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Spatial inhomogeneities in the refractive index of a disordered 
medium cause multiple-scattering of light. In disordered 
media such as biological tissue, white paint and clouds, most of 

the incident light reflects back, hindering the transfer of energy and 
information through the media. However, by utilizing the interfer-
ence of scattered waves, it is possible to prepare optimized wave-
fronts that completely suppress reflection—a striking phenomenon 
first predicted in the context of mesoscopic electron transport1–4. 
The required incident wavefronts are the eigenvectors of t†t where t 
is the field transmission matrix; the corresponding eigenvalues give 
the total transmission. In a lossless diffusive medium, the trans-
mission eigenvalues τ span from 0 to 1, leading to closed (τ ≈ 0) 
and open (τ ≈ 1) channels. In recent years, spatial light modulators 
(SLMs) have been used to excite the open channels5–14 to enhance 
light transmission through diffusive media. Selective excitation 
of individual channels can dramatically change the total energy 
stored inside the random media as well as the spatial distribution 
of energy density14–20.

Some important questions regarding the transmission eigen-
channels remain open. What are the transverse spatial profiles for 
coupling light into such channels? Once coupled in, how do the 
eigenchannels spread in the transverse direction? In the Anderson 
localization regime of transport, a high-transmission channel is 
formed by coupled spatially localized modes21–26, so transversely 
localized excitation and propagation are expected. However, 
Anderson localization is extremely hard to achieve in three-dimen-
sional (3D) disordered systems27, and diffusive transport is much 
more common. In the diffusive regime, the open channels are 
expected to cover the entire transverse extent of the system15,24, uti-
lizing all available spatial degrees of freedom.

Here, we discover that the transmission eigenchannels are trans-
versely localized even in the diffusive regime of transport. In a disor-
dered slab of width W much larger than thickness L, all transmission 
eigenchannels have a finite transverse extent that is much smaller 
than W. In the W → ∞ limit, the channel width approaches an 
asymptotic value D∞, which scales as (klt)L in two dimensions. Here 
lt is the transport mean free path and k the effective wavenumber  

in the slab. Moreover, all eigenchannels feature an exponential decay 
in their transverse intensity profiles, and they do not spread later-
ally while propagating through the slab. These properties can be 
explained in terms of optical reciprocity, the bandedness of the real-
space transmission matrix and non-local correlations of multiply 
scattered waves. The transverse eigenchannel localization in the dif-
fusive regime is a distinct physical phenomenon from the previously 
known transverse localization in Anderson-localized systems28–33. 
Experimentally, we observe that high-transmission channels are 
exponentially localized in the transverse directions on both front 
and back surfaces of a diffusive slab made of ZnO nanoparticles. For 
finite-area illumination, the transverse extent of a high-transmission 
channel is smaller than the illumination area, and its lateral spread-
ing in the diffusive slab is suppressed. The transverse localization 
of high-transmission channels greatly enhances the energy densi-
ties of both transmitted light and light inside the slab. It therefore 
has a potential impact on the advancements of deep-tissue imaging, 
optogenetics34–36 and the manipulation of light–matter interactions 
inside turbid media37,38.

Transverse localization of eigenchannels
To achieve complete characterization of the transmission eigen-
channels we performed numerical simulations where we can exert 
full control over the incident wavefront and systematically explore 
the entire parameter space of interest. We first calculated the field 
transmission matrix t of a 2D diffusive slab using the recursive 
Green’s function method39, then computed the spatial profiles of 
individual eigenchannels (see Methods). Remarkably, in wide slabs, 
we observe that the eigenchannels are exponentially localized in the 
transverse direction parallel to the slab (an exemplary open channel 
is shown in Fig. 1a). Even though we impose no constraint on where 
or how wide the incident wavefront should be, the resulting eigen-
channel only occupies a relatively small transverse extent, utilizing 
just a fraction of the spatial degrees of freedom that are available 
across the width of the structure. Moreover, the eigenchannel does 
not spread laterally as it propagates through the disordered slab; the 
transmitted profile is also localized, with a width similar to that of 

Transverse localization of transmission 
eigenchannels
Hasan Yılmaz   1, Chia Wei Hsu   1, Alexey Yamilov2 and Hui Cao   1*

