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ABSTRACT
Transverse Mode Instability (TMI) that results from dynamic nonlinear thermo-optical scattering is the primary limitation to power scaling
in high-power fiber lasers and amplifiers. It has been proposed that TMI can be suppressed by exciting multiple modes in a highly multimode
fiber. We derive a semi-analytic frequency-domain theory of the threshold for the onset of TMI in narrowband fiber amplifiers under arbitrary
multimode input excitation for general fiber geometries. Our detailed model includes the effect of gain saturation, pump depletion, and
mode-dependent gain. We show that TMI results from the exponential growth of noise in all the modes at downshifted frequencies due to
the thermo-optical coupling. The noise growth rate in each mode is given by the sum of signal powers in various modes weighted by pairwise
thermo-optical coupling coefficients. We calculate thermo-optical coupling coefficients for all ∼104 pairs of modes in a standard circular
multimode fiber and show that modes with large transverse spatial frequency mismatch are weakly coupled, resulting in a banded coupling
matrix. This short-range behavior is due to the diffusive nature of the heat propagation, which mediates the coupling and leads to a lower
noise growth rate upon multimode excitation compared to a single mode, resulting in significant TMI suppression. We find that the TMI
threshold scales linearly with the number of modes that are excited asymptotically, leading to roughly an order of magnitude increase in the
TMI threshold in an 82-mode fiber amplifier.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0206859

I. INTRODUCTION

Fiber lasers based on multi-stage fiber amplifiers (FAs) pro-
vide an efficient and compact platform to generate ultra-high laser
power.1–6 This has enabled potential applications in a wide range of
technologies, such as laser welding,7 gravitational wave detection,8
and directed energy.9 To fully realize this potential, further power
scaling is needed in the FAs,10 which has been limited primarily by
nonlinear effects, such as transverse mode instability (TMI)11–14 and
stimulated Brillouin scattering (SBS).15–17 TMI is a dynamic trans-
fer of power between the transverse modes of the fiber caused by
thermo-optical scattering and/or inversion fluctuations.18–22 During
the optical amplification process, heat is generated due to the quan-
tum defect, in an amount proportional to the local optical intensity,
creating local temperature fluctuations. The local temperature vari-
ations then create refractive index variations, causing significant
scattering between the modes. Consequently, when the FA is oper-
ated above a certain output power, defined as the TMI threshold,

a significant degradation of beam quality occurs,23–33 rendering the
output unsuitable for many applications. As a result, suppressing
TMI or equivalently raising the TMI threshold has been one of the
most important and technologically relevant scientific goals in the
high-power laser community.4,5,11

Significant efforts have been undertaken to mitigate TMI,
such as dynamic seed modulation,34 synthesizing materials with
low thermo-optic coefficient,35,36 modulating the pump beam,37,38

increasing the optical loss of higher-order modes (HOMs),39–44 and
utilizing multicore fibers.45–47 Although most of these efforts have
had some success, they suffer from one or more drawbacks, such as
fluctuating output power in the case of seed or pump modulation,
difficulty with mass-manufacturing custom fibers, and increased
guidance of HOMs due to fiber heating, rendering the HOM sup-
pression unfeasible. As such, efficient TMI suppression remains a
highly active area of research.

A common feature in all of the previous approaches is to
excite the fundamental mode (FM) of the fiber as much as possible,

APL Photon. 9, 066114 (2024); doi: 10.1063/5.0206859 9, 066114-1

© Author(s) 2024

 31 July 2024 23:52:07

https://pubs.aip.org/aip/app
https://doi.org/10.1063/5.0206859
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0206859
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0206859&domain=pdf&date_stamp=2024-June-21
https://doi.org/10.1063/5.0206859
https://orcid.org/0000-0001-9602-4581
https://orcid.org/0000-0002-2020-5332
https://orcid.org/0000-0002-8073-0075
mailto:kabish.wisal@yale.edu
https://doi.org/10.1063/5.0206859


APL Photonics ARTICLE pubs.aip.org/aip/app

hence reducing the excitation and amplification of HOMs.34–46,48

This is motivated by the widespread impression that the speck-
led internal field generated by multimode excitation will necessarily
create a poor beam quality at the output.49,50 However, recent
progress in wavefront shaping, enabled by spatial light modula-
tors (SLMs), has demonstrated that multimode excitation with a
narrowband seed laser does not inherently lower the beam qual-
ity as long as the light remains spatially coherent.51–53 In fact, by
using an SLM to wavefront-shape the input light to a fiber, it is
possible to obtain a diffraction-limited spot after coherent mul-
timode propagation in both passive54 and active fibers,51 which
can be easily collimated using a lens. This enables a fundamen-
tally novel approach to control nonlinear effects in fibers by uti-
lizing selective multimode excitation.55–58 The viability of such
an approach has recently been demonstrated for other nonlinear
effects in fibers, such as SBS59–61 and stimulated Raman scattering
(SRS).62

The current authors have recently showed, using numerical
simulations along with some initial theoretical results, that sending
power in multiple fiber modes robustly raises the TMI threshold.63

To investigate this approach thoroughly and in detail, we have devel-
oped a theory of TMI for arbitrary multimode input excitations and
general fiber geometries, building on significant prior theoretical
efforts to model TMI, which have been successful in capturing much
of the key physics.14,18,19,22,26,31,64–71 It has been shown that TMI can
be modeled as the exponential growth of noise in the HOMs due
to the thermo-optical scattering of the signal. However, as noted,
almost all of the previous efforts have focused on the case when
only the FM of the fiber is excited with the presence of noise in a
few HOMs. None of these works attempted to model highly mul-
timode excitations, and their formalisms were not suited for such
explorations. As mentioned, some key theoretical results for TMI
threshold upon multimode excitation were presented in Ref. 63 by
the authors of this paper, including results demonstrating linear scal-
ing of the TMI threshold with the number of excited modes. This
previous work focused on time-domain numerical simulations, and
the detailed theoretical formalism for TMI threshold along with the
analysis of pump depletion and gain saturation for fibers with arbi-
trary geometries and input excitations was deferred to the current
work.

In this paper, we derive a general formalism that allows effi-
cient calculation of the TMI threshold for arbitrary multimode input
excitations and fiber geometries in narrow-linewidth fiber ampli-
fiers. We derive coupled amplitude equations starting from coupled
optical-propagation and heat-diffusion equations and solve them to
obtain analytic formulas for the TMI gain and thermo-optical cou-
pling coefficient. A key result of our theory is that the thermo-optical
coupling is strong only between the optical modes that have similar
transverse spatial frequencies. This is a result of the diffusive nature
of the heat propagation, which underlies the thermo-optical cou-
pling. This leads to a banded thermo-optical coupling matrix, due
to which the effective TMI gain is significantly lowered upon mul-
timode excitation, resulting in robust TMI suppression. We show
that the TMI threshold increases linearly with the number of excited
modes, leading to more than an order of magnitude higher TMI
threshold in standard multimode fibers. We also show that thresh-
old enhancement can be further increased by tailoring the fiber
geometry.

We begin by deriving a semi-analytic solution for the opti-
cal and heat equations, coupled via the nonlinear-polarization and
quantum-defect-heating terms. We expand the optical fields and the
temperature fluctuations in terms of eigenmodes of the optical and
heat equations, respectively. From the driven heat equation, the coef-
ficient of each temperature eigenmode is found in terms of optical
amplitudes, leading to coupled amplitude equations for the optical
modes, resembling those for a four-wave-mixing process.72 Next, we
solve these coupled amplitude equations for an arbitrary input signal
at frequency, ω0, along with the presence of small amount of noise
at Stokes shifted frequencies, ω0 −Ω, in each mode. We show that
the noise power in various modes grows exponentially and can lead
to dynamic spatial fluctuations in the output beam profile after suf-
ficiently high noise growth. The growth rate of the noise power in
a given mode is equal to the sum of the signal power in each of the
other modes, weighted by pairwise thermo-optical coupling coeffi-
cients. For any pair of optical modes, the thermo-optical coupling
coefficient is proportional to the overlap integrals of the two opti-
cal mode profiles with various eigenmodes of the heat equation. The
coupling between the optical modes with a large separation in trans-
verse spatial frequency is mediated by temperature modes with high
transverse spatial frequency; these thermal modes necessarily have a
very short-lifetime, leading to a quite weak coupling between such
mode pairs. To study this explicitly, we calculate the thermo-optical
coupling coefficients for all ∼104 mode pairs in a commercially avail-
able highly multimode (MM) circular step-index fiber (supporting
82 modes per polarization) and find that the matrix of peak val-
ues of pairwise thermo-optical coupling coefficients is a banded,
effectively sparse matrix. This sparse/banded nature of the thermo-
optical coupling is not affected by the presence of gain saturation or
pump depletion. As a result, the noise growth rate goes down lin-
early with the number of modes excited, if the power is equally (or
nearly equally) distributed in all the excited modes. Therefore, the
TMI threshold is predicted to increase linearly with the number of
equally excited modes, which is verified by explicit calculation of the
TMI threshold.

The generality of our approach allows us to do similar calcu-
lations for different fiber cross sections (e.g., square and D-shaped);
we find that the linear increase of the threshold is generic and only
weakly sensitive to fiber and cladding geometry. Our theory is pre-
sented first with a simpler model, which neglects the effects of gain
saturation and pump depletion, but highlights the universality of the
physics due to the mismatch of spatial and temporal scales (thermal
vs optical), which mediates TMI suppression via multimode excita-
tion. In Sec. III of this paper, we present an improved model, which
does include these important effects (at a tractable computational
cost), and confirms that the asymptotic linear scaling of the TMI
threshold is preserved with a significant but modest increase in the
calculated TMI threshold. Taken in full, our results quantitatively
confirm that highly multimode excitations efficiently suppress TMI,
opening up a new platform for robust power scaling in high-power
fiber laser amplifiers.

II. THEORY AND RESULTS
A. Coupled amplitude equations

TMI is a result of dynamic transfer of power between fiber
modes due to the thermo-optical scattering.11,18,19 A schematic of the
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FIG. 1. Schematic of TMI in a multimode fiber amplifier. (a) At the fiber input, a signal wave is launched in multiple modes at the same frequency, ω0, with a small amount of
noise at the shifted Stokes frequency, ω0 −Ω. As the signal propagates in the fiber, it undergoes amplification due to the stimulated emission, generating heat in the process
and causing temperature fluctuations (shown in red in the inset). These temperature variations result in refractive index variations due to the thermo-optical effect, which
causes scattering of power between various modes. (Note: longitudinal and transverse dimensions in the lower panel are not to scale.) (b) The signal in each mode m at
ω0 transfers power to the Stokes shifted frequency in every other mode n, which causes the noise to grow exponentially with a growth rate depending on the signal power
and pairwise thermo-optical coupling coefficients. When the noise at the output becomes a significant fraction of the signal, the output beam becomes unstable with dynamic
fluctuations on a millisecond timescale. The output power at the onset of significant fluctuations (typically set at 1%) is defined as TMI threshold.

