

methods, as discussed in the previous chapters. However, the axial decorrelation lengths

of the unconverted protein density in uniform samples, ρ(r, t), remains nearly identical

for long exposure times (Fig. 5.7(f)). This is because the axial decorrelation of ρ(r, t) is

dictated by the lateral movement of optical vortices, when propagating axially, which is

almost the same for both families of speckles. Since optical vortices in a delta speckle
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pattern are farther apart than those in a Rayleigh speckle pattern, their transverse motion is

slightly slower, leading to a minor broadening of Cρ(∆z). Nevertheless, the delta speckle

illumination provides approximately the same optical sectioning as the Rayleigh speckle

illumination.

5.9 Live Sample Demonstration

In our experiment, a uniform film of purified protein is photoconverted by a speckle pat-

tern. This technique is also compatible with live yeast cells, which are nonuniformly

distributed in space.

(a) Unconverted Sample’s Fluorescence

31 𝜇𝜇𝜇𝜇
0

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
(b) Photoconverting Speckle Pattern
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(c) Photoconverted Sample’s Fluorescence
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Figure 5.8: Photoconversion of live yeast cells with a customized speckle pattern.
In (a), we present an optical image of the fluorescent light emitted from a sample of live
yeast cells before they are photoconverted by the delta speckle pattern shown in (b). The
white circles in (b) indicate the vortices which overlap with the yeast cells. An image of
the fluorescent light emitted by the live-cell sample after photoconversion is shown in (c).
The red circles in (c) correspond to the white circles in (b).

5.9.1 Photonconverting Live Yeast Cells With Customized Speckles

We illuminate the collection of nonuniformly distributed yeast cells shown in Fig. 5.8(a)

with the photoconverting speckle pattern presented in (b). The optical vortices of the delta

speckle pattern do not photoconvert the yeast cells in their direct vicinity. Consequently,
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after photoconversion, multiple isolated groups of cells will emit fluorescence when il-

luminated by 488 nm light. In the fluorescence image taken after photoconversion, the

fluorescent regions (marked by red circles in (c)) have a one-to-one correspondence to the

optical vortices –in the delta speckle pattern– that overlap with the yeast cells (marked by

white circles in (b)). Because the mEos3.2 protein is cytosolic, it is impossible to obtain

fluorescence from a sub-cellular region, even if we shrink the dark region surrounding each

vortex core using high-NA optics. Nevertheless, we are able to select individual groupings

of live cells located near the vortices.

5.9.2 Live Yeast Cell Culture & Preparation

The S. Pombe strain Leu1::Leu1+ pAct1 mEos3.2 nmt1Term ade6-M216 his3-∆1 leu1-32

ura4-∆18 is generated from NruI digested plasmid pJK148-pAct1-mEos3.2-nmt1Term

through homologous recombination. Cytosolic mEos3.2 is expressed from the act1 pro-

moter in the endogenous Leu1 locus. Cells are grown in exponential phase at 25 °C

in YE5S-rich liquid medium in 50 mL flasks in the dark before switching to EMM5S-

synthetic medium for 12-18 hours, to reduce the cellular autofluorescence background.

Live cells are concentrated 10- to 20-fold by centrifugation at 3,000 rpm for 30 s and re-

suspended in EMM5S for imaging. Concentrated cells in 10 uL are mounted on a thin

layer consisting of 35 µL 25 % gelatin (Sigma-Aldrich; G-2500) in EMM5S.

5.10 Discussion & Conclusion

In summary, we have presented a proof-of-principle demonstration of parallel pattern il-

lumination with a family of tailored speckle patterns. By customizing the statistical prop-

erties of speckle patterns for photoconversion, we obtain a spatial resolution that is three

times higher than the diffraction limit of the illumination optics. The isometric and circu-
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lar vortices in the tailored speckle patterns provide a homogeneous and isotropic spatial

resolution enhancement: which cannot be obtained from standard Rayleigh speckles.

Since the photoconversion process is nonlinear, in principle, there is no limit on the

spatial resolution that can be reached. In reality, because the intensity of our photocon-

verting laser beam is relatively low, the photoconversion process takes a long time (∼ 12

hours). During this time, sample drift and protein motion limit the spatial resolution that

can be achieved with fluorescence from the unconverted regions. A further increase in spa-

tial resolution is possible using a higher-powered laser with dilute samples of immobile

proteins.

In the photoconversion experiment, the illumination optics has a relatively low NA so

that the fluorescence spots of size exceeding 4 µm can be well resolved with the detection

optics of 1.1 µm resolution. To reach nanoscale resolution, high-NA optics are required

to create the photoconverting speckle pattern. In this case, the vector nature of the light

field must be considered. It is known that the axial field at a vortex center can be canceled

by manipulating the polarization state of light [168, 169]. In a Rayleigh speckle pattern,

the intensity contours around a vortex core are elliptical, and the polarization state must

be an ellipse with an identical aspect ratio and an identical handedness in order to cancel

the axial field [146,155]. Since the elliptical contours vary in aspect ratio from one vortex

to the next in a Rayleigh speckle pattern, it would be challenging, if not impossible, to set

the polarization state of a speckle pattern to cancel the axial fields at all of its vortices. In

a delta speckle pattern, in contrast, the vortices are almost circular, and half of them have

the same handedness. With circularly polarized light, the axial fields will vanish at half of

the vortices: specifically, those with the same handedness. To be consistent with high-NA

applications, delta speckles with circular polarization are generated in our experiment.

Finally, 2D raster scanning delta speckles over a fluorescent sample enables 3D super-

resolution imaging of the sample, via the same technique demonstrated with Rayleigh
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speckles in [146]. Alternatively, it is possible to eliminate scanning from this process by

illuminating the entire sample with multiple, distinct, delta speckle patterns which cover

the field of view. While the axial resolution obtained using delta speckles for illumination

is comparable to that of Rayleigh speckles, further improvements can be made. Specifi-

cally, accelerating the transverse motion of optical vortices in delta speckles can enhance

their optical sectioning capabilities.

89



Chapter 6

Fluctuations And Correlations Of
Transmission Eigenchannels In

Diffusive Media

6.1 Introduction

1In recent years, extensive studies of coherent wave transport in multiple-scattering media

have been conducted with light, microwaves, and acoustic waves [56, 170]. The overar-

ching goal of this research is overcoming the limitations imposed by incoherent diffusion:

thereby, enabling energy delivery deep inside a turbid medium. While multiple scatter-

ing persistently randomizes waves traveling in a linear system with static disorder, the

coherent wave transport is ultimately a deterministic process. Therefore, it can be de-

scribed by a field transmission matrix t, which maps the incident waves to the transmitted

waves [86]. As discussed in the introduction, the eigenvectors of t†t provide the input

wavefronts which excite a set of disorder-specific wavefunctions –spanning the system–

known as the transmission eigenchannels. Any incoming wave can be decomposed into

1The chapter material is primarily taken from reference [5]: Nicholas Bender, Alexey Yamilov, Hasan
Yilmaz, and Hui Cao, “Fluctuations and Correlations of Transmission Eigenchannels in Diffusive Media”,
Phys. Rev. Lett., vol. 125, 165901, (2020).
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a linear combination of eigenchannels, each propagating independently through the sys-

tem with a transmittance given by the corresponding eigenvalue τ . One of the striking

theoretical predictions of diffusive systems is the bimodal distribution of the transmission

eigenvalues: with maxima at τ = 0 and τ = 1 [81–85]. The corresponding eigenchannels

are referred to as closed and open channels.

Both the fluctuations of, and the correlations between transmission eigenvalues are

intensely studied topics [56, 86, 171, 172]. This fundamental research area has provided

explanations for prominent physical phenomena like universal conductance fluctuations

and quantum shot noise [82, 85, 86, 127, 173–177]. However, the statistical properties of

individual eigenchannels, such as the fluctuations of eigenchannel profiles and correla-

tions between them, have not been studied before. In electronic systems, this is because

input states cannot be easily controlled and therefore systematically exciting individual

eigenchannels is unfeasible. Thanks to the recent developments of optical wavefront shap-

ing techniques, photonic systems offer a unique opportunity for studying the second-order

statistics of transmission eigenchannels.

The ability to manipulate input states in optics and acoustics has spurred a renewed

interest in using transmission eigenchannels for imaging and sensing applications [56, 57,

65, 170]. Coupling waves into an open channel, not only enhances the transmitted power

through a diffusive system [74–76, 79, 93, 178, 179], but also enhances the energy den-

sity inside the system [71, 73, 77, 78, 180–184]. The latter has a tremendous impact on

enhancing light-matter interactions and manipulating nonlinear processes in turbid me-

dia [62, 185]. So far, however, the potential energy density enhancement is only known

after ensemble averaging over many disorder realizations. Thus, it is still an open ques-

tion if coupling energy into an open channel guarantees a significant enhancement of the

energy density inside a single diffusive sample as well as an intensity depth profile with a

specific shape.
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In this chapter, we experimentally and numerically investigate both the fluctuations

and correlations of transmission eigenchannel depth profiles in optical diffusive systems.

We develop novel experimental techniques for measuring the transmission matrix of an

on-chip diffusive waveguide, exciting its individual transmission eigenchannels, and per-

forming an interferometric measurement of the light field everywhere inside the waveg-

uide. We find that high-transmission eigenchannels exhibit small realization-to-realization

fluctuations in their depth profiles; demonstrating a robustness when compared to either

low-transmission eigenchannels or random inputs. Furthermore, different eigenchannels

are correlated in their depth profile fluctuations from realization-to-realization. The corre-

lations are weaker for higher-transmission eigenchannels, indicating they are more inde-

pendent than lower-transmission eigenchannels.

6.2 Experimental Setup

To directly observe the depth profiles of transmission eigenchannels within a diffusive

system, we fabricate two-dimensional (2D) waveguide structures on a silicon-on-insulator

wafer with electron beam lithography and plasma etching. As shown in Fig. 6.1(a), 100

nm-diameter holes are randomly etched into the waveguides, which have photonic crystal

sidewalls to reflect light [186]. At the wavelength of our probe light, λ = 1.55 µm, the

transport mean free path, `t = 3.2 µm, is much shorter than the disordered region length,

L = 50 µm, in each waveguide. Therefore, the light undergoes multiple scattering and

diffusive transport through each waveguide. Light scatters out-of-plane from the random

holes, providing a direct probe of the light inside the disordered region. This process can

be modeled as an effective loss, and accounted for in the diffusive dissipation length: ξa

= 28 µm. The waveguides are each 15 µm wide, supporting N = 55 propagating modes

at λ = 1.55 µm. Before entering one of the diffusive waveguides, light is injected via
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Figure 6.1: Waveguide structure and optical setup. A composite SEM image of a dif-
fusive waveguide is shown in (a). The matrix mapping the field in the buffer region to the
end region, tbuff→end, is related to the matrices tslm→buff and tslm→end. In (b) the simplified
sketch of the experimental setup illustrates how we wavefront shape a laser beam with a
spatial light modulator (SLM) while performing an interferometric measurement of the
light scattered out of the waveguide.
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the edge of the wafer into a ridge waveguide. Due to the large refractive index mismatch

between silicon and air, only low-order waveguide modes are excited at the interface.

Before the disordered region, the waveguide width is tapered from 300 µm to 15 µm in

order to convert the lower-order modes to higher-order ones. The taper enables us to

access all waveguide modes incident on the disordered region [183]. For more details on

the sample fabrication and design, consult Appendix B.

To measure the light field inside individual diffusive waveguides, we use an interfer-

ometric setup, as sketched in Fig. 6.1(b). In our setup, the monochromatic light from a

wavelength-tunable laser source is split into two beams. One beam is modulated by a

spatial light modulator (SLM) and then injected into one of the waveguides via the edge

of the wafer. The other beam is used as a reference beam. It is spatially overlapped with

the out-of-plane scattered light from the diffusive waveguide, on the CCD camera chip.

The CCD camera records the resulting interference pattern, from which the complex field

profile across the diffusive waveguide is obtained. For more details on the experimental

setup, consult Appendix B.

6.3 Determination Of Sample Transport Parameters

Diffusive wave propagation in a scattering medium with loss is determined by two pa-

rameters: the transport mean free path `t and the diffusive dissipation length ξa. In a 2D

system, the latter can be expressed as ξa =
√
`t`a/2, where `a is the ballistic dissipation

length.

To determine ξa and `t in the diffusive region of the 2D waveguide, we first measure the

cross-section-averaged intensity I(z) as a function of depth z for multiple random input

wavefronts. We then ensemble average the data, 〈I(z)〉, and fit the theoretically-predicted

depth profile –based on the diffusive equation– to it. The theoretical 〈I(z)〉 is found by
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convolving the incident ballistic intensity I0 exp[−z/`s] (`s represents the scattering mean

free path, and `s ≈ `t in our case), which acts as the source, and the Green’s function of

the diffusion equation [187]:

G(z, z′) =

 P (z)P (L− z′), z < z′

P (z′)P (L− z), z > z′
(6.1)

where P (z) = sinh(z/ξa) + z0/ξa cosh(z/ξa), and z0 = (π/4)× `t is the so-called extrap-

olation length.
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Figure 6.2: Determining the sample transport parameters. Determining the transport
mean free path `t and the diffusive dissipation length ξa of the diffusive waveguides by
fitting the experimentally-measured average depth profile for random incident wavefronts,
〈I(z)〉, (blue) to theoretical predictions from the diffusion equation (red).

We compute the difference between the experimental and theoretical 〈I(z)〉 for differ-

ent values of ξa and `t, and identify the minimum difference at ξa = 28 µm and `t = 3.2

µm. Fig. 6.2 shows an excellent agreement between the measured 〈I(z)〉 and the theoreti-
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cal prediction.

In the buffer region, the air hole density is 10 times lower than in the diffusive region.

Thus, the transport mean free path is 10 times longer, `buff
t = 32 µm. The loss, caused

by out-of-plane scattering from the air holes, is also 10 times weaker, thus the ballistic

dissipation length `a is 10 times longer. This leads to a tenfold increase in the diffusive

dissipation length: ξbuff
a = 280 µm.

6.4 Measurement Procedure

By sequentially applying an orthogonal set of phase patterns to the 128 SLM macropix-

els, and measuring the field within the sample, we acquire a field reconstruction matrix

that maps the field from the SLM to the field anywhere inside the disordered waveguide

tslm→int. This matrix encompasses information about the light transport inside the waveg-

uide and the light propagation from the SLM to the waveguide. To separate these, we need

access to the field incident on the disordered region of the waveguide. We obtain this in-

formation by adding an auxiliary weakly-scattering region in front of the diffusive region

called the “buffer” region, as shown in Fig. 6.1(a). From the light scattered out-of-plane

from the buffer, we recover the field right in front of the strongly-scattering region. The

length of the buffer region is 25 µm, which is shorter than its 32 µm-length transport mean

free path. Therefore, light only experiences single scattering in the buffer, and as a result,

the diffusive wave transport in the original disordered region is not appreciably altered.

With access to the field inside the buffer, we can construct the matrix relating the

field on the SLM to the buffer, tslm→buff . From tslm→int, we can also construct the matrix,

tslm→end, which maps the field from the SLM to a region near the end of the diffusive

waveguide. With these we calculate the matrix which maps the field from the buffer to

the end, tbuff→end = tslm→end t
−1
slm→buff , using Moore-Penrose matrix inversion. Although
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tbuff→end is not the field transmission matrix t, the depth profiles of its eigenchannels match

those of transmission eigenchannels in our numerical simulation (see Fig. 6.3 and dis-

cussion below). Therefore, tbuff→end can be used as an experimental proxy for the field

transmission matrix, t, of the diffusive waveguide.

To excite a single eigenchannel, we first perform a singular value decomposition on

tbuff→end to obtain the field distribution in the buffer corresponding to one eigenchannel.

