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In conventional lasers, the optical cavity that confines the photons also deter-
mines essential characteristics of the lasing modes such as wavelength, emis-
sion pattern, directivity, and polarization. In random lasers, which do not have
mirrors or a well-defined cavity, light is confined within the gain medium by
means of multiple scattering. The sharp peaks in the emission spectra of semi-
conductor powders, first observed in 1999, has therefore lead to an intense de-
bate about the nature of the lasing modes in these so-called lasers with resonant
feedback. We review numerical and theoretical studies aimed at clarifying the
nature of the lasing modes in disordered scattering systems with gain. The past
decade has witnessed the emergence of the idea that even the low-Q resonances
of such open systems could play a role similar to the cavity modes of a conven-
tional laser and produce sharp lasing peaks. We focus here on the near-
threshold single-mode lasing regime where nonlinear effects associated with
gain saturation and mode competition can be neglected. We discuss in particu-
lar the link between random laser modes near threshold and the resonances or
quasi-bound (QB) states of the passive system without gain. For random lasers
in the localized (strong scattering) regime, QB states and threshold lasing
modes were found to be nearly identical within the scattering medium. These
studies were later extended to the case of more lossy systems such as random
systems in the diffusive regime, where it was observed that increasing the open-
ness of such systems eventually resulted in measurable and increasing differ-
ences between quasi-bound states and lasing modes. Very recently, a theory
able to treat lasers with arbitrarily complex and open cavities such as random
lasers established that the threshold lasing modes are in fact distinct from QB

states of the passive system and are better described in terms of a new class of
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states, the so-called constant-flux states. The correspondence between
QB states and lasing modes is found to improve in the strong scattering limit,
confirming the validity of initial work in the strong scattering limit. © 2011
Optical Society of America
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. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste

. Introduction

he investigation of laser action in complex media with disorder has a long his-
ory going back to the early days of laser physics (for a review, see [1–5]). Be-
inning in the mid 1990s there was a resurgence of interest in this topic both for
ts intrinsic interest and because of a possible relation to the phenomenon of
nderson localization [6], previously studied mainly in the context of electronic

ystems. Random lasers are disordered media with gain that do not possess a
ight-trapping cavity beyond the confinement provided by multiple-scattering
rom the disorder itself. Hence they are usually extremely open, low-finesse la-
ers. Initially it was unclear whether such systems could produce narrow lasing
ines without any well-confined electromagnetic modes, and while initial experi-
ental studies did find strong amplification near the transition frequency deter-
ined by the gain medium, discrete lines were not observed [7–9]. Subsequent

tudies in smaller systems with focused pumping did find discrete lasing lines,
ot necessarily located at the center of the gain curve, and photon statistics char-
cteristic of gain saturation [10–15], demonstrating that in some cases random
asers behave very much like conventional multimode lasers except for their
elatively high thresholds and their pseudorandom emission patterns in space.
he experimental observations of laser peaks have naturally called for the search

or a feedback mechanism leading to light trapping within the scattering me-
ium. There is in fact a case where light can be well confined inside an open dis-
rdered medium. Such confinement occurs when the scattering is extremely
trong and the system is in the regime of Anderson localization [16]. However,
xcept in quasi-1D geometries [17], the vast majority of experiments on random
asers do not appear to be in the localized regime, so the question of whether la-
er action in a diffusive �L��� or quasi-ballistic �L��� medium has a qualita-
ively different nature and origin with respect to conventional lasers remained
pen for some time (here L is the system size and � is the optical elastic mean
ree path).

ith the renewed experimental interest in random lasers came also a number of
ttempts to generalize laser theory to describe such a system. Early on a major
istinction was made between conventional lasers, which operate on resonant
eedback, and random lasers, which at least in some cases were supposed to op-
rate only on nonresonant feedback [4]. In the case of nonresonant feedback the
ight intensity in the laser was described by a diffusion equation with gain, but
he phase of the light field and hence interference did not play a role. A key find-
ng is that there is a threshold for amplification when the diffusion length for es-
dvances in Optics and Photonics 3, 88–127 (2011) doi:10.1364/AOP.3.000088 90



c
s
b
q
s
A
t

T
t
r
s
c
b
v
s
c
s

I
s
n
r
s
c
w
j
t
T
w
t
a
i
t
[
i
t
t

I
s
n
s
f
c
a
a
s
c
[
b
s
c
s

A

ape LD�dL2 /� becomes longer than the gain length (here d=2,3 is the dimen-
ionality). The spatial distribution of intensity above threshold would be given
y the solution of a diffusion equation. In this approach there would be no fre-
uency selectivity, and the amplified light would peak at the gain center. Clearly
uch a description would be inadequate to describe random lasers based on
nderson localized modes, as such modes are localized in space precisely owing

o destructive interference of diffusing waves arising from multiple scattering.

his question itself is related to a basic question in nonlinear optics: can a sys-
em, disordered or not, which is so leaky that it has no isolated linear scattering
esonances, nonetheless have sharp laser lines due to the addition of gain? And if
o, how are the modes associated with these lines related to the broad and diffi-
ult to observe resonances of the passive cavity? For an open diffusive or quasi-
allistic medium in two or three dimensions the resonance spacing in the wave
ector will decrease as �d−1 /Ld, whereas the linewidth will scale as � /L2 (diffu-
ive) or as 1 /L (ballistic). Therefore (unless ��� in d=2) the disordered passive
avity resonances strongly overlap and cannot be directly observed in linear
cattering.

n the search for a feedback mechanism responsible for the sharp laser peaks ob-
erved experimentally [18], different scenarios have been proposed. As an alter-
ative to the early picture of closed scattering loops, the probability of having
ing-shaped resonators with index of refraction larger than average in the diffu-
ive regime was calculated and shown to be substantially increased by disorder
orrelation due to finite-size scatterers [19,20]. Another scenario was put for-
ard where spontaneously emitted photons accumulate gain along very long tra-

ectories. This follows the observation of random spikes in the emission spec-
rum of weakly active scattering systems in single-shot experiments [21,22].
hese “lucky photons” accumulate enough gain to activate a new lasing mode
ith a different wavelength after each excitation shot. The experimental study of

he modal decay rates in microwave experiments leading to the observation of
nomalous diffusion has brought forward the existence of longer-lived prelocal-
zed modes in an otherwise diffusive system [23]. An experimental indication of
he coexistence of extended and localized lasing modes was presented recently
24]. It was suggested that these longer-lived modes could be responsible for las-
ng. However, although they are possibly achieved in some specific situations,
hose different scenarios cannot explain the whole set of experimental observa-
ions

n this paper, we present recent work, both numerical and analytical, which has
hown that within semiclassical laser theory, in which the effects of quantum
oise are neglected, definite answers to these questions can be given, without re-
orting to exotic scenarios. Sharp laser lines based on interference (coherent
eedback) do exist, not only in strongly scattering random lasers where the lo-
alized regime is reached [25–27], but also in diffusive random lasers [28,29]
nd even for weak scattering [30]. Numerical studies have shown that they are
ssociated with threshold lasing modes (TLMs), which, inside the cavity, are
imilar to the resonances or quasi-bound (QB) states of the passive system (also
alled quasi-normal modes). The resemblance is excellent in the localized case
26,27] and deteriorates as scattering is reduced. A new theoretical approach
ased on a reformulation of the Maxwell–Bloch (MB) equations to access the
teady-state properties of arbitrarily complex and open cavities allows one to
alculate the lasing modes in diffusive and even in weakly scattering random la-
ers ���L� [31–35]. A major outcome of this approach is the demonstration that
dvances in Optics and Photonics 3, 88–127 (2011) doi:10.1364/AOP.3.000088 91
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lthough lasing modes and passive modes can be very alike in random systems
ith moderate openness, in agreement with the above numerical results, they

eature fundamental differences. Their distinctness increases with the openness
f the random system and becomes substantial for weakly scattering systems.
onstant-flux (CF) states are introduced that better describe TLMs both inside
nd outside the scattering medium for any scattering strength. In addition this
heoretical approach allows one to study the multimode regime in diffusive ran-
om lasers and get detailed information about the effects of mode competition
hrough spatial hole burning, which appear to differ from those for conventional
asers.

n this past decade, different types of random lasers (semiconductor powders, pi-
onjugated polymers, scattering suspension in dyes, random microcavities, dye-
oped nematic liquid crystals, random fiber lasers…) have been considered in
he literature. We will focus throughout this review mostly on 2D random lasers
hat consist of randomly distributed dielectric nanoparticles as scatterers. This
hoice makes possible the numerical and theoretical exploration of 2D finite-
ized opened samples where transport can be made ballistic, diffusive (in con-
rast to 1D), or localized [36] by adjusting the index contrast between the scat-
erers and the background medium.

he outline of this review is as follows: in Section 2 we review early numerical
xplorations of localized and diffusive random lasing demonstrating the exis-
ence of TLMs in all regimes. In Section 3 we present recent numerical work
ased on a time-independent model, which indicates the difference between pas-
ive cavity resonances and TLMs, discussing only single-mode random lasing.
he following section will explain why, in principle, QB states cannot describe
LMs. Section 5 will introduce the concept of CF states and describe the self-
onsistent time-independent approach to describe random lasing modes at
hreshold as well as in the multimode regime.