TMI process is shown in Fig. 1. A signal wave at frequency ω0 is sent
through an active fiber to undergo optical amplification and generate
the output. However, due to imperfect coupling or other experimen-
tal artifacts, there usually exists a small amount of noise at shifted
frequencies, ω0 −Ω, in various modes. The optical signal and noise
can interfere to create a spatiotemporally varying optical intensity
pattern, which, due to the quantum-defect heating that accompanies
stimulated emission, results in dynamic temperature variations.24

These spatiotemporal thermal fluctuations result in refractive index
variations, which can cause significant transfer of power from the
signal at ω0 in one mode to the noise at Stokes-shifted frequencies
ω0 −Ω in other modes. As a result, at high-enough output power, the
noise in various modes can become a significant fraction of the out-
put power, leading to fluctuations in the output beam profile. This
output power level is defined as the TMI threshold18,19 and marks
the onset of an unstable regime for the output. To derive a formalism
to calculate the TMI threshold, we solve the optical wave equation
with a temperature-dependent nonlinear polarization as a source
term,19

∇2E⃗ − n2
0

c2
∂2E⃗
∂t2 = μ0

∂2P⃗NL

∂t2 , (1)

where E⃗ is the total electric field, c is the speed of light, and n0 is
the linear refractive index of the fiber. The temperature-dependent
polarization is given by

P⃗NL = ε0ηΔTE⃗. (2)

Here, η is the thermo-optic coefficient of the fiber material and ΔT
represent the local temperature fluctuation due to the quantum-
defect heating. ΔT satisfies the heat equation with a source term
proportional to the local intensity,18

[∇2 − ρC
κ

∂

∂t
]ΔT = Q

κ
, (3)

Q(r⃗, t) = gqDI(r⃗, t). (4)

The heat source Q is proportional to the local optical intensity I, the
amplifier gain coefficient g, and the quantum defect qD = ( λs

λp
− 1),

which depends on the difference between the signal wavelength λs
and pump wavelength λp. The thermal conductivity, the specific
heat, and the density of the material are given by κ, C, and ρ, respec-
tively. The ratio κ/ρC is equal to the diffusion constant D. Since the
thermo-optical polarization depends on the temperature, which in
turn depends on the optical intensity, the optical and heat equations
are coupled and nonlinear due to the source terms on the right hand
side (RHS) of Eqs. (1) and (3). For a translationally invariant sys-
tem, such as an optical fiber, both optical and heat equations can be
solved formally by expanding the fields in terms of the eigenmodes
of the linear operator corresponding to each equation. As usual, we
decompose the electric field E⃗ as a sum of the product of a transverse
mode profile, a rapidly varying longitudinal phase term, and a slowly
varying amplitude (SVA) for each fiber mode,

E⃗(r⃗, t) = ∫
∞

−∞

dΩ∑
m

Am(Ω, z)ψ⃗m(r�)ei((ω0−Ω)t−βmz) + c.c. (5)

Here, Am(Ω, z) is the SVA in mode m at a point z along the fiber axis
for a Stokes frequency shift Ω from the central frequency ω0. The Ω
= 0 amplitude corresponds to the signal, and Ω ≠ 0 corresponds to
the noise. ψ⃗m and βm denote the transverse mode profile and propa-
gation constant for mode m and can be obtained by solving the fiber
modal equation,73,74

∇2
T ψ⃗m + (

n2
0ω2

0

c2 − β2
m)ψ⃗m = 0. (6)

The solutions to Eq. (6) correspond to the guided fiber modes,
which are confined to the fiber core by total internal reflection.
These modes can be calculated using a numerical solver, such as
COMSOL,75 for an arbitrary fiber cross-sectional geometry. As an
example, in Fig. 2(a), we have shown the electric field profiles for
the FM and a HOM for a circular step-index fiber. The width of
the core is 40 μm, and the cladding width is 200 μm. The FM has
no node in the electric field profile and follows the symmetries of
the cross-sectional geometry. Each HOM can be labeled as a linearly

APL Photon. 9, 066114 (2024); doi: 10.1063/5.0206859 9, 066114-3

© Author(s) 2024

 31 July 2024 23:52:07

https://pubs.aip.org/aip/app


APL Photonics ARTICLE pubs.aip.org/aip/app

FIG. 2. (a) Amplitude profiles of a guided optical fundamental mode (FM) and a
higher-order mode (HOM) for a circular step-index fiber. The optical modes are
guided in the core of the fiber. The FM (LP01) has no nodes, whereas each HOM
denoted as LPuv is characterized by u azimuthal nodes and (v − 1) radial nodes.
Here, LP44 is shown. (b) Amplitude profiles for thermal modes, which are the
spatial eigenmodes of the heat equation with constant temperature at the outer
cladding. Each thermal mode fills the entire fiber cross section. Similar to optical
modes, FM has no nodes, whereas each HOM denoted is characterized by an
integer number of radial and azimuthal nodes. Cladding and core sizes are not to
scale.

polarized (LP) mode characterized by two indices (u, v) in the stan-
dard notation.73 The mode LPuv has u azimuthal nodes and (v − 1)
radial nodes, with a radial profile given by the (u + 1)th Bessel func-
tion of the first kind, with (v − 1) zeros within the fiber core and
angular profile given by either a sine or cosine function with u
zeros. Figure 2(a) shows the profiles of LP01 (FM) and LP44 (HOM)
modes. In the Appendix, we study fibers with different geometries
(D-shaped and square cross sections), and the associated optical
modes are shown in Fig. 7(a) .

Normalizing each mode profile ψm to have unit power, the
total power in mode m at point z along the fiber axis and at Stokes
frequency Ω is given by ∣Am(z,Ω)∣2. The heat source term Q in
Eq. (3) can be obtained in terms of optical modal amplitudes using
Eqs. (4) and (5). The optical intensity I contains terms correspond-
ing to the interference of various fiber modes, and thus, Q (∝ I)
is given by a sum of dynamic heat sources oscillating at Stokes fre-
quency Ω and propagation constant qij = βj − βi for each mode pair
{i, j}. Therefore, we expand ΔT into a series of temperature profiles
corresponding to each heat source term,

ΔT(r⃗, t) = ∫
∞

−∞

dΩ∑
i,j

Tij(r⃗,Ω)ei(Ωt−qij z). (7)

Here, Ti j(r⃗,Ω) is the profile of the temperature grating with lon-
gitudinal wavevector qij and temporal frequency Ω. We further

decompose each temperature profile Tij in terms of the eigenmodes
of the transverse Laplacian∇2

T,

Tij(r⃗,Ω) =∑
k

ak
i j(z,Ω)T̃ k(r⃗�). (8)

Here, ak
i j is the SVA for temperature eigenmode k in temperature

grating {i, j}. Temperature eigenmodes of the fiber oscillate in space
and relax exponentially in time due to diffusive heat equilibration.
Their decay rate is proportional to the thermal diffusion constant
and the wavevector of the fluctuations squared. Hence, long wave-
length fluctuations dominate the thermal response; as we will see,
this directly leads to a nonlinear thermo-optic coupling, which is
short-range in the momentum difference between the optical modes.
T̃ k denotes the transverse profile of temperature eigenmode k, which
satisfies the following eigenvalue equation:

∇2
T T̃ k(r⃗�) = −α2

k T̃ k(r⃗�), T̃ k∣∂Ω = 0. (9)

∇2
T is a self-adjoint operator; thus, its eigenmodes {T̃ k} form a com-

plete and orthogonal basis, with −α2
k as the eigenvalue for eigenmode

k. We impose Dirichlet boundary conditions at the outer surface of
the fiber, corresponding to the standard assumption19 that the outer
surface is held at a constant temperature, and all the heat immedi-
ately dissipates into a heat bath. The temperature eigenmodes can
be solved either analytically or numerically depending on the fiber
geometry. We have shown in Fig. 2(b) the fundamental and higher-
order temperature eigenmodes for a fiber with circular cladding,
which are calculated using the Coefficient-Form-PDE module in
COMSOL.75 The spatial structure of the temperature eigenmodes
is similar to the optical modes since both are eigenfunctions of the
same spatial operator ∇2

T. An important distinction is that optical
modes are localized in the fiber core, but the temperature eigen-
modes spread out over the entire fiber cross section due to the
differing boundary conditions. The fundamental mode has no nodes
and follows the symmetries of the cladding geometry. The higher-
order eigenmodes are characterized by u azimuthal and v radial
nodes across the entire fiber cross section (i.e., core plus cladding),
with a radial dependence given by the (u + 1)th Bessel function of
the first kind and angular dependence given by sine or cosine with u
zeros.

To complete the solution for ΔT, we need to determine each
coefficient ak

i j . This is done by simplifying the left hand side (LHS) of
Eq. (3) by substituting ΔT from Eqs. (7) and (8) and using the eigen-
mode equation [Eq. (9)]. The RHS of Eq. (3) can be obtained in terms
of optical amplitudes by using Eqs. (4) and (5). Finally, by exploiting
orthogonality, we isolate the desired coefficient ak

i j by multiplying
both sides of simplified Eq. (3) with T̃ k∗ and integrating it across the
fiber cross section, leading to

ai j
k (z,Ω) = D⟨ψ⃗∗i ⋅ ψ⃗jT̃∗k ⟩

Γi j
k + iΩ

gqD

κ ∫
∞

−∞

dΩ′A∗i (z,Ω′)

Aj(z,Ω +Ω′).
(10)

The amplitude of temperature eigenmode k for the heat source
term {i, j} is proportional to the overlap of the dot product of ψ⃗i

and ψ⃗ j with the temperature mode profile T̃ k integrated over the
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fiber cross section, denoted by the angular brackets ⟨⋅⟩. It is also
proportional to the convolution of optical amplitudes Ai and Aj.
We introduce an inverse mode lifetime for mode k given by Γi j

k
= ((βi − β j)2 + α2

k)D with units of [s−1]. The first term in the inverse
mode lifetime corresponds to the longitudinal heat diffusion, and
the second term corresponds to the transverse heat diffusion. In
typical fibers, the transverse heat diffusion dominates, so the longi-
tudinal heat diffusion can be ignored.18,19 In that case, we can define
Γi j

k ≈ Γk = α2
kD, which we use in the rest of this paper. However, in

fibers where longitudinal diffusion is significant, both contributions
need to be included in the inverse mode lifetime. This completes
the formal solution for ΔT in terms of the optical mode profiles and
amplitudes.

