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ABSTRACT
Characterizing ultrashort optical pulses has always been a critical but difficult task, which has a broad range of applications. We propose and
demonstrate a self-referenced method of characterizing ultrafast pulses with a multimode fiber. The linear and nonlinear speckle patterns
formed at the distal end of a multimode fiber are used to recover the spectral amplitude and phase of an unknown pulse. We deploy a deep
learning algorithm for phase recovery. The diversity of spatial and spectral modes in a multimode fiber removes any ambiguity in the sign of
the recovered spectral phase. Our technique allows for single-shot pulse characterization in a simple experimental setup. This work reveals
the potential of multimode fibers as a versatile and multi-functional platform for optical sensing.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0007037., s

INTRODUCTION

Multimode fibers (MMFs) provide diverse degrees of freedom
in space, spectrum, polarization, and time, enabling a wide range
of applications beyond their traditional role in communication. By
manipulating the spatial degrees of freedom, an MMF can operate
as a diffraction-limited microscope,1–4 a high-resolution spectrome-
ter,5–8 a radio-frequency wave sensor,9,10 an optical pulse shaper,11–15

a reconfigurable waveplate,16 and a tailorable nonlinear element.17–20

Previously, we demonstrated that the intensity pattern formed by
the interference of guided modes at the output of an MMF could be
used to recover the spectral amplitude of input light.5–8 Recovering
the spectral phase, however, is more challenging because different
frequencies do not interfere on a linear detector in a time-integrated
measurement.

Here, we propose a nonlinear time-integrated measurement of
transmitted light through an MMF to extract the spectral phase of
an optical pulse. Two-photon absorption on an array of detectors
produces a nonlinear speckle pattern. From the speckle pattern, we
can retrieve the relative phase of different spectral components of

the pulse because those components interfere in the two-photon
absorption process. Nonlinear optical processes have been widely
used to characterize ultrafast pulses in the absence of a reference
pulse.21–25 However, many of these self-referenced techniques can-
not determine the sign of spectral phase or the direction of time.
For example, autocorrelation is commonly used to estimate the
pulse width, but it always produces a temporally symmetric trace.
Our new technique can resolve the direction of time because an
MMF (with uncontrolled bending/twisting) does not keep the sym-
metry of temporal inversion with phase conjugation. Compared
to other pulse measurement methods such as FROG,22 SPIDER,23

MIIPS,24 and PICASO,25 our scheme has a simple experimental
setup without moving parts and allows for single-shot measurement,
which is of particular importance when measuring unstable pulse
trains.

The complexity of our approach is concentrated on phase
retrieval from the nonlinear speckle pattern. Taking advantage of
the overwhelming advancements in machine learning and deep neu-
ral networks, we employ deep learning for phase retrieval. Arti-
ficial neural networks were utilized for phase retrieval in FROG
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measurements26 and demonstrated to outperform other phase
retrieval algorithms.27 FROG measurements based on second-
harmonic generation suffer from ambiguity in the direction of time,
which would cause instabilities in the training of neural networks,
unless an additional constraint was imposed on the pulse shape. Our
MMF-based technique does not have such a problem. Previously,
deep neural networks were employed for imaging through multi-
mode fibers,28,29 but a large amount of data was needed for training.
It is much easier and less expensive to generate data numerically
than experimentally to train the neural networks.30 However, it is
difficult to accurately model a realistic fiber with unknown refrac-
tive index fluctuations and micro-bending/twisting to produce high-
quality numerical data for training. Here, we use the experimen-
tally measured transmission matrix of the multimode fiber to calcu-
late two-photon speckle patterns for training purposes. This hybrid
method makes it easy and straightforward to generate numerical
data for the specific fiber in the experiment. Moreover, noise in the
measurement is included in the training process, making the neural
network robust compared to conventional phase retrieval methods.
Finally, we combine machine learning with compressive sensing by
representing the spectral phases of commonly seen pulses in a sparse
basis, greatly reducing the number of parameters that need to be
retrieved by the neural network.