Then we multiply the field profile in the buffer with t−1
slm→buff to calculate the SLM phase-

modulation pattern. By displaying this pattern on the SLM, we excite a single eigenchan-

nel of the diffusive waveguide. We record the spatial intensity profile of each eigenchan-

nel within the diffusive waveguide. From this measurement, we obtain the eigenchannel

depth profile Ĩ(z) associated with each measurement by summing the intensity over the

waveguide cross-section. For each depth profile, the measured intensity profile Ĩ(z) is

normalized to

I(z) = Ĩ(z)/[(1/L)

∫ L

0

Ĩ(z′)dz′]. (6.2)

6.5 Transmission Eigenchannel Depth-Profiles

In Figures 6.3(a & b), the experimentally-measured depth profiles of a high-transmission

and a low-transmission eigenchannel are juxtaposed. The high-transmission eigenchannel

in (a) has an arch-shaped energy-density distribution which spans the depth of the diffu-

sive region. In (b), the energy-density distribution of the low-transmission eigenchannel

rapidly decays with depth. We numerically calculate the transmission eigenchannels with

the Kwant simulation package [188]. The experimentally measured profiles match the cor-

responding depth profiles generated from numerical simulations of both t and tbuff→end;

confirming that we excite individual eigenchannels in our measurements. Furthermore,

the agreement between the eigenchannels of tbuff→end and t, confirms that the depth pro-
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Figure 6.3: Depth profiles of transmission eigenchannels. High (α = 1) and low
(α = 20) transmission eigenchannel profiles are presented in (a,b) while the 22 measured
eigenchannel profiles are juxtaposed in (c). The experimentally measured profiles (blue
lines) agree well with the profiles calculated from numerical simulations using the trans-
mission matrix t (black dashed lines) and the matrix tbuff→end (red lines).

98



files of tbuff→end have a one-to-one correspondence with the eigenchannels of t. For more

details on the numerical analysis, consult Appendix B.

In total, we measure 50 eigenchannel profiles for a single experimental system realiza-

tion. Each profile matches one of the ensemble-averaged profiles of tbuff→end generated

numerically without any fitting parameters. Measurement noise causes multiple experi-

mental profiles to be mapped to a single numerical profile, and this limits the total number

of recovered eigenchannels to 22. Fig. 6.3(c) shows the depth profiles for all 22 eigen-

channels, which agree well with the numerical simulations. The transmittance of the mea-

sured eigenchannels varies from τ1 ' 0.43 to τ22 ' 7.9 × 10−4, with a mean value of

〈τα〉 = 0.041.

6.6 Transmission Eigenchannel Fluctuations

Next, we study the realization-to-realization fluctuations of eigenchannel profiles. From

measurements of 13 system realizations, we compute the mean depth profile of each eigen-

channel, 〈Iα(z)〉, and the realization-specific deviation, δIα(z) = Iα(z) − 〈Iα(z)〉. From

this, the total fluctuation of each eigenchannel profile is quantified by

C̃α = (1/L)

∫ L

0

〈[δIα(z)]2〉dz, (6.3)

where 〈...〉 represents ensemble averaging. Fig. 6.4(a) shows that the total fluctuation of

each eigenchannel profile increases monotonically as a function of eigenchannel index.

The uncertainty of C̃α –due to the finite number of ensembles in our experiment– is es-

timated from simulations to be ±25% the value of C̃α, which is smaller than the overall

change of C̃α with α. Hence, the depth profiles of high-transmission eigenchannels fluctu-

ate less than the profiles generated by random illumination patterns (indicated by the green
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dashed line); while lower-transmission eigenchannels fluctuate more.

Now we look into the position-dependent fluctuation of individual eigenchannel pro-

files about their ensemble average, var[Iα(z)] = 〈[δIα(z)]2〉 as a function of depth, z.

Fig. 6.4(b) reveals distinct differences in the depth dependence of high and low-transmission

eigenchannels. While var[Iα(z)] is nearly flat for the high-transmission eigenchannel, it

features a fast drop with z for the low-transmission eigenchannel. Figs. 6.4(d-f) are 2D

plots of var[Iα(z)] for all 22 eigenchannels calculated using: experimental data, as well as

simulations of tbuff→end, and t. As the transmittance decreases, the maximum of var[Iα(z)]

moves towards the front surface of the diffusive region. The decrease in the variance

with depth results from the decay of the mean intensity with depth: 〈Iα(z)〉. However,

the relative intensity fluctuation of the low-transmission eigenchannels, characterized by

var[Iα(z)]/〈Iα(z)〉2, actually increase with depth as shown in Fig. 6.4(c) for α = 20. In

contrast, the relative intensity fluctuation of high-transmission eigenchannels is uniform

with depth and small: for example, var[I1(z)]/〈I1(z)〉2 < 0.04 for all z. Moreover, the

fluctuation of a transmission eigenchannel’s intensity at the sample output reflects the fluc-

tuation of the corresponding transmission eigenvalue. Therefore, the stronger fluctuation

of a low-transmission eigenchannel, relative to a high-transmission eigenchannel, at the

output end z = L indicates the fluctuation of its eigenvalue is similarly higher. This re-

sult, which we confirmed in our numerical simulations, is consistent with the theoretical

prediction in Ref. [171].

The experimentally observed fluctuations of individual transmission eigenchannels are

quantitatively reproduced by the numerical simulations of tbuff→end and t in Figs. 6.4(a,b,d-

f). The excellent agreement between experimental and numerical results confirms that

eigenchannel fluctuations depend on their transmittance. The higher the transmittance, the

lower the fluctuations. This means that high-transmission eigenchannels have a robust and

consistent depth profile, irrespective of the disorder configuration of a system.
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Figure 6.5: Inter-channel correlations. The covariance C̃αβ between any two pairs of
eigenchannels, α and β, is calculated from experimental data (a) and numerical simula-
tions (b,c). The cumulative covariance

∑
β 6=α C̃αβ exceeds the variance C̃αα in (d). The

blue symbols represent experimental data and red lines represent numerical simulations
based on tbuff→end.
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6.7 Transmission Eigenchannel Correlations

Finally, we investigate the cross-correlations between different transmission eigenchan-

nels. For any given disorder realization, eigenchannels are an orthogonal set of functions

at the front and back surfaces of the medium. While eigenchannels differ from realization-

to-realization, their orthogonality implies that the differences in their field profiles must

be correlated from realization-to-realization. This does not mean, however, that the inten-

sity fluctuations of their profiles inside the sample should be correlated. To study cross-

correlations in the eigenchannels’ intensity fluctuations across the sample, we introduce

the covariance C̃αβ = 〈δIα(z)δIβ(z)〉z, where 〈...〉z describes both ensemble averaging

and depth averaging. For α = β, C̃αα reduces to the variance C̃α which describes the

eigenchannel fluctuations.

Fig. 6.5(a-c) shows the experimental and numerical results of C̃αβ for all α and β. The

non-vanishing off-diagonal elements of C̃αβ (α 6= β) reveal coordinated changes in the

eigenchannels’ depth profiles. Between different pairings of eigenchannels, the correla-

tions differ. The larger the difference in the transmittances of a pair, the weaker the corre-

lation of their depth profile fluctuations. Furthermore, lower-transmission eigenchannels

tend to correlate more with other low-transmission eigenchannels than higher-transmission

eigenchannels do with other high-transmission eigenchannels. Quantitatively we can de-

scribe the correlation of a single eigenchannel to all others by the cumulative covariance∑
β 6=α C̃αβ . As shown in Fig. 6.5(d), the cumulative covariance increases with α, indi-

cating higher-transmission eigenchannels are more independent from other eigenchannels

than lower-transmission eigenchannels are. Moreover, the cumulative covariance exceeds

the variance C̃αα = C̃α by a factor of 2. Hence, the total cross-correlation for a single

eigenchannel is stronger than its own fluctuation.
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6.8 Discussion & Conclusion

To provide a plausible explanation for the observed phenomena, we resort to the modal

description of transmission eigenchannels [189]. A transmission eigenchannel can be de-

composed by the quasi-normal modes of the disordered system. Previous research [189]

has revealed that high-transmission eigenchannels are composed of only a few on-resonance

modes, while low-transmission eigenchannels are composed of many off-resonance modes

that destructively interfere. Since the destructive interference is sensitive to changes in the

scattering configuration, the low-transmission eigenchannels exhibit strong fluctuations.

Moreover, because individual low-transmission eigenchannels share many of the same

off-resonant modes, their fluctuations are correlated. Since high-transmission eigenchan-

nels are composed of a different set of modes than low-transmission eigenchannels, the

correlations between high and low-transmission eigenchannels are weak.

Our findings regarding the second-order statistical properties of transmission eigen-

channels are general and applicable to other types of waves such as microwaves, acoustic

waves, and matter waves. In practical applications, the consistent and robust depth pro-

files of open channels guarantee that they can deliver energy through any diffusive system

regardless of the disorder configuration. Such reliable energy delivery has major impli-

cations in applications ranging from multi-photon imaging to photothermal therapy, and

shock wave treatment. Since our on-chip experimental platform allows for both direct

measurement of the complex field inside a random structure and near-complete control

over the incident field, we can investigate how to shape an incident wavefront to con-

trol the spatial distribution of light across the entire disordered sample. Furthermore, this

setup can be used to experimentally study the spatial structure and statistics of the time-

delay eigenchannels of a diffusive medium, and the time-gated transmission and reflection

eigenchannels of a diffusive system.
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Chapter 7

Depth-Targeted Energy Deposition Deep
Inside Scattering Media

7.1 Introduction

1Depositing energy into a target region deep inside an opaque diffusive system –by control-

ling random wave scattering– is essential in a wide range of applications involving light,

microwaves, and acoustic waves [55,56]: such as deep-tissue imaging [57,58], optogenet-

ically controlling neurons [59,60], non-invasive ultrasound surgery [61], and optimization

of photoelectrochemical processes in strongly-scattering systems [62]. As discussed in

Chapter 6, controlling the incident wavefront of a coherent beam enables the suppression

of wave diffusion; which, has been used to focus light either inside or through a scattering

medium [64,65,87–91]. The appropriate incident wavefront can be obtained via the time-

reversal principle [92]; the phase conjugate of an output field generated by a point source

will focus back to that point [64]. Targets in many applications like neurons or early-stage

tumors, however, are much larger than an optical-diffraction-limited focal spot and there-

fore wavelength-scaled light focusing does not corresponds to maximal energy deposition
1The chapter material is primarily taken from reference [6]: Nicholas Bender, Alexey Yamilov, Arthur

Goetschy, Hasan Yilmaz, Chia Wei Hsu, and Hui Cao, “Depth-Targeted Energy Deposition Deep Inside
Scattering Media”, Arxiv, 2105.13417, (2021).
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into an extended target. Since the optimal spatial field distribution across the target is not

known a priori, neither time reversal nor phase conjugation can be used to find the opti-

mal incident wavefront. Furthermore, while feedback-based iterative optimization of the

input wavefront [65] is efficient at reaching the global maximum when focusing light [93];

currently, this is not the case for energy delivery into a target of arbitrary size and shape.

Over the years, various operators and matrices related to physical quantities of in-

terest in disordered systems have been introduced –and their eigenstates studied– in the

search for the global optima of the quantities. Examples include the field transmission

matrix [5, 71–80] discussed in Chapter 6, the energy density matrix [190], the photoa-

coustic transmission matrix [191], the generalized Wigner-Smith operator [192, 193], the

time-gated reflection matrix [194, 195], the acousto-optic transmission matrix [196], the

dwell-time operator [197], the distortion matrix [198,199], and the Fisher information op-

erator [200]. None of them, however, provide the solution for maximal energy deposition

in an arbitrary-sized region at an arbitrary depth in a scattering medium. Furthermore, a

general framework for predicting and understanding the ultimate limit on targeted energy

delivery into a diffusive system is missing. As such, the following scientifically and tech-

nologically important questions remain unanswered, “How can one systematically find the

incident wavefront that optimally deposits energy into a target region of arbitrary size and

shape, deep inside a diffusive medium?” and “What is the ultimate limit on the energy

enhancement in a region?”

In this chapter, we address these questions by performing a comprehensive experi-

mental, numerical and theoretical study. First, we define the deposition matrix Z which

relates input waves to the corresponding regional field distributions at an arbitrary depth

within a diffusive system. The largest eigenvalue of Z†Z gives the maximal energy that

can be deposited into the designated region, and the associated eigenvector provides the

input wavefront. Next, we build a theoretical model which can analytically predict the
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probability density function of the eigenvalues of Z†Z , and demonstrate how energy en-

hancement depends on the depth of the region and the system parameters such as the

transport mean free path `t and the sample thickness L. While the largest possible en-

ergy enhancement scales as L/`t, it always occurs at depth (3/4)L in a lossless diffusive

medium: independent of the scattering strength. Using the on-chip disordered-waveguide

platform presented Chapter 6, we experimentally measure the deposition matrix Z for

regions at different depths inside a diffusive system, and directly excite individual eigen-

states to observe their spatial structures across the entire system. Furthermore, we ex-

plore the relationship between deposition eigenchannels and transmission eigenchannels;

revealing that the regional energy enhancement results from both selective excitation of

high-transmission eigenchannels and constructive interference between them.

Shaped

Input
Deposition Matrix

SLM

CCD Image of Intensity Distribution

Disordered Waveguide

Figure 7.1: Schematic of the experimental platform for investigating energy deposi-
tion in a diffusive system. A spatial light modulator (SLM) shapes the incident wavefront
of a monochromatic laser beam, and the field distribution inside a two-dimensional disor-
dered waveguide is probed from above. This setup allows measurement of the deposition
matrix that relates the incoming field pattern to the spatial field distribution inside a target
region (marked by the cyan box). Selective coupling of light into the deposition eigen-
channels can enhance or suppress energy inside the target region, as confirmed by the
CCD camera image of the spatial intensity distribution.
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7.2 Deposition Matrix

As illustrated in Fig. 7.1, controlling energy deposition inside a disordered system requires

introducing the deposition matrixZ of a target region that can have an arbitrary size, shape,

and depth. The matrix relates an orthonormal set of input wavefronts to the corresponding

spatial field distributions within the target region. The eigenvalues ζ of Z†Z give the

total energy inside the target region when sending the corresponding eigenvectors into the

system, with proper normalization. Therefore, the eigenvector with the highest eigenvalue

provides the input wavefront which deposits the most energy into the target region.

As an example case, we consider a target region that is a thin slice inside the disordered

waveguide, at depth zD [see inset of Fig. 7.2(a)]. The width W of the slice is equal to that

of the waveguide, and the slice thickness ∆z is small enough that the field variation along

z (waveguide axis) is negligible. Therefore, only the field distribution along the y axis

(waveguide cross-section) needs to be sampled, with M evenly spaced points. For this

target region configuration, the elements of the deposition matrix are given by

Zmn(zD) ≡ (W∆z/M)1/2En(ym, zD), (7.1)

where En(ym, zD) is the electric field at position (ym, zD) for an incoming wave (of unit

flux) in the n-th mode of the empty waveguide (input). This definition for the elements of

the deposition matrix can easily be generalized to higher dimensions; however, restricting

ourselves to a cross-sectional target region facilitates comparison between the deposition

matrix and the well-known transmission matrix. Switching to the waveguide-mode basis,

the deposition matrix becomes Zmn(zD) =
∫W

0
χm(y)En(y, zD) dy, where χm(y) is the

normalized transverse profile of the m-th mode of a homogeneous waveguide with a re-

fractive index equal to the average index of the disordered region. Note that the waveguide
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modes include both propagating modes and evanescent modes. If the evanescent waves

are negligible, only the propagating modes are kept and normalized by their propagation

speed vm, we get

Zmn(zD) =
√
vm

∫ W

0

χm(y)En(y, zD) dy. (7.2)

In this form, the deposition matrix naturally reduces to the transmission matrix at the end

of the disordered region zD = L. In our disordered waveguides, the deposition matrices

defined by Eqs. 7.1 and 7.2 have nearly identical eigenvalues and eigenvectors for most

depths except when very close to the exit surface zD = L. More details are given in

Appendix B.

7.3 Numerical Simulation & Analytical Model

To reveal the full potential of the deposition matrix (DM) for energy deposition inside

disordered systems, we first carry out numerical simulations of wave propagation in 2D

disordered waveguides using the Kwant software package [188]: the simulations are along

the same lines as in Chapter 6 and described in detail in Appendix B. For comparison with

the transmission matrix (TM), we adopt the DM defined by Eq. 7.2 and calculate its eigen-

values ζ for a thin slice at different depths zD inside a lossless disordered waveguide. The

probability density function (PDF) P (ζ), shown in Fig. 7.2(a), is very different from the

celebrated bimodal PDF of transmission eigenvalues P (τ) [86]. At depths zD < L, P (ζ)

has a single peak at ζ = 0, but it develops a second peak at ζ = 1 near the exit surface

L−zd < `t (shaded area). We normalize the eigenvalues ζ by their mean 〈ζ〉, which repre-

sents the typical energy within the slice at depth zD under random illumination conditions.