Next, we use the solution for ΔT to evaluate the source terms
in Eq. (1), which can be used to derive coupled self-consistent equa-
tions for optical amplitudes. We use the ansatz for E⃗ from Eq. (5)
to simplify the left hand side (LHS) of Eq. (1). Finally, we use the
orthogonality of the optical modes to isolate the equation of each
optical amplitude {Am} by multiplying both sides of the simplified
equation [Eq. (1)] with ψ⃗∗m and integrating it over the fiber cross
section,

dAm(z,Ω)
dz

= g
2

Am + igχ0∑
ijn
∫ dΩ′An(z,Ω −Ω′)

×Gmnij(Ω′)∫ dΩ′′A∗i (z,Ω′′)Aj(z,Ω′ +Ω′′)

× ei(βm−βn+βi−βj)z. (11)

The z derivative of the modal amplitude Am has contributions from
both the linear amplification term with growth rate g/2 due to stim-
ulated emission and a nonlinear four-wave-mixing term72 due to the
thermo-optical interaction, which is proportional to a susceptibility
constant χ0 and the sum of convolutions of three modal amplitudes
An, A∗i , and Aj. The exponential term tracks the phase mismatch for
each contribution, and the strength of each term is proportional to
the overlap of Green’s function of the heat equation with the relevant
optical mode profiles,

Gmnij(Ω) =∑
k

D⟨ψ⃗∗i ⋅ ψ⃗jT̃∗k ⟩⟨T̃kψ∗mψn⟩
Γk + iΩ

, χ0 =
ηqDk0

2ncκ
. (12)

The sum over k represents the sum over all the temperature eigen-
modes. Thus, Gmnij(Ω) denotes the optical modal overlap with
Green’s function of the heat equation written in the spectral rep-
resentation.76 The susceptibility constant χ0 involves a combination
of various material and optical constants involved and has dimen-
sions of [W−1]. Gmnij(Ω) has both real and imaginary parts, in
general. The real part is responsible for the nonlinear phase evo-
lution of Am, while the imaginary part is responsible for dynamic
transfer of power between various modes. Clearly, for Ω = 0, the
imaginary part of Gmnij vanishes, and thus, there is no transfer
of power between various modes of the fiber at ω0. A non-zero
Stokes frequency shift is needed for TMI, which is in agreement
with the well-known result that a moving intensity grating (Ω ≠ 0)
is required for TMI.11,18,24,42 Typically, there is amplitude noise in
the fiber, either due to experimental imperfections or due to sponta-
neous emission, having multiple frequency components. The noise

frequency at which the imaginary part of Green’s function peaks
undergoes the highest amplification and is typically a few kHz, lead-
ing to dynamic fluctuations in the beam profile on the order of
milliseconds.11,18,23

For any given set of input amplitudes in each mode, {Am
(z = 0, Ω)}, Eq. (11) can be solved to obtain modal amplitudes
{Am(z, Ω)} everywhere, fully determining both E⃗ and ΔT. The fiber
properties are taken into account through χ0 and Gmnij via optical
mode profiles {ψm} and temperature mode profiles {T̃ k}. Equa-
tion (11) is a set of highly coupled nonlinear differential equations
and, in general, cannot be solved analytically. Numerical solutions
are possible by using finite difference methods77 to discretize the
derivative operator and evaluating the convolutions by either built-
in or custom operations. It is expected that numerically solving
Eq. (11) would be more computationally efficient than solving the
original coupled optical and heat equations. This is because Eq. (11)
is a set of 1D equations, where transverse degrees of freedom are
accounted through the fiber modes, which exploit the longitudi-
nal translation invariance and only need to be solved once for a
given fiber. However, despite this simplification, when a large num-
ber of modes are present, the computational complexity can quickly
become very high. Additionally, for studying TMI suppression using
multimode excitation, the input modal content needs to be para-
metrically tuned, requiring a fast and efficient solution. Fortunately,
an approximate solution to the coupled amplitude equations can
be obtained that captures the essential features of the onset of TMI
and can be used to calculate the TMI threshold, which is derived in
Sec. II B.

B. Phase-matched noise growth
In this section, we derive an approximate solution to the

coupled amplitude equations to study noise growth due to thermo-
optical scattering when signal power is launched into multiple fiber
modes. We utilize two key approximations: (1) we retain only
the phase-matched terms18,19,31,71 since phase-mismatched terms
become insignificant over long enough length scales, and (2) we
assume that the noise power is significantly lower than the sig-
nal power and the change in the signal due to the noise growth is
ignored.18,19,69 This is typically valid below the TMI threshold, which
marks the onset of significant beam fluctuations, and can be used to
calculate the threshold. We assume that at the fiber input, the signal
(or, seed) is injected at frequency ω0 in various modes with com-
plex amplitudes {As

m(z = 0)}. In addition, there is noise present at
Stokes shifted frequencies ω0 −Ω in all the fiber modes, denoted by
complex amplitudes {Bm(z = 0, Ω)}. The total input amplitude in
mode m can be written as

Am(z = 0,Ω) = As
m(z = 0)δ(Ω) + Bm(z = 0,Ω). (13)

Similarly, the total amplitude in mode m at any point z can be
decomposed into the signal (Ω = 0) and noise (Ω ≠ 0) amplitudes,

Am(z,Ω) = As
m(z)δ(Ω) + Bm(z,Ω). (14)

As the light propagates down the fiber, both the signal and noise
grow exponentially due to the linear optical gain g. Below the TMI
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threshold, signal amplitudes roughly grow independently of the
noise and in the case of no gain saturation are given by

As
m(z) = As

m(0)e
g
2 zeiϕNL

m . (15)

Here, ϕNL
m is the nonlinear phase evolution in mode m. More impor-

tantly, noise also grows due to the transfer of power from the
signal due to the thermo-optical scattering. The noise growth can
be obtained by solving Eq. (11), which is first simplified by retaining
only the phase-matched terms, given by the condition βm − βn + βi
− βj = 0, leading to

dAm(z,Ω)
dz

= g
2

Am + igχ0∑
n
∫ dΩ′An(z,Ω −Ω′)

×Gmnnm(Ω′)∫ dΩ′′A∗n(z,Ω′′)Am(z,Ω′ +Ω′′).
(16)

We have utilized m = j, i = n as a solution to the phase-matching
condition, reducing the triple sum in the second term of Eq. (11) to
a single sum in Eq. (16). Note that m = n, i = j is also a valid solution
to the phase-matching condition, but such terms correspond to only
a cross-phase modulation, but no transfer of power as these terms
result in only a uniform temperature shift (qij ≈ 0); thus, we do not
retain these terms. We have also assumed the absence of any exact
degeneracies. This assumption can break down especially in graded
index fibers where significant degeneracies are present in which case
the above equations need to be modified slightly. For a detailed dis-
cussion, see the supplementary material, Sec. I. Next, we substitute
the ansatz for Am from Eqs. (14) and (15) in Eq. (16) and simplify
the RHS to obtain the growth equation for Bm(z, Ω),

dBm(z,Ω)
dz

= g(1
2
+ iχ0∑

n
Gmnnm(Ω)Ps

n(z))Bm(z,Ω). (17)

All the terms that are quadratic or higher order in noise amplitudes
are ignored. Each noise amplitude grows exponentially, indepen-
dently of other noise amplitudes, and has contributions in the
growth rate from both linear amplification and nonlinear power
transfer from the signal. Ps

m represents the signal power in mode
m and is given by ∣As

m∣2, and Gmnnm represents the contribution
to noise growth in mode m by signal power in mode n. Note that
here we have considered a signal at a single frequency without any
linewidth broadening since our goal is to study TMI in narrowband
fiber amplifiers with a focus on coherent excitations. However, in
some applications of fiber amplifiers, signal linewidth broadening is
utilized. In that case, our theory can be straightforwardly general-
ized by directly solving Eq. (16) instead of simplifying it to Eq. (17).
We can convert noise amplitude growth equations for mode m into
growth equations for noise power (given by ∣Bm∣2) by multiplying
with B∗m on both sides and adding the complex conjugate term,

dPN
m(z,Ω)

dz
= g(1 +∑

n≠m
χmn(Ω)Ps

n(z))PN
m(z,Ω). (18)

Here, PN
m denotes the noise power in mode m. The first term on the

RHS in Eq. (17) corresponds to the linear optical gain, and each term
in the second term corresponds to a transfer of power from a partic-
ular signal mode n to noise in mode m due to the thermo-optical

scattering. We have ignored the self-coupling term18 (correspond-
ing to Gmmmm) since the grating formed by interference of mode
m with itself at a Stokes shifted frequency has a grating period
[2π/(qmm ≈ 0)] much larger than the length of the fiber. For each
mode pair (m, n), we have defined a thermo-optical coupling coeffi-
cient χmn(Ω), which is equal to−2 times the imaginary part of Gmnnm
multiplied with χ0. Equation (18) can be solved analytically, resulting
in exponential growth in noise power in each mode m,

PN
m(L,Ω) = PN

m(0,Ω)egLeGTMI
m (Ω). (19)

PN
m(0,Ω) represents the noise power in mode m at the input end of

the fiber. PN
m(L,Ω) is the noise power at the output upon exponen-

tial growth both due to the linear gain g and the TMI gain, which
depends on signal power distribution,

GTMI
m (Ω) =∑

n≠m
χmn(Ω)∫

L

0
gPs

n(z)dz. (20)

The z integral can be simplified by using the signal growth formula
given in Eq. (15), ∫ L

0 gPs
n(z)dz = Ps

n(L) − Ps
n(0) ≈ ΔPP̃s

n, where ΔP
is the total signal power extracted from the amplifier and P̃s

n is
the fraction of the signal power in mode n (∑n P̃s

n = 1), which is
determined by the input excitation. Thus, TMI gain in mode m is
given by

GTMI
m (Ω) = ΔP∑

n≠m
χmn(Ω)P̃s

n ≡ ΔPχ̄m(Ω). (21)

This formula suggests a relatively straightforward interpretation.
The TMI gain for any mode depends on the total extracted sig-
nal power and effective thermo-optical coupling coefficient χ̄m(Ω),
which is given by the weighted sum of thermo-optical coupling
coefficients with all the other modes, with weights depending on
the input excitation. For a two-mode fiber with FM-only excitation
(P̃s

1 = 1), the above formula reduces to the well-known formula for
TMI gain,18,19 where it is given by the product of extracted signal
power and the thermo-optical coupling between the two modes χ21.
More generally, Eq. (21) can be used to derive the formula for the
TMI threshold under arbitrary multimode excitations, as shown in
Sec. II C.

