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Effect of Kerr nonlinearity on defect lasing modes in weakly disordered
photonic crystals

B. Liu, A. Yamilov, and H. Caoa)
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~Received 3 December 2002; accepted 16 June 2003!

We studied the effect of Kerr nonlinearity on lasing in defect modes of weakly disordered photonic
crystals. Our time-independent calculation based on self-consistent nonlinear transfer matrix method
shows that Kerr nonlinearity modifies both frequencies and quality factors of defect modes. We also
used a time-dependent algorithm to investigate the dynamic nonlinear effect. Under continuous
pumping, the spatial sizes and intensities of defect lasing modes are changed by Kerr nonlinearity.
Such changes are sensitive to the nonlinear response time. ©2003 American Institute of Physics.
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Kerr nonlinearity results in a dependence of refract
index on light intensity:n5n01n2uEu2, wheren0 is the lin-
ear refractive index,n2 is the nonlinear Kerr coefficient, an
uEu is the electric field amplitude. When a light beam trav
in a homogeneousKerr medium, positive nonlinearity (n2

.0) always leads to self-focusing, while negative nonline
ity (n2.0) self-defocusing. However, in aninhomogeneous
medium, light transport behavior is not simply determined
the sign of Kerr nonlinearity. The interference effect of sc
tered waves dominates light transport in a linear inhomo
neous medium. For example, in a periodic structure~photo-
nic crystal, PC!, constructive and destructive interferenc
result in pass bands and stop bands for light propagation1 In
a weakly disordered PC, defect modes are formed near
band edges.2 Such modes are spatially localized and ha
high quality factors (Q). In the presence of optical gain, the
serve as lasing modes.3 The nonlinear effect on defect lasin
modes is significant owing to high laser intensity and re
nance enhancement. Specifically, the nonlinearity at the
ing frequency, which is in resonance with a transition of t
gain material, is resonantly enhanced.

Over the past few years, there have been extensive s
ies on nonlinear PCs and their applications to switches, l
iters, optical diodes, and transistors in integrated photo
circuits.4–7 However, these studies are focused on pass
systems. The nonlinear effect in active PCs has not been
understood. In this letter, we modeled the effect of Kerr n
linearity on defect lasing modes in weakly disordered P
We took two approaches:~i! time-independent calculatio
based on self-consistent nonlinear transfer matrix met
and ~ii ! time-dependent simulation with the finite-differen
time-domain~FDTD! method. With the first approach, w
investigated how Kerr nonlinearity changes the freque
and quality factor of a defect mode. The second method
veals the dynamic effect of Kerr nonlinearity on the spa
size and intensity of a defect lasing mode. Physical interp
tation of these results are presented.How fast the nonlinear
response isturns out to be essential to the dynamic nonline
effect in an active nonlinear system.

a!Electronic mail: h-cao@northwestern.edu
1090003-6951/2003/83(6)/1092/3/$20.00
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The model system in our study is a weakly disorder
one-dimensional PC. It consists of binary layers made
dielectric materials with dielectric constantse15e0 and e2

59e0 , respectively. The thickness of the first layer, whi
simulates the gain medium, isa5a0(11waa), where a0

5400 nm, wa represents the degree of disorder, anda is a
random value in the range@20.5,0.5#. The thickness of the
second layer, which simulates the nonlinear medium, isb
5b0(11wbb), where b05100 nm, wb represents the
degree of disorder, andb is a random value in the rang
@20.5,0.5#.

We first investigated how Kerr nonlinearity modifies th
defect modes of a passive system in the time-indepen
calculation. We used a self-consistent nonlinear transfer
trix method for this study.8,9 This method works only in the
perturbative regime; that is, the nonlinear refractive ind
changeuDnu5un2u•uEu2!n0 . In Fig. 1 we considered two
defect modes in a weakly disordered pc~Wa5Wb50.2)
with 50 layers. One mode~l;6988 Å! is on the short wave-
length edge of a band gap, the other~l;8632 Å! is on the
long wavelength edge of the same gap. Figure 1 shows
transmission peaks of these two defect modes. The value
n2 are chosen such that the maximum change of refrac
index uDnumax5un2u•uEmaxu2u,131022. Positive Kerr nonlin-
earity (n2.0) always shifts the defect modes toward long
wavelength, while the negative nonlinearity (n2,0) to
shorter wavelength. In Fig. 1, the wavelength shift is;4 Å,
and it is nearly symmetric~although not exactly! for positive
and negativen2 . From the center wavelengthl0 and line-
width Dl, we calculated the defect mode’s quality factorQ
5l0 /Dl. The change ofQ depends not simply on the non
linearity, but on the position of the defect modes with resp
to the band gaps. For the defect mode at 6988 Å@Fig. 1~a!#,
positive Kerr nonlinearity increases itsQ. On the contrary,
for the defect mode at 8632 Å@Fig. 1~b!#, positive Kerr
nonlinearity decreases itsQ. We repeated this calculation fo
many defect modes in different structures. We found the g
eral behavior: when the Kerr nonlinearity moves a def
mode closer to the center of a band gap,Q increases; other-
wise Q decreases. This can be understood in terms of
change of localization lengthj. In the presence of weak dis
2 © 2003 American Institute of Physics
IP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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order, the defect modes are located near the band e
where dj/dlÞ0. The closer to the band gap center, t
shorterj. For a defect mode on the shorter wavelength s
of a stop band wheredj/dl,0, positive Kerr nonlinearity
redshifts its wavelength toward the band gap center. The
crease of the localization lengthj leads to better confinemen
of defect modes, thus higherQ. In contrast, for a defec
mode on the longer wavelength side of a stop band wh
dj/dl.0, positive Kerr nonlinearity redshifts its wave
length away from the stop-band center. The increase oj
results in worse optical confinement and lowerQ. More
quantitatively, the quality factor of a defect mode can
estimated asQ}exp(L/j), whereL is the system length.10