. Early Numerical Explorations: Time-Dependent
odel

.1. Localized Case
rom a modal point of view, Anderson localization means that for strong disor-
er, the eigenmodes of the wave equation are spatially localized in a volume of
nite size 2�, where � is the localization length. More precisely, they are spa-

ially localized solutions of the Maxwell equations with tails, which decay expo-
entially from their center, � being the decay length. In the case of scattering par-
icles, the value of the localization length is controlled by the index contrast
etween the particles and the background medium, the size of the particles, the
ptical wavelength, and the amount of disorder. In practice, when finite-size sys-
ems in the localization regime are considered, two opposite cases may occur: (1)
�L and (2) ��L, where L is the system size. In the first case, the system is not

arge enough for the light to be confined by disorder within the volume of the
ystem. In case (2), light is localized, since it cannot escape domains larger than
. More precisely, localized modes are coupled to the boundaries via their expo-
ential tails. The leakage rate of an exponentially localized QB state varies as
xp�−2r /�� with r the distance to the boundaries [37]. Hence, in sufficiently large
ystems QB states located far from the boundaries (which constitutes majority of the
dvances in Optics and Photonics 3, 88–127 (2011) doi:10.1364/AOP.3.000088 92
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B states except a fraction proportional to � /L) feature a very small leakage, i.e., a
ood quality factor.

n this subsection, we will consider case (2). Localized modes in a disordered
cattering system are quite like the modes of standard optical cavities, such as
he Fabry–Perot [38]. Hence, one can expect that in the presence of gain the las-
ng modes in this regime of strong disorder will be close to the localized QB
tates of the passive system without gain, in the same way as the lasing modes of
conventional cavity are built with the QB states of the passive cavity. To verify

hat this is really the case one must have access to the individual modes of both
he passive system and the active system. Experimentally, such a demonstration
as not been achieved yet, essentially because the regime of Anderson localiza-
ion is difficult to reach and to observe in optics. Besides, until recently there was
o fully developed theory describing random lasing modes and their relationship
ith the eigenstates of the passive system. The easiest way to check this conjec-

ure has been to resort to numerical simulations.

istorically, most of the early numerical studies of random lasers were based on
he diffusion equation (see references in [4]). However, it is not possible to take
nto account under the diffusion approximation the interference phenomena that
re at the heart of Anderson localization. This is why Jiang and Soukoulis [25]
roposed to solve the time-dependent Maxwell equations coupled with the
opulation equations of a four-level system [40]. The populations Ni,
=1 to i=4 satisfy the following equations:

dN1/dt = N2/�21 − WpN1, �1�

dN2/dt = N3/�32 − N2/�21 − �E/��a�dP/dt , �2�

dN3/dt = N4/�43 − N3/�32 + �E/��a�dP/dt , �3�

dN4/dt = − N4/�43 + WpN1, �4�

here Wp is the rate of an external mechanism that pumps electrons from the
undamental level (1) to the upper level (4). The electrons in level 4 relax quickly
ith time constant �43 to level 3.The laser transition occurs from level 3 to level 2 at

requency �a. Hence, electrons in level 3 can jump to level 2 either spontaneously
ith time constant �32 or through stimulated emission with the rate �E /��a�dP /dt.
and P are the electric field and the polarization density, respectively. Eventually,

lectrons in level 2 relax quickly with time constant �21 from level 2 to level 1. In
hese equations, the populations Ni, the electric field E, and the polarization density

are functions of the position r and the time t.

he polarization obeys the equation

d2P/dt2 + ��adP/dt + �a
2P = 	 · �N · E , �5�

here �N=N2−N3 is the population density difference. Amplification takes
lace when the rate Wp of the external pumping mechanism produces inverted
opulation difference �N�0. The linewidth of the atomic transition is ��a

1/�32+2/T2, where the collision time T2 is usually much smaller than the lifetime

32. The constant 	 is given by 	=3c3 /2�a
2�32 [40].
inally, the polarization is a source term in the Maxwell equations,

dvances in Optics and Photonics 3, 88–127 (2011) doi:10.1364/AOP.3.000088 93
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�H/�t = − c � 
 E , �6�

��r��E/�t = c � 
 H − 4��P/�t . �7�

he randomness of the system arises from the dielectric constant ��r�, which de-
ends on the position r. This time-dependent model has been used in random 1D
ystems consisting of a random stack of dielectric layers separated by gain me-
ia [25] and in random 2D systems consisting of a random collection of circular
articles embedded in a gain medium (Fig. 1) [26]. In both cases, a large optical
ndex contrast has been assigned between the scatterers and the background me-
ium to make sure that the regime of Anderson localization was reached. The
axwell equations are solved by using the finite-difference time-domain
ethod (FDTD) [41]. To simulate an open system, perfectly matched layers are

ntroduced at the boundaries of the system [42]. The pumping rate Wp is adjusted
ust above lasing threshold in order to remain in the single-mode regime.

n one dimension, the QB states of the passive system were obtained indepen-
ently using a time-independent transfer matrix method [43]. In two dimensions,
he Maxwell equations were solved without the polarization term in Eq. (7),
gain using the FDTD method. First, the spectrum of eigenfrequencies was ob-
ained by Fourier transform of the impulse response of the system. Next, QB
tates were excited individually by a monochromatic source at each of the eigen-
requencies.

inally, in 1D systems [43] as well as in 2D systems [27], lasing modes obtained
y the full time-dependent model with gain and localized QB states of the cor-
esponding passive system without gain were compared and found to be identi-
al with a good precision. This was verified for all modes obtained by changing
he disorder configuration. An example of a 2D lasing mode and the correspond-
ng QB state of the same system (Fig. 1) without gain are displayed in Fig. 2.

Figure 1

xample of a random realization of 896 circular scatterers contained in a square
ox of size L=5 
m and optical index n=1. The radius and the optical index of the
catterers are, respectively, r=60 nm and n=2. The total system of size 9 µm is
ounded by perfectly matched layers (not shown) to simulate an open system.
dvances in Optics and Photonics 3, 88–127 (2011) doi:10.1364/AOP.3.000088 94
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hese results confirmed that the QB states of a localized system play a role simi-
ar to the eigenmodes of the cavity of a conventional laser. The only difference is
he complicated and system-dependent nature of the localized modes as opposed
o the well-known modes of a conventional cavity. These results are in good
greement with the theoretical results described in Section 5, which show that
nside systems in the localized regime, the single lasing modes just above thresh-
ld are close to the high-Q resonances of the passive system.

.2. Diffusive Case
e have seen in the previous section that random lasers in the Anderson local-

zation regime should behave like conventional lasers. They should exhibit dis-
rete laser peaks above threshold in agreement with the experimental observa-
ions of laser action with resonant feedback. However, subsequent
easurements of the mean free path showed that none of the experimental cases

hat displayed discrete laser peaks were in the localized regime. Instead, they
ere found to be in the diffusive regime and some even in the quasi-ballistic re-
ime [30]. In such systems, there are no localized modes, so that the observation
f laser action with resonant feedback has been the subject of much debate.

nly very recently, numerical evidence was given that even diffusive systems
ith low-Q resonances could exhibit lasing with resonant feedback [28]. The

andom 2D systems described in the previous subsection consisting of random
ollections of circular particles embedded in a gain medium have been investi-
ated with the same time-dependent model. To be in the diffusive regime instead
f the localized regime, a smaller optical index contrast �n=0.25 instead of �n

1.0 has been assigned between the scatterers and the background medium. Solving
he Maxwell equations coupled to the population equations, laser action character-
zed by a sharp peak in the emission spectrum was observed just above a threshold,

Figure 2

(a) (b)

a) Spatial distribution of the amplitude of a lasing mode in the localized regime
n=2� and (b) that of the corresponding QB states of the same random system
ithout gain. The squares delimit the scattering medium. The amplitude rather

han the intensity is represented for a better display of the small values of the
eld.
lbeit high. An example of the corresponding lasing mode is displayed in Fig. 3(a).

dvances in Optics and Photonics 3, 88–127 (2011) doi:10.1364/AOP.3.000088 95
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n contrast to the localized case, the lasing mode is now extended over the whole sys-
em. Moreover, this is a complex mode in the sense that it contains a substantial trav-
ling wave component [28]. However, in this work comparison of the lasing modes
ith the QB states of the passive cavity could not be carried out by using the time
omain method as it was done in the localized regime. Due to strong leakage
hrough the boundaries, resonances are strongly overlapping in the frequency do-
ain, and one cannot excite them individually by a monochromatic source.

o circumvent this difficulty, an indirect method has been used to compare the
asing modes with the resonances of the passive system. This method is inspired
y the Fox-Li modes, which in conventional laser physics are modes of an open
avity [40,44–46]. The Fox-Li modes are field distributions whose profile is self-
epeating in a complete round trip within the Fabry-Perot laser cavity while de-
aying because of the diffraction losses due to finite surface area of the end mir-
ors. Analogously, if the lasing modes of the diffuse system are related to the
esonances of the passive system, they should decay by self-repeating them-
elves when pumping and population inversion are turned off. To study the evo-
ution of the mode profile with time, the following spatial correlation function
as introduced [28]:

CE�t0,t� =� �
D

d2r�E�r�,t0�E�r�,t� , �8�

hich compares the mode profile E�r� , t� at time t with the mode profile at the
nitial time t0. Here, D is the scattering medium. The field has been normalized,
�r� , t�=E�r� , t� / ���Dd2r�E2�r� , t��1/2, to counterbalance the decay due to the leak-
ge through the boundaries. This correlation function oscillates at the laser fre-
uency between −1 and +1 if the normalized mode profile is recovered at each
eriod (Fig. 4). Otherwise, the amplitude of the oscillations should decay with
ime. This correlation function was used in [28] to check whether the first lasing

Figure 3

(a) (b)

a) Spatial distribution of the amplitude of a lasing mode in the diffusive regime.
b) Spatial distribution of the field amplitude after the pump has been stopped
nd the polarization term has been set to zero. The spatial distribution of scatter-
rs is the collection shown in Fig. 1, but here the optical index of the scatterers is
=1.25 instead of n=2 in Fig. 2
ode at threshold for diffusive random laser indeed corresponds to a Fox-Li

dvances in Optics and Photonics 3, 88–127 (2011) doi:10.1364/AOP.3.000088 96
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ode of the passive system. The pumping is set to zero after the lasing mode has
een established so that at later times the field can evolve by itself. The long time
volution of the spatial correlation function associated with this free field is dis-
layed in Fig. 5(a). The decay of the total energy of the system is also shown.
hile energy decay is observed over 6 orders of magnitude, the spatial correla-

ion function is seen to oscillate between values close to −1 and +1, meaning that
he initial lasing mode profile E�r� , t0� is reproduced at each period with a good
ccuracy. The decaying field amplitude has the spatial distribution that is shown
n Fig. 3(b) until, eventually, the correlation function decays to zero when the de-
aying field reaches the noise level. This result demonstrates that the TLM is
ery close to a resonance of the passive system when measured inside the scat-
ering medium. For comparison, the evolution of the spatial correlation function
or an initial field created by an arbitrary distribution of monochromatic sources
t the laser frequency is displayed in Fig. 5(b). The fast decay of CE�t0 , t� after the
ources have been turned off indicates that this field distribution is not a QB state
f the passive system.

he decay rate observed corresponds to a quality factor of 30, to be compared
ith the value 104 found in the localized case. This result shows that a bad reso-
ance in a leaky disordered system can nevertheless turn into a lasing mode in the

Figure 4
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C
E(
t 0,
t)

(a)

0 2 4 6
x 10−3

−1

0

1

C
E(
t 0,
t)

Time (ps)

(b)

hort-time behavior over a few cycles of the correlation function, CE�t0 , t�, for
a) a localized lasing mode as in Fig. 2 and for (b) a diffusive lasing mode as in
ig. 3. The periodic square function in (a) is typical of a standing wave, while the
ine-like function in (b) is characteristic of a traveling wave [28].
resence of an active medium.This result is in stark contrast with the common belief
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hat random lasing with resonant feedback involves the presence of resonances with
igh quality factors. It provides a consistent explanation for the experimental obser-
ation of random lasing with resonant feedback even far from the localized regime,
ithout resorting to other scenarios such as those reviewed in Section 1 [19–22].

he comparison of patterns between Fig. 3(a) and Fig. 3(b) shows that the lasing
ode and the QB modes are close to each other inside the scattering system as

onfirmed by the evolution of the correlation function, which has been defined
nly inside the system. However, one also notices that outside the scattering me-
ium the field distributions differ substantially. The free propagating field out-
ide the scattering system in Fig. 3(b) reproduces the laser field distribution in
ig. 3(a) with significant distortions that are due to the enhancement of the am-
litude towards the external boundaries of the total system. Hence, the compari-
on between both figures indicates that if the lasing modes and the QB modes are
imilar inside the scattering system, they differ noticeably outside. Moreover, a
areful examination of the correlation function in Fig. 5(a) shows that it oscil-
ates between two extremal values, which slowly depart from −1 and +1 well be-
ore the ultimate fast decay. This is in contrast with the long time behavior of the
orrelation function in the localized regime (not shown), which displays oscilla-
ions between −1 and +1 with a very good precision for time scales much longer
han the time scale in Fig. 5(a). This result also indicates that inside the scatter-
ng system, the lasing mode is close to but not identical to a QB state.

Figure 5
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ime of (a) the lasing mode when the pump is turned off and (b) an arbitrary field
istribution at the frequency of the lasing mode.
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n conclusion, the time-dependent model has provided direct evidence of the
loseness of lasing modes and passive cavity resonances, at least in the localized
ase. In the diffusive regime, the lasing modes are also found rather close to the
B modes, although small discrepancies manifest themselves. We also found

hat this holds inside the scattering medium. Outside the scattering system, how-
ver, differences become more significant. The advantage of the time-dependent
odel is that one has access in principle to the full nonlinear dynamics of the

aser system. However, QB states with low quality factors are not accessible with
his approach. Hence, the measure of the difference between TLM and QB states
as been indirectly achieved by using the spatial correlation function. Another
imitation of this method is related to the various time constants involved in this
odel, which lead to time-consuming computations, particularly when one
ishes to vary disorder and study an ensemble of disorder configurations. To

vercome these limitations, different approaches such as solving the wave equa-
ion in the frequency domain have been used. Several approaches of this kind
ill be described in the next section [14,47–49]. The recent theoretical approach
ased on a different class of states, the so-called constant flux (CF) states, and
aking into account nonlinear interactions, will be described in Section 5.

. Numerical Simulations: Time-Independent
odels

ifferent models have been proposed in the frequency domain to solve the wave
quation. In one dimension, it is possible to employ the transfer matrix method
imilar to that used in [43] for studying the lasing modes in an active layered ran-
om system. A direct comparison between TLMs and QB states of the corre-
ponding passive random system is proposed in the first part of this section. In
wo dimensions, the multipole method has been used, which also provides a di-
ect comparison of the QB states and the lasing modes of a 2D disordered open
ystem. The comparison presented in the second part of this section has been
arried out for refractive index of the scatterers ranging from nl�=2.0 (localized
egime) to nl�=1.25 (diffusive regime). We alternatively used a different approach
ased on the finite element method to obtain the passive modes, which turned out to
e much less computationally demanding in the weakly scattering regime. A brief
escription of both methods is provided in Appendices A and B.

.1. One-Dimensional Random Lasers
mploying the transfer matrix method, similar to that used in [43], we study the

asing modes in a 1D random system and compare them with the QB states of
he passive random system. The random system is composed of 161 layers. A di-
lectric material with index of refraction n1=1.05 separated by air gaps �n2=1�
esults in a spatially modulated index of refraction n�x�. Outside the random me-
ium n0=1. The system is randomized by specifying thicknesses for each layer as

1,2= 	d1,2
�1+���, where 	d1
=100 nm and 	d2
=200 nm are the average thick-
esses of the layers, �=0.9 represents the degree of randomness, and � is a random
umber in �−1,1�. The length of the random structure L is normalized to 	L

24,100 nm. Linear gain is simulated by appending an imaginary part to the dielec-

2
ric function ��x�=���x�+ i���x�, where ���x�=n �x�.This approximation is valid at
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r below threshold [49]. The complex index of refraction is given by ñ�x�=���x�
n��x�+ in�, where n��0. We consider n� to be constant everywhere within the

andom system. This yields a gain length lg= �1/k� � =1/ �n� �k (k=2� /� is the
acuum frequency of a lasing mode), which is the same in the dielectric layers and
he air gaps.The real part of the index of refraction is modified by the imaginary part

s n��x�=�n2�x�+n�
2
.

e find the frequency k and threshold gain k� of each lasing mode within the
avelength range 500 nm���750 nm. The results are shown in Fig. 6. Finding
atching QB states for lasing modes with large thresholds (large �k��) is challenging

ecause of large shifts of the solution locations [Fig. 6, region (c)]. However, there is
clear one-to-one correspondence with QB states for the lasing modes remaining

Fig. 6, regions (a) and (b)]. It is straightforward to find the matching QB states for
hese lasing modes and calculate their differences. The average percent difference
etween QB state frequencies and lasing mode frequencies in Fig. 6, region (a), is
.013%, while it is 0.15% in Fig. 6, region (b). The average percent difference be-
ween QB state decay rates k0� and lasing thresholds k� in Fig. 6, region (a), is 2.5%
nd in Fig. 6, region (b), is 21%.

he normalized intensities of the QB states IQB and lasing modes with linear gain

LG are also compared. Figure 7 shows representative pairs of modes from the three
egions shown in Fig. 6. The spatially averaged relative difference between each pair
f modes is calculated by