Despite the lack of a peak at the maximum eigenvalue ζmax, for most depths P (ζ/ 〈ζ〉)

has a long tail extending beyond the range of P (τ/ 〈τ〉) . Consequently, the maximal en-

hancement of energy inside the diffusive system, given by ζmax/ 〈ζ〉, is noticeably larger
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Figure 7.2: Numerical simulation and analytic prediction of deposition eigenvalues.
(a) Probability density function of normalized deposition eigenvalues ζ/ 〈ζ〉 for a thin slice
at varying depths zD inside a diffusive waveguide (see inset). Analytical FRM predictions
(solid lines) agree with numerical simulations (dots) averaged over 1000 disorder config-
urations. For most depths, P (ζ/ 〈ζ〉) is very different from the bimodal distribution of the
transmission eigenvalues P (τ/ 〈τ〉), although it converges to bimodal at the end (shaded
area at zD/L = 1). The theoretical prediction for the upper edge of P (ζ), which sets the
limit for energy enhancement 〈ζmax〉 / 〈ζ〉, is marked by dashed purple line in the hori-
zontal plane. (b) Energy enhancement in two diffusive waveguides (WG1, WG2), given
by the ratio of the largest ensemble-averaged deposition-eigenvalue 〈ζmax〉 over the mean
eigenvalue 〈ζ〉, increases with depth zD and reaches its maximum at zD/L ∼ 3/4. Ana-
lytical predictions for the upper edge of P (ζ/ 〈ζ〉) (solid lines) are compared to numerical
data (symbols). The energy enhancement 〈τmax〉 / 〈τ〉 exceeds the transmission enhance-
ment 〈ζmax〉 / 〈ζ〉 (horizontal dotted line) at most depths. In (a), the waveguide (WG1) has
a length L = 50µm, width W = 15µm, and transport mean free path `t = 3.3µm. (b)
includes a second waveguide (WG2) of L = 50µm, W = 30µm, and `t = 1.6µm.
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than the maximum enhancement of the transmission τmax/ 〈τ〉 for open channels (τmax = 1,

〈τ〉 ∼ `t/L� 1).

To interpret these results quantitatively, we develop an analytical model for the PDF

of the deposition eigenvalues P (ζ). The DM Z(zD) cannot be treated as a random ma-

trix with uncorrelated matrix elements, because the eigenvalue PDF in Fig. 7.2(a) dras-

tically differs from the Marchenko-Pastur law [201]. In particular, the latter predicts

〈ζmax〉 / 〈ζ〉 = 4, whereas significantly larger values are obtained at almost all depths,

indicating that correlations between elements of Z(zD) are beneficial for energy deposi-

tion. Since the DM and the TM coincide at the exit, we build a model that captures the

continuous evolution from P (ζ) at zD < L to the bimodal PDF at zD = L. This is realized

by using a filtered random matrix (FRM) ensemble as initially introduced in Ref. [202].

This theory amounts to assuming that Z(zD) has the same spectrum as a filtered matrix

drawn from a larger virtual TM (Appendix B). The advantage of this approach is that the

full PDF P (ζ) can be inferred from the first two moments 〈ζ〉 and 〈ζ2〉. Here we use

the numerical values of these two moments as input parameters of the model. The good

agreement between the numerical PDF and the FRM prediction in Fig. 7.2(a) validates our

ansatz.

Combining the FRM model with analytic predictions for the first two moments of

P (ζ), we get analytical expressions for the full PDF as well as the maximal enhancement.

The first moment decays linearly with depth,

〈ζ(zD)〉 ' 2(1− 〈τ〉)(1− zD/L) + 〈τ〉 , (7.3)

as given by diffusion theory [203]. The second moment is given by the variance Var[ζ(zD)],

which is related to the fluctuation of the cross-section integrated intensity at depth zD gen-
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erated by random wavefront illumination [76]:

Var[ζ(zD)] ' 〈ζ〉2 [1 +N C2(zD)]. (7.4)

In this expression, N is the number of waveguide modes in the disordered region and

C2(zD) stands for long-range contributions to the spatial intensity correlation function,

whose analytic expressions are given in [204,205]. Combining these with the FRM model,

in the limit N � 1, we predict a finite support for P (ζ) and thus a maximal energy en-

hancement given by the upper edge of P (ζ). Fig. 7.2(b) shows a quantitative agreement

between this prediction and 〈ζmax〉 / 〈ζ〉 evaluated numerically for disordered waveguides

of different sizes and scattering strengths: without any adjustable parameter. The FRM

predicts that 〈ζmax〉 / 〈ζ〉 depends only on C2(zD) for most depths zD, confirming the cru-

cial role of mesoscopic correlations in enhancing energy deposition. The general expres-

sion for the energy enhancement is derived and presented in Appendix B, below we present

a simplified form in the limit of L� `t:

〈ζmax(zD)〉
〈ζ(zD)〉 '

3N C2(zD)

2
' 3(zD/L)− 2(zD/L)2

〈τ〉 . (7.5)

Two conclusions can be drawn from this result. First, the maximal energy enhancement is

inversely proportional to 〈τ〉 and thus grows linearly with L/`t. In particular, it is indepen-

dent of the widthW of the disordered waveguide as long as the dimensionless conductance

g = N 〈τ〉 is sufficiently large. Second, apart from 〈τ〉, the energy enhancement depends

on the reduced depth zD/L only; reaching a maximal value of 9/8〈τ〉 ∼ L/`t � 1 at

z
(max)
D /L ∼ 3/4. This result holds for different transport mean free paths, as confirmed

in Fig. 7.2(b). Hence, the largest enhancement is not obtained at the output surface, but

rather deep inside the diffusive medium at depth 3L/4: independent of `t.
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Figure 7.3: Experimental measurement of deposition eigenchannels. (a) A composite
scanning electron microscope (SEM) image of a disordered waveguide of width W = 15
µm. Randomly distributed air holes (each 100 nm in diameter) are etched throughout a
designated L = 50 µm long region. Superimposed are four target regions used for energy
deposition; each is 10 µm × 10 µm. (b,c) The depth profiles (cross-section integrated
intensities) of two deposition eigenchannels with enhanced and suppressed energies in the
target region R1 centered at depth zD = 10 µm (b), and R2 at zD = 20 µm (c) are shown.
The experimental data (red circle, purple diamond) agrees with the numerical simulations
(red solid line, purple dotted line). The black dashed line is the averaged intensity profile
generated by random input wavefronts. Each experimental data point is averaged over
∆z = `t to reduce fluctuations. (d,e) The experimentally measured energy enhancement
in the target region ηt (blue-circles) and in the surrounding area ηs (brown-diamonds) of
two deposition eigenchannels α = 2 (d) and α = 24 (e) are compared with numerical data
(light-blue and orange lines): for the case of energy deposition into four target regions
centered at 10, 20, 30, and 40 µm. In (d) the green line corresponds to 35C2(zD), and
its agreement with the experimental/numerical results of ηt(zD) confirms the essential
contribution of long-range intensity correlations to energy deposition.
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7.4 Measurement Of Deposition Eigenchannels

We experimentally measure different deposition matrices in the disordered waveguides

presented in Chapter 6, shown in Fig. 7.3(a). We construct the deposition matrices asso-

ciated with four target regions inside the disordered waveguide, each is 10 µm × 10 µm.

They are centered at depths zD = 10, 20, 30, 40 µm.

Following the experimental technique in Chapter 6, we use the SLM in our setup to

modulate the monochromatic laser beam incident on the waveguide, and measure the field

distribution within each target region (for details see Appendix B). From the data, we ex-

tract the DM and perform a singular value decomposition to obtain the deposition eigen-

channels’ input vectors. These vectors are the eigenvectors of Z†Z; each is sorted by its

corresponding eigenvalue, from high to low, and labeled by an index α. We sequentially

shape the incident wavefront into each of the eigenvectors, thereby exciting one eigenchan-

nel at a time, and record the 2D intensity distribution over the entire disordered waveguide.

The cross-section integrated intensity I(D)
α (z) depicts the depth profile of every eigenchan-

nel. We repeat this measurement for multiple disorder realizations –generated at multiple

wavelengths and with different hole configurations– and ensemble average the spatial pro-

files of the eigenchannels with the same index α.

In Fig. 7.3(b,c), we show the depth profiles of example eigenchannels with enhanced

or suppressed energy deposition, for two different target regions. Both strong energy en-

hancement and suppression are observed experimentally in the target region –when com-

pared to the average depth profile 〈I(z)〉 of random illumination patterns– and reproduced

numerically. Simultaneously the energy outside the target region is enhanced or sup-

pressed, reflecting the non-local effects in the energy deposition. Quantitatively, we com-

pute the energy enhancement factor in the target region ηt =
∫
z⊂R Iα(z)dz/

∫
z⊂R〈I(z)〉dz,

and in the surrounding area ηs =
∫
z 6⊂R Iα(z)dz/

∫
z 6⊂R〈I(z)〉dz. Figure 7.3(d) shows that
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ηt increases with depth zD, while ηs remains nearly constant. The depth variation of the

regional enhancement ηt(zD) is captured by the long-range correlation function C2(zD),

in agreement with our theoretical model. Due to the presence of loss in the diffusive

waveguide, the depth of the maximal energy enhancement –which coincides with the

maximum of C2(zD)– is slightly shifted from zD = (3/4)L towards the output end. Fig-

ure 7.3(e) shows that the suppression of energy within the target region gets stronger for

larger depths, but the suppression in the surrounding area is independent of depth.

7.5 Two Mechanisms For Energy Deposition

To gain physical insight into the formation of deposition eigenchannels and how they en-

hance or suppress energy within local regions inside a diffusive system, we decompose

them into the transmission eigenchannels, whose spatial profiles have been studied exten-

sively [5,73,78,183,184,206–208]. At the entrance of the system z = 0, the transmission

eigenvectors form a complete basis, and the input wavefront of a deposition eigenchannel

can be expressed as a linear superposition of the transmission eigenchannels. The linear

mapping from the incident field to the internal field carries the decomposition to the en-

tire field distribution inside the disordered waveguide: E(D)
α (y, z) =

∑N
β=1 dαβE

(T )
β (y, z).

In this expression E
(D)
α (y, z) [E(T )

β (y, z)] denotes the field distribution of the α-th de-

position (β-th transmission) eigenchannel and N is the number of transmission eigen-

channels (equal to the number of propagating modes in the input waveguide). The depth

profile of a deposition channel, given by the cross-section integrated intensity I(D)
α (z) =∫W

0
|E(D)

α (y, z)|2 dy, consists of two terms:

I(D)
α (z) = I(i)

α (z) + I(c)
α (z)

=
N∑
β=1

|dαβ|2 I(T )
β (z) +

∑
β 6=β′

dαβ d
∗
αβ′ I

(T )
β β′(z).

(7.6)
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Figure 7.4: Relation between deposition eigenchannels and transmission eigenchan-
nels. (a,c) The projection of a deposition eigenchannel with index α = 1 (a) or 25 (c)
onto transmission eigenchannels with index β gives the coefficients dαβ . Four curves
denote |dαβ|2 for four target regions R1 − R4 [inset of (a)] in the same disordered waveg-
uide as in Fig. 7.3. (b,d) Comparison between the coherent sum (red/purple) and inco-
herent (green) sum of the transmission eigenchannels describing deposition eigenchan-
nel profiles, with coefficients given in (a,c). For each deposition region, the enhance-
ment/suppression above/below the random input intensity profile (black dashed line) has
two distinct contributions from selective excitation of transmission eigenchannels (green
areas) and constructive/destructive interference between them (cyan areas).
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The first term I
(i)
α (z) is an incoherent sum of the constituent transmission eigenchannel

depth profiles, I(T )
β (z) =

∫W
0
|E(T )

β (y, z)|2 dy, studied in [5, 73, 78, 183, 184, 206–208].

The second term I
(c)
α (z) is the result of interference between different transmission eigen-

channels inside the diffusive waveguide, which we observe for the first time. Although the

transmission eigenchannels are orthogonal at z = 0 and z = L, this is not the case inside:

I
(T )
β β′(z) =

∫ W

0

E
(T )
β (y, z)E

(T )∗
β′ (y, z) dy 6= 0 (7.7)

for 0 < z < L.

To find how much these two terms contribute to the energy enhancement, we numeri-

cally decompose the maximal energy deposition eigenchannels (α = 1) for the four target

regions inside our disordered waveguide. As shown in Fig. 7.4(a), each is composed of

multiple high-transmission eigenchannels (higher transmission corresponds to lower in-

dex β). With increasing depth zD, the number of constituent transmission eigenchannels

decreases, and the maximal decomposition coefficient |dαβ|2 shifts to β = 1 (the highest-

transmission eigenchannel). Figure 7.4(b) shows the incoherent contribution I(i)
1 (z) and

coherent contribution I(c)
1 (z) to energy deposition in the target region. When the target

region is located at a shallower depth, more transmission eigenchannels participate in con-

structing the deposition eigenchannel, and their constructive interference plays an impor-

tant role in enhancing energy deposition in the target region. As the number of participat-

ing transmission eigenchannels becomes progressively smaller with increasing depth, the

interference effect is weakened and the incoherent contribution from selective excitation

of transmission eigenchannels becomes dominant.

We also investigate the deposition eigenchannels that reduce energy within the target

regions. As shown in Fig. 7.4(c), the α = 25 deposition eigenchannels consist of multiple

transmission eigenchannels with indices β close to 25. The suppression of energy within
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the target region results from selective excitation of lower-transmission eigenchannels and

their destructive interference [see Fig. 7.4(d)]. The deeper the target region, the lower the

number of constituent transmission eigenchannels, the weaker their destructive interfer-

ence effect. Thanks to the destructive interference, the total transmission can be greater

than the total energy at a given depth inside the target region. Thus, when sending light

through a diffusive system it is possible to avoid certain regions inside.

7.6 Discussion & Conclusions

In conclusion, we have delineated the fundamental limits on depositing energy into a finite

region, located at any depth, inside a diffusive system. In contrast to the bimodal distri-

bution of transmission eigenvalues, the PDF of deposition eigenvalues P (ζ) has only one

peak at ζ = 0 and a long tail for most depths: ζ/ 〈ζ〉 � 1. Our theoretical model, based

on a filtered random matrix ensemble, can analytically predict P (ζ) for regions anywhere

inside a diffusive medium. The long-range correlations present in the intensity of the field,

induced by the multiple scattering of light and characterized by C2(zD), facilitate optical

energy deposition. In a diffusive waveguide of length L much larger than the transport

mean free path `t, the largest possible energy enhancement 〈ζmax〉 / 〈ζ〉 at a depth zD de-

pends only on two parameters: L/`t and zD/L. With increasing depth zD, 〈ζmax〉 / 〈ζ〉 rises

and reaches a global maximum ∼ L/`t at z(max)
D /L ∼ 3/4. Because z(max)

D is dependent

on L and independent of `t, when L� `t, the depth of the maximal enhancement is deep

inside the sample rather than near the front or back surfaces. Although our experimental

and numerical studies are conducted on 2D systems, the above scaling results follow from

filtered matrix theory, e.g. Eq. 7.5, which also applies in three dimensions.

Additionally, we discovered the relationship between deposition eigenchannels and

transmission eigenchannels. We found that it is impossible to construct the intensity profile

118



of a deposition eigenchannel from the intensity profiles of the transmission eigenchannels

alone. Constructive or destructive interference between transmission eigenchannels inside

the disordered system plays a prominent role in enhancing or suppressing energy within

the target region. Therefore, our analysis reveals two distinct mechanisms for energy depo-

sition: selective excitation of transmission eigenchannels and interference between them.

Their contributions are characterized by the amplitudes and phases of the coefficients ob-

tained when decomposing a deposition eigenchannel into a summation of transmission

eigenchannels.