The nonlinear shift of mode wavelength causes a chang
j, which affects the value ofQ. The change ofQ can be
estimated as DQ/Q}2(L/j2)•Dj}2(L/j)•@(l/j)
•(dj/dl)#•(Dl/l). The first two factors in this expressio
can be large; in our case they are on the order of 10. T
explains why, in our numerical calculation, the relati
change ofQ is about 2 orders of magnitude larger than t
relative change of mode wavelength. Moreover, the sign
dj/dl, opposite on the two sides of a band gap, determi
the sign ofDQ. However, in the presence of strong disord
the defect modes move to the stop band centers w
dj/dl'0. Their quality factors do not exhibit systemat
changes.

The limitation of the self-consistent nonlinear trans
matrix method is that it works only forpassivemedia at the
steadystate. To study the dynamic nonlinear effect in
active medium, we switched to a time-dependent algorith
We solved the time-dependent Maxwell equations with
FDTD method.11 In the layers of gain medium we solved th
rate equations for 4-level atoms.12 In the dielectric layers
with Kerr nonlinearity, we introduced the nonlinear polariz
tion density13,14 PNL(x,t)5e0x (3)E(x,t)*2`

` g(t
2t)uE(x,t)u2dt, where x (3) is the third-order nonlinea
susceptibility. The casual response functiong(t2t)
5(1/t0)exp@2(t2t)/t0# for t>t, andg(t2t)50 for t,t.
t0 is the nonlinear response time. To incorporate the non
earity with finite-time response into the FDTD algorithm
we introduced a new function G(x,t)[*2`

` g(t

2t)uE(x,t)u2dt5(1/t0)*0
t e2(t2t)/t0uE(x,t)u2dt. The dif-

ferential equation forG(x,t) can be derived as

FIG. 1. Transmission peaks of the two defect modes~specified in Fig. 1! in
the presence of Kerr nonlinearity. The quality factors are written next to
peaks. ~a! n255.031027 m2/V2, uDnumax5un2u•uEmaxu257.4531023. n2

525.031027 m2/V2, uDnumax56.5531023. ~b! n251.031023 m2/V2,
uDnumax58.7631023. n2521.031023 m2/V2, uDnumax58.4831023.
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dG~x,t !

dt
52

G~x,t !

t0
1

uE~x,t !u2

t0
. ~1!

E is related toD by accounting for both linear polarizatio
PL and nonlinear polarizationPNL : E(x,t)5@D(x,t)
2PL(x,t)2PNL(x,t)#/e0e` . Because PL5e0x (1)E and
PNL5e0x (3)EG, the effective dielectric constant ise(x,t)
5e`1x (1)1x (3)G(x,t), wherex (1) is the linear susceptibil-
ity. When light frequency is far from any resonant freque
cies, t0 approaches 0, Kerr nonlinearity becomes instan
neous, g(t2t)5d(t2t), and G(x,t)5uE(x,t)u2. The
nonlinear dielectric constante5eL1x (3)uEu2, where eL

5e`1x (1) is the linear dielectric constant. Hence, the no
linear refractive indexn5n01n2uEu2, wheren05AeL, n2

5x (3)/2n0 .
In our time-dependent calculation, we first turned o

Kerr nonlinearity by settingx (3)50. Initially, all the atoms
are in the ground state. The external pumping is switched
at t50, and kept constant. Its value is chosen so that o
one defect mode lases. The lasing frequency is nearly id
tical to the frequency of the defect mode in the passive s
tem. Next, we included Kerr nonlinearity (x (3)Þ0). A sig-
nificant frequency shift of the defect lasing mode
observed. Positive nonlinearity (x (3).0) leads to redshift,
while negative nonlinearity (x (3),0) to blueshift. This re-
sult is consistent with that of the nonlinear transfer mat
method.