Figure 6
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QB states
Lasing modes

he frequencies k of QB states (crosses) and lasing modes with linear gain (open
iamonds) together with the decay rates k0� of QB states and the lasing thresholds
� of lasing modes. The horizontal dashed lines separate three different regions
f behavior: (a) lasing modes are easily matched to QB states, (b) clear differ-
nces appear but matching lasing modes to QB states is still possible, (c) lasing
odes have shifted so much it is difficult to match them to QB states. The QB

tate with the largest decay rate and the lasing mode with the largest threshold
re circled, though they may not be a matching pair.
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 100%. �9�

or small thresholds [Fig. 7(a)] the difference between the lasing modes and the
atching QB states is very small. The average percent difference between all

airs of modes in this region is 	�d
=4.2%. For lasing modes with slightly larger
hresholds [Fig. 7(b)] there are clear differences. Nevertheless, we may confidently
atch each lasing mode in this region with its corresponding QB state. The average

ercent difference between all pairs of modes in this region is 	�d
=24%. As men-
ioned above, it is challenging to find matching pairs of lasing modes and QB states
or large thresholds. Figure 7(c) compares the lasing mode with the largest threshold
nd the QB state with the largest decay rate [circled in Fig. 6, region (c)]. Though
hese two modes are fairly close to each other in terms of k, k0�, and k�, their intensity
istributions are quite different. Indeed, there may be no correspondence between
he two.

he deviation of the lasing modes from the QB states can be explained by the
odification of the transfer matrix. In the passive system, k0� is constant, but

�i=k0�n�x� varies spatially. With the introduction of gain, k�=k�n becomes con-
tant within the random system, and feedback due to the inhomogeneity of k� is

Figure 7
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patial intensity distributions of QB states IQB�x� (red solid lines) and lasing
odes ILG�x� (black dashed lines) from each of the three regions in Fig. 6. Repre-

entative samples were chosen for each case. (a) The lasing mode intensity is nearly
dentical to the QB state intensity with �d=1.7%. (b) A clear difference appears be-
ween the lasing mode and the QB state, with �d=21.8%, but they are still similar.
c) The lasing mode with the largest threshold and QB state with the largest decay
ate are compared, with �d=198%. Though these two modes are fairly close to each
ther [circled in Fig. 6 region (c)], their intensity distributions are quite different.
emoved. However, introducing gain generates additional feedback inside the
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andom system caused by the modification in the real part of the wave vector
�=kn��x�. Neglecting this effect results in some correspondence between lasing
odes and QB states even at large thresholds [50]. Furthermore, since there is

o gain outside the random system, k� suddenly drops to zero at the system
oundary. This discontinuity of k� generates additional feedback for the lasing
odes. In this weakly scattering system, the threshold gain is high. The large

rop of k� at the system boundary makes the additional feedback stronger.

.2. Two-Dimensional Random Lasers
e turn now to the 2D case. A different approach based on the multipole method

as been used. The multipole method is best suited to characterize multiple scat-
ering problems involving scatterers with circular cross section. This method has
een used to compute the scattering of a plane wave by a random collection of
ylinders [30,51], to calculate the defect states in photonic crystals [52], to con-
truct the exact Green’s function of a finite system [53], or to calculate the local
ensity of states [54]. This method has also been used to explain the anoma-
ously large Lamb shift that occurs in photonic crystals by calculating the QB
tates in such structures [55]. Finally, the multipole method can be used to char-
cterize the modes of 3D structures composed of cylinders [56] and in particular
o find the modes of the photonic crystal fibers [57–59]. It will be used here to
alculate the QB states and the lasing modes of the 2D disordered scattering sys-
ems of the kind shown in Fig. 1 and studied in the previous section for different
egimes of scattering. Details about this method can be found in Appendix A.

his method is based essentially on a search for the poles of a scattering matrix.
ecause the system is open, the problem is not Hermitian, and hence there are no
odes occurring for real wavelengths. The poles of the QB states all occur in the

omplex plane at wavelengths �=��+ i��, with causality requiring that ���0.
he real part of the wavelength �� determines the resonance wavelength of the
B state, while the imaginary part �� determines the quality factor Q
�� / �2��� of the mode [55].

he same method is used to find the lasing modes (TLM) at threshold. It is nec-
ssary this time to find the poles of the scattering matrix in the 2D space ��� ,�b��
f real wavelengths ���=0� and the imaginary component of the complex dielec-
ric constant outside the scatterers where the gain is distributed. It can also be
sed to find the lasing modes when gain is localized inside of the scatterers. In
his case the poles of the scattering matrix are searched in the space of real wave-
engths ���=0� and the imaginary part of the dielectric constant of cylinders �l�.

he multipole method is both accurate and efficient: the boundary conditions are
nalytically satisfied, thus providing enhanced convergence, particularly when
he refractive index contrast is high. However, in the case of large systems the
ethod can be slow (given that field expansions are global, rather than local)
hen it is necessary to locate all poles within a sizable wavelength range. An-
ther extremely efficient time-independent numerical method based on the finite
lement method [60] has been tested. This method is briefly described in Appen-
ix B. We confirmed that the results obtained by both methods, the (purely nu-
erical) finite element method and the (semi-analytic) multipole method were

dentical with a good precision.

.2a. Localized Case

e first consider the localized case �nl�=2.0� for which a complete comparison of

he QB states and the lasing modes was possible with the time-dependent FDTD-
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ased method (Subsection 2.1), thus providing a reference comparison for the mul-
ipole calculations. The lasing mode is found at a wavelength ��=446.335 nm for a
alue of the imaginary part of the refractive index nl�=−1.967
10−4, representing
he pumping threshold for this mode. The spatial distribution of its amplitude is
hown in Fig. 8(b). The QB states of the passive system are calculated in the spectral
icinity of the lasing mode. The number of required multipoles was Nmax=4 (see
ppendix A). Figure 8(a) shows the QB state that best resembles the lasing mode. Its
avelength and quality factor are, respectively, ��=446.339 nm and Q=8047. The

elative difference between the two modes is 	�d
=0.05%. These calculations pro-
ide confirmation that the lasing modes and the QB states are the same inside the
cattering region for high-Q-valued states.

.2b. Diffusive Case

e next consider the diffusive case and choose nl�=1.25. This is where the time-
ndependent method becomes interesting since, in contrast to the FDTD approach, it
ives direct access to the QB states. They are accurately calculated in this regime for

max=2 multipoles. Figure 9 shows a lasing mode and its corresponding QB state.

Figure 8

a) Intensity �E�2 of the localized QB state (Media 1) and (b) corresponding las-
ng mode (Media 2) calculated by using a multipole method for a 2D disordered
cattering system of the kind shown in Fig. 1 with the refractive index of the cyl-
nders nl�=2.0.

Figure 9

a) Intensity �E�2 of the diffusive QB state (Media 3) and (b) the lasing mode
Media 4) calculated by using the multipole method for the same random con-
guration as in Fig. 8 but with the refractive index of the cylinders of nl�=1.25.
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he lasing mode is found at ��=455.827 nm for an imaginary part of the refractive
ndex nl�=−3.778
10−2. The wavelength and the quality factor of the QB state are,
espectively, ��=456.79 nm and Q=29.2. The lasing mode is therefore redshifted
elative to the QB state’s wavelength, as a result of the mode-pulling effect. The QB
tate and the lasing mode appear similar in Fig. 9. However, the relative difference
etween the two modes is larger than in the localized case, 	�d
=14.5%. Figure 10
hows the cross section of the spatial intensity of both modes along x=2.75. In spite
f the resemblance, the two profile display visible dissimilarities. This suggests, in
he diffusive case, that QB states and lasing modes are not exactly the same, though
hey exhibit quite similar features. These results are consistent with the findings pre-
ented in Subsection 2.2.

.2c. Transition Case

t is both informative and interesting to follow the evolution of the lasing modes
nd the QB states spatial profile when the index of refraction is decreased pro-
ressively, allowing one to compare the QB states and the random lasing modes
TLM) systematically in a regime ranging from localized to diffusive. The QB
tate and lasing modes calculated for intermediate cylinder refractive indices

l�=1.75 and nl�=1.5 are displayed in Figs. 11 and 12. We note that the highly spa-
ially localized mode for nl�=2 (Fig. 8) is replaced for nl�=1.75 by a mode formed by
wo spatially localized peaks and several smaller peaks. For a refractive index of nl�
1.5, the mode is still spatially localized, although in a larger area, but is now

ormed with a large number of overlapping peaks. A more systematic exploration of
he nature of the lasing modes at the transition between localized states and extended
esonances can be found in [29]. There, a scenario for the transition has been pro-
osed based on the existence of necklace states which form chains of localized
eaks, resulting from the coupling between localized modes.The modes shown here
upport this scenario. It is important to note that the decreasing scattering and in-
reasing leakage not only affect the degree of spatial extension of the mode but also
he nature of the QB states. Indeed, it was shown in [29] that, because of leakage,
xtended QB states have a nonvanishing imaginary part associated with a progres-
ive component, in contrast to the purely stationary localized states. In Media1-4 we
resent animations of the time oscillation of the real part of the field