C. Multimode TMI threshold
The TMI threshold is defined as the total output power when

the noise power becomes a significant fraction (ξ > 1%) of the signal
power, which leads to the onset of a fluctuating beam profile.18,19 For
a given amount of input noise power, this occurs when the highest
TMI gain across all frequencies and modes becomes large enough.
Therefore, a quantitative condition for the threshold can be derived
from Eqs. (19) and (21),

PN(L) = PN(0) egLe(Pth−Ps
(0))χ̄ = ξPs(0)egL, (22)

which can be rearranged as

(Pth − Ps(0))χ̄ = log( ξPs(0)
PN(0)

), (23)

APL Photon. 9, 066114 (2024); doi: 10.1063/5.0206859 9, 066114-6

© Author(s) 2024

 31 July 2024 23:52:07

https://pubs.aip.org/aip/app
https://doi.org/10.60893/figshare.app.c.7261114


APL Photonics ARTICLE pubs.aip.org/aip/app

where Pth is the TMI threshold, L is the length of the fiber, and
Ps(0) and PN(0) are the input signal and noise powers, respec-
tively. We have introduced an overall thermo-optical coupling coef-
ficient χ̄, which is equal to the maximum value of the effective
thermo-optical coupling coefficients across all the modes and Stokes
frequencies,

χ̄ = max
Ω,m
∑
n≠m

χmn(Ω)P̃s
n. (24)

A key insight from the multimode TMI threshold formula in Eq. (23)
is that TMI threshold is roughly inversely proportional to the over-
all thermo-optical coupling coefficient χ̄, which depends on both the
fiber properties through χmn and the input power distribution, P̃s

n.
It also weakly depends (logarithmically) on the input noise power
and the noise fraction ξ at which the threshold is set. In addition,
any increase in the input signal power (or, seed power) leads to a
corresponding increase in the TMI threshold. Typically, the input
power is significantly smaller than the TMI threshold; thus, the over-
all relative change due to a seed power increase is small.70,71 Note
that in Eq. (22), we have approximated the total Stokes power by the
Stokes power in the mode with maximum Stokes gain at Stokes fre-
quency with peak gain. This is justified by the exponential nature of
the Stokes growth. For a detailed derivation, see the supplementary
material, Sec. II. It can be easily verified that when only the funda-
mental mode is excited (P̃1 = 1, P̃n≠1 = 0), the overall thermo-optical
coupling coefficient, χ̄ simplifies to χ21, reducing our multimode
TMI threshold formula to a previously derived formula in studies
that only consider single mode excitation.19 More generally, multi-
mode excitation provides a parameter space to control the overall
thermo-optical coupling coefficient and the TMI threshold, even for
a fixed fiber. The TMI threshold is highest for the signal power dis-
tribution, which minimizes the maximum effective thermo-optical
coupling coefficient. The amount of tunability therefore depends on
the properties of the pairwise thermo-optical coupling coefficients,
which we discuss in detail in Sec. II D.

D. Thermo-optical coupling
The thermo-optical coupling coefficient between any modes

m and n is proportional to the imaginary part of a particular
component of Green’s function, Gmnnm, and is equal to

χmn(Ω) = χ0∑
k
∣⟨ψ⃗∗m ⋅ ψ⃗nT̃k⟩∣2

DΩ
Γ2

k +Ω2 . (25)

χmn has contributions from each temperature eigenmode k. The
strength of each contribution is proportional to the integrated over-
lap of the dot product of the optical mode profiles ψ⃗m and ψ⃗n with
the temperature mode profile T̃ k. Each contribution has a charac-
teristic frequency curve, which peaks at a frequency given by inverse
mode lifetime Γk, and the peak value is proportional to the ther-
mal mode lifetime 4πΓ−1

k . To illustrate the key properties of the
thermo-optical coupling coefficient, we calculate χmn(Ω) for all the
mode pairs of a circular step-index fiber with a core diameter of
40 μm, a cladding diameter of 200 μm, and a numerical aperture
NA = 0.15, supporting 82 modes per polarization. Detailed fiber or
optical parameters used for calculation are provided in Table I. We
consider optical modes linearly polarized (LP) along the x-direction.

TABLE I. Detailed parameters for circular fibers.

Parameter Value

Core shape Circular
Core diameter (μm) 40
Cladding diameter (μm) 200
Core refractive index 1.458
Cladding refractive index 1.45
Signal wavelength, λs (nm) 1032
Pump wavelength, λp (nm) 976
Number of optical modes 82
Thermo-optic coefficient, η (K−1) 3.5 × 10−5

Thermal conductivity, κ (W m−1 K−1) 1.38
Diffusion constant D (m2 s−1) 8.46 × 10−7

Each LP mode is designated by two indices [u, v], which corre-
spond to the number of azimuthal and radial nodes, respectively73,78

[see Fig. 2(a)]. The modes are arranged in the order of decreasing
longitudinal propagation constants. For instance, first five modes
(excluding rotations) are LP01 (FM), LP11, LP21, LP02, and LP12.
In our notation, therefore, χ12 ≡ χLP01, LP11. Note that LP modes are
only approximate modes of the fiber, which become inaccurate for
fibers with long lengths, in which case the exact vector fiber modes
(HE and EH modes) need to be considered.73 For the purpose of our
discussion, we assume that LP modes are accurate enough for the
length of the fiber considered.

In Fig. 3(a), we have shown the thermo-optical coupling coef-
ficient between the FM (LP01) and three HOMs in increasing mode
order (LP11, LP02, and LP12) for this fiber. Relevant mode pro-
files are shown in the inset. The thermo-optical coupling coefficient
in all three cases is zero at Ω = 0 and attains its peak value at fre-
quencies on the order of few kHz, consistent with the millisecond
timescale of TMI.11,18,19 The FM couples most strongly with the
lowest HOM (blue curve), and the peak coupling decreases with
the increasing transverse spatial frequency mismatch between the
modes (green and orange curves). The peak frequency and linewidth
are higher for the larger spatial frequency mismatch between the
modes. These results can be understood by investigating the spe-
cific temperature eigenmodes, facilitating the coupling for different
mode pairs, as shown in Fig. 3(b). The contribution of each tem-
perature eigenmode to the coupling between a pair of optical modes
is proportional to (1) the thermo-optical modal overlap integral and
(2) the corresponding thermal mode lifetime 4πΓ−1

k [Eq. (25)]. Over-
all, only a few temperature eigenmodes, which match the transverse
intensity profile of the interference between the optical modes, have
a significant overlap integral. For LP01−LP11 coupling, the opti-
cal interference pattern has relatively lower spatial frequencies and
thus has significant overlap with relatively lower-order temperature
eigenmodes [shown by blue dotted bars in Fig. 3(b)]. On the other
hand, the LP01–LP12 mode pair has a significant overlap with rela-
tively higher-order temperature eigenmodes [shown by orange bars
in Fig. 3(b)]. The thermal mode lifetime is shorter for temperature
eigenmodes with higher transverse spatial frequency [as shown by
the red curve in Fig. 3(b)], so the contribution of higher-order tem-
perature eigenmodes is damped. Such intrinsic dampening of high
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FIG. 3. (a) Thermo-optical coupling coefficient between the FM (LP01) and three HOMs in increasing mode order (LP11, LP02, and LP12) for circular fibers. Relevant
mode profiles are shown in the insets. The thermo-optical coupling coefficient vanishes for zero Stokes shift (Ω = 0) and peaks at frequencies on the order of few KHz.
LP01 couples most strongly with LP11 (blue curve), and the peak coupling decreases with the increasing transverse spatial frequency mismatch between the modes (green
and orange curves). The peak frequency and linewidth also increase with the mode order of HOMs. (b) Thermo-optical mode overlap for two different optical mode pairs:
LP01–LP11 (blue) and LP01–LP12 (orange) with various temperature eigenmodes. The temperature modes are ordered by increasing eigenvalues and decreasing mode
lifetimes, 2πΓ−1

k (shown by red curve). For each optical mode pair, only a few temperature eigenmodes have significant overlap (dotted bars), the ones which have spatial
frequency similar to the frequency of interference pattern of optical modes within the fiber core. For neighboring optical mode pair (LP01–LP11), significant overlap occurs
with lower-order temperature eigenmodes (with high mode lifetime), and for mode pair with relatively larger separation (LP01–LP12), significant overlap occurs with relatively
higher-order temperature eigenmodes (with short mode lifetimes). Note that the thermo-optical coupling coefficients are decreased when the mode lifetimes 4πΓ−1

k are
smaller. Consequently, optical mode pairs with larger separation have weaker overall coupling as indicated when the thermo-optical overlaps are weighted by lifetime (solid
bars), leading to the lower peak coupling and higher peak frequency as shown in (a).

spatial frequency contributions to the temperature is characteristic
of the heat propagation being a diffusive process.79 Consequently,
the lifetime weighted thermo-optical mode overlap for neighboring
optical modes (blue solid bars) is much higher than for modes with
larger separation of transverse spatial frequency (orange solid bars).
As a result, the peak thermo-optical coupling coefficient decreases
with the increasing spatial frequency mismatch between the opti-
cal modes. The quantitative relation between the spatial frequency
mismatch and the lowered thermo-optical coupling coefficient is
made possible by the use of thermal eigenmodes (each with a definite
spatial frequency) for expressing the temperature fluctuations.

Weak thermo-optical coupling between modes with large spa-
tial frquency mismatch is a generic result for all optical mode-pairs.
To explicitly show this, we calculate the peak value of χmn(Ω) for
all ∼104 mode pairs in circular fiber. The resulting coupling matrix
is shown in Fig. 4(a) as a false color image. We have omitted the
self-coupling (m = n) since it is not responsible for intermodal
power transfer between the modes.18 Clearly, every mode couples
strongly with only a few modes, resulting in a highly banded/sparse
coupling matrix. The strong coupling occurs when the spatial fre-
quencies of two modes are closely matched, i.e., similar number of
radial and azimuthal nodes (Δu,Δv ≤ 1). As we will see below, this
banded nature of the coupling matrix is what allows for a significant
suppression of TMI upon multimode excitation.