The spatial size of a defect lasing mode is also chan
by Kerr nonlinearity. When only one mode lases, the size
the lasing mode can be characterized by the inverse part
ratio r (t)5(* uE(x,t)u2dx)2/(* uE(x,t)u4dx). Figure 2 plots
r (t) of two defect lasing modes~the same ones as in Fig. 1!.
The values ofx (3) are chosen so that the wavelength shifts
these two modes are;4 Å, close to their shifts in the non
linear transfer matrix calculation. Forx (3).0, the defect
mode at 6988 Å increases in size, while the defect mod
8632 Å shrinks. The sizer of a spatially localized defec
mode is on the order of the localization lengthj. Therefore,
the relative change of the size can be estimated asDr /r
}@(l/j)•(dj/dl)#•Dl/l. The sign ofdj/dl is different
on the opposite sides of the band gap, which explains

eFIG. 2. Spatial sizer (t) of the two defect lasing modes at the pumping ra
of 5.03107 s21. ~a! For the defect mode at 6988 Å. From top to bottom
x (3)521.0310217 m2/V2 and t05500T; x (3)521.0310217 m2/V2 and
t055T; x (3)50; x (3)51.0310217 m2/V2 and t05500T; x (3)521.0
310217 m2/V2 and t055T. ~b! For the mode at 8632 Å. From top to
bottom:x (3)58.0310217 m2/V2 andt055T; x (3)58.0310217 m2/V2 and
t05500T; x (3)50; x (3)528.0310217 m2/V2 and t055T; x (3)528.0
310217 m2/V2 andt05500T.
IP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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sign of mode-size change. The size change of a defect la
mode is consistent with the change of itsQ predicted by the
nonlinear transfer matrix method. With an increase in
size of a defect mode, its loss caused by light leak
through the boundary increases; thus, itsQ decreases.

As shown in Fig. 2, the final~steady-state! size of defect
lasing modes also depends on the nonlinear response
t0 . Nevertheless,t0 only affects the magnitude ofDr , it
does not flip the sign ofDr . However, it is not so for lase
intensity. We calculated the total laser emission ene
U(t)5(1/2)*e0euE(x,t)u2dx under constant pumping. A
shown in Fig. 3, whent05500T (T is the optical period!,
the intensity change of a defect lasing mode is consis
with its size change. Namely, when the Kerr nonlinear
reduces the size of a defect mode, the increase of itsQ leads
to stronger laser emission. From the mode sizer , we esti-
mated the time it takes light to travel across the defect mo
tc;r /c;5T. Whent0 is shortened to 5T, the phenomenon
is very different. Positive nonlinearity always results
stronger laser emission, while negative nonlinearity weak
ser emission regardless the size change.

From the calculation of many defect lasing modes,
conclude that the effect of Kerr nonlinearity on laser inte
sity depends on the relative magnitude oft0 versus tc .
When t0 is shorter thantc , the change of laser intensit
depends only on the sign of Kerr nonlinearity; that is, po
tive nonlinearity always extract more laser emission from
system at the same pumping rate. During the buildup of
ing oscillation, the phase of light field reflected by~or trans-
mitted through! each nonlinear layer changes quickly owin
to rapid change of its refractive index with intensity. Th
lack of constant phase relation among multiple reflec
waves undermines the interference effect. Hence, the si
reflection dominates the feedback for lasing. Forx (3).0, the
refractive index contrast of the binary layers increases w

FIG. 3. Total laser emission energyU(t) of the two defect lasing modes a
the pumping rate of 5.03107 s21. ~a! For the defect mode at 6988 Å. From
top to bottom: x (3)51.0310217 m2/V2 and t055T; x (3)51.0
310217 m2/V2 andt05500T; x (3)50; x (3)521.0310217 m2/V2 andt0

5500T; x (3)521.0310217 m2/V2 andt055T. ~b! For the mode at 8632
Å. From top to bottom:x (3)58.0310217 m2/V2 and t055T; x (3)528.0
310217 m2/V2 and t05500T; x (3)50; x (3)58.0310217 m2/V2 and t0

5500T; x (3)528.0310217 m2/V2 andt055T.
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the laser intensity. Reflectivity at the layer interface becom
larger, giving stronger feedback for lasing. Thus laser em
sion is enhanced. Whent0 is longer thantc , the nonlinear
change of refractive index is slow enough that the interf
ence of multiple reflected waves still dominates the feedb
for lasing. Thus, the intensity change of a defect lasing m
depends on the change of its size andQ.

Note that the difference between our study and that
nonlinear localized modes~also called intrinsic localized
modes or discrete breathers!15 is that our localized modes ar
formed by defects instead of nonlinearity. The nonlinear
merely modifies the defect modesperturbatively. Our model
works only when the nonlinear change of refractive ind
Dn!n0 . However, for positive and fast nonlinearity, th
rapid nonlinear feedback to lasing may lead the system
of the perturbative regime, as shown by the lower solid tra
in Fig. 2~a! and the top solid curve in Fig. 3~a!. WhenDn
;n0 , the higher order nonlinearity must be taken into a
count, and our calculation result is no longer accurate. N
ertheless, in many practical systems Kerr nonlinearity
weak; for example, the fiber distributed-feedback laser.16 Our
results illustrate that dynamic nonlinear effect is significa
not only to the transient process but also to the final las
state under constant pumping. Therefore, even in the p
ence of weak nonlinearity, time-dependent modeling is
sential to correctly predict the lasing behavior. Our tim
dependent FDTD calculation reveals that the speed
nonlinear response is an important factor in the Kerr eff
on lasing.
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