Figure 10
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ntensity �E�2 of the diffusive QB state (blue dashed curve) and lasing mode (red
olid curve) for x=2.75 and nl�=1.25.
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�� exp�−i�t�� of the QB state and of the corresponding TLM for n�=2 and n�
1.25. The QB state is exponentially decaying in contrast to the lasing mode. The
iffusive lasing mode clearly exhibit a progressive component, which does not exist
n the localized lasing mode.

he values of wavelengths and quality factors of the QB states, lasing frequen-
ies of the corresponding TLMs, and associated imaginary part of the refractive
ndex are summarized in Table 1, together with the relative difference 	�d
 as de-
ned in Eq. (9).

n order to visualize the increasing difference between TLM and QB states, the
ross section of their spatial intensity profile at x=2.75 is plotted in Fig. 13. In Fig.
3(a) one cannot distinguish between the lasing mode and the QB state for n�
1.75, while for n�=1.5 (Fig. 13(b)) differences begin to emerge, becoming more
ronounced for the case of n�=1.25 (Fig. 13(c)). This is seen also in the increase of
he relative difference from 5% to 14.5%. Clearly, there is a systematic increase of
he discrepancy between QB states and lasing modes when index contrast and scat-
ering decrease and leakage increases. For very low scattering n�=1.05, we could
ot find the QB state corresponding to the TLM. Although we may have missed a
ole in the complex plane, this raises, however, a serious question on the validity of
he comparison of the threshold laser mode with QB states when weakly scattering

Figure 11

a) Intensity �E�2 of a QB state and (b) a lasing mode calculated by using multi-
ole method for the same random configuration as above but with the refractive
ndex of the cylinders nl�=1.75.

Figure 12

Same as in Fig. 11 but for nl�=1.5.
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ntensity �E�2 of QB state (blue dashed curves) and lasing mode (red solid
urves) at x=2.75 for (a) nl�=1.75, (b) n�=1.5, (c) n�=1.25.
Table 1. QB State Valuesa for Four Index Values n� of Scatterers

nl�

Value 2.0 1.75 1.5 1.25

� (nm) (QB) 446.339 451.60 456.60 456.79

8047 161.28 87.8 29.2

� (nm) (laser) 446.335 451.60 456.5 455.827

l� −1.967
10−4 −0.0055 −0.0124 −0.0378

�d
 (%) 0.05 3 8.4 14.5

aWavelength �� and quality factor Q of the QB states; lasing frequency �� and imaginary
art of the refractive index nl� obtained for the threshold lasing modes; relative index differ-
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ystems are considered. In the next section we will argue that, in principle, QB states
annot be the support of theTLM. Section 5 will introduce a different class of states,
hich offer a valid basis on which the TLMs can be described.

. Threshold Lasing States versus Passive Cavity
esonances

emiclassical laser theory treats classical electromagnetic fields coupled to
uantized matter and yields the thresholds, frequencies and electric fields of the
asing modes, but not their linewidths or noise properties. To treat the spatial de-
endence of lasing modes, one must go beyond rate equation descriptions and
se the coupled nonlinear Maxwell-Bloch (MB) equations for light coupled to
omogeneously broadened two-level atoms or multilevel generalizations
hereof. These equations will be presented in Section 5 below. While the MB de-
cription has been used since the inception of laser theory [61,62], in almost all
ases simplifications to these equations were made, most notably a neglect of the
penness of the laser cavity. As random lasers are strongly open systems, it is
ecessary to treat this aspect of the problem correctly to obtain a good descrip-
ion of them.

istorically a first breakthrough in describing Fabry-Perot type lasers with open
ides was the Fox-Li method [44,45], which is an integral equation method of
nding the passive cavity resonances of such a structure. It is widely assumed
nd stated that these resonances or QB states are the correct electromagnetic
odes of a laser, at least at threshold. Often the nonlinear laser equations are

tudied with Hermitian cavity modes with phenomenological damping constants
epresenting the cavity outcoupling loss obtained, e.g., from a Fox-Li calcula-
ion. It is worth noting that there are two kinds of cavity loss that occur in lasers;
here is the outcoupling loss just mentioned and also the internal absorption of
he cavity, which can be taken into account via the imaginary part of the passive
avity index of refraction. These are very different processes, as the former de-
cribes the usable coherent light energy emitted from the laser and the latter sim-
ly energy lost, usually as heat, in the laser cavity.

he QB states of an arbitrary passive cavity described by a linear dielectric func-
ion �c�x ,�� can be rigorously defined in terms of an electromagnetic scattering
atrix S for the cavity. This matrix relates incoming waves at wave vector k (fre-

uency �=ck) to outgoing waves in all of the asymptotic scattering channels
nd can be calculated from the wave equation. Note that while we speak of the
requency of the incoming wave, in fact the S matrix is a time-independent quan-
ity depending on the wave vector k. This is the wave vector outside the cavity; in
andom lasers we will be interested in spatially varying dielectric functions so
hat in the cavity there is no single wave vector of the field. For any laser, includ-
ng the random laser, the cavity can be defined as simply the surface of last scat-
ering, beyond which no backscattering occurs. The QB states are then the eigen-
ectors of the passive cavity S matrix with eigenvalue equal to infinity; i.e., one
as outgoing waves with no incoming waves. Because this boundary condition is
ncompatible with current conservation, these eigenvectors have the complex

ave vector k̃µ; these complex frequencies are the poles of the S matrix and their
maginary parts must always be negative to satisfy causality conditions. There is

ormally a countably infinite set of such QB states. Because of their complex
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ave vector, asymptotically the QB states vary as r−�d−1�/2 exp�+�Im�k̃µ� �r� and
iverge at infinity, so they are not normalizable solutions of the time-independent
ave equation.Therefore we see that QB states cannot represent the lasing modes of

he cavity, even at threshold, as the lasing modes have a real frequency and wave vec-
or outside the cavity with conserved photon flux.

hen gain is added to the cavity the effect is to add another contribution to the
ielectric function �g�x ,��, which in general has a real and imaginary part. The
maginary part of �g has an amplifying sign when the gain medium is inverted
nd depends on the pump strength; it compensates for the outcoupling loss as
ell as any cavity loss from the cavity dielectric function �c. The specific form of

his function for the MB model will be given in Section 5 below. The TLMs are
he solutions of the wave equation with �total�x�=�c�x�+�g�x� with only outgoing
aves of real wave vector kµ [we neglect henceforth for simplicity the frequency
ependence of �c�x�]. The kµ are the wave vectors of the TLMs with real lasing
requencies �µ=ckµ. These lasing wave vectors are clearly different from the

omplex k̃µ; moreover they are not equal to Re�k̃µ� as often supposed. This can be
een by the following continuity argument. Assume that �c�x� is purely real for sim-
licity, so that the S matrix is unitary and all of its poles are complex and lie in the
egative half-plane. Turn on the pump, which we will call D0, anticipating our
ater notation, so that the inversion rises steadily from zero, continuously in-
reasing the amplifying part of �g. The S matrix is no longer unitary, and its poles
ove continuously upward towards the real axis until each of them crosses the

xis at a particular pump value, D0 (see Fig. 14); the place where each pole
rosses is the real lasing frequency kµ for that particular TLM. Note that the
oles do not move vertically to reach the real axis but always have some shift of
he lasing frequency from the passive cavity frequency, mainly due to line-
ulling towards the gain center. As the Q value of the cavity increases, the dis-

Figure 14
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hift of the poles of the S matrix in the complex plane onto the real axis to form
LMs when the imaginary part of the dielectric function �
�c+�g varies for a
imple 1D edge-emitting cavity laser [34]. The cavity is a region of length L and
niform index (a)nc=1.5, (b) n=1.05 ��c=2.25,1.0025� terminated in vacuum at
oth ends. The calculations are based on the MB model discussed in Section 5, with
arameters kaL=39 and ��=2. (a) nc=1.5; squares of different colors represent
m��g�=0,−0.032,−0.064,−0.096,−0.128; (b) nc=1.05; squares of different col-
rs represent Im��g�=0,−0.04,−0.08,−0.12,−0.16. Note the increase in the fre-
uency shift in the complex plane for the leakier cavity. The center of the gain curve
s at kL=39, which determines the visible line-pulling effect.
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ance the poles need to move to reach the real axis decreases, so that the fre-

uency shift from Re�k̃µ� can become very small, and the conventional picture
ecomes more correct. In general the poles of the S matrix are conserved quantities
ven in the presence of loss, so that the TLMs are in one-to-one correspondence
ith the QB states and thus are countably infinite, but for any cavity the pole that

eaches the real axis first (i.e., at lowest pump D0) is the actual first lasing mode.
t higher pump values the nonlinear effects of saturation and mode competition
ill affect the behavior; so only the lowest-threshold TLM describes an observ-

ble lasing mode for fixed pumping conditions, the first lasing mode at thresh-
ld. Which pole gets there first depends not only on the Q of the passive cavity
esonance before gain is added, but also on the parameters of �g�x�, which in-
lude the atomic transition frequency, the gain linewidth, and the pump condi-
ions, as will be discussed below.