PRINCIPAL OF OPERATION

Our scheme relies on the speckle pattern formed at the end
of a multimode fiber to provide a unique fingerprint of an optical
pulse. Each speckle grain at the distal end provides a different sam-
pling of the pulse. At the input, the pulse excites many guided modes

with different propagation constants, and thus, it experiences modal
dispersion while propagating through the fiber. At the output, indi-
vidual speckles are formed by different summations of all spectral
components of the pulse, each with a varying amplitude and phase.
The transmitted pulse displays distinct stretching and distortions
from one speckle to another. The spectral amplitude of the input
pulse is extracted from the time-integrated intensity measurement of
the output speckle pattern via one-photon absorption on the camera,
as done previously in Refs. 5 and 7. The spectral phase is recovered
from the time-integrated nonlinear measurement of the speckle pat-
tern via two-photon absorption on a different camera. Since cameras
detect all speckle grains in parallel, the amplitudes and phases of all
spectral components of a pulse can be extracted with a single-shot
measurement. An experimental realization of the proposed scheme
is shown in Fig. 1(a).

To use the speckle pattern as the fingerprint of a pulse, we first
calibrate the spectral to spatial mapping of the MMF (step index,
core diameter = 105 μm, numerical aperture = 0.22, and length
= 1.3 m). It requires a full-field measurement of the output light
as a function of the input frequency. We use a frequency-tunable
laser source, and the transmitted field is measured by off-axis holog-
raphy in an interferometric setup.12,16 The incident light is linearly
polarized, and one polarization of transmitted light is selected for
detection. The complex field transmission coefficients measured at
multiple frequencies ω are stored in a transmission matrix T(r, ω),
where r denotes the spatial location at the fiber output.T(r,ω) relates
the input spectral amplitude A(ω) and phase θ(ω) to the complex
output field Eout(r, t) for a fixed incident wavefront,

Eout(r, t) = ∫ T(r,ω)e−iωtA(ω)eiθ(ω)dω. (1)

FIG. 1. (a) Experimental realization of the measurement scheme. At the input, an optical pulse at λ = 1550 nm, delivered via a single mode fiber (SMF), is coupled to the
calibrated MMF (Thorlabs FG105LCA). At the output, the InGaAs camera (Xenics Xeva 1.7-640) records the time-integrated one-photon absorption pattern I1(r). A silicon
camera (Andor Newton DU940N-UV) detects the time-integrated two-photon absorption pattern I2(r). The amplitude A(ω) and phase θ(ω) of the input pulse are recovered
from I1(r) and I2(r), respectively. (b) Numerically simulated spectral amplitude A(ω) (red solid line), spectral phase θ(ω) (blue dashed line), and the spectral phase with the
flipped sign −θ(ω) (green dotted line). (c) Difference in I2(r) between the pulse with the original and flipped spectral phases.

APL Photon. 5, 096106 (2020); doi: 10.1063/5.0007037 5, 096106-2

© Author(s) 2020

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

The time-integrated intensity pattern (linear speckle pattern)

I1(r) = ∫ ∣Eout(r, t)∣2dt = ∫ ∣T(r,ω)∣
2
∣A(ω)∣2dω (2)

is independent of the spectral phase θ(ω).
The two-photon absorption pattern I2(r) = ∫|Eout(r, t)|4dt can

be expressed as

I2(r) =∭ dω1dω2dω3∣T(r,ω1)∣A(ω1)∣T(r,ω2)∣A(ω2)∣T(r,ω3)∣

× A(ω3)∣T(r,ω1 − ω2 + ω3)∣A(ω1 − ω2 + ω3)

× ei[θ(ω1)−θ(ω2)+θ(ω3)−θ(ω1−ω2+ω3)]

× ei[ϕ(r,ω1)−ϕ(r,ω2)+ϕ(r,ω3)−ϕ(r,ω1−ω2+ω3)], (3)

where ϕ(r, ω) denotes the phase of T(r, ω). The dependence of I2(r)
on θ(ω) can be used to retrieve the spectral phase of the input pulse.