Transmission eigenchannels are building blocks of coherent wave transport in diffusive media, and selective excitation of indi-
vidual eigenchannels can lead to diverse transport behaviour. An essential yet poorly understood property is the transverse 
spatial profile of each eigenchannel, which is relevant for the associated energy density and critical for coupling light into and 
out of it. Here, we discover that the transmission eigenchannels of a disordered slab possess exponentially localized incident 
and outgoing profiles, even in the diffusive regime far from Anderson localization. Such transverse localization arises from a 
combination of reciprocity, local coupling of spatial modes and non-local correlations of scattered waves. Experimentally, we 
observe signatures of such localization even with finite illumination area. The transverse localization of high-transmission 
channels enhances optical energy densities inside turbid media, which will be important for light–matter interactions and 
imaging applications.

Nature Photonics | VOL 13 | MAY 2019 | 352–358 | www.nature.com/naturephotonics352

mailto:hui.cao@yale.edu
http://orcid.org/0000-0003-1889-3516
http://orcid.org/0000-0002-9609-7155
http://orcid.org/0000-0002-5339-6892
http://www.nature.com/naturephotonics


ArticlesNATurE PHoTonicS

the incidence. As shown in the log-linear plot in Fig. 1a, the trans-
verse profile decays exponentially on both input and output sur-
faces, which is surprising given that the wave transport is diffusive.

A legitimate question is whether such transverse localization of 
eigenchannels persists in large systems, as experimentally the slab 
width W is typically so large that it can be regarded as infinite. To 
find the answer, we carry out a scaling analysis with increasing W. 
We quantify the width of an eigenchannel via the definition of the 
participation number (see Methods). As shown in Fig. 1b, input 
and output channel widths Din and Dout are identical after ensemble 
averaging. In the W → ∞ limit of interest, the open channel remains 
transversely localized, and its width saturates to an asymptotic value 
that we denote D∞. The extrapolation of D∞ in the W → ∞ limit is 
described in Supplementary Section 2.4.

The absence of eigenchannel spreading, 〈Din〉 = 〈Dout〉, can be 
explained by reciprocity. Lorentz reciprocity requires the scattering 
matrix to be symmetric40, so the transmission matrix coming from 
one side must be the transpose of the transmission matrix coming 
from the other side. Singular value decomposition of the transmis-
sion matrix gives τ= †t U V , where the nth columns of V and U are 
the normalized input and output wavefronts of the nth eigenchan-
nel with transmission eigenvalue τn. Since τ= †t V U( )* *T , reci-
procity demands that the phase conjugation of the nth eigenchannel 
output must be precisely the input of the nth eigenchannel incident 
from the other side, with the same eigenvalue. If the disordered 
medium is statistically equivalent for light incident from either side, 
the eigenchannel input width must be statistically identical for both 
directions. Thus the input and output channel widths should be the 
same after ensemble averaging.

The above argument applies to all eigenchannels, open or 
closed. Our numerical simulations confirm that all transmission  

eigenchannels are transversely localized with no lateral spreading, 
as shown in Fig. 1c. In this example, the widths of all eigenchannels 
are one order of magnitude smaller than the slab width. The chan-
nel width D fluctuates around the mean 〈D〉 (a histogram of D/〈D〉 
is presented in Supplementary Fig. 7).

By defining the centre position of an eigenchannel via the centre 
of mass of its lateral intensity profile, we find that the eigenchannels 
are randomly and uniformly distributed over the entire width of the 
slab (Supplementary Fig. 5). An exponential fitting of the tails of 
their intensity profiles confirms that all eigenchannels decay expo-
nentially in the transverse direction. The decay length is propor-
tional to the channel width, as shown in Supplementary Fig. 7.