. Self-Consistent Time-Independent Approach to
andom Lasing

n Section 4 we gave a general argument based on the scattering matrix with the
ddition of gain to show that in general the QB states (passive cavity resonances)
re never exactly the same as the TLMs, even inside the cavity. However the
ame argument indicated that inside a high-Q cavity the two sets of functions be-
ome very similar, since the poles of the S matrix are very close to the real axis
nd only a small amount of gain is required on order to move them to the real
xis, which maps QB states onto TLMs. For localized states in the center of the
ample the Q values should be exponentially large and, as found numerically,
Bs and TLMs should be indistinguishable (again, inside the cavity; outside the
B states have an unphysical growth). As already noted, the set of TLMs defines
nly threshold modes; as soon as the first TLM has turned on, it will alter the
ain medium for the other potential modes through spatial hole burning, and a
onlinear approach needs to be considered. Very recently such an approach has
een developed that has the major advantage of being time independent and par-
ially analytic, providing both ease of computation and greater physical insight.
he approach, due to Türeci-Stone-Ge, is known as steady-state ab initio laser

heory (SALT) [31,34,35]. It finds the stationary solutions of the MB semiclas-
ical lasing equations in the multimode regime, for cavities of arbitrary com-
lexity and openness, and to infinite order in the nonlinear interactions. As such
t is ideal for treating diffusive or quasi-ballistic random lasers, which are ex-
remely open and typically highly multimode even slightly above threshold. In
his section we present the basic ideas with emphasis on TLMs, which are the
ocus of this review. The nonlinear theory has been reviewed in some detail else-
here [35], and we just present a brief introduction to it here.

.1. Maxwell-Bloch Threshold Lasing Modes
he MB semiclassical laser equations describe a gain medium of identical two-

evel atoms with energy level spacing ��a=�cka and relaxation rate ��, being
umped by an external energy source, D0 (which can vary in space), contained in
cavity that can be described by a linear dielectric function, �c�x�. This leads to
population inversion of the atoms, D�x , t�, which in the presence of an electric

eld creates a nonlinear polarization of the atomic medium, P�x , t�, which itself
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s coupled nonlinearly to the inversion through the electric field, E�x , t�. The
lectric field and the nonlinear polarization are related linearly through Max-
ell’s wave equation, although above the first lasing threshold the polarization is

mplicitly a nonlinear function of the electric field. The induced polarization also
elaxes at a rate �� that is typically much greater than the rate �� at which the
nversion relaxes, and this is a key assumption in our treatment of the nonlinear
egime, but will not be needed in the initial discussion of TLMs.

he resulting system of nonlinear coupled partial differential equations for the
hree fields E�x , t� ,P�x , t� ,D�x , t� are �c=1�

Ë+ =
1

�c�x�
�2E+ −

4�

�c�x�
P̈+, �10�

Ṗ+ = − �i�a + ���P+ +
g2

i�
E+D , �11�

Ḋ = ���D0 − D� −
2

i�
�E+�P+�* − P+�E+�*� . �12�

ere g is the dipole matrix element of the atoms, and the units for the pump are
hosen so that D0 is equal to the time-independent inversion of the atomic sys-
em in the absence of an electric field. This pump can be nonuniform: D0

D0�x� based on the experimental pump conditions, but we will not discuss that
ase here. The electric field, polarization, and inversion are real functions (E ,P
re vector functions in general, but we assume a geometry where they can be
reated as scalars). In writing the equations above we have written these fields in
he usual manner in terms of their positive and negative frequency components,
=E++E−, P=P++P−, and then made the rotating wave approximation in which

he coupling of negative to positive components is neglected. There is no advan-
age in our treatment to making the standard slowly varying envelope approxi-
ation, and we do not make it.

.2. Self-Consistent Steady-State Lasing Equations
he starting point of our formulation is to assume that there exists a steady-state
ultiperiodic solution of Eqs. (10)–(12) above; i.e., we try a solution of the form

E+�x,t� = �
µ=1

N

�µ�x�e−ikµt, P+�x,t� = �
µ=1

N

Pµ�x�e−ikµt. �13�

aving taken c=1 we do not distinguish between frequency and wave vector.
he functions �µ�x� are the unknown lasing modes, and the real numbers kµ are

he unknown lasing frequencies; these functions and frequencies are not as-
umed to have any simple relationship to the QB states of the passive cavity and
ill be determined self-consistently. As the pump increases from zero the num-
er of terms in the sum will vary, N=0,1 ,2 , . . .; at a series of thresholds each
ew mode will appear. The general nonlinear theory is based on a self-consistent
quation that determines how many modes there are at a given pump and solves
or these modes and their frequencies. However in this section we will discuss

LMs, and so we need only consider one term in the sum. Furthermore, at the
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rst threshold the electric field is negligibly small, and so the inversion is equal
o the external pump profile, assumed uniform in space, D�x , t�=D0. Assuming
ingle-mode lasing, the equation for the polarization becomes

Pµ�x� =
− iD0g

2�µ�x�

���� − i�kµ − ka��
. �14�

aving found Pµ�x� in terms of �µ�x� ,D0, we substitute this result into the right-
and side of Maxwell’s equation along with �µ�x� for the electric field on the
eft-hand side. The result is

��2 + �c�x�kµ
2��µ�x� =

iD04�g2kµ
2�µ�x�

���� − i�kµ − ka��
, �15�

hich can be written in the form

��2 + ��c�x� + �g�x��kµ
2��µ�x� = 0, �16�

here �g�x� is the dielectric function of the gain medium, which only varies in
pace if the external pump or the gain atoms are nonuniform. Defining conve-
ient units of the pump D0c=��� /4�ka

2g2 and replacing D0⇒D0 /D0c, we find
hat

�g�x� =
D0

ka
2 � ���kµ − ka�

��
2 + �kµ − ka�2

+
− i��

2

��
2 + �kµ − ka�2� . �17�

quation (16) is to be solved with the boundary condition that at infinity one has
nly an outgoing wave at frequency kµ, i.e., �r�µ�x�=+ikµ�µ�x� when r→�. In
eneral this equation with this boundary condition cannot be solved for an arbi-
rary choice of the lasing frequency kµ and for arbitrary values of the pump D0; it
s necessary to vary kµ and the pump strength D0 to find the countably infinite set
f values �kµ ,D0

�µ�� at which a solution exists. This variation is equivalent to the
ulling of the S-matrix poles onto the real axis discussed in Section 4 above; D0

�µ�

efines the threshold pump for that pole, and kµ the point at which it crosses the
eal axis. As noted, while all of these solutions can be classified as TLMs, only
he solution with the lowest value of D0

�µ� will actually be a physical lasing state,
s higher lasing modes are altered by nonlinear modal interactions.

quation (16) shows that the TLMs are the solutions of the original Maxwell
quation with the addition of a complex, pump- and frequency-dependent di-
lectric function that is uniform in space (for the assumed uniform pumping).
he imaginary and the real parts of the gain dielectric function have the familiar
ymmetric and antisymmetric two-level resonance forms, respectively. The de-
endence on the atomic frequency ka encodes the usual atomic line-pulling ef-
ect. In the limit of a very broad gain curve ���→�� the line-pulling effects can
e neglected, and we find the simple result

�g → − iD0/ka
2, �18�

.e., a constant imaginary (amplifying) part of �g proportional to the pump
trength. Such linear gain models have been studied before, although typically
ith a constant imaginary part of the index of refraction instead of a constant

maginary part of the dielectric function. Our results show that, in order to re-

roduce the TLMs of the MB equations, one needs to take
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n�x� = ��c�x� + �g�D0,kµ − ka,��� �19�

o that the pump changes both the real and the imaginary parts of the index of
efraction.

.3. Solution for Threshold Lasing Modes and Constant-Flux
tates
he differential equation (16) is self-consistent in the sense that the boundary
onditions depend on the eigenvalue kµ that one is solving for, and so some form
f nonlinear search is required. The required search turns out to be much more
onvenient if one writes an equivalent integral form of the equation transform-
ng it into a self-consistent eigenvalue problem. For this purpose we rewrite it in
he form

��c�x�−1�2 + kµ
2��µ�x� =

− �gkµ
2

�c�x�
�µ�x� , �20�

nd then, treating the right-hand side as a source, invert the equation with the ap-
ropriate Green function to obtain

�µ�x� =
iD0��

�� − i�kµ − ka�

kµ
2

ka
2�D

dx�
G�x,x�;kµ��µ�x��

�c�x��
. �21�

ere the integral is over the gain region, which we will assume coincides with
he cavity region D. The appropriate Green function satisfies

��c�x�−1�2 + k2�G�x,x��k� = �d�x − x�� �22�

nd is non-Hermitian because of the outgoing wave boundary conditions:
�rG�x ,x� �k��r→�= ��r�G�x ,x� �k��r�→�= ikG�x ,x� �k�, where �r is the radial de-
ivative. G�x ,x� �k� has the spectral representation

G�x,x��k� = �
m

�m�x,k��̄m
* �x�,k�

�k2 − km
2 �

. �23�

e refer to the functions �m�x ,k� in Eq. (23) as the CF states. They satisfy

��c�x�−1�2 + km
2 ��m�x,k� = 0 �24�

ith the corresponding non-Hermitian boundary condition of purely outgoing
pherical waves of fixed frequency k (eventually set equal to the lasing fre-
uency) at infinity. Their dual (biorthogonal) partners �̄m�x� ,k� satisfy the com-
lex conjugate differential equation with purely incoming wave boundary con-
itions. These dual sets satisfy the biorthogonality relation