When a random superposition of fiber modes is excited due
to the spatial complexity, the transmission matrix T(r, ω) possesses
no symmetry. The phases ϕ(r, ω) of its elements are randomly dis-
tributed over (−π, π]. If the input pulse is temporally reversed and
phase conjugated, the sign of θ(ω) is flipped. Since ϕ(r, ω) remains
the same, the phase of the transmitted field θ(ω) + ϕ(r, ω) changes.
Consequently, the two-photon speckle pattern I2(r) is modified.
It is instructive to consider the complementary time domain pic-
ture, where due to the complex dynamics in the fiber, the tempo-
ral impulse response at each output position r is non-symmetric.
Hence, two time-reversed inputs, Ein(t) and Ein(−t), will yield two

different temporal dynamics at the output, resulting in two differ-
ent speckle patterns I2(r). With the experimentally measured trans-
mission matrix, we calculate the two-photon pattern I2(r) for the
synthesized amplitude and phase in Fig. 1(b). Figure 1(c) presents
the change in I2(r) when the spectral phase of a simulated pulse
has its sign flipped. The relative change ⟨|ΔI2|⟩/⟨I2⟩, averaged over
r, is 0.13. Hence, the two-photon absorption pattern can elimi-
nate the ambiguity with respect to temporal inversion with phase
conjugation.

DEEP LEARNING

As shown in Eq. (3), the mapping from the spectral phase θ(ω)
of the input pulse to the two-photon speckle pattern I2(r) at the fiber
output is nonlinear and complex. It is very difficult to recover θ(ω)
from the measured I2(r). Conventional phase retrieval algorithms
are sensitive to noise in the measurement and, thus, cannot provide
a reliable recovery. However, once the fiber transmission matrix is
known, it is straightforward to calculate the output speckle pattern
for any input pulses with Eq. (3). We deploy a convolutional neural
network (CNN) to learn the inverse mapping from the output two-
photon pattern to the input spectral phase. With noise incorporated
into the network training, the CNN outperforms the standard phase
retrieval algorithms.27

Figure 2(a) is the flowchart of the pulse recovery algorithm.
First, the amplitude spectrum A(ω) of the pulse is retrieved from
the linear speckle pattern I1(r) with Eq. (2).5,6 Then, we calculate
I2(r) for various θ(ω) using Eq. (3) with the calibrated T(r, ω)
and the recovered A(ω). With these numerical data, we train the

FIG. 2. (a) Flowchart of the phase recovery algorithm. (b) Architecture of a convolutional neural network with convolutional layers, max pooling layers, and fully connected
layers to retrieve the spectral phase of a pulse from a two-photon intensity pattern.
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CNN for the specific spectrum of the probe pulse. The simulated
nonlinear speckle pattern is the input of the CNN, and the pre-
dicted spectral phase θ̃(ω) is compared to the known phase. Their
difference is taken as the MAE (mean absolute error), defined as
∣θ̃(ω) − θ(ω)∣. The error is propagated back through the network to
update the weights in the CNN. After the training, a pulse with the
same amplitude but an unknown phase is launched into the MMF,
and the experimentally measured I2(r) is sent to the CNN to pre-
dict θ(ω). The temporal field E(t) of the pulse is finally obtained
by applying a Fourier transform to the recovered spectral field
E(ω) = A(ω)eiθ(ω).