Origin of transverse localization
While reciprocity explains the absence of lateral spreading, it 
remains to be answered why the eigenchannels are transversely 
localized in the first place. We can gain insight by examining the 
real-space transmission matrix. Although scattering ensures that 
light with a specific incident angle is coupled into all outgoing 
angles once the slab thickness L exceeds the transport mean free 
path lt, this is not the case in real space. Given a point-like excitation 
at the input surface, light spreads laterally as it diffuses through the 
disordered slab, covering a finite extent of width on the order of L 
at the output surface (this is shown in Fig. 2a). Such geometric local 
spreading is the origin of the much celebrated ‘memory effect’41–44. 
As a result, the input and output spatial modes are not fully mixed, 
which emerge as non-vanishing elements only within a distance 
of ~L to the diagonal of the real-space transmission matrix (that 
is, the surface-to-surface Green’s function), as shown in Fig. 2b.  
It is noteworthy that 2D Anderson localization is absent in our 
systems, because the real-space transmission matrix bandwidth is 
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Fig. 1 | Transverse localization of transmission eigenchannels. Numerical results of 2D diffusive slabs with normalized thickness k0L = 50, transport mean 
free path n0k0lt = 4.6, effective refractive index n0 = 1.5 and average transmission eigenvalue 〈τ〉 = 0.10. k0 = 2π/λ, where λ is the vacuum wavelength.  
a, Intensity profile of the highest-transmission eigenchannel (τ1 = 0.9999) in a slab of normalized width k0W = 6,000, revealing localization in the 
transverse direction. White dashed lines in the middle panel indicate the surfaces of the slab, and the relative vertical to horizontal scale is set to 5:1. The 
log-linear plots of the incident and transmitted intensity profiles on the input and output surfaces of the slab (lower and upper panels) reveal exponential 
decay in the transverse direction. b, Average input and output widths 〈Din〉 and 〈Dout〉 of open channels (τn ≥ 1/e) versus slab width k0W. They are equal 
and approach an asymptotic value D∞ (green dashed line) in the wide-slab limit due to transverse localization. Each data point is an average over 10 
realizations of structural disorder, and the error bars give the standard deviation among realizations. The black solid line is the fitting that gives D∞ in the 
W → ∞ limit. c, Eigenchannel widths versus transmission eigenvalues τn for k0W = 6,000, revealing that all eigenchannels are transversely localized with no 
lateral spreading from input to output.
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proportional to the sample thickness in all of the systems we study 
here (Supplementary Fig. 4). Similarly, the real-space matrix t†t also 
exhibits a bandwidth proportional to L.

Random matrices with dominant near-diagonal elements were 
previously studied in the context of quantum chaos, and it was 
found that the eigenvectors of such ‘banded random matrices’ are 
exponentially localized45–47. It is therefore tempting to explain the 
transverse localization of eigenchannels through the ‘bandedness’ of 
real-space transmission matrix for a wide slab. The standard theory 
of banded random matrices predicts that when the elements of a 
Hermitian random matrix are non-vanishing within a band of size 
b, the eigenvectors are localized with participation numbers propor-
tional to b2 (refs. 45–47). In the present context, one would then expect 
the normalized eigenchannel width kD to be on the order of (kL)2 
because the dimensionless bandwidth is b ≈ kL. For the example in 
Fig. 1, this argument suggests kD∞ ≈ 5,600, as confirmed numeri-
cally in Supplementary Fig. 8, but the actual eigenchannel width 
is only 90. The far smaller channel width indicates a much stron-
ger transverse localization, which is beyond the standard banded  
random matrix theory.

To explore what determines the asymptotic open channel width 
D∞, we carried out a systematic study to map out its dependence on 
the slab thickness L and the transport mean free path lt. As shown 
in Fig. 3a, the open channel width D∞ scales linearly with the slab 
thickness L that determines the real-space transmission matrix 
bandwidth b, in contrast to predictions from the standard banded 
random matrix theory. Meanwhile, even though lt does not affect 
the real-space transmission matrix bandwidth b, we find in Fig. 3b 
that the open channel width D∞ also scales linearly with lt. A dimen-
sional analysis and the scale invariance of the electromagnetic wave 
equation indicates a prefactor proportional to the wavenumber 
k = n0k0. Putting these together, we expect a scaling of D∞ ∝ (klt)L. In 
Fig. 3c we plot the compiled data of D∞ as a function of (klt)L from 
6 × 6 = 36 combinations of (L,lt) for n0 = 1.5 and 6 × 2 = 12 combina-
tions of (L,lt) for n0 = 1; each D∞ is extrapolated from 8 widths of 
W and 10 realizations of disorder (totalling >3,000 configurations). 
Indeed, we observe the D∞ ∝ (klt)L scaling. A least-squares fit deter-
mines the proportionality constant to be 0.68, close to 2/3. Note that 
previous studies15,24 did not find such transverse localization in the 

diffusive transport regime because the system width W in the previ-
ous simulations was not wide enough. Also, note that such eigen-
channel width D∞ is generally far smaller than the 2D localization 
length ξ ≈ π ∕l e kl

2D t
2t .