Although our studies are conducted on planar waveguides with narrow widths and

transverse confinement, we believe the conclusions can be extended to wide slabs with

open boundaries and to volumetric diffusive systems. They are also applicable to other

types of waves such as microwaves and acoustic waves. Targeted energy delivery opens the

door to numerous applications, e.g., optogenetic control of cells, photothermal therapy, as

well as probing and manipulating photoelectrochemical processes deep inside nominally

opaque media.
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Chapter 8

Remission Eigenchannels Inside
Diffusive Scattering Media

8.1 Introduction

Diffusive-waves have been used for sensing and imaging [94–103, 209] in a diverse vari-

ety of random media: ranging from the earth’s crust [104–106] to the human brain [101,

107–109]. Often, in theoretical investigations and lab-based experiments waves trans-

mitted through diffusive media are utilized and studied for imaging and sensing. In

many real-world applications, however, transmitted waves are unavailable and directly

reflected waves cannot penetrate beyond one transport mean free path into the system;

though, recent studies have attempted to push this boundary with adaptive optics [210–

212] and matrix-based approaches [213–221]. Therefore, in many applications either re-

mitted waves must be used –diffusive waves actively generated by an external source and

emitted from the medium at a separate location on the same side– or passive imaging &

sensing techniques –based on naturally occurring incoherent sources– must be used. Seis-

mic interferometry is, perhaps, the most notable domain for passive diffusive-wave imag-

ing & sensing techniques; relying on incoherent acoustic waves generated by earthquakes
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and other seismic activity to map the Earth’s subsurface [222–236]. It is worth noting,

however, that this technique has also been explored in the context of ultrasonic acoustic-

waves [237, 238]. Nevertheless, in many applications outside the domain of acoustics,

incoherent waves are not naturally generated by the random media investigated: requiring

external sources. An exemplary application currently in development is wearable optics-

based non-invasive brain-computer interfaces [103, 239–243]. In the context of this ap-

plication, active-source diffusive-wave spectroscopy is used to monitor the temporal dy-

namics of cerebral blood flow, which is assumed to be a proxy for neural activity. While

the optical source is external and in principle controllable, in practice, the light generated

by the source is often effectively treated as a random input: with energy diffusing in all

directions. The depth-penetration of the collected-light is controlled by varying the sep-

aration between the source and detector, due to the “banana” [244] shaped trajectory of

randomly-generated remitted light in diffusive systems. Specifically, increasing the sepa-

ration between source and detector increases the penetration-depth of the collected light.

In this imaging paradigm, therefore, the increased depth-penetration of the measured light

comes at the expense of the signal strength. It is reasonable to ask, therefore, “Is possi-

ble to coherently shape the input-light in order to optimized the output energy-density of

remitted light which has traveled along a specific “banana” trajectory?”

In this chapter we perform an experimental study on diffusive-wave remission eigen-

channels in open disordered systems, as illustrated in Fig. 8.1. First, we introduce the

remission matrix,R, of a diffusive system; which relates wavefronts input over a finite re-

gion of the surface to the resulting waves emitted from a finite-region arbitrarily-displaced

from the injection site on the same surface. Using a modified version of the on-chip

platform and the experimental setup presented in Chapters 6 & 7, we experimentally mea-

sure the remission matrix for output regions with different separations. Then, we directly

excite the individual remission eigenstates, and observe their spatial structures as a func-
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tion of separation between the input and output regions. We show that “open” remission

eigenchannels enhance the output signal without sacrificing the penetration-depth of the

collected light.

CCD
Camera

Shaped 
Input

Remission 
Eigenchannel

Enhanced
Remission

Figure 8.1: Remission eigenchannel concept. By coherently controlling the wavefront
of light injected into a slab-geometry diffusive-medium with a spatial light modulator;
we can couple into a remission-eigenchannel to enhance the signal of the emitted light,
without sacrificing the penetration depth. We can directly observe the spatial profile of the
remission-eigenchannel by capturing the light scattered out-of-plane with a CCD camera.

8.2 Experimental Samples

To directly observe the spatial distribution of remission eigenchannels within open diffu-

sive systems, we fabricate on-chip two-dimensional diffusive structures on a silicon-on-

insulator wafer with electron beam lithography and plasma etching (see Appendix B for
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Figure 8.2: On-chip diffusive-slab SEM images. A SEM image of the full on-chip
slab-geometry diffusive system used in our experiments is shown in (a). Magnifying by an
order of magnitude, in (b) the 15 µm-wide input waveguide is shown at the buffer-region
diffusive-region interface. Further magnification shows the trigonal photonic-crystal lat-
tice of air holes (radius = 155 nm, lattice constant = 440 nm) and examples of the randomly
arranged 100-nm-diameter holes in the diffusive region.
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details). An example of the overarching structure we fabricate is shown in Fig. 8.2(a). We

inject light into a diffusive system configured in a slab-geometry with a width of 400 µm, a

depth of 200 µm, and open boundaries. The on-chip optical structures we use to route light

into the diffusive slab are equivalent to those used in our waveguide geometry, shown in

Figs. 8.2(a,b). Light is injected via the edge of the wafer into a ridge waveguide and after

∼ 1.5 cm of propagation it enters a 15◦ optical taper. The taper reduces the waveguide

width from 300 µm to 15 µm, in order to convert the lower-order modes to higher-order,

enabling us to access all waveguide modes in the input region. The 15-µm-wide injec-

tion waveguide prior to the slab supports N = 55 propagating modes at the wavelength

of our probe light, λ = 1.55 µm. As shown in Fig. 8.2(b), we include a “buffer” region

in this waveguide to provide mode mixing and remove artifacts from the previous optical

elements. The one notable difference, relative to the structures discussed in the previous

chapters, is the addition of a 10 µm trench on the outside surface of the photonic crystal

taper. The trench is a loss-mechanism designed to prevent any light leaking through the

photonic-crystal taper from reaching the open diffusive-slab. Because the intensity of the

remitted light can be orders of magnitude lower than the incident wavefront, mitigating

any stray light from the input is essential in our structures. The other notable difference in

this chapter’s on-chip structure is the hole density of the diffusive slab. While we still use

randomly arranged 100 nm-diameter holes to induce diffusive wave transport, as shown in

Fig. 8.2(c), the air filling fraction is 2.75% instead of 5.5%. As a result, both the transport

mean free path and diffusive absorption length are longer than in the previous chapters:

`t = 6.4 µm and ξa = 56 µm.
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Figure 8.3: Remission of random input wavefronts. The average intensity pattern
produced by random input wavefronts 〈I(y, z)〉 is shown in (a). An example conditional
probability distribution, 〈I(y, z)〉〈I(y + ∆y, z)〉, of remitted random light is presented in
(b) for ∆y = 25`t. The black dots represent the maxima of 〈I(y, z)〉〈I(y + ∆y, z)〉 along
the z-axis, for each value of y, and the purple curve is the best fit of an ellipse to the data.
The ellipse gives the trajectory of randomly-generated remitted-light traveling from the
input to the displaced region. In (c) the trajectory of remitted light in the (y, z) plane is
plotted as a function of separation ∆y.

8.3 Remitted Random Light

When a finite region of a disordered-slab’s surface is illuminated with a random wave-

front, the light diffuses throughout the medium in every direction. The experimentally

measured and ensemble-averaged intensity distribution, 〈I(y, z)〉, generated by random

illumination patterns in our setup is shown in Fig. 8.3(a). For reference, in the case of

a large passive-system with a point-source at (y = 0, z = 0), the ensemble-averaged

random-input intensity distribution decreases quadratically 〈I(y, 0)〉 ∝ 1/y2 as a function

of lateral separation from the source, and decreases linearly 〈I(0, z)〉 ∝ 1/z as a function

of depth [245]. This scaling is why remitted light is significantly more difficult to detect

than transmitted light, for the same separation from the source.

Based on the experimentally calculated 〈I(y, z)〉 we can obtain the “banana” shaped

trajectory of remitted light generated by random-inputs, for a specific separation between
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the source and detector ∆y. The statistically-likely pathway random remitted-light tra-

verses within the diffusive system can be obtained from the conditional probability distri-

bution, 〈I(y, z)〉〈I(y + ∆y, z)〉, shown in Fig. 8.3(b). For every value of y we can locate

the maxima of the depth cross-section, max[〈I(y, z)〉〈I(y + ∆y, z)〉]z, (black dots) and

fit the z-dependent data to an ellipse (purple line) to obtain an estimate for the trajectory

of the remitted light, for a given separation ∆y. In Fig. 8.3(c) we plot the trajectory of

the randomly-generated remitted-light as a function of separation. The penetration depth

of the remitted light increases as a function of separation. This occurs because the likeli-

hood that a photon will depart the system –and therefore not reach ∆y– is highest near the

surface: z = 0 [244]. So while increased separation between a source and detector gives

access to deeper-penetrating light, it is important to remember that it comes with the price

of a ∝ 1/∆y2 reduced signal-strength. Our goal is to use coherent wavefront shaping to

manipulate the spatial degrees of freedom, in the input wavefront, to improve the remitted

signal strength.

8.4 Remission Matrix

To help ameliorate the anemic signal-strength of remitted light generated by random in-

puts, we introduce the remission matrix, R, and its associated eigenstates. As with the

operators discussed in the previous chapters, the remission matrix relates an orthonormal

set of input wavefronts to the corresponding spatial field distributions within a target re-

gion. For simplicity, we can consider the case of a target slice on the input surface of the

diffusive medium (z = 0) with a center-to-center displacement from the input of ∆y, a

width W , and a thickness ∆z small enough that the field variation along z is negligible.

Therefore, only the field distribution along the y axis of the slice needs to be sampled,

which can be done with M evenly spaced points. If we index the remission region’s points
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by ym, then yM/2 = ∆y when the input is centered at y = 0. For this configuration, the

elements of the remission matrix are given by

Rmn ≡ (W∆z/M)1/2En(ym, z = 0), (8.1)

where En(ym, z = 0) is the electric field at position (ym, z = 0) generated by an incom-

ing wavefront of unit flux, specifically the n-th state of a chosen orthonormal basis of

input wavefronts. As before, the chosen basis of input vectors can be the modes of the

input waveguide, however, any orthonormal basis is sufficient. The eigenvalues of R†R

determine the energy within the target slice when sending the corresponding eigenvectors

into the system. As such, the eigenvector with the highest eigenvalue provides the input

wavefront which emits the most light from the target slice.

8.5 Experimentally Measuring Remission Eigenchannels

We experimentally measure different remission matrices in the diffusive-slab shown in

Fig. 8.2(a). We vary the wavelength of the input light –in increments of 1 nm between

1547 nm and 1558 nm– to create different system realizations. We construct the remission

matrices associated with 10 µm× 10 µm target regions on the surface of the diffusive-slab

with center-to-center separations from the input ranging from ∆y = 20 µm (∆y ≡ 3.1`t)

all the way to ∆y = 160 µm (∆y ≡ 25`t). Note, that in our experimental measure-

ments, target-regions are used as proxies for target-slices in order to mitigate out-of-plane

scattering enhancements when calculating the eigenvalues of R. To obtain the remis-

sion matrices, we use the SLM to modulate the monochromatic laser beam incident on

the diffusive-slab, and measure the field-reconstruction matrix of the entire on-chip sys-

tem. From the field-reconstruction matrix, we can extract any desired remission-matrix.
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Figure 8.4: Field-reconstruction matrix validation. An experimentally measured in-
tensity distribution within the diffusive slab –generated by a random phase pattern on the
SLM– is presented in (a) next to the field-reconstruction matrix prediction (b). The inten-
sity patterns have a Pearson correlation coefficient of 0.94 without any data manipulation
or noise reduction.
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Unlike in the previous chapters, we do not use the buffer region as a ‘launch pad’ when

constructing the remission matrices. While the photonic crystal sidewalls in the diffusive

waveguide-geometry prevents light from circumventing the buffer-region before reaching

the target-regions; the open boundaries of the diffusive slab-geometry do not. In short,

defects in the on-chip input-coupling structures –such as stitching errors in the taper– pro-

vide pathways for light to avoid the buffer region completely, and still reach the target

region. Therefore, optimizing the ratio of the light in the buffer region relative to the light

in the target region will prioritize these defect pathways in an open system instead of reg-

ulating the input. As such, we perform a singular value decomposition on the remission

matrix between the SLM pixels and the target region, RSLM→∆y, to obtain the remission

eigenchannels’ input vectors. We can apply the calculated input vectors of the remis-

sion eigenchannels to the field-reconstruction matrix to generate the 2D intensity pattern

of each eigenchannel; in addition to exciting them experimentally and directly observing

the profiles. The average intensity correlation coefficient –across the entire slab region in

the CCD field of view– between measured and reconstructed patterns is 〈C〉 = 0.92 (see

Fig. 8.4 for an example), and therefore experimentally reconstructed patterns are effec-

tively interchangeable with measured patterns. Using reconstructed patterns, however, is

advantageous because it allows us to modulate both the amplitude and phase of the input

wavefront. As such, we will proceed using the field-reconstruction matrix to generate the

spatial profiles of the remission eigenchannels. After reconstructing the intensity pattern

of a remission eigenchannel, we renormalize the average intensity in the buffer region

〈IBuff (y, z)〉y,z in order to account for variation in the coupling strength in the eigenstates

of RSLM→∆y. After renormalization, we calculate the remission-eigenchannel intensity

distributions for different system realizations (averaging over wavelength) and ensemble

average the corresponding 2D patterns.

In Fig. 8.5(a), we show an example ensemble-averaged “open” remission eigenchan-
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Figure 8.5: Remission eigenchannel intensity distribution. An example ensemble-
averaged remission eigenchannel intensity distribution is shown in (a) for a remission
region displaced ∆y = 17.2`t along the input surface. For reference, the trajectory of
the random-light-generated conditional probability distribution from the input to the emis-
sion region (white dashed curve) is shown. To illustrate the directionality of remission
eigenchannels, and their ability to redistribute energy inside the diffusive system, in (b)
we show the difference between the lower and upper remission eigenchannel intensity dis-
tributions: 〈I+∆y(y, z)〉 − 〈I−∆y(y, z)〉. For reference, the corresponding random-light
conditional probability distributions are shown.
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nel pattern 〈I∆y(y, z)〉. The target region (white square) is located ∆y = 17.2`t away

from the input source. The “banana” trajectory of the corresponding random-input condi-

tional probability distribution is superimposed on top (white dashed line). The intensity

distribution of the remission eigenchannel follows the “banana” trajectory, redistributing

the energy inside the system towards the target region. The redistribution of energy is

clearly illustrated in Fig. 8.5(b) where we calculate the difference between the lower and

upper remission eigenchannel intensity distributions: 〈I+∆y(y, z)〉 − 〈I−∆y(y, z)〉. The

blue (red) shading corresponds to the intensity distribution of the remission eigenchannel

directed towards the upper (lower) region. Both the upper and lower “open” remission pat-

tern redistribute the optical energy in the system along the trajectory of the corresponding

conditional probability distribution (dashed line) for random inputs. In (a,b) we use the in-

tensity patterns of the first and second order eigenchannels from 12 different wavelengths,

when calculating the ensemble-averaged “open” remission eigenchannel.

In Fig. 8.6(a-c), we plot the difference between the “open” remission eigenchannel pat-

terns 〈I∆y(y, z)〉 and the ensemble-averaged random input pattern 〈I(y, z)〉. In (a-c) The

target region (black square) is located at ∆y = 12.5`t, 18.8`t, & 25`t, away from the input

source respectively. The development of the lower (red) and upper (blue) regions in the in-

tensity distribution demonstrate that remission eigenchannels significantly redistribute the

optical energy in the system compared to random inputs. Furthermore, the red regions in

(a-c) follow along the trajectory of the random-input conditional probability (green line)

from the input to the target region. Additionally, the trajectory of the remission eigen-

channels’ conditional probability distribution, 〈I+∆y(y, z)〉〈I−∆y(y + 2∆y, z)〉, is plotted

(black dashed line). Comparison between the curves shows that “open” remission eigen-

channels have the same trajectory as the equivalent random-input generated “bananas”.

Therefore, we can direct the flow of light through diffusive systems by coupling into re-

mission eigenchannels to enhance the signal without sacrificing the penetration-depth. In
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Figure 8.6: Difference between remission eigenchannels and random illumination
patterns. In (a-c), the ensemble-averaged “open” remission eigenchannel pattern sub-
tracted by the ensemble-averaged random input pattern 〈I∆y(y, z)〉 − 〈I(y, z)〉 is shown
for a target region (black square) located at ∆y = 12.5`t, 18.8`t, & 25`t away from the
input source. The solid-green lines show the trajectory of the conditional probability dis-
tribution generated by random light, in each panel, while the black dashed lines show the
trajectory the remission eigenchannel’s conditional probability distribution.

our experimental setup, unfortunately, enhancements in the out-of-plane scattering can ar-

tificially inflate the eigenvalues ofRSLM→∆y. As such, numerical simulations of the real-

istic system are required to quantitatively estimate the eigenvalue enhancement remission

eigenchannels provide. Kwant-based numerical simulations [188] of the realistic system

show that for the separations shown, the “open” eigenchannels enhance the remitted signal

strength by a factor of ≈ 7 across the entire target slice, when using a 10 µm target slice

on the surface1. Therefore, we can obtain a significant enhancement in the strength of the

remitted light: over a finite area.