The basic architecture of a general CNN we adopted is shown
in Fig. 2(b). It extracts features of the speckle pattern by convolv-
ing it with spatial filters. Many filters are applied to the pattern to
obtain an array of feature maps. The most important features are
kept by a max-pooling layer and passed to the next convolutional
layer. The last few layers of the CNN flatten out all the extracted fea-
tures and map them to the desired output, i.e., the spectral phase.
Specifically, we employ the architecture of Res-Net 1831 in PyTorch
machine learning library.32 Res-Net 18 is a small CNN architecture
with less parameters to avoid overfitting and can be trained faster.
The details about the network structure, e.g., the number and size
of feature maps in each layer, the size of the convolution kernel, are
given in Fig. 3 and Table 1 of Ref. 31. In our case, the number of
pixels in the input speckle pattern is 224 × 224 × 3. Factor 3 in the
third dimension is just a replication of the pattern for three times
because the two-photon pattern is an intensity pattern instead of a
RGB image. We add a fully connected layer of 1000 ×M at the end
of the Res-Net, where M is the total number of unknown coefficients
αi and βj in Eq. (4). The weights of the neural network are optimized
using Adam33 for 1000 epochs with the initial learning rate set to
1 × 10−4. The learning rate is reduced by a factor of 10 subsequently
after 200, 400, and 800 epochs.

To reduce the number of parameters that the CNN needs to
predict, we represent the spectral phases in a sparse basis. For a
chirped pulse, its spectral phase can be expressed as a polynomial,
θ(ω) = ∑i αi(ω−ω0)

i, where ω0 is the central frequency of the pulse
spectrum. The zeroth-order term α0 is a constant phase, which can
be set to 0. The first-order term i = 1 represents a linear phase chirp.
α1 determines the time delay of the pulse, but does not affect the
pulse shape or the two-photon pattern, so we set α1 = 0. We keep the
second-, third-, and forth-order terms i = 2, 3, 4, which represent
quadratic, cubic, and quartic phase chirps. The higher order terms
i ≥ 5 are usually negligible, so we set αi≥5 = 0.

If the signal consists of multiple pulses, the interference of
these pulses in the spectral domain produces oscillations. The spec-
tral phase exhibits a discontinuity at every local minimum of the
amplitude spectrum. We, therefore, introduce a phase jump βj
at the frequency ωj corresponding to the jth local minimum of
A(ω),

θ(ω) = ∑
i=2,3,4

αi(ω − ω0)
i +∑

j
βjΘ(ωj), (4)

where Θ(ωj) is the Heaviside function with the discontinuity at fre-
quency ωj. The magnitude of phase jump βj is within (−π, π]. With
the parameterized spectral phase, the CNN only needs to predict the
coefficients αi and βj in Eq. (4).

We numerically generate 10 000 pairs of spectral phases and
two-photon patterns, 8000 of which are used for training and the
rest for validation. The training takes about 8 h on an 8-GPU AWS
cluster. Once the CNN is trained, recovering the spectral phase from
an experimentally measured two-photon pattern takes only a few
seconds.

NOISE SUPPRESSION

The major difficulty for phase retrieval is the noise in the mea-
surement. Experimentally, there are two main sources of noise: the
fiber instability and the camera noise. The integration time of the
InGaAs camera and the silicon camera is adjusted when record-
ing the linear and nonlinear speckle patterns so that the signal-to-
noise ratio (SNR) exceeds 100 for I1(r) and 50 for I2(r). With this
SNR, the camera noise is negligible. The dominant noise comes
from the fiber instability. Since the fiber is not thermally stabilized
or mechanically isolated in our experiment, ambient temperature
drift and/or external vibrations cause changes in the fiber refrac-
tive index. Consequently, the phase of transmitted light changes,
and such a change varies from one frequency to another. This
means that the fiber transmission matrix during the recording of
speckle patterns for unknown pulses differs from the calibrated one.
Such difference causes the failure of conventional phase retrieval
algorithms.

To account for the fiber instability, we incorporate noise into
the synthesized data during the training of the CNN. To evaluate
this method, we measure the field transmission matrix of the same
fiber twice. With the first transmission matrix (TM1), we generate
10 000 pairs of spectral phases and two-photon patterns to train
the CNN. Using the second transmission matrix (TM2), we cal-
culate the two-photon patterns with the spectral phases that have
never been seen by using the CNN. This set of data is used to
test the trained CNN. By using two measured transmission matri-
ces, we account for fiber instability in time. Typically, the stan-
dard deviation of phase difference between the two matrices is
about 0.2.