The reduction in eigenchannel width from kL2 to kltL requires 
explanations beyond the bandedness of the real-space transmis-
sion matrix. The key factor is the correlations among the non-zero 
matrix elements induced by multiple scattering of light inside the 
slab, which are referred to as non-local correlations48–60. Stronger 
scattering (smaller klt) enhances non-local correlations and leads to 
tighter transverse localization. When we replace the non-vanishing 
elements of the real-space transmission matrix with uncorrelated 
complex Gaussian random numbers, we observe much wider eigen-
channel widths that scale as kL2, as predicted by standard banded 
random matrix theory (Supplementary Fig. 8).

Extending such scaling study to disordered slabs in 3D is a 
daunting computational task. Nevertheless, we expect transverse 
localization of transmission eigenchannels in 3D diffusive systems, 
because such systems also possess banded real-space transmission 
matrices, non-local correlations and reciprocity.

Experiments with finite-area illumination
In practical applications, finite-area illumination is commonly used. 
Accordingly, in this and the next sections we investigate the effects 
of transverse localization when the size of an illumination beam is 
smaller than the asymptotic channel width D∞. Experimentally, we 
measure the spatial profiles of individual eigenchannels at the input 
and output surfaces of a 3D scattering slab. The sample consists of 
ZnO nanoparticles that are spin-coated on a cover slide. The thick-
ness of the ZnO layer is about 10 μm, much less than the lateral 
dimension of the layer (2 cm × 2 cm). The average transmittance of 
light at a wavelength of 532 nm is approximately 0.2.

We start by measuring the transmission matrix of the disordered 
slab. A simplified schematic of the experimental set-up is shown in 
Fig. 4a, with a detailed one given in Supplementary Fig. 1. A spa-
tially uniform monochromatic laser beam at wavelength λ = 532 nm 
is modulated by a phase-only SLM. The SLM surface is imaged by a 
pair of lenses onto the pupil of a microscope objective. The spatial 
profile of illumination is thus the 2D Fourier transform of the SLM 
phase pattern. The illumination area is finite, and its width scales 
inversely with the SLM macropixel size. We use the SLM and a cam-
era (CCD2) to measure the field transmission matrix in k-space, 
with a common-path interferometry method akin to refs. 13,61. The 
number of SLM macro-pixels that modulate the input beam is 2,048, 
and the number of output speckle grains recorded by the camera is 
about 15,000.

After measuring the field transmission matrix t, we determine 
the incident wavefronts of individual eigenchannels from the eigen-
vectors of t†t. Then we display the corresponding phase patterns on 
the SLM, and record the 2D spatial intensity profiles I(x,y) that are 
incident on the front surface and transmitted to the back surface of 
the sample with two cameras (CCD1, CCD3). We define the effec-
tive area of such a profile by the 2D participation number A (see 
Methods) and the effective width = ∕ πD A2 .

A random wavefront exhibits an effective width of 
≈D 13in

rand  μm and ≈D 21out
rand  μm on two sides of the slab (shown 

in Fig. 4b,c). In contrast, the highest-transmission eigenchannel 
has narrower spatial profiles at both input and output (Fig. 4d,e): 

≈D 10in
high  μm and ≈D 14out

high  μm. Its lateral spreading is also less: 
Δ = − ≈D D D 4high

out
high

in
high  μm, in contrast to ΔDrand ≈ 8 μm ~ L for 

random wavefronts. The enhanced lateral confinement and sup-
pressed spreading lead to a significant increase in the energy density 
inside the slab. On the back surface, the energy density, averaged 
over the cross-section of the transmitted beam, is enhanced 