E. Threshold scaling
Recall that the TMI threshold is defined as the output signal

power at which the noise power in any mode becomes a significant

fraction (>1%) of the output signal power,19 and the beam profile
fluctuates dynamically rendering it useless for many applications.11

According to Eqs. (23) and (24), the TMI threshold is inversely pro-
portional to the overall thermo-optical coupling coefficient χ̄, which
is a sum of χmn weighted by the fraction of signal power in each
mode, which depends on the input excitation. Most previous TMI
suppression efforts consider exciting only the fundamental mode
and avoid sending power in HOMs, which our results indicate is
not the optimal approach. To show this explicitly, we consider two
special cases of input excitation—(1) FM-only excitation: all of the
signal power is present in the FM (P̃s

1 = 1) and noise is present in
HOMs, and (2) equal mode excitation: the input power is divided
equally in M modes of the fiber (P̃s

n = 1/M). We use Eq. (24) to
calculate χ̄ in the two cases and use it to compare the TMI thresh-
old. In the first case, the noise in the first HOM (m = 2) has the
highest growth rate due to the signal power in the FM (m = 1),
giving χ̄ = χ21. Since χ21 is the highest coupling out of all mode
pairs [Fig. 4(a)], FM-only excitation actually leads to the lowest TMI
threshold. In the second case, all the modes contribute to the overall
coupling to a given mode (say, m = 2) but with weights reduced by
a factor of M, i.e., χ̄ = ∑n≠2 χ2n/M. Due to the banded nature of χmn,
only a few elements in the sum are significant, leading to χ̄ ≈ sχ21/M.
Here, s is used to denote the average number of significant elements
in any row of the thermo-optical coupling matrix, which does not
scale with M and is roughly equal to 6 for our circular fiber. Thus,
for a highly multimode excitation (M ≫ s), the TMI threshold can
be significantly higher than the FM-only excitation. In fact, our rea-
soning predicts that the TMI threshold will increase linearly with
the number of equally excited modes, M. To verify this explicitly, we
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FIG. 4. (a) Thermo-optical coupling matrix for circular fiber (circular cross section). Each element m, n is a positive entry given by the peak value of thermo-optical coupling
coefficient χmn(ω). Self-coupling (m = n) is not considered for the reasons discussed in the phase-matching subsection (Sec. II B). Only a few entries close to the diagonal
have significant value, giving a banded matrix. (b) TMI threshold scaling in circular fiber with the number of equally excited modes M. The threshold increase factor is defined
by taking the ratio of TMI threshold with the threshold for FM-only excitation. As the number of excited modes is increased, the TMI threshold increases linearly and can reach
up to 13 times higher when all 82 modes are excited. In comparison, the TMI threshold increase upon single HOM excitation (red curve) is significantly smaller.

calculate the TMI threshold as M is increased. We define the thresh-
old increase factor (TIF) as the ratio of TMI threshold for M-mode
excitation with that for FM-only (M ≈ 1) excitation. Figure 4(b)
shows the values of TIF as M is varied. As predicted, the TMI thresh-
old increases linearly with the number of excited modes with a slope
roughly equal to 1/s(≈ 0.16). When all 82 modes in the circular fiber
are excited equally, we find a remarkable 13× enhancement of the
TMI threshold over FM-only excitation. This confirms that highly
multimode excitation in a multimode fiber amplifier can be a great
approach for achieving robust TMI suppression.

Our model and formalism are equally efficient for considering
fibers with non-circular cross sections, such as the D-shaped fiber
with more complex spatial structures of its modes, due to the under-
lying chaotic ray dynamics, as discussed and depicted in Fig. 7. The
physical argument for the suppression of TMI via highly multimode
excitation does not rely on any special features of the fiber trans-
verse modal geometry and should be valid for general step-index
fiber geometries. Confirmation of this expectation is shown in the
Appendix, where we find linear scaling of the TMI threshold with
the number of modes excited for the D-shaped fiber. The slope of
the scaling line does depend on both the geometry of the core and
the cladding, but rather weakly, as discussed in the Appendix.

It should be noted that although we have only considered equal-
mode excitation to achieve a higher TMI threshold, it is by no
means a strict condition. Our theory predicts that multimode exci-
tation will generically lead to a higher threshold than the FM-only
excitation due to the sparse nature of the thermo-optical coupling
matrix. Therefore, it is expected to be a universal result, indepen-
dent of the details of fiber composition, geometry (see above) and
the precise distribution of excited modes. The level of enhance-
ment will mainly depend on the effective number of excited modes.
While most previous studies of TMI consider FM-only excitation,

an increase in TMI threshold due to multimode excitation has been
observed in some cases. A recent study by the current authors
demonstrated an increase in TMI threshold upon multimode exci-
tation using explicit time-domain numerical simulations of coupled
optical and heat equations in 1D cross-sectional waveguides.63 Addi-
tionally, several recent experimental studies on the effect of fiber
bending on TMI threshold in few-mode fibers provide evidence for
our predictions.80–82 They have observed that upon launching light
in a fiber that supported multiple modes, a higher TMI threshold
is obtained for a larger bend diameter (i.e., a loosely coiled fiber).
The bending loss of HOMs decreases when the bend diameter is
larger, and thus, the effective number of excited modes is higher,
which leads to a higher TMI threshold in accordance with our pre-
dictions. It should be noted that these experimental findings are
opposite to the predictions of previous theories, which only consider
FM excitation and predict that decreased HOM loss upon increas-
ing bend diameter should lead to lowering of the TMI threshold.44,83

The authors of these studies80,81 pointed out this anomaly and tried
explaining these results by arguing that lower mode mixing leads to a
higher threshold. In our opinion, this discrepancy is a result of ignor-
ing the signal power in HOMs, which is fully taken into account in
our formalism and can straightforwardly account for their results.

III. NONLINEAR MODEL: GAIN SATURATION
AND PUMP DEPLETION

In Sec. II, we approximated the signal growth by consider-
ing a simplified treatment of optical gain due to stimulated emis-
sion by assuming a constant gain coefficient g0. This model was
treated first to highlight the physics of multimode excitation and its
impact on the thermo-optical coupling and TMI threshold. How-
ever, such a model of fiber gain neglects important effects, such as
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gain saturation,65,84 mode-dependent gain/loss,85 and pump deple-
tion,71 which are present in any real high power fiber amplifier. In
this section, we utilize a more realistic model of gain in multimode
fiber amplifiers, including all the above-mentioned effects, and again
are able to derive a more complicated, but still semi-analytical for-
mula for thermo-optical coupling, which gives the TMI threshold for
arbitrary multimode excitations. This model should be used in order
to make quantitative predictions to be compared with experiments.

We will show that the banded nature of the thermo-optical
coupling matrix and the linear scaling of TMI threshold upon multi-
mode excitation found for the simpler model in Sec. II are also found
in the presence of gain saturation, mode-dependent gain, and pump
depletion. This was expected, as the scaling of TMI threshold upon
multimode excitation is a result of the diffusive nature of heat prop-
agation, leading to weak thermo-optical coupling between modes
with a large transverse spatial frequency mismatch. This mismatch
of the spatial frequencies of the thermal and optical fluctuations is
qualitatively unchanged by gain saturation and the other effects. We
do find that including gain saturation impacts the exact value of
TMI threshold, increasing it for all input excitations due to reduced
dynamic heat load; this result is in agreement with the findings of
previous studies of TMI in the case of single-mode excitations, which
include these effects.21,26,65,66,70,71,82,86

To set up our new model, we generalize the approach used by
several previous studies to obtain TMI threshold upon single mode
excitation21,26,64,66,70,71,82,86 for the case of multimode excitation. This
involves two key steps. First, the signal amplitudes are obtained in
each mode and along the entire fiber axis by numerically solving
the saturated signal amplification equations coupled with the evo-
lution of pump and the upper-level population in the gain medium.
In this step, any effect of Stokes wave (due to noise) and the thermo-
optical coupling on the signal are neglected. This is consistent with
the undepleted signal approximation utilized in Sec. II B since as
argued there, the backaction of the noise on the signal is negligible
below the TMI threshold. In the second step, the signal amplitudes
and upper-level population are used to calculate relevant dynamic
heat load and the resultant thermo-optical coupling is used to obtain
the growth of Stokes power in each mode, which determines the TMI
threshold.

A. Signal amplification
We consider a co-pumped fiber amplifier with a ytterbium (Yb)

doped gain medium87 in the fiber core, with a pump beam propa-
gating in the pump core exciting the electrons to the upper level and
creating inversion. As a result, the signal beam propagating in the
fiber core undergoes amplification due to stimulated emission. The
growth of signal amplitudes in each mode, As

m, can be written as13

dAs
m(z)
dz

=∑
n

ei(βn−βm)zgmn(z)As
n(z), (26)

where gmn is the gain in mode m due to amplitude in mode n and is
given by

gmn(z) =
g0

2 ∫ dr⃗�
ψ∗m(r⃗�)ψn(r⃗�)

1 + I0(r⃗�, z)/Isat(z)
. (27)

Here, the integral is over the doped area of the fiber cross section.
The new intensity-dependent factor in the denominator modifies

the linear gain by taking into account the reduction in the inversion
(gain saturation) due to the removal of the pump energy by the signal
amplification;84,87 g0 is the unsaturated gain coefficient. The amount
of gain saturation depends on the ratio of the local signal intensity
I0 and a saturation intensity Isat. Both g0 and Isat depend on various
properties of the gain medium and the local value of pump power Pp,
and their formulas are obtained from steady state rate equations13,88

(for more details, see the supplementary material, Sec. III). Notice
that in addition to self-gain terms (m = n), we must also consider
cross gain terms (m ≠ n), which are now non-zero due to the spa-
tially varying nature of the gain saturation term (referred to as spatial
hole burning) and leads to non-linear mode coupling due to gain
saturation.13,84,88 Some previous studies of TMI, which consider irra-
diance based models,66,86 ignore the spatial hole burning retaining
only the self-gain terms. For studying multimode excitations, includ-
ing the hole burning is essential since the multimode signal intensity
will typically have rapid speckle-like spatial variations. Note that we
have ignored any variation in the real part of the refractive index due
to the gain saturation as this tends to be significantly smaller than the
imaginary part for relevant wavelengths.