Without accounting for the phase fluctuations in the training of
CNN, its prediction has limited accuracy. To illustrate this, we con-
sider a pulse with the amplitude spectrum shown in Fig. 3(b) (green
line). The spectral phase θ(ω) is generated by using Eq. (4), with only
one phase jump β1 at 1541.4 nm (red curve). 10 000 phase spectra are
synthesized in the range of α2 ∈ (−0.3, 0.3), α3 ∈ (−0.05, 0.05), and α4
∈ (−0.005, 0.005) and β1 ∈ (−π, π]. 10 000 two-photon absorption
patterns I2(r) are calculated with TM1:8000 for training the CNN
and 2000 for validation. Training and validation errors are obtained
from the corresponding datasets. Figure 3(a) shows the training and
validation error during the 1000 epoch training process. The train-
ing error is similar to the validation error. The minimum validation
error is 0.01. A sample of the recovered spectral phase and the tem-
poral pulse shape in the validation set is shown in Figs. 3(b) and 3(c).
Since the CNN is trained by using TM1, the prediction of θ(ω) (black
dotted curve) from I2(r) generated by using TM1 (validation data)
is accurate. For the 2000 validation spectra, I2(r) are also calculated
with TM2 as the test dataset. The prediction of θ(ω) from I2(r) gen-
erated with TM2 (blue dashed curve) is less accurate. The test error
is 0.25, as indicated by the black dotted line in Fig. 3(a), significantly
higher than the validation error of 0.01. Such an increase in the error
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FIG. 3. Training and testing of the convolutional neural network (CNN) with two measured fiber transmission matrices (TM1 and TM2): Error curve of CNN in the training
process using TM1 without noise (a) and TM1 with noise (d). [(b) and (e)] Spectral amplitude (green solid line) and phase (red solid line) of a pulse used for testing the CNN
trained with TM1. The spectral phase recovered with the two-photon pattern generated by using TM1 (black dotted curve) agrees well with the ground truth (red solid line),
but the phase recovered with the two-photon pattern generated by using TM2 (blue dashed curve) deviates from the ground truth (b). Incorporating noise into the training of
CNN significantly reduces the deviation (e). [(c) and (f)] Temporal field amplitude of the pulse obtained from the Fourier transform of the spectral amplitude and phase in (b)
and (e). Deviation of the recovered temporal pulse shape (blue dashed line) from the ground truth (red solid line) is notably smaller using the CNN trained with noise (f) than
that without noise (c).

mainly results from the fiber instability, captured in the difference
between TM1 and TM2.

To take into account the phase fluctuations in the transmission
matrix, we add a random phase noise to the transmission matrix

when generating the training data for the CNN. The random phase
varies from column to column, each column corresponding to one
frequency. It simulates the phase difference between TM1 and TM2,
which changes with frequency. We incorporate different random
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phases into TM1 to compute the two-photon pattern for every syn-
thesized spectral phase. We tune the standard deviation of the phase
noise to minimize the error of CNN. With a standard deviation of
0.47, which is close to the phase fluctuations of the measured trans-
mission matrix, we obtain the smallest error for θ(ω) recovered from
I2(r) generated with TM2 [with CNN trained with I2(r) generated
by using TM1]. Compared to the case without noise, the test error is
reduced from 0.25 to 0.14, as can be seen from the shift of the black
dotted line from Figs. 3(a) and 3(b). The validation error [from I2(r)
generated with TM1] increases to 0.13, similar to the test error but
significantly larger than the training error of 0.02. The gap between
the training error and the validation error is the effect of overfitting
because the phase noise is not a feature that can be learned by using
the CNN. Instead, the CNN is trained to ignore the noise. After the
training with noise, the recovered spectral phase and temporal pulse
shape in Figs. 3(e) and 3(f) agree well with the synthesized ones.