∕ = .( ) ( )T D T D( ) ( ) 4 4high
in
rand 2

in
high 2  times, which is more than 

twice the enhancement of total transmitted power Thigh/〈T〉 = 1.95.
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Fig. 2 | Bandedness of the real-space transmission matrix. a, Calculated 
intensity profile inside a disordered slab when the incident light is focused 
to a diffraction-limited spot at the front surface, showing the extent of 
transverse spreading as light diffuses through the slab. Din

point and Dout
point are 

the beam widths at the input and output surfaces. The intensity profiles 
shown are ensemble averaged over 1,000 realizations of disorder.  
b, Amplitudes of complex elements of the real-space transmission matrix. 
While the matrix size is given by the slab width W, only elements within 
a distance ~L from the diagonal are non-vanishing, because the extent 
of diffusive spreading in the slab is much less than the slab width. The 
simulation parameters are the same as in Fig. 1a. Inset: expanded view of  
a part of the matrix.
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More complex behaviours emerge when we examine eigenchan-
nels with lower transmittance. In our experiment, the low-trans-
mission eigenchannels have incident profiles (Fig. 4f) comparable 
in size to those of random wavefronts, but with enhanced lateral 
spreading that leads to wider output profiles (Fig. 4g).

For a more detailed look at the spatial profiles, in Fig. 4h,i we 
plot the radial intensity profiles for random wavefronts, high-
transmission and low-transmission channels at the input and 
output surfaces, after azimuthal averaging and ensemble averag-
ing. The random wavefronts exhibit sinc2 profiles on the front 
surface (see Supplementary Fig. 2 for more details) and have an 
exponentially decaying tail with 5 μm decay length at the back 
surface due to diffusion. In comparison, the high-transmission 
channels have exponentially decaying tails on both front and 
back surfaces, with a decay length of 2.6 μm at the front and 4 μm 
at the back. The exponential decay on the front surface and the 
enhanced decay rate on the back surface, as well as the transverse 
confinement <D D( )in

high
in
rand  and the suppressed lateral spreading 

(ΔDhigh < ΔDrand), are signatures of transverse localization of high-
transmission channels62,63.

Figure 4j shows the input and output widths of all of the 2,048 
eigenchannels as a function of the normalized transmittance, and 
compares them to random incident wavefronts. In contrast to Fig. 
1c, the eigenchannel widths reveal systematic dependences on 
the transmittance, particularly for Dout. Figure 4k shows that the 
transverse spreading increases with decreasing transmittance, with 
the high-transmission eigenchannels exhibiting suppressed lat-
eral spreading and the low-transmission eigenchannels enhanced 
spreading. In the next section, we show that these properties are 
also observed numerically when finite illumination area, phase-
only modulation, and measurement noises are taken into account 
in the simulations.

Effect of incomplete control
There are important differences between the experimental set-up 
and the ideal scenario considered in Figs. 1 and 3. In our experi-
ment, the illumination beam width on the sample surface is com-
parable to L. Also, we use phase-only modulation over a fraction 
of incident angles, and collect a fraction of outgoing angles in one 
polarization. Such experimental conditions lead to incomplete 
control, which is known to affect the transmittance of eigenchan-
nels13,64, and we expect them to also modify the eigenchannel 
profiles. Experimentally it is not possible to separate the different 

factors, but we can do so with simulations. Numerically we consider 
2D disordered slabs with parameters comparable to the experiment 
(see the caption of Fig. 5), and the asymptotic open-channel width 
is D∞ ≈ 90 μm. Naturally we do not expect quantitative comparison 
with the 3D sample in the experiment, but we aim to gain physical 
insights that do not depend on dimensionality.

We describe finite-width illumination by grouping incident 
modes into equally spaced intervals of transverse momenta that 
model the SLM macropixels13. For random incident wavefronts, 
the beam widths as defined by the participation number are 

≈D 13in
rand  μm on the front and ≈D 19out

rand  μm on the back surface. 
Despite the illumination beam width Din

rand being much smaller 
than the asymptotic eigenchannel width D∞, both high-trans-
mission and low-transmission channels have input widths even 
smaller than Din