As the pump beam excites the gain medium, it loses energy,
leading to a decreasing pump power along the fiber axis, referred
to as pump depletion.13 We take this into account quantitatively by
introducing a standard equation for the evolution of pump power,
which is given by13

dPp(z)
dz

= −gp(z)Pp(z). (28)

The pump power decays exponentially with a longitudinally vary-
ing loss coefficient gp, which depends on the local inversion and is
given by13

gp(z) =
NYb

Acl
∫ dr⃗�(σa

pnl(r⃗�, z) − σe
pnu(r⃗�, z)). (29)

Here, the integral is over the doped area of the fiber cross section. σe
p

and σa
p are the emission and absorption cross sections of the pump,

respectively, NYb is the density of doped ytterbium atoms, and Acl is
the area of pump core, which is typically the same as the core plus
the first cladding. Note that we are able to consider a single equation
for pump power instead of a different one for each pump mode as in
typical experiments the pump is incoherent and fills the fiber cross
section uniformly on average.11,69,87 The Yb-doped gain medium we
consider is a quasi-three-level medium. The pump photon causes
a transition from the lower lasing level to the uppermost level after
which the electron population immediately transitions downward to
the upper lasing level causing heat generation in the process. This is
known as quantum defect heating. nu and nl are the fraction of pop-
ulation in the upper and lower lasing levels, respectively, satisfying
nl = 1 − nu, where nu is obtained by solving steady-state rate
equations, leading to13,26,70,71,87

nu =
Pp

Acl
̵hωp

σa
p + I0

̵hωs
σa

s
Pp

Acl
̵hωp
(σe

p + σa
p) + I0

̵hωs
(σe

s + σa
s ) + 1

τ

. (30)

Here, ωs and ωp are the signal and pump frequencies and
σe

s and σa
s are the emission and absorption cross sections of

the signal, respectively. Each individual term involving scattering
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cross sections is equal to either the rate of stimulated emission or
absorption of the signal or the pump and has units of [s−1]. τ is the
upper state lifetime. nu has a strong spatial dependence due to both
the pump power Pp and the signal intensity I0.

A solution to the signal amplification equations [Eqs. (26) and
(27)] coupled with the evolution of the pump power [Eqs. (28) and
(29)] and upper-level population [Eq. (30)] can be obtained by stan-
dard finite difference based numerical methods.89,90 We utilize a
centered difference approximation for all the z derivatives and use
it to iteratively update the values of the signal amplitudes and the
pump power at the z + δz position from the values of respective
gain coefficients at z and values of the variables at z − δz positions.
At each z, the values of gp, gmn, and nu are updated directly from
Eqs. (27), (29), and (30). To validate our numerical model, we first
simulated the 20/400 fiber amplifier studied by Smith and Smith64

where single mode excitation was considered and obtained excel-
lent agreement with their results. We also simulated the two-mode
excitation case discussed by Li et al.82 and found good agreement.

Next, we study the highly multimode step-index fiber amplifier
discussed in Sec. II D. All the parameters for Yb-doped gain medium
are taken from Table I in the work of Smith and Smith.64 The radius
of the Yb doped area was considered to be equal to the fiber core
radius. The unsaturated gain coefficient g0 ≈ 4 m−1, dopant con-
centration NYb = 3.25 × 1025 m−3, and length of the fiber L = 2 m.
Initial pump power depends on the TMI threshold for different exci-
tations. For any given multimode input excitation, we launch 10 W
of seed power divided appropriately in the signal modes and a vari-
able amount of pump power determined self-consistently such that
the total output signal power is equal to the TMI threshold. The
length of the fiber is chosen to be such that >95% pump power is
absorbed and converted to the signal power. Figure 5 shows the
results for the case when all 82 modes are excited equally at the
input. 6 kW of pump power is launched in a 2 m long fiber, and
it decreases monotonically along the fiber axis as it excites the gain
medium creating inversion. The signal power in each mode grows
at first exponentially when the gain saturation is low and linearly
when gain saturation becomes high and eventually flattening out
when nearly all the pump is depleted. The final output power is
roughly 5675 W, leading to a conversion efficiency of 0.945, which
is close to the quantum efficiency limit ( λp

λs
= 0.9457). Notice that

the signal power in different modes grows with a different growth
rate displaying mode dependent gain. This is a result of both the
differential overlap with the fiber core where the gain medium is
present and spatial hole burning induced variations in the fiber gain.
At this stage, thermo-optical effects have not yet been calculated. In
Subsection III B, having obtained the saturated signal power along
the entire fiber axis, we show how the gain-saturated thermo-optical
coupling can be utilized to calculate the TMI threshold for arbitrary
multimode excitations.

B. Thermo-optical coupling with gain saturation
The gain saturation impacts the local inversion and therefore

also changes the amount of heat generated due to the quantum
defect. The gain-saturated heat source is given by66,71

Q(r⃗, t) = gsqDI(r⃗, t) = g0qDI(r⃗, t)
1 + I(r⃗, t)/Isat

, (31)

FIG. 5. Pump power (red solid line, scale on the right y axis) gets depleted as it
is absorbed along the fiber creating inversion. This inversion leads to the growth
of the total signal power (shown by the red dotted line, scale on the right y axis),
which grows exponentially at first and then linearly due to the gain saturation and
eventually flattens out as most of the pump is depleted. All the other curves with
various colors show the signal power in individual modes (scale on the left y axis)
displaying the mode dependent gain due to the spatial hole burning and differential
overlap with the gain medium.

where gs and g0 are the saturated and unsaturated gain coefficients
and qD is the quantum defect. The denominator comes directly
from the saturation term in the gain coefficient and depends on the
local signal intensity I(r⃗, t). At any point, the signal intensity can
be written as a sum of a static contribution I0(r⃗) and a dynamic
contribution Ĩ(r⃗, t), i.e., I(r⃗, t) = I0(r⃗) + Ĩ(r⃗, t). The first term is a
result of self-interference of the electric field at the signal frequency
ω0, whereas the second term results from the interference between
the signal at ω0 and the noise at Stokes shifted frequencies ω0 −Ω.
Consequently, the heat profile has both static and dynamic contribu-
tions, Q(r⃗, t) = Q0(r⃗) + Q̃(r⃗, t). It is the latter term that results in the
dynamic power transfer responsible for TMI. Below the TMI thresh-
old, the Stokes power is much smaller than the signal power, and
hence, the dynamic part of the intensity fluctuation is significantly
smaller than the static part. Therefore, we can simplify the expres-
sion for Q̃ by using the Taylor expansion in terms of Ĩ/(I0 + Isat) and
keeping the leading-order term, giving the following expression66

(for a detailed derivation, see the supplementary material, Sec. III):

Q̃(r⃗, t) ≈ g0qD Ĩ(r⃗, t)
(1 + I0(r⃗)/Isat)2 . (32)

The dynamic heat source is proportional to the time varying
intensity Ĩ and is inversely proportional to the square of the satura-
tion term, which depends on local static intensity I0. This quadratic
behavior of the saturation term is a result of the extra contribution
to the gain saturation from the dynamic part of the intensity, which
comes with a negative sign upon the Taylor expansion, and partially
cancels the direct term proportional to Ĩ.66 Such a quadratic satu-
ration of the dynamic heat load explains the well-known increase
in the TMI threshold due to the gain saturation13,82 and was first
pointed out by Hansen and Lægsgaard66 and later by several other
authors.69,71,86
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Comparing the form of the relevant heat load in Eqs. (4) and
(32), we can directly derive a modified formula for the thermo-
optical coupling χs

mn, taking into account the gain saturation,

χs
mn(Ω, z) = χ0∑

k

DΩ
Γ2

k +Ω2 ∫ dr⃗�ψ⃗∗m ⋅ ψ⃗nT̃k

× ∫ dr⃗�
ψ⃗m ⋅ ψ⃗∗n T̃∗k

(1 + I0(r⃗�, z)/Isat)2 . (33)

The key modification in the formula for thermo-optical coupling
upon gain saturation is the presence of a saturation term in the
overlap integral associated with the heat equation. Here, we have
written the transverse integrals explicitly instead of using ⟨⋅⟩ as we
did in Eq. (25) to highlight the space-dependent nature of the sat-
uration term due to the spatial-hole burning. In addition, since the
local intensity I0 in the denominator depends on z, now, the thermo-
optical coupling varies along the fiber axis. This modifies the form of
the TMI gain given in Eq. (20) by shifting χs

mn inside the z integral,

GTMI
m (Ω) =∑

n≠m
∫

L

0
χs

mn(Ω, z)g0Ps
n(z)dz. (34)

Here, Ps
n is the signal power in mode n calculated with gain satu-

ration in the first step discussed in Subsection III A. Note that in
the above formula, the unsaturated gain coefficient g0 is used, as
the effect of saturation on the heat load is already considered in
the thermo-optical coupling χs

mn. For a direct comparison with the
form of the TMI gain given in Eq. (21), we define a z-integrated
thermo-optical coupling as follows:

⟨χs
mn(Ω)⟩z =

g0∫ L
0 dzχs

mn(z,Ω)Ps
n(z)

Ps
n(L) − Ps

n(0)
. (35)

Here, the denominator is for normalization chosen such that it
is equal to ∫ L

0 dzgsPs
n(z), ensuring that in the absence of gain satura-

tion the z-integrated χ becomes equal to the value of χ everywhere.
This allows us to write an expression for TMI gain similar to the one
in Eq. (21),

GTMI
m (Ω) = ΔP∑

n≠m
⟨χmn(Ω)⟩zP̃s

n. (36)

The TMI gain in any mode is given by a product of the total
extracted power ΔP and the weighted sum of z-integrated thermo-
optical coupling with all the other modes. The weight P̃s

n is the
fraction of signal power extracted by mode n (P̃s

n = Ps
n(L)−Ps

n(0)
ΔP ) and

can be controlled by the input excitation.
Using the formulas in Eqs. (33) and (35), we were able to cal-

culate the thermo-optical coupling for all the mode pairs in the
82-mode circular step-index fiber amplifier discussed in Sec. II
everywhere along the fiber when all 82-modes were equally excited
and calculated the z-integrated coupling matrix in the presence of
gain saturation. The results are shown in Fig. 6(a). It can be seen
that the thermo-optical coupling matrix remains sparse and approx-
imately banded, even with gain saturation. This is as we expected
from the physical arguments above. Although the structure of the
matrix is unchanged, the exact values of the couplings are certainly
impacted by the gain saturation. It can be seen by comparing the

scale in Figs. 3(a) and 6(a) that the z-integrated thermo-optical cou-
pling is lowered due to the gain saturation for all the mode pairs by
roughly 20%. This leads to a higher value of TMI threshold upon
including the gain saturation as we will see in Subsection III C. The
amount of coupling reduction depends on the ratio of the size of the
pump core and the gain core as that determines the degree of gain
saturation. For a larger pump core, the pump intensity in the gain
core is lower, decreasing the saturation intensity and increasing the
amount of gain saturation, leading to a smaller value of z-integrated
thermo-optical coupling. Note that the reduction in overall thermo-
optical coupling also depends on the number of modes excited albeit
weakly.