EXPERIMENTAL DEMONSTRATION

In our measurement scheme, the nonlinear process (two-
photon absorption) occurs at the detector, not in the fiber. The prop-
agation of the optical pulse in the multimode fiber must be linear;
otherwise, the speckle pattern at the fiber output would vary with
the incident pulse energy, making it extremely difficult to extract the
temporal pulse shape. Fortunately, optical nonlinearity is weak in a

MMF as a large fiber core reduces the energy density. Furthermore,
when many guided modes are excited in the fiber, modal dispersion
stretches the pulse temporally, lowering the peak power and further
reducing nonlinear effects.

In contrast, optical nonlinearity in a single mode fiber (SMF)
can be significant for short pulses. We use our new scheme to charac-
terize the femtosecond laser pulses transmitted through a 1-m-long
SMF. By varying the pulse energy coupled into the SMF, we can
tune the strength of optical nonlinearity, which will distort the pulse
shape.

We first test the case of very weak nonlinearity. Nearly,
transform-limited pulses from a femtosecond laser (NKT, Onefive
Origami) at 1550 nm are sent through the SMF. The transmitted
pulses are, then, launched into the MMF. The spectral amplitude of
the pulse is reconstructed from the linear speckle pattern at the MMF
output. As shown in Fig. 4(a), it agrees well with that measured with
an optical spectrum analyzer, validating the accuracy of the spec-
tral amplitude recovery. The spectral phase is parameterized accord-
ing to Eq. (4). The phase discontinuities vanish since the amplitude
spectrum displays no local minimum. The three phase chirp terms
(i = 2, 3, 4) have values a2 = −0.14, a3 = 0.0089, and a4 = −0.0097.
The recovered spectral phase is nearly constant across the frequency
range of significant spectral amplitude. From the recovered spectral
amplitude and phase, we reconstruct the temporal amplitude and
phase of the pulse, as plotted in Fig. 4(b).

FIG. 4. Recovery of a pulse propagating through the single-mode fiber with weak nonlinearity. (a) Recovered spectral amplitude (red solid line) and phase (blue dotted line) of
the pulse, compared to the spectral amplitude measured with the optical spectrum analyzer (black dashed line). (b) Recovered temporal amplitude (red solid line) and phase
(blue dotted line) of the pulse. (c) Measured temporal autocorrelation trace of the pulse (black dashed line) in good agreement with the autocorrelation trace of the recovered
pulse (red solid line). (d) Experimentally measured and (e) recovered two-photon speckle patterns match well.

APL Photon. 5, 096106 (2020); doi: 10.1063/5.0007037 5, 096106-6

© Author(s) 2020

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

FIG. 5. Recovery of a pulse propagating through the single mode fiber with strong nonlinearity. (a) Recovered spectral amplitude (black dashed line) and phase (blue dotted
line) of the pulse, compared to the spectral amplitude measured with the optical spectrum analyzer (red solid line). (b) Temporal amplitude (red solid line) and phase (blue
dotted line) of the recovered pulse. (c) Measured two-photon pattern of the pulse transmitted through the MMF. (d) Experimentally measured temporal autocorrelation trace of
the pulse (black dashed line) in good agreement with the autocorrelation trace of the recovered pulse (red solid line). (e) Temporal amplitude (red solid line) and phase (blue
dotted line) of the pulse with the sign of the spectral phase flipped. (f) Two-photon intensities along the cross section marked by the white dashed line in (c) of the recovered
pulse and its time-reversed copy.
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To quantitatively estimate the accuracy of reconstruction, we
calculate the nonlinear speckle pattern Ĩ2(r) using the recovered
spectral amplitude and phase. As shown in Fig. 4(e), it bears
striking similarities to the experimentally measured one I2(r) in
Fig. 4(d). Both patterns are normalized so that the maximal inten-
sity is equal to 1. Their difference, given by the standard deviation
ϵ =
√