�
D

dx�m�x,k��̄n
*�x,k� = �mn �25�

ith appropriate normalization.

he CF states satisfy the standard wave equation, Eq. (24), but with the non-
ermitian boundary condition already mentioned; hence their eigenvalues km

2

re complex, with (it can be shown) a negative imaginary part, corresponding to
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mplification within the cavity. However, outside the cavity, by construction,
hey have the real wave vector kµ and a conserved photon flux. They are a com-
lete basis set for each lasing frequency kµ, and hence they are a natural choice to
epresent the TLMs as well as the lasing modes above threshold. Hence we make
he expansion

�µ�x� = �
m=1

�

am
µ �m

µ �x�. �26�

ubstituting this expansion into Eq. (21), using biorthogonality, and truncating
he expansion at N terms, leads to the eigenvalue problem

am
µ = D0�m�kµ��

D
dx�

�̄m
µ*�x���

p

N

ap
µ�p

µ�x��

�c�x��

 D0�

p

N

Tmp
�0�ap

µ, �27�

here �m�k�
 i���k2 /ka
2� / ����− i�k−ka���k2−km

2 �k���.

ne sees that the TLMs in the CF basis are determined by the condition that an
igenvalue of the matrix D0T�0��kµ� is equal to unity. Since the matrix T�0��kµ� is
ndependent of D0, it is natural to focus on this object, which we call the thresh-
ld matrix. It is a complex matrix with no special symmetries, implying that its
igenvalues �µ are all complex for a general value of kµ. If the real control pa-
ameter D0 (the pump) is set equal to 1/ ��µ�, then the matrix D0T�0��kµ� will have
n eigenvalue of modulus unity, but not a real eigenvalue equal to unity as re-
uired, and no solution for the TLMs exists for this choice of kµ. It is the phase
ondition that �µ �kµ� must be real that determines the allowed lasing frequen-
ies. In practice one orders the �µ in decreasing modulus based on an initial ap-
roximation to the lasing frequency, kµ, and then tunes kµ slowly until each ei-
envalue flows through the real axis [which is guaranteed by the dominant k
ependence contained in the factor �m�k�]. Normally the eigenvalues do not
witch order during this flow, and the largest eigenvalue �µ will determine the
owest threshold TLM, with threshold D0

�µ�=1/�µ�kµ�, where kµ is the frequency
hat makes the largest eigenvalue T�0��kµ� real. The eigenvector corresponding to

µ gives the coefficients for the CF expansion of the TLM of the first mode

µ�x�. TLMs with higher thresholds can be found by imposing the reality con-
ition on smaller eigenvalues of T�0��kµ�. This approach has been described in
etail elsewhere [33,35], and provides a much more efficient method for finding
LMs than solving the self-consistent differential equation, Eq. (16).

e immediately see from Eqs. (25) and (27) that for an arbitrarily shaped cavity
f uniform dielectric constant �c the matrix T�0��kµ� is diagonal owing to the bior-
hogonality of the CF states. Thus each TLM is a single CF state, corresponding
o one of the kµ that satisfies the reality condition. In this case the expansion of

µ�x� consists of just one term, and the threshold lasing equation is equivalent
o Eq. (24) with appropriate relabeling. When �c varies in space, as for random
asers, the threshold matrix is not diagonal, and there can in principle be many
F states contributing to one TLM [63]. However, since �m�x� , �̄p�x� are uncor-

elated fluctuating functions of space, it turns out that the threshold matrix in
andom lasers is approximately diagonal and the threshold modes are dominated
y one, pseudorandom CF state determined by solving Eq. (24) for the appropri-
te random dielectric function �c�x�. This is shown in Fig. 15. In summary, the

heory leading to the threshold equation (27) gives an efficient time-independent
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ethod for finding the TLMs of random lasers in any disorder regime. In general
hese TLMs are very close to a single CF state determined by Eq. (24) at the las-
ng frequency kµ. With this new method TLMs of random lasers can be found for
omplex 2D and even 3D geometries. In Figs. 16 and 17 we compare TLMs, CF
tates and QB states for the 2D random laser model used in [33], illustrating the
greement of TLMs with CF states even for weak scattering, while a significant
eviation from the closest QB state is found.

his SALT is well-suited to describe not just TLMs but to find the true multi-
ode lasing spectrum of random lasers above threshold. This will not be treated

n detail here, but in the next section we briefly explain the basic approach in the
onlinear theory and show one representative result.

.4. Nonlinear Steady-State ab Initio Laser Theory
he key to generalizing SALT to the multimode nonlinear regime is to return to

he fundamental MB equations and go beyond the assumption that the inversion
�x , t� is equal to the constant threshold pump D0. Once lasing modes have

urned on, their spatially varying electric fields cause varying degrees of stimu-
ated emission from the gain atoms and hence tend to reduce the inversion D
rom the pump value D0 in a manner that varies in space and in principle in time.
owever it has been shown that if �����, then the time dependence of the in-
ersion is weak, and although D varies in space, it is a good approximation to
ake D�x , t�=D�x�. This stationary inversion approximation has been used in la-
er theory for many years, going back to Haken [62], but has not been incorpo-
ated into an ab initio method such as SALT. We will not review the details of the
erivation of the nonlinear multimode theory of Türeci-Stone-Ge, which have
een given elsewhere [31,35]. Instead we just state that the net effect of the non-
inear interactions within the stationary inversion approximation is just to re-
lace the uniform inversion, as follows,

Figure 15
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ypical values of the threshold matrix elements T�0� in a 2D random laser sche-
atized in the inset of Fig. 18 below, using sixteen CF states. The off-diagonal

lements are one to two orders of magnitude smaller than the diagonal ones.
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D0 →
D0

1 + �
�

��k�������x��2�
, �28�

n all of the equations of the theory of the TLMs. Here � labels all above-
hreshold modes and ��k�� is a Lorentzian centered at the lasing frequency of
ode � with width ��. If we make this substitution into Eq. (21), we arrive at the

undamental integral equation of SALT:

�µ�x� =
iD0��

�� − i�kµ − ka�

kµ
2

ka
2�D

dx�
G�x,x�;kµ��µ�x��

�c�x���1 + �
�

������x���2� . �29�

ote that this equation shows that each lasing mode interacts with itself (satura-

Figure 16
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a) False color plot of one TLM in a 2D random laser modeled as an aggregate of
ubwavelength particles of index of refraction n=1.2 and radius r=R /30 against
background index n=1 imbedded in a uniform disk of gain material of radius R

see inset, panel (d)]. The frequency of the lasing mode is kR=59.9432, which is
ulled from (b) the real part of the dominating CF state kmR=59.8766−0.8593i to-
ards the transition frequency kaR=60. The spatial profile of the TLM and CF state

gree very well, whereas (c) the corresponding QB state k̃mR=59.8602−0.8660i
iffers from that of theTLM and the CF state noticeably, as can be seen in (d), where
e plot the internal intensity along the �=200° direction [white line in (a)].
ion) and all other lasing modes (mode competition) via the hole-burning de-
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ominator of Eq. (28). This set of coupled nonlinear equations is still conve-
iently solved in the basis of CF states for each modal frequency kµ, as for the
LMs; the details have been given elsewhere [33,35].

he first results of the SALT for the modal properties of multimode random la-
ers in weak-scattering 2D media were given in [33]. We will not present a full
icture of these results here, but just show some properties of the random laser
asing frequencies in Fig. 18. The model is explained in the figure caption (see
nset). The complex CF and QB frequencies are shown to be distinct, and the las-
ng frequencies are subject to very strong line-pulling effects.

he new tool of SALT allows one to study random lasers with full nonlinear in-
eractions in 2D and even in 3D. The elimination of time dependence in this
heory makes larger and more complex cavities computationally tractable. The
heory also provides a new language based on CF states to describe the lasing
odes. Now detailed statistical studies as well as comparisons to statistical mod-

ls based on random matrix theory, disordered media theory, and wave chaos
heory are needed. Such studies are in progress.