C. TMI threshold scaling
As just noted, gain saturation affects the local heat load

and reduces the resultant thermo-optical coupling, leading to an
increased value of TMI threshold, a fact that has been demon-
strated both theoretically and experimentally for single mode
excitations.21,26,64,66,70,71,82,86 To calculate the TMI threshold for mul-
timode excitations, we utilize the formula for TMI gain in Eq. (36),
which produces a similar formula for TMI threshold as given in
Eq. (23). The only modification is that the overall thermo-optical
coupling coefficient χ̄ is now given by a weighted sum of z-integrated
thermo-optical coupling between various mode pairs,

χ̄ = maxΩ,m∑
n≠m
⟨χs

mn(Ω, z)⟩zP̃s
n. (37)

The TMI threshold is inversely proportional to the overall
thermo-optical coupling coefficient χ̄, which strongly depends on
the input excitation via signal power distribution in various modes
{P̃s

n}. As in the simpler model, due to the sparse nature of the sat-
urated thermo-optical coupling matrix, we expect power division to
increase the TMI threshold. To show this quantitatively, we first cal-
culate the TMI threshold when only the fundamental mode (FM) is
excited and subsequently when various number of modes are equally
excited. In each instance, the amount of pump power is chosen such
that the total output signal power is equal to the TMI threshold.
When only the FM is excited, we obtain a TMI threshold equal to
775 W. To validate this result, we compare it to the predicted value
of the TMI threshold in the work of Smith and Smith65 for a fiber
with the same ratio of the diameter of the gain core and pump core
(50/250) as in our fiber (40/200). A value of 785 W is obtained for
the TMI threshold for such a fiber from Table II in Ref. 65, which
matches closely with our prediction. Without the gain saturation,
the TMI threshold is found to be 375 W, which is also in close agree-
ment with prediction in Ref. 65 (345 W). In the previous studies
on narrowband amplifiers involving large mode area (LMA) fibers
(both step-index and photonic-crystal fibers), the TMI threshold
ranged from 200 to 800 W.42,91,92 The TMI threshold upon FM-only
excitation in this fiber is therefore comparable to LMA fibers. As
the number of modes excited is increased, the TMI threshold also
increases linearly especially for a large number of modes and reaches
close to 5700 W when all 82 modes are equally excited [Fig. 6(b)].
The origin of this linear scaling is the same as in the simpler model.
The slope of the linear increase in TMI threshold is higher with sat-
uration (62 W/mode) than without gain saturation (54 W/mode)
since the starting point of the curve (fundamental mode threshold)
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FIG. 6. (a) z-integrated thermo-optical coupling matrix for fiber with the circular cross section, including the effects of gain saturation and pump depletion. Self-coupling
(m = n) is not considered for the reasons discussed in the phase-matching subsection (Sec. II B). Similar to the unsaturated gain case, only a few entries close to the
diagonal have significant value, giving a banded matrix. Saturation of the heat load leads to a reduction in overall thermo-optical coupling as displayed by the color-scale.
(b) TMI threshold scaling in a circular step-index fiber with the number of equally excited modes M with (blue circles) and without (black crosses) gain saturation. In both the
cases, the TMI threshold increases linearly with the number of modes. The dotted lines show best fit lines with slope = 54 W/mode without gain saturation and slope = 62
W/mode with gain saturation. When gain saturation is included, the TMI threshold and the slope of linear scaling are higher. The difference in threshold in these two cases
does not appear very dramatic because the y axis spans a large range (0–6 kW) of values due to a large impact of multimode excitation.

is higher when gain saturation is included. The value of TMI thresh-
old with gain saturation is higher by an amount ranging from 100 to
800 W for various numbers of excited modes. For a fiber with a larger
pump core or a smaller gain core, this difference is expected to be
even higher. As mentioned above, the reduction in thermo-optical
coupling due to gain saturation that leads to increased threshold
weakly depends on the number of modes excited. When gain sat-
uration is taken into account, this effect can compete with linear
enhancement in the TMI threshold for a low number of modes caus-
ing deviations from strict linear scaling at the lower end in Fig. 6(b).
For a large number of excited modes, linear enhancement domi-
nates giving asymptotically linear scaling of TMI threshold with the
number of modes excited.

IV. DISCUSSION AND CONCLUSION
In this work, we have developed a theory of TMI, which can

be used for efficient calculation of TMI threshold in narrowband
fiber amplifiers for arbitrary multimode excitations and fiber geome-
tries. A key result obtained from this theory is that TMI threshold
increases linearly with an effective number of excited modes. The
scaling is a result of the diffusive nature of the heat propaga-
tion underlying the thermo-optical mode coupling. As such, it is
expected to be applicable to a broad range of fibers. This opens
up the use of highly multimode fibers as a promising avenue for
instability-free power scaling in high-power fiber amplifiers.

The existing high-power multimode fiber amplifiers do not
produce a spatially coherent output that can be focused to a
diffraction-limited spot or collimated to a Gaussian beam. By con-
trast, our approach allows for the generation of a spatially coherent

beam out of a highly multimode fiber amplifier. This capacity will
expand the potential applications of multimode fiber amplifiers, e.g.,
for a large-scale laser interferometer and coherent beam combining.
It is sometimes mistakenly assumed that the presence of multiple
spatial modes necessarily leads to a poor output beam quality and
a high value of M2.49,50 However, this belief is not correct, as pre-
vious work on the manipulation of coherent optical fields has been
shown.51,52,93 Indeed, the fields in multimode fibers can maintain a
high output beam quality as long as the light remains sufficiently
coherent,94,95 i.e., the signal linewidth is narrower than the spec-
tral correlation width of the fiber. In a typical scenario involving
a 10-m-long silica fiber with an NA of 0.1, the spectral correla-
tion width is ∼2 GHz for a laser wavelength of 1032 nm. In fact,
by using an SLM to wavefront-shape the input light to a fiber, it
is possible to obtain a diffraction-limited spot after coherent multi-
mode propagation in both passive54 and active fibers,51 which can
be easily collimated using a lens. It is noteworthy that the SLM
may introduce a few percent of optical loss due to diffraction by
pixel edges into higher orders and absorption by the various lay-
ers in the SLM. However, since the SLM modulates only the input
seed, its loss is negligible, as long as the amplifier operates in the
gain-saturation regime where the output power mostly depends on
the pump power. Since focusing to a diffraction-limited spot in
the near field necessarily leads to the excitation of multiple fiber
modes, our theory predicts that it will lead to a higher TMI threshold
than FM-only excitation, with a scaling proportional to the effec-
tive number of fiber modes. Hence, the method just discussed can
be used to increase the TMI threshold while maintaining good beam
quality. A similar result has recently been demonstrated experimen-
tally for the case of SBS in multimode fibers; the threshold for the
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onset of SBS was demonstrated to increase significantly by focus-
ing the output light of a multimode fiber to a diffraction-limited
spot.61

Above, we derived computationally tractable semi-analytic for-
mulas for the TMI threshold in the presence of multimode excita-
tion: First with a model that neglects gain saturation and related
effects but illustrates the fundamental mechanism of suppression
of TMI through the banded nature of the thermo-optical coupling
matrix, leading to a linear threshold increase with the number of
excited modes in the signal. Within this model, all calculations are
effectively linearized. Second, we improved the model by calculating
the saturated signal and pump depletion with a non-linear compu-
tational method, which is then used in a generalization of the first
model to calculate the thermo-optical coupling matrix and the TMI
threshold. The model again finds a sparse coupling matrix and a lin-
ear scaling of the threshold with the number of excited modes. The
absolute threshold is increased compared to the simpler model, as
expected, but the difference is not dramatic. This model incorporates
all of the major effects missing in the first model but present in real-
istic fiber experiments: gain saturation and hole-burning of the sig-
nal, mode-dependent gain/loss, and depletion of the pump; hence,
it is appropriate for quantitative comparisons with experimental
data.

We have still ignored any random linear mode coupling85 in the
fiber. This assumption can be relaxed relatively straightforwardly;
the multimode TMI threshold is typically increased by the pres-
ence of mode mixing since it promotes equipartition of signal power
in various modes.63 Note that our results are valid only under the
assumption that the random linear mode coupling does not have a
strong temporal variation on the time scales faster than what can be
compensated by the use of spatial light modulators. This is typically
true for most high-quality multimode fibers.

Experimental validation of the theoretical results provided in
this paper would be an important next step. Time-domain numer-
ical simulations of optical and heat equations for up to five mode
excitations in 1D cross-section waveguides are provided in Ref. 63
and are in good agreement with our theory. Additionally, several
recent experimental studies investigating the effect of fiber bend-
ing on the TMI threshold in few-mode fibers provide evidence
for our predictions.80–82 It has been observed that in a few-mode
fiber, when the bend diameter of the fiber is increased (fiber being
loosely coiled), a higher TMI threshold is obtained. For a large bend
diameter, the bending loss of the HOMs decreases; thus, the effec-
tive number of excited modes is higher, which leads to a higher
TMI threshold in accordance with our predictions. In fact, the pre-
vious theories that only consider FM-only excitation predict that
decreasing the HOM loss by increasing bend diameter should lead
to lowering of the TMI threshold, in contrast to the experimen-
tal findings.44,83 This discrepancy is a result of ignoring the signal
power in HOMs, which is fully taken into account in our theory.
More systematic experimental studies are needed to investigate our
predictions quantitatively.

In recent years, there has been a significant progress in fab-
ricating low-loss fibers with non-circular cross sections.96,97 These
fibers have been proposed as a way to manipulate the strength of
nonlinearities.98 As noted above, the theory derived here can be
used to calculate the TMI threshold for any fiber cross-sectional
geometry. In the Appendix, we have utilized it to demonstrate that

a D-shaped fiber performs better than a standard circular fiber in
raising the TMI threshold via multimode excitation. This interplay
between input excitation and fiber geometry can provide a num-
ber of avenues for manipulating the strength of nonlinearities in the
fiber. We believe that our theory can be utilized as a framework for
customizing the strength of the thermo-optical nonlinearity using
optimized fiber designs.99 Utilizing the spatial degrees of freedom of
the fields to control nonlinear effects is becoming a standard tool and
has been demonstrated for diverse effects, such as SBS,59–61 SRS,62

and Kerr nonlinearity.56,100 Our work contributes to this exciting
area by bringing the thermo-optical nonlinearity, with its different
physical origin, into this category and at the same time providing a
solution to the practical challenge of TMI suppression.