∫ ∣I2(r) − Ĩ2(r)∣2dr, is 0.11. For further confirmation, we mea-
sure the pulse transmitted through the SMF with an autocorrelator
(Femtochrome FR-103XL). Despite its ambiguity in recovery of a
pulse shape, the autocorrelation trace is a useful metric to evalu-
ate the accuracy of the pulse shape retrieved with other methods.
We calculate the autocorrelation trace of the recovered pulse, and
it agrees well with the measured one in Fig. 4(c). In our exten-
sive simulations of numerous pulses, we have never seen two pulses
with identical spectral amplitude, but a distinct spectral phase can
produce the same two-photon speckle pattern and the same auto-
correlation trace. Therefore, the excellent agreements obtained for
both the nonlinear speckle patterns and the autocorrelation traces
validate the recovered pulse shape.

By coupling more power into the SMF, we enhance the non-
linear processes such as self-phase modulation, cross-phase mod-
ulation, and four-wave mixing, which cause spectral and temporal
distortions of the pulse. The amplitude spectrum of the pulse trans-
mitted through the SMF is reconstructed with the linear speckle pat-
tern, and it agrees well with the measurement by the OSA in Fig. 5(a).
The spectrum is severely distorted from that in Fig. 4(a), and it
features three local minima (marked by arrows). When synthesiz-
ing the spectral phase, we only consider the phase discontinuity at
λ ≃ 1541.4 nm because the other two local minima at 1530.6 nm and
1568.8 nm are too shallow to affect the temporal pulse shape. The
recovered spectral phase, plotted by the blue dotted line in Fig. 5(a),
exhibits a phase jump of 1.75 at λ = 1541.4 nm. The temporal ampli-
tude and phase of the pulse are, then, obtained by the Fourier trans-
form of the recovered spectral field and plotted in Fig. 5(b). The
pulse is asymmetric and has a side lobe. The autocorrelation trace
for the recovered pulse has good agreement with that measured with
the autocorrelator in Fig. 5(d).

By changing the sign of the spectral phase, the temporal field
is inversed. As shown in Fig. 5(e), the side lobe is moved from the
front to the tail of the main pulse. While the autocorrelation trace
remains the same, the nonlinear speckle pattern in Fig. 5(c) changes.
In Fig. 5(f), we plot the intensity over a cross section of the pat-
tern [white dashed line in Fig. 5(c)] for the recovered pulse and
the time-inversed pulse. They display significant differences, allow-
ing the CNN to differentiate between the pulse and its time-inversed
copy.

DISCUSSION AND CONCLUSION

In summary, we demonstrate a novel method of characterizing
spectral phases of ultrafast pulses with a multimode fiber (MMF).
The propagation of the pulse in the MMF remains linear and is cali-
brated with a field transmission matrix. The nonlinear process (two
photon absorption) at the MMF output induces interference of dif-
ferent spectral components in the pulse; thus, the nonlinear speckle
pattern encodes the spectral phase. The complex interference elimi-
nates the ambiguity in the sign of spectral phase, allowing the direc-
tion of time to be recovered. The spectral phases are retrieved with

a deep neural network, which is trained with the data numerically
synthesized with the experimentally measured fiber transmission
matrix and the spectral amplitude recovered from the linear (one-
photon absorption) speckle pattern. We combine machine learning
with compressive sensing by representing the spectral phase in a
sparse basis to dramatically reduce the number of parameters that
the neural network predicts. Experimental noise is incorporated into
the training process, making the trained network robust against fiber
instability.

In our current experiment, the multimode fiber is not ther-
mally or mechanically stabilized; thus, the output speckle patterns
change in time due to thermal and mechanical drifts. However,
the changes are well behaved: perturbations to the fiber transmis-
sion matrix cause only perturbative changes in the output speckle
patterns. This is because the fiber output field is linearly related
to the transmission matrix, and a small change in the transmis-
sion matrix induces a small change in the output field. Thus,
both the linear (field intensity) and nonlinear (intensity squared)
speckle patterns experience small changes. The recovered pulse
shape slightly deviates from the actual one, as confirmed by our
numerical simulations. The uniqueness of the nonlinear speckle
pattern is essential for our success in training the deep neural
network.