1These results are currently unpublished.
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8.6 Discussion & Conclusion

In conclusion, we have conceptually introduced and experimentally investigated remission

eigenchannels in open slab-geometry diffusive-systems. Using our on-chip interferomet-

ric platform, we can measure remission matrices and directly investigate the associated

eigenchannels; for different realizations of statistically equivalent disordered systems. We

show that exciting remission eigenchannels significantly enhances the signal strength of

diffuse remitted-light, without altering the depth penetration. Our findings are relevant

to many diffusive-wave imaging and sensing applications: ranging from seismology, to

non-invasive photo-medical devices and computer-brain interfaces.
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Chapter 9

Conclusion

In this dissertation, a methodology for experimentally creating and controlling random

light in free space and in diffusive media was presented.

In free space, we demonstrated the ability to arbitrarily customize the intensity statis-

tics and spatial-correlations of spatially-incoherent light. Because our method of creating

and controlling complex light is simple –yet versatile– it can easily be adapted for use in a

diverse range of optical experiments and applications. For example, the ability to arbitrar-

ily control the non-local correlations and intensity PDFs of speckle patterns can be used

to create exotic optical-potentials for studies on the transport of cold atoms, active me-

dia, and microparticles. Potentially, it can also enhance many structured-illumination ap-

plications like speckle illumination microscopy, super-resolution imaging and high-order

ghost imaging. We demonstrated this in the case of super resolution imaging, where we

created and used bespoke speckle patterns for parallelized nonlinear pattern-illumination

microscopy. In our proof-of-principle experimental demonstration, we obtained a spatial

resolution three times higher than the diffraction limit of the illumination optics in our

setup. Furthermore, we demonstrated why intelligently tailoring speckles enables them

to outperform Rayleigh speckles. While our demonstration was designed with a single

imaging technique in mind, there are a myriad of random-light based imaging & sensing
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techniques that can be similarly enhanced.

Beyond direct applications, it is worth speculating about the future of research on cus-

tomizing random light. In this dissertation, all of the customized speckle patterns were

generated within a 2D plane with spatially-coherent and monochromatic light. In princi-

ple, however, nothing prevents speckle customization in pulsed light, broadband light, or

over a 3D volume. As such, the research presented in the first half of the dissertation is

merely the beginning of a diverse and exciting branch of future research on creating and

controlling random light.

In diffusive media, we have demonstrated the ability to coherently control wave trans-

port through –and throughout– multiple scattering systems. We developed a unique ex-

perimental platform based on the synthesis of nanofabricated on-chip structures with in-

terferometric wavefront-shaping. With it, we investigated the fluctuations and correlations

of transmission eigenchannel depth profiles in diffusive media. Using our unparalleled

access to the optical field inside on-chip diffusive structures; we introduced and experi-

mentally investigated the deposition matrix Z . In conjunction, we developed a theoretical

formalism to predict the ultimate limitations on energy deposition at any depth inside a

diffusive medium. Finally, we conceptually defined the remission matrix R and exper-

imentally demonstrated that “open” remission eigenchannels enhance the output signal

strength without sacrificing the penetration-depth of the collected light.

Although our studies were conducted on planar diffusive structures, we believe, many

of our findings can be extended to volumetric diffusive systems. Furthermore, they are

applicable to other types of waves such as microwaves and acoustic waves. Therefore, the

range of future applications of our work is quite diverse. In biology & medicine these deep

tissue applications include cellular imaging/sensing, photothermal surgery/therapy, and

optogenetic control over cells. In more day-today applications, our findings can be applied

to enhance “wearable” optical sensors –like those found in a smartwatch– as well as aid
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the development of non-invasive computer brain interfaces. Outside biology & medicine,

applications include developing the ability to probe and manipulate photoelectrochemical

processes deep inside nominally opaque media. In seismology, our results can enhance

imaging and sensing deep below the earth’s crust.

Beyond applications, there still are many fundamental-physics research-topics that our

experimental platform is uniquely poised to explore. Since our on-chip experimental plat-

form allows for both direct measurement of the complex field inside a random structure

and near-complete control over the incident field, we can investigate how to shape an in-

cident wavefront to control the spatial distribution of light across an entire disordered sys-

tem: via a “Green’s” matrix. Furthermore, this setup can be used to experimentally study

the spatial structure and statistics of the time-delay eigenchannels of a diffusive system, as

well as the time-gated transmission and reflection eigenchannels of a diffusive system.
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Appendix A

Random Light In Free Space

A.1 Transmission-Matrix Measurement

Wave propagation in any static, linear, scattering system is deterministic: no matter how

complex. Therefore, such a system’s response to an incident wavefront can be completely

characterized by a linear operator. In this dissertation, predominantly two such operators

are experimentally measured: the field-transmission matrix and the field-reconstruction

matrix. The field-transmission matrix transforms any wavefront incident on a scattering-

system into the corresponding wavefront transmitted by the system. As such, it is a subset

of a system’s scattering matrix. The field-reconstruction matrix transforms any input wave-

front into the corresponding spatial field profile within the scattering-system. To measure

either a transmission matrix or a field-reconstruction matrix, a simple four-phase plus one-

amplitude technique is needed. The following section explores the measurement processes

used in this dissertation.
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A.1.1 Four-Phase Plus One-Amplitude Measurement

The fundamental step of a transmission/field-reconstruction matrix measurement is recov-

ering a complex field profile from a series of interferometric intensity measurements. To

explain this technique, consider the case of two field patterns, ER(r) & EM(r), interfering

I(r) = |ER(r) + EM(r)|2 (A.1)

to produce the measurable intensity I(r). Our goal is to recover the field patternEM(r), up

to a relative phase. To that end, we will allow ourselves the ability to apply a global phase

modulation, ∆θ, to EM(r): of the form EM(r)ei∆θ. With this our measured intensity

pattern can be written as

I(r,∆θ) = |ER(r) + EM(r)ei∆θ|2 (A.2)

= |ER(r)|2 + |EM(r)|2 + 2Re[E∗R(r)EM(r)ei∆θ]. (A.3)

From this expression one can show that

I(r, 0)− I(r, π) = 4Re[E∗R(r)EM(r)] (A.4)

and

I(r, π/2)− I(r, 3π/2) = −4Im[E∗R(r)EM(r)]. (A.5)

Therefore, with four phase modulation measurements we can obtain

E∗R(r)EM(r) =
I(r, 0)− I(r, π)

4
+ i

I(r, 3π/2)− I(r, π/2)

4
. (A.6)
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If we have the ability to toggle the reference field ER(r) off, then we can directly measure

|EM(r)|2. Therefore, with four phase measurements and one amplitude measurement we

can remove the amplitude of the reference field from the product in Eq. A.6 to obtain

EM(r)e−iφ(r) = |EM(r)| exp

(
iArg

[
I(r, 0)− I(r, π)

4
+ i

I(r, 3π/2)− I(r, π/2)

4

])
,

(A.7)

where φ(r) is the phase pattern of the reference.

A.1.2 Building A Transmission Matrix

From the four-phase plus one-amplitude measurement, our next goal is to construct a trans-

mission matrix (or interchangeably a field-reconstruction matrix). To this end, consider the

case of an experimental system with a spatial light modulator, with N macro-pixels, and

a CCD camera, with M pixels, juxtaposed about a linear-scattering medium. The field-

mapping relationship from the SLM macro-pixels to the CCD pixels can be described by

the following M ×N complex-valued matrix:

T ≡



t1,1 t1,2 · · · t1,N

t2,1 t2,2 · · · t2,N
...

... . . . ...

tM,1 tM,2 · · · tM,N


. (A.8)

With this representation, displaying a phase-modulation pattern on the SLM is equivalent

to multiplying the transmission matrix from the right by a N -length column, ei~θN , with the
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resulting field incident on the CCD taking the form of a M -length column, ~EM , i.e.

~EM = Tei
~θN ⇒



E1

E2

...

EM


=



t1,1 t1,2 · · · t1,N

t2,1 t2,2 · · · t2,N
...

... . . . ...

tM,1 tM,2 · · · tM,N





eiθ1

eiθ2

...

eiθN


. (A.9)

Experimentally, the goal is to determine the elements of the transmission matrix up to a

global-phase term along each row m. The most conceptually simple way to accomplish

this is to use a planewave reference beam –created by a beamsplitter in the laser path before

the SLM– and sequentially perform a four-phase plus one-amplitude measurement for

each of the SLM macro-pixels. In order to only display a single macro-pixel on the SLM,

one simply needs to display a diffraction grating everywhere outside the specific macro-

pixel: with a period smaller than the macro-pixel size. Furthermore, because the reference

beam is the same for each macro-pixel, the relative phase term in Eq. A.7 will be the same

for each measurement. Unfortunately, the conceptually simple method of measuring a

transmission matrix in the macro-pixel basis is ill-advised experimentally: due to signal-

to-noise considerations, as well as the reality of stray light in experiments. The simplest

workaround is to use a different measurement basis on the SLM. To understand how this

works, note that the field measurement of a single macro-pixel on the SLM is equivalent

to multiplying our representation of the transmission matrix by a column of the identity

matrix: I. As such, physically measuring the transmission matrix in the macro-pixel basis

is mathematically equivalent to multiplying the transmission matrix by the identity matrix

T = TI. Because any orthonormal basis described by the matrix U is simply related to

the identity matrix, UU−1 = I, the mathematical relation for measuring the transmission

matrix can be represented as T = TUU−1. In this expression, the matrix product TU ≡

TU physically represents measuring the transmission matrix in the U basis. Therefore,
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the simple expression

T = TUU−1 (A.10)

can be used to transform any transmission matrix measured using the vectors of the U

basis into the macro-pixel representation of the transmission matrix. Conventionally the

Hadamard basis is used to measure the transmission matrix [72]. Where the single pixel

basis can be defined by taking the columns of the identity matrix, the Hadamard basis can

be defined by taking the columns of a Hadamard matrix. A square Hadamard matrix of

dimension 2k can be recursively defined by H1 = 1,

H2 =

1 1

1 −1

 , (A.11)

and

H2k =

H2k−1 H2k−1

H2k−1 −H2k−1

 . (A.12)

The Hadamard basis is advantageous because it is orthogonal, yet the elements in the

basis-vectors are either 1 or -1. Because all of the macro-pixels on the SLM are used

simultaneously when measuring the transmission matrix with the Hadamard basis, the

measured signal strength is N times higher than when measuring the transmission matrix

in the single macro-pixel basis. As shown in Eq. A.10, once the transmission matrix has

been measured in the Hadamard basis, it can be converted into the spatial representation

by a basis transformation: or in fact, any other basis representation desired. The one

limitation of working with the Hadamard basis is the dimensional restriction to 2k. If this
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is undesirable, one can alternatively use the columns of the following N ×N matrix:

H̃N ≡



1 −1 −1 · · · −1

1 1 −1 · · · −1

1 1 1 · · · −1

...
...

... . . . ...

1 1 1 · · · 1


. (A.13)

In some experiments a planewave reference beam is impractical. When this is the case,

a self-reference technique can be used [112]. In this measurement, half of the SLM macro-

pixels are fixed and used as a reference field; while the transmission matrix elements

associated with the other half of the SLM macro-pixels are measured. Upon completion,

the function of each region is switched and the measurement is repeated with the reversed

rolls. This results in two matrices with different relative phase values at each camera pixel:

according to Eq. A.7. A third interference measurement between the reference patterns

can be used to correct this relative phase difference, and the two matrices can be stitched

together to form a single matrix. Note, that in the experimental setups shown in Chapters

2-5 it is advantageous to further modify the relative phase on each CCD pixel when using

a self-reference technique. Because of the approximate Fourier transform relationship

between the SLM and CCD; each SLM macro-pixel is approximately a plane wave in the

CCD plane. As such, multiplying all of the matrix columns by the conjugated phase of

one of the matrix columns (associated with one of the central macro-pixels on the SLM)

results in a planewave relative-phase pattern in this setup.

Until this point, the matrix measurement protocols described are close to standard.

We have developed the following modification to the standard techniques in order to re-

duce error in the measured matrix. Specifically, we average over independent matrix mea-

surements of the same system. Empirically, we have found that superimposing the same
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random-phase pattern onto the complete set of basis vectors used in a single transmission

matrix measurement, i.e. for the basis shown in Eq. A.13

H̃N ⇒



eiθ1 −eiθ1 −eiθ1 · · · −eiθ1

eiθ2 eiθ2 −eiθ2 · · · −eiθ2

eiθ3 eiθ3 eiθ3 · · · −eiθ3
...

...
... . . . ...

eiθN eiθN eiθN · · · eiθN


, (A.14)

and varying the superimposed phase pattern between matrix measurements is more ef-

fective than repeating the same measurement multiple times. This is because the mea-

surement error –caused by low signal– is uncorrelated between the different transmission

matrix measurements. While this lengthens the measurement time, experimental artifacts

such as drift can be accounted and corrected for by periodically measuring test/reference

patterns to track changes in the system.

A.2 Transmission Matrix Validation

To check the error of our transmission matrix measurements, we compare a customized

speckle pattern predicted by the measured transmission matrix, in Fig. A.1(a), with the

corresponding experimentally measured speckle pattern, in Fig. A.1(b). The difference

between the two intensity patterns is 9.7% without any data processing or manipulation;

which is typical for transmission matrices measured using our technique. Because the

customized properties of the speckle patterns are statistical –both the intensity PDF and

the spatial intensity correlation function– they are robust to minor differences between the

measured and predicted speckle patterns. For example, in (c) we compare the intensity

PDF of predicted speckle patterns, green dashed line, with the intensity PDF of the cor-
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Figure A.1: Transmission matrix validation. An example customized speckle pattern
predicted by our transmission matrix (a) is juxtaposed with the corresponding experimen-
tally measured speckle pattern (b). The difference between the two intensity patterns is
9.7%. In (c) we compare the intensity PDF of predicted speckle patterns, green dashed
line, with the intensity PDF of the corresponding measured speckle patterns, purple solid
line, for an ensemble of 100 speckles patterns like those shown in (a) and (b). The differ-
ence between the two intensity PDFs is 3.7%. In (d) we present a measured image of the
speckles in both the target region and the junkyard region. The white square denotes the
boundary of the target region.
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responding measured speckle patterns, purple solid line, for an ensemble of 100 speckles

patterns like those shown in (a) and (b). The difference between the two intensity PDFs

is just 3.7%: less than the difference between the two speckle patterns. This is because

the averaging inherent to calculating the respective intensity PDFs suppresses, rather than

compounds, the effects of fluctuations/deviations between the two patterns.

The speckle pattern shown in Fig. A.1(b) is located within the target region. However,

the speckles in the region outside of it –which we call the junkyard– have distinct statistical

properties relative to those in the target region. Fig. A.1(d) is a measured speckle pattern

including both the target region and the junkyard. The image encompasses the complete

Fourier plane of the SLM. While the central target region (denoted by the white square)

adheres to the desired intensity PDF and spatial intensity correlations, the speckles in the

junkyard region do not. Though the precise statistical properties of the speckles in the

junkyard region depend on the details of the target region’s speckles, they approximately

adhere to Rayleigh statistics and are devoid of non-local correlations.

A.3 Effect Of Transmission Matrix Error On Customized

PDFs

In this section, we perform a theoretical assessment on how experimental error in the trans-

mission matrix measurement effects the intensity PDFs of the customized speckle patterns

(using data from Chapter 2). Due to measurement noise and temporal decorrelation of

the experimental setup (ambient temperature drift and/or laser instability), the measured

transmission matrix, Tm, differs from the actual transmission matrix, Ta, that produces

the measured speckle pattern. Their difference is:

∆T = Tm −Ta. (A.15)
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Figure A.2: Measured speckle pattern error in Chapter 2. The statistical distribution
of (Ie − Id)/

√
Id, extracted from the experimental data in Chapter 2 (symbols), is fit well

by the Gaussian distribution G(Ie, Id) in Eq. A.19 (lines). The fitting parameter is given
by a = 0.020 for the uniform PDF (black), a = 0.019 for the linearly increasing PDF
(red), a = 0.037 for the PDF with a single peak (blue) and a = 0.029 for the bimodal PDF
(green).