SUPPLEMENTARY MATERIAL

A supplementary material is attached for additional informa-
tion. In the first section, we provide a detailed discussion on the
phase matching for nonlinear thermo-optical scattering in multi-
mode fibers. In the second section, we provide more details regard-
ing the derivation of the multimode TMI threshold formula and
justify the use of only the Stokes mode with maximum gain at peak
frequency. In Sec. III, we provide a derivation of the saturated gain
coefficient along with the formulas for various gain saturation para-
meters. In addition, we derive the formula for saturated dynamic
heat load. Finally, a quantitative comparison of our model is pro-
vided with previous studies on TMI in single mode and few mode
fiber amplifiers.
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APPENDIX: IMPACT OF FIBER GEOMETRY

In the main text, we considered a standard step-index mul-
timode fiber with a circular cross section, which shows that TMI
threshold increases linearly with the number of excited modes owing
to the banded nature of the thermo-optical coupling matrix. This
banded nature is a fundamental consequence of the diffusive nature
of the heat propagation, which underlies the thermo-optical scatter-
ing due to the intrinsic damping of high-spatial-frequency features.
As a result, we expect the banded nature of the thermo-optical cou-
pling matrix to be maintained even in fibers with non-standard
geometries,96,97 while the number of significant elements in the cou-
pling matrix and their relative values can depend on the particular
fiber geometry. As such, we expect the linear scaling of the TMI
threshold to be maintained, but the slope to differ for fibers with
different cross-sectional geometries. Thus, studying different fiber
geometries to determine which yields a higher slope of threshold
increase with M may be useful in designing fibers with enhanced
TMI thresholds.

As our formalism does not assume any particular fiber cross-
sectional geometry, unlike most previous approaches,18,19,69 it can
be utilized straightforwardly for calculating the TMI threshold for
different fiber geometries under multimode excitation. We consider
two additional fiber cross-sectional geometries other than circu-
lar: square fiber and D-shaped fiber (referring to a circular shape
truncated by removing a section bounded by a chord). For simplic-
ity, we ignore gain saturation and pump depletion in this section
as these effects do not change the TMI threshold scaling qualita-
tively as shown in the main text. A reason to study these particular
shapes is because square and D-shaped cross sections support modes
with statistically different profiles, while a square shape results in
an integrable transverse “cavity,” supporting modes with a regular
spatial structure101 (as does the circular fiber); in contrast, the D-
shaped cross section leads to wave-chaotic behavior in the transverse
dimensions, with highly irregular and ergodic modes.102 Due to this
property, D-shaped micro-cavities have found applications in sup-
pressing instabilities and speckle-free imaging in 2D semiconductor
micro-lasers.103,104 Similar to the circular fiber, the square fiber is
chosen to have a core width of 40 μm and a cladding width of 200
μm. For the square fiber, we consider a slightly smaller NA of 0.135
as it has a slightly larger core area compared to the circular fiber
such that it also supports 82 modes per polarization. In the D-shaped
fiber, the core shape is formed by slicing a circle of diameter 40 μm
with a line at a distance 10 μm (half the circle radius) from the center.
Similarly, the cladding is obtained by slicing a circle of diameter 200
μm at the same relative distance. For the D-shaped fiber, we consider

FIG. 7. (a) Amplitude profiles of guided optical modes for D-shaped and square
cross-sectional step-index fibers. The optical modes are guided in the core of the
fiber. (b) Amplitude profiles for thermal modes for fibers with D-shaped and square
shaped cladding. The thermal modes are the spatial eigenmodes of the heat equa-
tion with constant temperature at the cladding boundary. Each thermal mode fills
the entire fiber cross section. Both optical and thermal modes in the square fiber
are structured and have a particular number of nodes along x and y axes. The
modes in the D-shaped fiber have a random structure as D-shaped cavities are
wave-chaotic.

a slightly larger NA (0.17) as it has a slightly smaller core area com-
pared to the circular fiber such that it also supports 82 modes per
polarization. All other relevant parameters for calculation are kept
the same for all three fibers and are given in Table I.

Similar to the circular fiber, we first calculate the thermo-optical
coupling coefficients for all mode pairs for both the square fiber
and D-shaped fiber by using the formula in Eq. (25). We calculate
the optical modes in each case by using the wave-optics module in
COMSOL.75 Example of an optical mode for each fiber is shown
in Fig. 8(a). As expected, the optical modes for the square fiber
are highly structured, whereas optical modes for the D-shaped fiber
are irregular. We also calculate first 1000 temperature eigenmodes
for each fiber by using the Coefficient-Form-PDE module in COM-
SOL.75 The temperature eigenmodes depend on the cladding shape,
which in this case is chosen to be the same as the respective core
shape. An example of a temperature mode for each fiber is shown
in Fig. 7(b). The temperature eigenmodes have similar spatial prop-
erties to optical modes, except that they are spread out over both
the core and cladding. We numerically evaluate the overlap inte-
grals of the optical and temperature modes to find χmn(Ω). We
take the peak values over frequency for each mode pair to obtain
effective coupling matrices, which are shown in Figs. 8(a) and 8(b).
As expected, both fibers produce banded coupling matrices with
a small number of significant elements. In each case, χ21 is the
largest element, suggesting that FM-only excitation has the lowest
TMI threshold and multimode excitation will lead to a higher TMI
threshold.
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FIG. 8. Thermo-optical coupling matrix for the (a) square fiber and (b) D-shaped fiber. Self-coupling is not considered (m = n). Similar to the circular fiber, the thermo-optical
coupling matrices for both the square fiber and D-shaped fiber are also banded. (b) As a result, TMI threshold in the square fiber (red) and D-shaped fiber (blue) also increases
linearly with the number of equally excited modes M. The slope of the scaling is highest for the D-shaped fiber and lowest for the square fiber. The scaling for the circular
fiber is reproduced as the dotted curve for reference.

To verify this, we calculate the TMI threshold for both the
square and D-shaped fibers for FM-only excitation and equal
mode excitation with the increasing number of modes. A thresh-
old increase factor (TIF) is defined by taking the ratio between the
TMI thresholds for multimode excitation and FM-only excitation.
The results are shown in Fig. 5(c), where we have also plotted results
for the circular fiber as the dotted curve for comparison. For both
the square and D-shaped fibers, the TMI threshold increases linearly
with the number of excited modes, similar to the circular fiber. This
is in accordance with our reasoning based on the banded nature of
the coupling matrix. The slope of the threshold scaling is highest for
the D-shaped fiber, leading to more than a 14× higher TMI thresh-
old, when all 82 modes are equally excited. The square shape leads
to a slightly lower enhancement compared to the standard circular
fiber. The superiority of the D-shaped fiber can be attributed to a lack
of regular structure in the higher-order modes. As a result, unlike the
more regular shapes, here, no single temperature eigenmode has a
particularly strong overlap with a given mode pair; instead, many
temperature eigenmodes with different eigenvalues participate in
the coupling, leading to a broader TMI gain spectrum with a lower
peak value.
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93T. Čižmár and K. Dholakia, “Shaping the light transmission through a
multimode optical fibre: Complex transformation analysis and applications in
biophotonics,” Opt. Express 19, 18871–18884 (2011).
94A. E. Siegman, “Defining, measuring, and optimizing laser beam quality,” Proc.
SPIE 1868, 2–12 (1993).
95H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order
modes in a step-index fiber,” J. Lightwave Technol. 24, 1350–1355 (2006).
96M. C. Velsink, Z. Lyu, P. W. Pinkse, and L. V. Amitonova, “Comparison
of round- and square-core fibers for sensing, imaging, and spectroscopy,” Opt.
Express 29, 6523–6531 (2021).
97Y. Ying, G.-y. Si, F.-j. Luan, K. Xu, Y.-w. Qi, and H.-n. Li, “Recent research
progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol.
90, 149–157 (2017).
98S. Morris, C. McMillen, T. Hawkins, P. Foy, R. Stolen, J. Ballato, and R. Rice,
“The influence of core geometry on the crystallography of silicon optical fiber,”
J. Cryst. Growth 352, 53–58 (2012).
99Z. He, J. Du, X. Chen, W. Shen, Y. Huang, C. Wang, K. Xu, and Z. He, “Machine
learning aided inverse design for few-mode fiber weak-coupling optimization,”
Opt. Express 28, 21668–21681 (2020).
100K. Krupa, A. Tonello, B. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S.
Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat.
Photonics 11, 237–241 (2017).
101E. A. Marcatili, “Dielectric rectangular waveguide and directional coupler for
integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
102S. Bittner, K. Kim, Y. Zeng, Q. J. Wang, and H. Cao, “Spatial structure of lasing
modes in wave-chaotic semiconductor microcavities,” New J. Phys. 22, 083002
(2020).
103S. Bittner, S. Guazzotti, Y. Zeng, X. Hu, H. Yılmaz, K. Kim, S. S. Oh, Q. J.
Wang, O. Hess, and H. Cao, “Suppressing spatiotemporal lasing instabilities with
wave-chaotic microcavities,” Science 361, 1225–1231 (2018).
104B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H.
Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-
free full-field imaging,” Proc. Natl. Acad. Sci. U. S. A. 112, 1304–1309 (2015).

APL Photon. 9, 066114 (2024); doi: 10.1063/5.0206859 9, 066114-18

© Author(s) 2024

 31 July 2024 23:52:07

https://pubs.aip.org/aip/app
https://doi.org/10.1109/jqe.2015.2442760
https://doi.org/10.1364/oe.23.020203
https://doi.org/10.1117/12.2252435
https://doi.org/10.1117/12.2252435
https://doi.org/10.1109/jstqe.2018.2811909
https://doi.org/10.1109/jlt.2022.3165394
https://doi.org/10.1109/jqe.1984.1072267
https://doi.org/10.1364/josa.68.000297
http://www.comsol.com
https://doi.org/10.1109/jlt.1986.1074759
https://doi.org/10.1063/1.4955420
https://doi.org/10.1088/1612-202x/aaff4b
https://doi.org/10.1109/jphot.2022.3187417
https://doi.org/10.1364/oe.486915
https://doi.org/10.1364/oe.493095
https://doi.org/10.1364/oe.19.016612
https://doi.org/10.1364/prj.5.000077
https://doi.org/10.1109/3.594865
https://doi.org/10.1364/oe.20.000474
https://doi.org/10.1364/ol.398412
https://doi.org/10.1117/12.2651074
https://doi.org/10.1117/12.2650342
https://doi.org/10.1364/oe.19.018871
https://doi.org/10.1117/12.150601
https://doi.org/10.1117/12.150601
https://doi.org/10.1109/jlt.2005.863337
https://doi.org/10.1364/oe.417021
https://doi.org/10.1364/oe.417021
https://doi.org/10.1016/j.optlastec.2016.11.021
https://doi.org/10.1016/j.jcrysgro.2011.12.009
https://doi.org/10.1364/oe.398157
https://doi.org/10.1038/nphoton.2017.32
https://doi.org/10.1038/nphoton.2017.32
https://doi.org/10.1002/j.1538-7305.1969.tb01166.x
https://doi.org/10.1088/1367-2630/ab9e33
https://doi.org/10.1126/science.aas9437
https://doi.org/10.1073/pnas.1419672112