Figure 17
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a) False color plot of one TLM in a 2D random laser similar to that in Fig. 16 but
ith particles of radius r=R /60, corresponding to weaker scattering [see inset,
anel (d)]. The frequency of the lasing mode is kR=29.9959, which is very close to
b) the CF state kmR=30.0058−1.3219i but shifted from (c) the corresponding QB

tate k̃mR=29.8813−1.3790i. (d) Internal intensity of the three states in the �=�
irection [white line in (a)]; because of weaker scattering the QB state now differs
ubstantially from the CF and TLM, which still agree quite well with each other.
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. Conclusion

decade of theoretical study of random lasers has clarified the nature of the las-
ng modes in disordered systems with multiple scattering and gain. Most impor-
ant, it has been established that high-Q passive cavity modes such as those cre-
ted by Anderson localization or by rare fluctuations of various kinds are not
ecessary in order to have self-organized laser oscillation at a frequency distinct
rom the atomic transition frequency (gain center). In addition, this study has
mphasized a point of general importance in laser theory, that TLMs are not
dentical to the QB states (resonances) of the passive cavity. This point is dem-
nstrated by a number of numerical calculations presented above and also can be
nderstood from the realization that the QB states are eigenvectors of the unitary
matrix of the cavity without gain, but at complex frequency, whereas the TLMs

re eigenvectors of the nonunitary S matrix of the cavity with gain and with real
requency. The difference between these eigenvectors (within the cavity), which
s large in the weak scattering limit, becomes small in the diffusive regime as the

of the cavity increases and is negligible, e.g., for Anderson localized modes
nd for high-Q modes of conventional cavities. The new basis set of constant flux
CF) states provides a better approximation for finding the TLMs of random la-
ers and coincides with the exact lasing modes of uniform index cavities. Further
tatistical and analytical study is necessary to characterize the properties of ran-
om lasers in the different regimes, weak scattering, diffusive, and localized, and
o understand the effects of nonlinear interactions.

ppendix A: Multipole Method
his appendix details the principle of the multipole method as used in this paper
nd its implementation. Although we describe here the method for 2D systems,
t can be also applied to 3D structures.

e consider a random collection of Nc nonoverlapping cylinders with arbitrary
2

Figure 18

a) CF (dots) and QB (crosses) frequencies in a 2D random laser modeled as an
ggregate of subwavelength particles of index of refraction n=1.2 against a back-
round index n=1 imbedded in a uniform disk of gain material (see inset). The two
ets of complex frequencies are statistically similar but differ substantially.The solid
urve shows the gain curve ��k� with ��=1. (b) Lasing frequencies of the same ran-
om system well above threshold (colored lines). Colored circles denote the CF state
ominating the correspondingly colored modes at threshold.
omplex dielectric constant �l=�l�+ i�l�=nl and arbitrary radii al located in a uni-
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orm medium with complex dielectric constant �b=�b�+ i�b�=nb
2 (Fig. 19), where

l=nl�+ inl� and nb=nb�+ inb� are the refractive indices of the cylinders and the
ackground. The complex dielectric permittivities of the cylinders and the back-
round can be arbitrary and may be frequency dependent.

n two dimensions, the solution of the electromagnetic field problem decouples
nto two fundamental polarizations, in each of which the field may be character-
zed by a single field component: V�r�=Ez (for TM polarization) and V�r�=Hz

for TE polarization). In the coordinate system that is used, the z axis is aligned
ith the cylinder axes.

he field component V satisfies the Helmholtz equation

�2V�r� + k2n2�r�V�r� = 0. �A1�

or TM polarization, both V�r� and its normal derivative � ·�V�r� are continu-
us across all boundaries, while for TE polarization the corresponding boundary
onditions are the continuity of V�r� and its weighted normal derivative
·�V /n2�r�. Here, n�r� denotes the refractive index of the relative medium and
is an unit outward normal vector.

n the vicinity of the lth cylinder, we may represent the exterior field in the back-
round medium (refractive index nb) in local coordinates as rl= �rl ,�l�=r−cl,
here cl represents the center of the cylinder, and we write

V�r� = �
m=−�

�

�Am
l Jm�knbrl� + Bm

l Hm
�1��knbrl��eim�l. �A2�

his local expansion is valid only in an annulus extending from the surface of
he cylinder l to the surface of the nearest adjacent cylinder.

Figure 19

c

cr

l

q

o
Geometry and local coordinate systems.
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he global field expansion (also referred to as a Wijngaard expansion), which is
alid everywhere in the background matrix, comprises only outgoing cylindrical
armonic terms:

V�r� = �
q=1

Nc

�
m=−�

�

Bm
q Hm

�1��k�r − cq��eim arg�r−cq�. �A3�

orrespondingly, the field inside any cylinder l is written in an interior expan-
ion:

V�r� = �
m=−�

�

Cm
l Jm�knl�r − cl��eim arg�r−cl�. �A4�

hen, applying Graf’s addition theorem [53] to the terms on the right-hand side
f Eq. (A3) (see Fig. 19), we may express the global field expansion in terms of
he local coordinate system for the lth cylinder. Equating this with the local ex-
ansion (A2), we deduce the field identity (also known as the Rayleigh identity):

Am
l = �

q=1,q�l

Nc

�
p=−�

�

Hmp
lq Bp

q, �A5�

here

Hmp
lq = Hm−p

�1� �kclq�e−i�m−p��lq. �A6�

ere, �clq ,�lq� are the polar coordinates of the vector clq=cq−cl, the position of
ylinder q relative to cylinder l.

his is the first connection between the standing wave ��Am
l �� and outgoing

�Bm
l �� multipole coefficients, one which follows solely from the system geom-

try. Equation (A5) indicates that the local field in the vicinity of cylinder l is due
o sources on all other cylinders �q� l�, the contributions of which to the multi-
ole term of order m−p at cylinder l are given by Hmp

lq .

he second relation between the �Am
l � and �Bm

l � multipole coefficients is ob-
ained from the field continuity equations (i.e., the boundary conditions) at the
nterface of cylinder l and the local exterior (A2) and interior field (A4) expan-
ions. From these, we obtain

Bm
l = Rm

l Am
l , �A7�

Cm
l = Tm

l Am
l , �A8�

here the interface reflection and transmission coefficients, for both Ez and Hz

olarization, are given by

Rm
l = −

�nlJm� �knlal�Jm�knbal� − nbJm�knlal�Jm� �knbal�

�nlJm� �knlal�Hm
�1��knbal� − nbJm�knlal�Hm

�1���knbal�
, �A9�

Tm
l = −

2i/��kaL�

�nlJm� �nlkal�Hm
�1��knbal� − nbJm�knlal�Hm

�1���knbal�
, �A10�

2 2
n which �=1 for TM polarization and �=nb�r� /nl �r� for TE polarization.
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o derive a simple closed form expression for the solution of the problem, we
se partitioned matrix notation, introducing vectors Al= �Am

l � and Bl= �Bm
l � and

xpressing Eq. (A5) in the form

Al = �
q

HlqBq, �A11�

here Al and Bl denote vectors of multipole coefficients for cylinder l. The ma-
rix H is block partitioned according to Hlq= �Hmp

lq � for l�q (A6), and Hll= �0�,
ach block of which is a matrix of Toeplitz form. Correspondingly, the matrix
orms of Eqs. (A7) and (A8) are

B = RA , �A12�

C = TA , �A13�

here R=diag Rl is a block diagonal matrix of diagonal matrices Rl=diag Rm
l , and

ith corresponding definitions applying for the transmission matrices.

hen, with the introduction of the partitioned vectors A= �Al�, B= �Bl� and the
artitioned matrix H= �Hlq�, we form the system of equations

�I − RH�B = 0. �A14�

he problem has now been reduced to the solution of a generalized eigenvalue
roblem for matrix equation (A14). The nontrivial solutions of secular equation
A14) determine modes of the random system. Finding the nontrivial solutions
f the linear system of equations (A14) requires that the determinant of the sys-
em matrix vanish:

= 0, where D = det�S−1� �A15�

ith

−1��� = �I − RH� . �A16�

quivalently, this problem may be recast as a search for the poles of the scatter-
ng matrix S��� (i.e., solutions of det S−1���=0). Once the pole is located, the cor-
esponding null vectors B of Eq. (A14) are the multipole coefficients of the scattered
eld, which are used to calculate the QB state profiles exterior to the scatterers by
sing Eq. (A3). The field inside a cylinder is calculated according to the interior ex-
ansions, Eqs. (A13) and (A4). The TLM poles must be searched in the �� ,�c� do-
ain, given that the pump changes not only the imaginary part of the refractive in-

ex but the real part as well [Eq. (4)].

ormal system (A15) is of infinite dimension and so must be truncated to gen-
rate a computational solution, the accuracy of which is governed by the number
f retained multipole coefficients Nm=2Nmax+1, where Nmax is the truncation or-
er of the multipole series; i.e., only the terms corresponding to the cylindrical har-
onics of order n=−Nmax, . . . ,Nmax are retained.

ppendix B: Finite Element Method
e have also used the finite element method [60], implemented in a commercial

oftware (Comsol), to solve wave equation (A1) and calculate the complex ei-
envalues and eigenfunctions of the passive modes of the systems that were cal-

ulated by the multipole method. The method suitably applies for modeling pas-
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ive or active modes in a cavity, which is surrounded by perfectly matched layers
64] to simulate open boundaries. It is possible to obtain all the leaky modes,
ven the resonances characterized by a very small quality factor (as small as 5),
n a reasonable computation time with a commercial PC, provided the size of the
eometry is smaller than hundred times the wavelength. This is in contrast with
he other methods described in this paper, which require much heavier compu-
ation.

ne of the most important steps of the finite element method is the creation of
he mesh that describes the system. Figure 20 shows a close up of a typical mesh
alculated for the 2D random system of Fig. 2. The maximum size of elements
ust be smaller than seven times the wavelength [65].
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