Tm is used in the numerical optimization to obtain the SLM field ~Ψs to create the target

speckle intensity-pattern

~Id = |Tm
~Ψs|2. (A.16)

The measured speckle intensity-pattern is

~Ie = |Ta
~Ψs|2 (A.17)

The difference between the two intensities, to the first order in ∆T, is

~Ie − ~Id = 2<
[
(Tm

~Ψs)(∆T ~Ψs)
∗] = 2<

[√
~Id e

i~θd(∆T ~Ψs)
∗] , (A.18)

where Tm
~Ψs =

√
~Id e

i~θd . Assuming the scalar elements of ∆T are uncorrelated with

those in ~Ψs, then the scalar quantities of (~Ie − ~Id)/

√
~Id = 2<

[
(∆T ~Ψs)

∗] will obey
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Gaussian statistics, as verified experimentally in Fig. A.2. The statistical distribution for

(Ie − Id)/
√
Id is:

G(Ie, Id) = A exp
[−(Ie − Id)2

2aId

]
(A.19)

where a is a coefficient that quantifies the experimental error, and A is the normaliza-

tion constant given by
∫∞

0
G(Ie, Id)dId = 1. Therefore, the normalized expression for

G(Ie, Id) is

G(Ie, Id) =
exp

[−(Ie)2−(Id)2

2aId

]
2IeK1[Ie/a]

(A.20)

where K1 is the Bessel function of the first kind.

Figure A.3: Predicted effect of error on PDFs. The deviation (shaded area) of the inten-
sity PDF (blue solid line) from the target one (black dashed line) is reproduced numerically
by Eq. A.21. (a-d) for the four PDFs shown in Fig. 2.5.
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The probability density function of the measured speckled intensity F̄ (Ie) is equal to

the target distribution F (Id) convolved with the error function G(Ie, Id) in Eq.(A.20):

F̄ (Ie) =

∫ ∞
0

F (Id)G(Ie, Id)dId (A.21)

The convolution corresponds to an averaging of F (Id) over adjacent values of Id. Con-

sequently, the measured PDF F̄ (Ie) displays more discrepancy in the region where F (Id)

changes rapidly. Since G(Ie, Id) is wider at larger Ie, the averaging effect is stronger, lead-

ing to a larger error at higher intensity. These effects are confirmed in Fig. A.3, where

we plot Eq.(A.21) for the four PDFs shown in Fig. 2.5 of Chapter 2. For the uniform and

linearly increasing PDFs in (a) and (b), the abrupt drop in F (Id) at the upper boundary of

the intensity range is smoothed out in F̄ (Ie). In (c), the single-peaked PDF has relatively

small error, although the deviation from the target PDF is clearly larger at higher intensity.

For the bimodal PDF in (d), the peak at larger intensity is suppressed more due to the

stronger averaging effect, and the fine features around the dip in between the two peaks

are removed by averaging.

The interested reader may have noticed, there is a significant increase in the fidelity

of the customized PDFs in Chapter 4 compared to Chapter 2. This is primarily due to

technical improvements made in the transmission matrix measurement process between

the two works. In fact, in Chapter 4 the error described in this section is practically non-

existent. This can visually be seen in the symmetry of the peaks in the bimodal distribution

presented in Fig. A.1(c) compared to the asymmetry in Fig. A.3(d).
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Appendix B

Random Light In Disordered Media

B.1 On-Chip Nano Fabrication Process

The on-chip disordered waveguide structures studied in this dissertation were fabricated

using resources in the Becton Center Cleanroom at Yale University and the Yale Institute

for Nanoscience and Quantum Engineering (YINQE). In this appendix section, the fabrica-

tion process is delineated. In short, we use a combination of positive-resist electron-beam

lithography and reactive ion etching to create our structures in the top silicon-layer of a

silicon-on-insulator chip.

Wafer Details

Our fabrication process starts with a 6 inch-in-diameter silicon-on-insulator wafer pro-

duced by Soitec (G6P-092-01). The wafer structure consists of a 220 ± 20 nm thick

silicon-crystal top-layer, placed on top of an insulating 3 µm thick layer of silicon-dioxide,

which resides on a ≈ 0.7 mm thick silicon carrier wafer.
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Wafer Partitioning

Before fabricating our on-chip structures, we need to break the 6-inch SOI wafer into

smaller rectangular chips: we typically use 3 cm × 2.5 cm. Because surface scratches

on the silicon layer result in light loss –which can be detrimental to our structures when

uncontrolled– we use the following procedure to protect the top layer of the wafer when

breaking it apart and storing the chips.

1. We apply a protective layer of PMMA (495K A11) to the wafer, and spin it at 2000

RPM for 3 minutes.

2. After spinning, the wafer is placed onto a 180 °C hotplate for 60 seconds.

3. After cooling to room temperature, the wafer can be safely cleaved along the crystal

axes using a LatticeAx device and partitioned into multiple rectangular chips.

Protective Resist Removal

Around one day before fabricating structures on the chip, the PMMA resist is removed

using the following cleaning-procedure. Note that in all of the following steps the top-

layer of the wafer is facing upright and carbon-fiber tipped tweezers are used to handle the

chip to avoid damaging the surface.

1. We immerse the chip in an acetone solution in a beaker (with a 99.5%+ acetone

purity), and place the beaker into an ultrasonic bath for 2 minutes.

2. We remove the chip from the acetone solution, and directly submerge the chip into

a beaker with a Super MethanolTM solution (with a 99.99%+ methanol purity), and

place the beaker into an ultrasonic bath for 2 minutes.
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3. We remove the chip from the methanol solution, and directly submerge it into a

beaker with a Super IsopropanolTM solution (with a 99.99%+ isopropanol purity),

and place the beaker into an ultrasonic bath for 2 minutes.

4. We remove the chip from the isopropanol solution and submerge it in a beaker filled

with deionized water, and place the beaker in an ultrasonic tank for 2 minutes.

5. We remove the chip from the beaker and place it under a steady stream of deionized

water, with the top surface facing the source. The chip is removed and reinserted

until no water droplets adhere to the top surface: indicating the removal of nearly all

particles from the surface.

After removing the chip from the deionized water stream, and drying it with filtered

nitrogen gas, we inspect the top surface of the chip (with an optical microscope) for any

remaining particles or remnants of the resist. Generally, particles appear as black spots

while resist remnants appear as colorful non-uniformities on the surface of the chip. If

anything is found, the above steps are repeated using new chemical solutions.

Chip Thickness Measurement

At this point, it is important to ascertain the precise thickness of the top silicon layer of

the chip in the area we intend to etch our structures: because the thickness can alter the

optical performance of the structures. While the chips cleaved from the center of the 6-

inch SOI wafer tend to have a uniformly thick top-layer, this is not always the case for

chips cleaved from the edges: due to the wafer’s manufacturing process. We measure and

record the surface-layer thickness at different points across the chip using a Filmetrics

F54-UV Reflectometer. If the top layer of the chip is uniformly 220-nm-thick, across the

region of interest, it is suitable for fabrication.
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Electron-Beam Resist Application

Once the chip is deemed suitable for fabrication, the next step is applying the electron-

beam resist onto the chip via the following steps. We use the positive resist CSAR 62

manufactured by Allresist, however, this can be interchanged with ZEP manufactured by

Zeon Chemicals.

1. We mount the chip onto a vacuum sealed spinner and coat the top with CSAR 62:

administered via a syringe with a 0.22 µm filter.

2. The chip is spun at 2000 RPM for 2 min, resulting in the formation of a 600-nm-

thick layer of resist on top of the chip.

3. After spinning, we directly place the wafer onto a 180 °C hotplate for 3 minutes, to

remove any residual solvent.

Once the electron-beam resist is applied to the chip, we store the chip in a desiccating

container until the electron-beam exposure.

Electron-Beam Exposure

We use a Raith EBPG 5000+ electron-beam lithography system to expose the resist layer

on top of the chip. Because we work with a positive resist, the electron-beam is used to di-

rectly write the structures we wish to etch away (the holes, photonic crystals and trenches).

We write our structures using an electron-beam with a 20nm spot-size, providing a dose

of 600 µC/cm2, and a 5 nm writing-grid size.

Resist Development

After the electron-beam exposure we develop the resist using the following procedure.
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1. We pour a solution of xylenes (with a 98.5%+ purity), chilled to 4 °C, into a beaker

also chilled to 4 °C.

2. While holding the chip from the corner with a pair of tweezers –away from exposed

regions in the resist– we stir the sample around in the xylenes-solution for 1 minute

and 15 seconds.

3. We immediately transfer the chip into a solution of Super IsopropanolTM (with a

99.99%+ isopropanol purity) –while still holding the corner with tweezers– and

stirring for 1 minute 15 seconds.

4. The chip is dried with filtered nitrogen gas. Optionally, it can be placed onto a 130

°C hotplate for 2 minutes after drying completely.

Once the development process is complete, we store the chip in a desiccating container

until the reactive ion etching.

Reactive Ion Etching

After the waveguide structures are chemically developed into the resist, we transfer the

patterns to the top layer of the chip using reactive ion etching (chlorine plasma) in an

Oxford Instruments Plasm Pro 100 system. Before etching the chip, the chamber is con-

ditioned by performing a chlorine plasma process with the carrier wafer –without the chip

inserted– which runs at least twice the anticipated length of the etching process. During

this process we verify that the chlorine plasma exhibits a light blue color. Afterwards we

run a chlorine plasma process with a small test silicon-on-insulator chip, for half the antic-

ipated etching times. Using a Filmetrics F54-UV Reflectometer we measure the top-layer

thickness of the test-chip, before and after the chlorine plasma process, to calibrate the sil-

icon etching rate of the machine. We use the measured etch rate to determine the duration
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of the chlorine plasma process for our main-chip. Our goal is to ensure that the 100 nm

holes are etched completely through the top-silicon-layer of the chip without significantly

degrading the sidewalls of the larger structures by over-etching.

Final Sample Cleave & Resist Removal

Finally, we cleave the chip so that the edge is separated from the disordered structures

by ≈ 1.5 cm of empty waveguiding structures. After cleaving, we remove the remaining

resist from the chip using the following process. Note that we hold the chip from the

corner with carbon fiber tipped tweezers, and gently stir it when in solution.

1. We immerse the chip into a 1-methyl-2-pyrrolidinone solution in a beaker (with

99.7%+ purity) for 2 minutes.

2. We immerse the chip into an acetone solution in a beaker (with a 99.5%+ acetone

purity) for 2 minutes.

3. We remove the chip from the acetone solution, and directly submerge the chip into

a beaker with a Super MethanolTM solution (with a 99.99%+ methanol purity) for 2

minutes.

4. We remove the chip from the methanol solution, and directly submerge it into a

beaker with a Super IsopropanolTM solution (with a 99.99%+ isopropanol purity)

for 2 minutes.

5. We remove the chip from the isopropanol solution, and place it under a steady stream

of deionized water, with the top surface facing the source. The chip is removed and

reinserted until no water droplets form outside the area of the fabricated structures.

6. The chip is dried with filtered nitrogen gas.
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Figure B.1: Scanning electron microscope (SEM) images of a 2D diffusive waveg-
uide. In (a) we show a composite SEM image which outlines the structures we etch into a
silicon-on-insulator wafer when fabricating our structures. A SEM image of the interface
between the buffer and diffusive regions is marked by the blue dashed line in (b). Close-up
images of the photonic crystal sidewall and randomly-distributed holes are shown in (c)
and (d).
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B.2 Disordered Waveguide Design

Figure B.1 shows a schematic of our two-dimensional (2D) disordered waveguide struc-

tures. The major components are the tapered waveguide, the buffer region, and the diffu-

sive region. The air holes (diameter = 100 nm), which induce light scattering in the buffer

and diffusive regions, are randomly distributed with a minimum (edge-to-edge) distance

of 50 nm. The diffusive region has 5250 holes, which results in an air filling fraction in

the Si of 5.5%. The number of air holes in the buffer region is 260, and the air filling

fraction is 0.55%. The sidewalls of the waveguide consist of a trigonal lattice of air holes

(radius = 155 nm, lattice constant = 440 nm). They provide a 2D complete bandgap for TE

polarized light (used in the experiment) within the wavelength range of 1120 nm to 1580

nm [186].

The probe light is injected from the side/edge of the wafer into a ridge waveguide

(width = 300 µm, length = 15 mm). It then enters a tapered waveguide (tapering angle

= 15◦). The tapered waveguide width decreases gradually from 300 µm to 15 µm. The

tapering results in waveguide mode coupling and conversion [183]. To avoid light leakage,

the tapered waveguide has photonic crystal sidewalls.

B.3 Optical Setup

Fig. B.2 is a detailed schematic of the experimental setup used in Chapters 6 & 7. Continuous-

wave (CW) output from a tunable laser (Keysight 81960A) –operating around 1554 nm–

is linearly polarized and split into two beams. One beam illuminates the phase modulating

surface of a phase-only SLM (Hamamatsu LCoS X10468), while the other is used as a ref-

erence beam. A one-dimensional (1D) phase-modulation pattern is displayed on the SLM,

consisting of 128 macropixels. Each macropixel consists of 4× 800 regular pixels on the
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Figure B.2: A depiction of our experimental setup. Monochromatic light from our laser
is linearly polarized and split into two beams. One beam illuminates the phase modulating
surface of a spatial light modulator (SLM), while the other is used as a reference beam.
The SLM is used to control the input wavefront in our diffusive waveguide structures. A
beam splitter merges the light collected from the top of our sample with the reference beam
on an IR CCD. The focal length of the three lenses used in this setup are: f1 = 400 mm,
f2 = 75 mm, and f3 = 100 mm.
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SLM. Using two lenses with focal lengths of f1 = 400 mm and f2 = 75 mm, we image

the field on the SLM plane onto the back focal plane of a long-working-distance objective

(Obj. 1) (Mitutoyo M Plan APO NIR HR100×, Numerical Aperture = 0.7). To prevent the

unmodulated light from entering the objective lens, we display a binary diffraction grating

within each macropixel to shift the modulated light away from the unmodulated light in

the focal plane of the f1 lens. Using a slit in the same focal plane, we block everything

except the phase-modulated light in the first diffraction order. Before the f2 lens, we insert

a half-wave (λ/2) plate to flip the polarization of light so that it is TE polarized relative

to the input waveguides of our sample. The side of our SOI wafer is placed at the front

focal plane of Obj. 1 and illuminated with the Fourier transform of the phase-modulation

pattern displayed on the SLM. From the top of the wafer, a second long-working-distance

objective (Obj. 2) (Mitutoyo M Plan APO NIR HR100×) collects light scattered out-of-

plane from the on-chip structures. We use a third lens with a focal length of f3 = 100 mm

together with Obj. 2 to magnify the sample image by ×50. With a second beam splitter,

we combine the light collected from the sample and the reference beam. Their interference

patterns are recorded with an IR CCD camera (Allied Vision Goldeye G-032 Cool). Note,

that in Chapter 8 we modified the setup to only allow a single polarization component of

the light collected by Obj. 2 to reach the CCD: by inserting a polarizing beamsplitter.

B.4 Fluctuations & Correlations of Transmission Eigen-

channels

In the following section, supplementary information pertaining the analysis in Chapter 6

is provided.
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Figure B.3: Waveguide structure and full-field measurement. A composite SEM im-
age of a diffusive waveguide is shown in (a). In (b) the 2D intensity pattern of a measured
high-transmission eigenchannel is shown. Using our interferometric setup, we can recon-
struct the phase of the light field inside the diffusive waveguide in (c). In (b-c) the edges
of the diffusive region are marked by the vertical dashed lines.

B.4.1 Transmission Matrix Measurement

With the interferometric setup described in Section B.3, we can measure the field dis-

tribution of light scattered out-of-plane from within our diffusive waveguides: for any

phase-modulation pattern displayed on the SLM. To do this, we first measure the 2D in-

tensity distribution of the scattered light by blocking the reference beam with a shutter (see

Fig.B.3(b) for an example). Then using the reference beam in our setup, we retrieve the

phase profile of the scattered light with a four-phase measurement (as described in Sec-
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tion A.1 of the appendix). Fig. B.3(c) shows the spatial distribution of the recovered phase

pattern of the light field across a diffusive waveguide.

By measuring the complex field throughout the waveguide for an orthogonal set of

phase patterns displayed on the SLM, we can construct two matrices tslm→buff and tslm→end,

which map the field from the SLM surface to the buffer and to the far end of the disordered

waveguide, respectively. To construct the matrix relating the field in the buffer region to

the field near the end of the diffusive waveguide, tbuff→end, we define the field-mapping

matrix between the two regions tbuff→end ≡ tslm→end t
−1
slm→buff . To calculate the inverse

of tslm→buff , we use Moore-Penrose matrix inversion. In this operation we only take the

inverse of the 55 highest singular values of tslm→buff , and set the inverse of the remaining

singular values to zero. This restriction is imposed because our diffusive waveguide only

has 55 transmission eigenchannels.