We have explored the conventional phase retrieval algorithms
that are commonly used for computational imaging and compressed
sensing to recover the coefficients in Eq. (4) that describe the spectral
phase. However, all these algorithms fail to provide reliable phase
recovery from two-photon speckle patterns due to their sensitivities
to measurement noise in our experiment. The success of CNN is
attributed to its intrinsic ability to filter out noise. For our single-
shot pulse recovery scheme, the phase retrieval is more sensitive
to noise, due to the lack of averaging over multiple measurements
and limited power of the signal in a single measurement; thus, it is
essential that the reconstruction algorithm is robust against noise.
It is recently shown that the linear-regression-based methods can
outperform the deep learning approaches for optical systems with
linear input–output relations.34 In our case, the relation between the
input spectral phase and the output two-photon speckle pattern is
inherently nonlinear, and a CNN containing nonlinearity functions
is well suited for inverse mapping from the two-photon pattern to
the spectral phase.

For long-term use of our device, the fiber must be stabilized to
avoid fiber movement, thermal and mechanical drifts. In the past
few decades, efficient fiber stabilization techniques have been suc-
cessfully developed for fiber gyroscopes, which may be adopted for
our device in the future. In our previous realizations of MMF-based
spectrometers, we minimized external perturbations to the fiber by
placing it in a metal jacket or in a temperature-controlled chamber.35

Alternatively, the fiber may be replaced by a multimode waveg-
uide fabricated in a silicon chip,36 which can be stabilized using a
commercial package and temperature controller.

We think the most attractive feature of the multimode fiber
based pulse characterization scheme presented here is its simplicity.
It does not need a reference pulse,37,38 allowing stand-alone charac-
terization of ultrafast pulses. Experimentally, it requires only a com-
mercially available multimode fiber and two cameras. The InGaAs
camera records the linear speckle pattern for retrieval of spectral
amplitude, and the silicon camera records the nonlinear speckle
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pattern for spectral phase recovery. While the cost of multimode
fibers and the silicon camera is low, the InGaAs camera is expen-
sive and could, therefore, limit adoption of this technique. Since the
nonlinear speckle pattern also encodes the information of spectral
amplitude of the pulse, it may be used to recover the amplitude spec-
trum in addition to the phase spectrum.39 By training a deep neural
network to perform an inverse mapping from the nonlinear speckle
pattern to the spectral amplitude and phase, it may be possible to
characterize a pulse using only the silicon camera, foregoing the need
for an expensive InGaAs camera. Of course, the InGaAs camera is
still needed for the calibration of the fiber transmission matrix, but
this could potentially be performed at the factory if the MMF is ther-
mally and mechanically stabilized and spliced to a SMF to ensure
repeatable coupling.7

By using a silicon camera to measure the two-photon speckle
pattern, the current approach is limited to characterizing pulses in
the near infrared spectrum (below the bandgap of silicon). How-
ever, the general approach of using a multimode fiber and mea-
suring the two-photon speckle pattern could be extended to other
spectral regions by first imaging the end of the multimode fiber
onto a second-harmonic-generation material and then recording
the speckle pattern formed at the second harmonic frequency. In
addition, this scheme can be easily tuned to characterize pulses of
varying length. Specifically, the temporal resolution and the tempo-
ral extent of an optical pulse that can be measured using the MMF
technique presented here depend on the spectral resolution of the
fiber and the bandwidth over which we calibrate the fiber. The spec-
tral resolution of the MMF employed in the current experiment is
0.24 nm; thus, the temporal range of measurement is 30 ps. The fiber
transmission matrix is calibrated in the wavelength range of 50 nm,
giving a temporal resolution of 160 fs. By calibrating the fiber over
a larger bandwidth, one could measure temporally shorter pulses,
while using a longer fiber with finer spectral resolution would enable
the measurement of pulses extending over a longer period of time.
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