B.4.2 Transmission Eigenchannel Profile Measurement

In total, we measure the transmission eigenchannel intensity profiles of 13 independent

realizations. We obtain these measurements from two samples with different random hole

configurations. To generate independent system realizations from the same random hole

configuration, we vary the wavelength of the input light beyond the spectral correlation

width of the diffusive region: 0.4 nm. Over a wavelength span of 3 nm, we vary the

input wavelength of our laser in increments of 0.5 nm. We choose the specific wavelength

range of the measurement –for each random hole configuration– such that the effective

dissipation in the diffusive region is minimal and homogeneous over the wavelength range.

While our waveguide structure has a width of 15 µm, we only use the central 10 µm

region of the waveguide’s out-of-plane-scattered light when performing our measurements

to avoid artifacts from light scattered out-of-plane from the photonic crystal boundaries.
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B.4.3 Transmission Eigenchannel Numerical Simulations

In our numerical simulations, we use the Kwant simulation package [188]. We simulate

a two-dimensional (2D) rectangular waveguide geometry, which is defined using a tight-

binding model for scalar waves on a square grid. At the waveguide boundaries, which are

reflective, the grid is terminated. The leads are attached to the open ends of the waveguide,

allowing for computation of the complete scattering S matrix of the system and the wave

field throughout the bulk of the system: under an excitation by an arbitrary combination

of field amplitudes for the propagating modes. The width W of the simulated system

is selected so that the number of waveguide modes N matches the number found in the

experiment. Once W is chosen, the length of the disordered waveguide is determined by

the ratio L/W of the waveguides used in the experiment. Due to the low filling fraction

of the air holes in the experimental waveguides, both in the buffer region and in the main

disordered region, we assume that the number of propagating modes is equal to N .

Scattering is introduced by a randomly (box distribution) fluctuating real-valued on-

site ‘energy’ in the tight-binding model, see Refs. [183, 246]. The addition of a positive

imaginary constant to the same term simulates the effect of absorption. In our previous

works, we confirmed that the process of vertical leakage due to the holes in our disordered

waveguides can be modeled via absorption in a 2D system [183, 186, 205]. The actual

material absorption in our experimental system is negligible. By a proper choice of these

parameters, we can match the experimental values for the transport mean free path `t and

the diffusive dissipation length ξa.

To model the weakly scattering ‘buffer’ region, we reduce the scattering (the amplitude

of the on-site fluctuation) so that transport mean free path is reduced by a factor of 10. The

latter corresponds to a 10 times reduction in the areal density of the air holes in the buffer

region. Furthermore, because the out-of-plane scattering loss is reduced 10 times, the
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diffusive dissipation length is also reduced by the same factor.

The buffer region is incorporated into the experimental waveguides to measure tbuff→end

of the diffusive waveguide, which is not a direct measurement of the field transmission ma-

trix t. We numerically simulate the eigenchanels of both matrices to confirm their depth

profiles are equivalent. The matrix t is obtained from the incident and transmitted fields

in the left and right leads without the buffer. To compute tbuff→end, we compute the aux-

iliary matrices tin→buff and tin→end. The former matrix relates the incident fields in the

left lead to the fields at 2 × N randomly selected points within a 10 µm × 20 µm region

centered in the buffer region (of an area 15 µm × 25 µm). The chosen points are at least

2.5 µm separate from each other or any boundary/interface. The second auxiliary matrix

tin→end relates the impinging fields in the left lead to the fields at 2 × N randomly se-

lected points within a 10 µm × 10 µm region at the end of the diffusive waveguide. Again

all points are at least 2.5 µm (which is on the order of `t) spaced. In the last step, we

compute tbuff→end = tin→endt
−1
in→buff , where t−1

in→buff is calculated with the Moore-Penrose

pseudo-inverse.

To calculate the spatial structure of the transmission eigenchannels, we perform a sin-

gular value decomposition on the tmatrix, and use the right singular vectors as input fields

in the left lead to excite individual eigenchannels. For the matrix tbuff→end, its right sin-

gular vectors are transformed to the incident fields in the left lead by multiplying t−1
in→buff .

To further mimic the phase-only modulation of the SLM in the experiment, we only keep

the phases of the incident fields, and set the field magnitudes equal. We calculate all

eigenchannels for t and tbuff→end for an ensemble of 1000 disorder configurations of the

waveguides. The numerical results are presented in Figs. 6.3, 6.4, & 6.5 in Chapter 6.

To compare the variance C̃α and covariance C̃αβ numerically calculated from tbuff→end

to the experimentally-measured ones, we need to account for some experimental limita-

tions and imperfections. On one hand, the finite spatial resolution of our detection op-
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tics effectively enlarges the speckle grain size of the field measured inside the diffusive

waveguide. This reduction in the number of speckle grains increases the fluctuations of

the cross-section-averaged intensity. On the other hand, the combined effects of sample

drift during measurements and the presence of two linear polarizations in the light scat-

tered out-of-plane from our sample; decrease the fluctuations of the cross-section-averaged

intensity. For random incident wavefronts, the spatially-averaged intensity variance of our

experimental measurements is var[I(z)] = 0.59, compared to var[I(z)] = 0.64 from

the numerical simulations of tbuff→end. For all eigenchannels, we re-scale the numerical

var[Iα(z)] and C̃αβ by the multiplicative factor 0.59/0.64, in order to compare them to

the experimental values. While we applied the re-scaling factor to the fluctuations and

correlations calculated from numerical simulations of tbuff→end, we did not apply it to the

results from simulations of t.

163



B.4.4 Identification Of Experimental Transmission Eigenchannels
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Figure B.4: Transmission eigenvalue mapping. Calculated transmission eigenvalues,
as a function of eigenchannel index α, are shown in (a). In (b), we show the mapping
between the experimentally-measured eigenchannel profiles with index αE and the first
22 (in the order of decreasing transmittance) eigenchannels with index α found in the
numerical simulations based on the tbuff→end matrix.

In this section, we analyze the normalized eigenchannel profiles measured in the experi-

ment 〈IαE(z)〉 and the numerical simulations 〈Iα(z)〉. For each experimental eigenchan-

nel with an index of αE ∈ [1...55], we identify the corresponding numerical eigenchannel

with an index that minimizes the difference
∫ L

0
(〈IαE(z)〉 − 〈Iα(z)〉)2 dz. We do not use

any eigenchannel-specific adjustments/fits in this identification. This process gives the

mapping of αE to α, shown in Fig. B.4. A few experimental eigenchannels are redundant,

particularly in the range α ∈ [6...15], and no eigenchannels with α > 22 are observed ex-

perimentally. We attribute this to the finite signal-to-noise ratio in the experimental data.

The eigenchannels with α > 22 have a transmittance less than ∼ 0.25%, thus they are

overwhelmed by the experimental noise.

We use the redundancy of the experimental eigenchannels in Fig. B.4 to enlarge the

statistical ensemble. In other words, statistical averages 〈...〉 for the α-th eigenchannel

–that correspond to multiple αE– include averaging over both disorder configurations and
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different {αE}.

B.4.5 Transmission Eigenchannel Variance
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Figure B.5: Transmission eigenchannel variance comparison. We compare the vari-
ance of eigenchannel profiles calculated with the normalized intensity (purple solid line)
to the intensity variance normalized by the mean intensity 〈var[Ĩα(z)]/〈Ĩα(z)〉2〉z squared
(green dashed line). They show similar growth with the eigenchannel index α.

In Chapter 6, we present the realization-to-realization fluctuations of the eigenchannels’

normalized intensity profiles. For each eigenchannel, the measured intensity profile Ĩ(z)

is normalized to I(z) = Ĩ(z)/[(1/L)
∫ L

0
Ĩ(z′)dz′]. Using a different normalization pro-

cedure, we check the effect of our normalization on the eigenchannel fluctuations using

numerical simulations of t. For an eigenchannel α, the variance var[Ĩα(z)] = 〈δĨ2
α(z)〉

of the unnormalized intensity fluctuation δĨα(z) = Ĩα(z)− 〈Ĩα(z)〉 can be normalized by

dividing the square of the mean intensity 〈Ĩα(z)〉2 at the same depth z. Then this ratio

var[Ĩα(z)]/〈Ĩα(z)〉2 can be averaged over all z. In Fig. B.5, we compare this quantity to

the variance of the normalized intensity profile, C̃α, calculated in Chapter 6. Both exhibit

an increase with the eigenchannel index α. Their similar trend confirms that the stronger
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fluctuations for lower-transmission eigenchannels are due to the intrinsic properties of the

transmission eigenchannels.

B.5 Deposition Eigenchannels

In the following section, supplementary information pertaining the analysis in Chapter 7

is provided.

B.5.1 Deposition Eigenchannel Numerical Simulations

Again, we use the Kwant simulation package [188] to perform numerical simulations of

wave transport in a two-dimensional (2D) rectangular waveguide geometry. The geome-

try of the numerical simulations is chosen to match the experimental parameters of W/λ

(width of the waveguide normalized by wavelength), L/λ (length of the waveguide), and

N (number of waveguide modes). The refractive index in the input (empty) waveguide

matches the average index in the disordered region, thus the number of propagating modes

in the disordered waveguide is also N . Furthermore, the strength of the disorder and (spa-

tially uniform) absorption coefficient are selected to match the macroscopical physical

parameters in the experiment: specifically, the transport mean free path ` and diffusive

absorption length ξa. We also simulate the disordered waveguides without loss by set-

ting ξa = ∞. Statistical averaging over 1000 disorder configurations is performed for all

numerical results shown in Chapter 7.

Transmission Eigenchannels

We calculate the field transmission matrix t in the basis of the empty (input) waveguide

modes. t is normalized so that when light with a unit flux in the n-th waveguide mode is

incident on the disordered region, |tmn|2 is equal to the amount of flux carried away by
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the m-th waveguide mode in transmission. We also compute the wavefunction En(y, z)

describing the complex field distribution throughout the system, when excited via the n-th

waveguide mode.

Transmission eigenchannels are computed by performing a singular value decomposi-

tion of the transmission matrix so that tmn =
∑N

α=1 U
(T )
mα · τ 1/2

α · V (T )∗
αn . Here, Û (T ) and

V̂ (T ) are unitary matrices and τα are the transmission eigenvalues. The disorder-specific

incident wavefront given by the α-th column of the matrix V̂ (T ) excites the α-th transmis-

sion eigenchannel with the field distribution E(T )
α (y, z) =

∑N
n=1 V

(T )
αn En(y, z) inside the

system with the transmittance given by τα. The depth intensity profile is computed by inte-

grating over the transverse coordinate y followed by averaging over disorder realizations:

denoted by angular brackets I(T )
α (z) =

〈∫W
0

∣∣∣E(T )
α (y, z)

∣∣∣2 dy〉.

Deposition Matrix

We provide two definitions for the deposition matrix Z defined in Chapter 7. While the

first definition is more general, the second one reduces to the transmission matrix at the

output. For both definitions, the deposition eigenchannels are introduced based on the

singular value decomposition of the deposition matrix

Zmn(zD) =
N∑
α=1

U (D)
mα (zD) ζ1/2

α (zD)V (D)∗
αn (zD). (B.1)

The spatial structure of α-th deposition eigenchannel inside the system is given by

E(D)
α (y, z; zD) =

N∑
n=1

V (D)
αn (zD)En(y, z). (B.2)
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The depth intensity profile is computed by integrating over the transverse coordinate y as

well as the disorder realizations

I(D)
α (z; zD) =

〈∫ W

0

∣∣E(D)
α (y, z; zD)

∣∣2 dy〉 . (B.3)

Numerically we compare the eigenvalues ζ(zD) of the deposition matrices Z(zD) de-

fined previously for a thin slice at depth zD inside the disordered waveguide. As shown in

Fig. B.6, the probability density function (PDF) of deposition eigenvalues P (ζ) is almost

identical for the two definitions at most depths inside the disordered waveguide. Only

close to the very end L− zD < ` do the two PDFs differ; one remains single peaked while

the other becomes bimodal and converges to the PDF of the transmission eigenvalues.
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Figure B.6: Comparison between deposition eigenvalue definitions. Comparison of
the eigenvalue distributions p(ζ) of the operators Z†Z defined by Eq. (7.1) and Eq. (7.2),
evaluated at different depths zD/L of a disordered waveguide (length L = 50µm, width
W = 30µm, transport mean free path ` = 3.3µm). Noticeable differences are observed
only at zD very close to L, where p(ζ) converges to the bimodal distribution of transmis-
sion eigenvalues for the operatorZ†Z defined by Eq. (7.2) only. The two distributions still
coincide for zD/L = 0.95 (panel 5), which corresponds to L− zD < `.

To illustrate the close relationship between the two definitions of the deposition ma-

trix, we compare the trace of Z†Z , which corresponds to the sum of their eigenvalues,
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Tr[Z†Z] =
∑

m ζm. For the first definition, we switch to the waveguide mode basis and

find the trace

Tr[Z(zD)†Z(zD)] =
N∑
n=1

∞∑
m=1

|Zmn(zD)|2 , (B.4)

where Zmn(zD) =
∫W

0
χm(y)En(y, zD) dy is obtained by projecting the internal field dis-

tribution, excited by a unit flux input to the n-th waveguide mode, onto them-th waveguide

mode at the cross-section z = zD. With the second definition of Z(zD), the trace

Tr[Z†(zD)Z(zD)] =
N∑
n=1

N∑
m=1

vm |Zmn(zD)|2 (B.5)

differs from the first one in two ways: (i) the summation over m runs only over the propa-

gating modes of the waveguide, and (ii) the prefactor vm introduces a weight for different

modes. Using the Fisher-Lee formula [247], one can show that the trace for the second

definition at zD = L is equal to the dimensionless conductance g =
∑

m τm.

B.5.2 Analytical Predictions

Filtered Random Matrix (FRM) Model

In Chapter 7, we make the ansatz that Z(zD) has the same spectrum as a filtered matrix t̃

drawn from a larger virtual transmission matrix t0. The matrix t̃ is obtained by keeping a

fraction m < 1 of rows and columns in t0. In Ref. [202], it is shown that the eigenvalue

distribution of the matrix t̃†t̃ is given by pt̃† t̃(x) = − limη→0+ Imgt̃† t̃(x + iη), where the

resolvent gt̃† t̃(w) is the solution of the implicit equation:

gt̃† t̃(w) =
wmgt̃† t̃(w) + 1−m

wm2 gt̃† t̃(w)
gt†0t0

[
[wmgt̃† t̃(w) + 1−m]2

wm2 gt̃† t̃(w)2

]
. (B.6)
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Since t0 represents the transmission matrix of a virtual opaque and disordered medium,

the resolvent gt†0t0(w) is [202]:

gt†0t0
(w) =

1

w
− τ̄0

w
√

1− wArctanh
[

Tanh(1/τ̄0)√
1− w

]
, (B.7)

where τ̄0 is the mean of pt†0t0(x). Hence, the eigenvalue distribution p(ζ) of Z†(zD)Z(zD)

is parametrized by m and τ̄0 only. In particular, the variance of p(ζ) is

Var(ζ)

〈ζ〉2
= m

(
2

3τ̄0

− 1

)
+ 1−m. (B.8)

In our model, we take m = 〈ζ(L)〉 / 〈ζ(zD)〉 = 〈τ〉 / 〈ζ(zD)〉 ≤ 1 and τ̄0 solution of

Eq. (B.8). In this way, the full distribution p(ζ) becomes parametrized by its first two mo-

ments, 〈ζ〉 and 〈ζ2〉. To obtain the FRM predictions in Fig. 7.2(a) of Chapter 7 and Fig. B.7

here, we solve Eq. (B.6) with 〈ζ〉 and 〈ζ2〉 as input parameters evaluated numerically. The

good agreement between the FRM prediction and numerical distributions validates our

model.
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Figure B.7: Width-dependence of deposition eigenvalues. Deposition eigenvalue distri-
bution p(ζ) at depth zD = 0.8L of a disordered waveguide of length L = 50µm and width
W = 15, 30, 50µm. Analytical FRM predictions (solid black lines) are compared with nu-
merical results (dots) obtained from the solution of the wave equation for 103 realizations
of the disordered waveguide with a transport mean free path ` = 3.3µm. The distribution
of the largest eigenvalue p(ζmax) is superimposed (red dots connected by red line) to re-
veal the convergence of ζmax towards the upper edge of p(ζ) in the limit g = N 〈τ〉 � 1
(W = 15, 30, 50µm correspond to g = 5, 10, 15). The value 〈ζmax〉 is indicated with
dashed vertical line.
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In Ref. [202], it is also shown that the edges x∗ of the distribution pt̃† t̃(x) are given by

x∗ = ξ∗
[
1 + (m− 1)/ξ∗gt†0t0

(ξ∗)
]2

, where ξ∗ is the solution of

dgt†0t0(ξ)

dξ

∣∣∣∣∣
ξ∗

=
gt†0t0

(ξ∗)

2ξ∗

−(1−m)2 + ξ∗2gt†0t0
(ξ∗)2

(1−m)2 − (1−m)ξ∗gt†0t0
(ξ∗)

. (B.9)

We solve this equation to find the values of the upper edge x∗ represented in Fig. 7.2(b)

of Chapter 7, where it is compared to 〈ζmax〉. In the limit of large matrix size (N → ∞),

we expect that the upper edge of p(ζ) and 〈ζmax〉 coincide. This is illustrated in Fig. B.7,

where we present the distributions p(ζ) and p(ζmax) for three waveguide widths W , at

a fixed depth zD = 0.8L. As W increases, p(ζ) is almost unaffected because Var(ζ)

marginally depends on W , whereas the distribution p(ζmax) shrinks and 〈ζmax〉 converges

towards the upper edge from below. Convergence is reached for all depths zD in the limit

of large conductance (g = N 〈τ〉 � 1), as illustrated in Fig. B.8.
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Figure B.8: Width-dependence of maximum deposition eigenvalues. Symbols (circles,
squares, triangles) represent the ensemble average of the largest deposition eigenvalue
〈ζmax〉 at different depth zD/L for three waveguide width W = 10, 30, 60 µm. Other
parameters are identical to the parameters in Fig. B.7. Solid lines of matched colors are
analytical predictions for the upper edge of p(ζ) evaluated with the numerical mean 〈ζ〉 and
variance Var[ζ]. The agreement between the numerical data and the analytical predictions
improves with increasing waveguide width.

First Two Moments Of p(ζ)

The first moment 〈ζ(zD)〉 of the distribution p(ζ) is proportional to the mean intensity

〈I(zD)〉 deposited at depth zD under random wavefront illumination. We can approximate

it by the steady state solution of the diffusion equation with an isotropic source located

at an injection depth zin ∼ ` away from the front surface of the disordered waveguide

boundary, ∂2
z 〈ζ(z)〉 = Aδ(z − zin), where A is a constant to be evaluated below. This

equation must be complemented with boundary conditions: 〈ζ(z = 0)〉 = z0∂z 〈ζ(z = 0)〉

and 〈ζ(z = L)〉 = −z0∂z 〈ζ(z = L)〉, where z0 is the extrapolation length (z0 = π`/4 in

2D and z0 = 2`/3 in 3D). The solution is a linear function of zD,

〈ζ(zD)〉 = A
(zin + z0)(L+ z0 − zD)

L+ 2z0

, (B.10)
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for zD > zin. The constant A being fixed by our choice of normalization 〈ζ(z = L)〉 =

〈τ〉 = 2z0/(L+ 2z0), we get

〈ζ(zD)〉 = 2(1− 〈τ〉)
(

1− zD
L

)
+ 〈τ〉 , (B.11)

which is independent of the precise value of zin. The agreement of this prediction with

numerical simulations is excellent, as shown in Fig. B.9(a).

The variance Var(ζ) = 〈ζ(zD)2〉 − 〈ζ(zD)〉2 of the eigenvalue distribution p(ζ) can be

related to intensity fluctuation 〈I(zD)2〉 − 〈I(zD)〉2. Using the singular value decompo-

sition of the deposition matrix Z = U (D)ζ̂1/2V (D) †, the cross-section integrated intensity

deposited by a waveguide mode n is In(zD) =
∑

α |V
(D)
nα |2ζα(zD). The evaluation of the

first two moments of In(zD) is straightforward using the isotropy hypothesis for the dis-

ordered waveguide [86, 248]. This amounts to considering that V is uniformly distributed

over the unitary group and is independent of ζ̂ . We find

〈In(zD)〉 =
1

N

〈
Tr(ζ̂)

〉
, (B.12)〈

I2
n(zD)

〉
=

1

N2 − 1

(
1− 1

N

)[〈
Tr(ζ̂)2

〉
+
〈

Tr(ζ̂2)
〉]
. (B.13)

In the limit N � 1, the leading order is

Var[In(zD)] ' 1

N2

[〈
Tr(ζ̂2)

〉
− 1

N

〈
Tr(ζ̂)2

〉]
' 1

N2

[〈
Tr(ζ̂2)

〉
− 1

N

〈
Tr(ζ̂)

〉2
]
. (B.14)

This result is independent of the waveguide mode index n, and also holds for random
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wavefront illumination. We conclude that

Var[ζ(zD)]

〈ζ(zD)〉2
' N

Var[I(zD)]

〈I(zD)〉2
. (B.15)

Finally, the intensity fluctuations at depth zD are computed by decomposing the field

E(zD) involved in I(zD) = |E(zD)|2 as a sum of propagators along all possible scatter-

ing trajectories [203]. The intensity fluctuations are composed of a small Gaussian field

contribution C1 = 1/N , and dominated by the non-Gaussian contribution C2(zD),

Var[I(zD)]

〈I(zD)〉2
= C1 + C2(zD), (B.16)

with

C2(z) =
2

gL 〈I(z)〉2
∫ L

0

dz′ 〈I(z′)〉2 [∂z′K(z, z′)]
2
. (B.17)

The mean intensity is 〈I(z)〉 =
∫ L

0
dz′e−z

′/`K(z, z′), where K(z, z′) is the Green’s func-

tion of the diffusion equation ∂2
zK(z, z′) = δ(z−z′), with boundary conditions ∂zK(0, z′) =

K(0, z′)/z0 and ∂zK(L, z′) = −K(L, z′)/z0. The solution is

K(z, z′) =
(z− + z0)(L+ z0 − z+)

L+ 2z0

, (B.18)

with z− = min(z, z′) and z+ = max(z, z′). In the limit L� `, the correlator C2(z) takes

the simple form [205]

C2(z) ' 2

3g

z(3L− 2z)

L2
, (B.19)

where g = N 〈τ〉 is the dimensionless conductance of the disordered waveguide.

By combining Eqs. (B.15) and (B.16), we finally obtain an analytical expression for
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the normalized variance of the eigenvalues of the deposition matrix,

Var[ζ(zD)]

〈ζ(zD)〉2
' 1 +NC2(zD). (B.20)

Figure B.9(b) shows a good agreement between the simulation results and our prediction

based on Eq. (B.17).
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Figure B.9: FRM filtering ratio. (a) Effective filtering ratio m = 〈τ〉 / 〈ζ(zD)〉 of the
FRM model versus depth zD/L. Numerical results (dots) are compared with the analytical
prediction m = 1/ [2(1/ 〈τ〉 − 1)(1− zD/L) + 1] (solid lines with matched colors); (b)
Variance var[ζ/〈ζ〉] = 〈ζ2〉 / 〈ζ〉2 − 1 of the eigenvalue distribution p(ζ) vs. depth zD/L.
Numerical results (dots) are compared with intensity fluctuations NC2(zD) + 1 evaluated
analytically (solid lines of matched colors) for two values of transport mean free path ` =
1.6, 3.3 µm. The disordered waveguide dimensions are L = 50µm and W = 15µm.

When comparing with the experimental data in Fig. 7.3(d), the effect of absorption is

included in Eq. (B.17). This is accomplished by substitution of the Green’s function which

accounts for absorption

∂2
zK(z, z′)− K(z, z′)

ξ2
a

= δ(z − z′), (B.21)

where ξa is the diffusive absorption length.
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B.5.3 Upper Edge Of p(ζ)

In Chapter 7, we argue that the maximal enhancement of energy deposition 〈ζmax〉 / 〈ζ〉

depends, for most depths zD, only on the long-range intensity-intensity correlation func-

tion C2(zD). To prove this property, we first note that m = 〈τ〉 / 〈ζ(zD)〉 becomes quickly

smaller than unity for zD < L, as long as 〈τ〉 � 1 [see Fig. B.9(a)]. This allows us to

perform an expansion of the FRM solution in the limit m→ 0. Using

gt†0t0
(w) ' 1− τ̄0

w
− iπτ̄0

2w
√

1− w, (B.22)

and expanding Eq. (B.9) to leading order, we find

〈ζmax(zD)〉
〈ζ(zD)〉 '

[(γ − 1)2/3 + (π/2)2/3]2[γ − 1 + (π/2)2/3(γ − 1)1/3]

γ(γ − 1)1/3
+O(m), (B.23)

which depends on γ = m/τ̄0 only. According to Eq. (B.8),

γ ' 3

2

(
Var[ζ(zD)]

〈ζ(zD)〉2
− 1

)
' 3NC2(zD)

2
. (B.24)

Hence, 〈ζmax〉 / 〈ζ〉 depends only on C2(zD) only. Since γ ∼ NC2(zD) � 1 for 〈τ〉 ∼

`/L� 1, we can further expand Eq. (B.23) as

〈ζmax(zD)〉
〈ζ(zD)〉 ' γ + 3

(π
2

)2/3

γ1/3 − 2 +O(γ−1/3). (B.25)

This shows that the energy enhancement slowly converges to γ in the limit L/`� 1.
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B.5.4 Deposition Eigenchannel Experimental Measurements

Deposition Matrix Measurement

To begin with, the experimental measurement of the deposition matrix largely follows the

experimental measurement of the transmission matrix in Appendix B.4.1. For a given

disordered waveguide configuration, we sequentially apply a complete set of orthogonal

phase-fronts to the SLM and record the 2D field distribution throughout the waveguide for

each input. Based on these field measurements, we construct a linear matrix that relates the

field pattern at the SLM to the field distribution anywhere inside the waveguide: the field

reconstruction matrix. From this, we create two matrices ZSLM→Buff and ZSLM→R, which

map the field from the SLM surface to the buffer region in front of the main disordered

region and to the deposition area of interest R inside it.

With these two matrices, we build the deposition matrix relating the field in the buffer

region to the field in the deposition region: ZBuff→R ≡ ZSLM→RZ−1
SLM→Buff . Again, to

calculate the inverse of ZSLM→Buff , we use Moore-Penrose matrix inversion. Similarly,

the inverse matrix is calculated using the 55 highest singular values of ZSLM→Buff and the

remaining singular values are set to zero.

As shown in Fig. 7.3(a) of Chapter 7, the energy deposition regions are four 10 µm ×

10 µm areas inside the disordered waveguide. To avoid artifacts from light scattered out-

of-plane from the photonic-crystal sidewalls, the deposition regions are kept away from the

waveguide boundaries. Since each deposition area is relatively large and contains many

speckle grains, the effect of incident wavefront shaping on increasing/decreasing out-of-

plane scattered light into the camera is reduced. Therefore, optimizing the input wavefront

to the waveguide predominantly enhance/suppress the amount of energy deposited into the

target region. This is confirmed by our numerical simulation with realistic parameters, as

detailed in the next subsection.
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Deposition Eigenchannel Characterization

To experimentally excite a single deposition eigenchannel, we first calculate the singular

vectors of the deposition matrix, ZBuff→R, using a singular value decomposition. We then

convert the singular vectors of ZBuff→R into SLM phase-modulation patterns by multiply-

ing each vector by the pseudoinverse of the matrix from the SLM to the buffer region,

Z−1
SLM→Buff , and retain the resulting phase-modulation patterns. By displaying one of the

phase patterns on the SLM, we excite the corresponding deposition eigenchannel in the

diffusive waveguide. For a given disorder configuration and region of interest, we record

the 2D spatial intensity profiles of every eigenchannel of ZBuff→R. From each eigenchan-

nel measurement, we integrate the 2D intensity pattern over the waveguide cross-section

(along y) to obtain the deposition eigenchannel’s depth profile. While our waveguide

structure has a width of 15 µm, we only use the central 10 µm region of the waveguide’s

out-of-plane-scattered light to avoid artifacts from out-of-plane scattering by the photonic-

crystal boundaries.

After measuring 55 of the deposition eigenchannel profiles of ZBuff→R with the high-

est eigenvalues (for a given disorder configuration) we need to mitigate the influence of

‘noisy eigenchannels’ and properly normalize the eigenchannel profiles. While our waveg-

uides have 55 deposition eigenchannels (for a given region of interest) the limited dynamic

range of our CCD camera makes the deposition eigenchannels with small eigenvalues ex-

perimentally inaccessible. The missing information needed to reconstruct these deposition

eigenchannels is replaced with measurement noise, and therefore the corresponding ‘noisy

eigenchannels’ are equivalent to random inputs. Additionally, this effect leads to a slight

shuffling in the order of the measured eigenchannels based on their eigenvalues.

To account for redundant eigenchannel measurements, induced by measurement noise,

as well as the inability to experimentally control the norm of the input flux, we conduct
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numerical simulations in order to normalize and sort the measured deposition eigenchan-

nel depth profiles. The simulated waveguides have identical parameters and dimensions

to the experimental ones. We compute the deposition matrices that map the incident fields

to the fields within four target regions R1 − R4. Since 2N points are chosen randomly

inside each region, the deposition matrix is rectangular with dimensions 2N × N . We

compute the ensemble-averaged eigenchannel profiles from the numerical simulations to

normalize and determine the correct order of measured eigenchannel profiles. First, we

normalize all of the experimental and numerical profiles to have a mean value of one,

and spatially overlap them. Then, for each experimental profile, we calculate its absolute

difference from every numerical profile and assign the correct order based on the mini-

mum difference. Once we have the correct order of the experimental eigenchannel, we

renormalize it according to the unit input flux. In this process, we remove the ‘noisy

eigenchannels’ with the intermediate eigenvalues, whose depth profiles resemble those of

random input wavefronts. In this way, we are able to sort out the deposition eigenchannels

of a single realization. We repeat this process for multiple disorder realizations –generated

using different wavelengths and random hole configurations– and ensemble-average the

depth profiles of deposition eigenchannels with the same indices. As in Section B.4.2,

we measure the deposition eigenchannel profiles of 13 independent system realizations:

for each of four target regions at different spatial locations in the waveguide. We obtain

these measurements from two waveguides with different random arrays of air holes. To

generate independent system realizations from the same hole configuration, we vary the

wavelength of the input light beyond the spectral correlation width of the diffusive light,

which is estimated to be 0.4 nm. Over a wavelength span of 3 nm, we vary the input

wavelength of our laser in increments of 0.5 nm. We choose the specific wavelength range

of the measurement –for each random hole configuration– such that the effective dissipa-

tion by out-of-plane scattering is minimal and nearly constant over the probe wavelength
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Figure B.10: Experimental measurement of deposition eigenchannels. A composite
SEM image of an on-chip disordered waveguide is presented in (a) with a delineation of
the buffer region and a deposition region superimposed. In (b-e) the maximally enhanc-
ing/suppressing (red-dots/purple-diamonds) deposition eigenchannel profiles, measured
experimentally, are juxtaposed with numerically simulated profiles (red-solid and purple-
dashed lines): for four target regions centered at 10, 20, 30, and 40 µm.
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range. Because of minor structural differences, pertaining to the fabrication process, one

sample has a smaller acceptable wavelength range.

In Figures B.10(b-e), the maximal enhancing/suppressing energy deposition eigen-

channel profiles (red-dots/purple-diamonds), measured experimentally, are juxtaposed with

numerically simulated profiles (red-solid and purple-dashed lines): for all four target re-

gions centered at 10, 20, 30 and 40 µm. The cross-section integrated intensities are aver-

aged axially (along z) over one transport mean free path to reduce fluctuations. The black

dashed line represents the cross-section integrated intensity profile of random illumination

patterns in our system, 〈I(z)〉. The depth profiles of the maximal energy deposition eigen-

channels (with the largest eigenvalues) are well above 〈I(z)〉: both within the target region

and beyond. Similarly, the depth profiles of the minimal energy deposition eigenchannels

(with the smallest eigenvalues) are notably lower than 〈I(z)〉, both inside and outside the

target region.
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