rand (Fig. 5a). We attribute this to the fact that these 
channels utilize multipath interference to enhance or suppress 
the transmittance. Indeed, crossings of scattering paths inside the 
sample lead to non-local correlations52,60 and enhance the range of 
transmission eigenvalues13. Therefore, eigenchannels with extremal 
eigenvalues prefer smaller input beam widths to increase the prob-
ability of crossing. In addition, the extremal eigenchannels pref-
erentially enhance or suppress the intensity near the centre of the 
transmitted beam (Supplementary Fig. 11). Such a non-uniform  
modification of the transmitted intensity profile results in an effec-
tive reduction of the participation number Dout for the high-trans-
mission eigenchannels that we observe in Fig. 5a, and similarly 
for the increased Dout of the low-transmission eigenchannels. We 
find that the other sources of incomplete control have relatively 
minor effects. In Fig. 5b we include the phase-only modulation of 
the incident wavefront, as well as the finite ranges of incident and 
collecting angles, which are set by the experimental NA in illumi-
nation and detection (see Supplementary Section 2.7 for details). 
The ranges of transmittance and the width of the eigenchannels 
both decrease, but the qualitative trends remain the same.

Finally, we also model the effect of experimental noise (see 
Supplementary Section 2.7 for details). As shown in Fig. 5c, the 
low-transmission eigenchannels are more sensitive to noise than 
the high-transmission channels: the input widths of low-transmis-
sion channels approach those of random incident wavefronts, while 
the input widths of the high-transmission channels only change 
slightly. The transverse spreads ΔD of all eigenchannels are plotted 
in Supplementary Fig. 10. These results agree qualitatively with our 
experimental data.

Fig. 5 | Modification of transmission eigenchannel widths by incomplete control. a, Numerically calculated input width (blue circles) and output width 
(red crosses) of all transmission eigenchannels as a function of the normalized transmittance in 2D diffusive slabs with local illumination. Each data 
point represents an ensemble average over 50 realizations of disorder. For a random wavefront, the incident beam width at the front surface of the slab 
is ≈D 13in

rand  μm (black open circle), and the transmitted beam width at the back surface is ≈D 19out
rand  μm (filled black circle). b, Including finite NA for 

illumination and detection, as well as phase-only (φ-only) modulation of the incident wavefront, reduces the range of eigenchannel widths.  
c, Adding random Gaussian noise to the transmission matrix further modifies the eigenchannel widths, especially for the low-transmission channels. 
The slab width is W = 508 μm, the thickness is L = 10 μm, the transport mean free path is lt = 1 μm and the average refractive index is n0 = 1.4. The slab is 
sandwiched between air (refractive index n1 = 1.0) and glass (refractive index n2 = 1.5). The calculated input and output intensity profiles for high- and 
low-transmission eigenchannels in Supplementary Fig. 9 agree well with the experimental data in Fig. 4h,i.
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Conclusion
In summary, we have discovered transverse localization of trans-
mission eigenchannels in diffusive slabs. In the presence of com-
plete control, each eigenchannel has statistically identical input 
and output widths as a result of optical reciprocity. In a 2D slab, 
the asymptotic width for open channels is D∞ ≈ (2/3)kltL, due to 
the bandedness and non-local correlations of the real-space trans-
mission matrix. Experimentally, with a finite illumination area, we 
observe signatures of transverse localization including enhanced 
lateral confinement, suppressed spreading and exponentially decay-
ing tails for high-transmission channels. The transverse localiza-
tion results from wave interference effects, which are enhanced by 
non-local correlations. Due to the reduced illumination area and 
suppressed lateral spreading, a high-transmission channel is con-
fined into a volume significantly smaller than that from a random 
wavefront, leading to a significant enhancement of optical energy 
density that is important for light–matter interactions, imaging and 
optogenetics in scattering media.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41566-019-0367-9.
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where Vn(x) is the incident field distribution at the input surface obtained from 
the nth eigenvector of †t t. Similarly, the output width Dout of the nth eigenchannel 
is obtained from the transmitted field distribution Un(x) at the output surface. 
For a 2D intensity distribution I(x,y), its effective area A is computed from the 2D 
participation number:
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Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.

Methods
Numerical simulation of transmission eigenchannels. We solve the 2D scalar 
wave equation ϵ ψ∇ + =k r r[ ( )] ( ) 02

0
2  on a finite-difference grid, where k0 is the 

vacuum wavenumber, ϵ r( ) the dielectric constant at spatial position r, and ψ(r) 
the electric field at r. We consider disordered slabs of width W and thickness L in 
background refractive index n0. The dielectric constant of the slab is modelled as 
ϵ δϵ= +nr r( ) ( )0

2  at each grid point, and δϵ r( ) is a random number drawn from 
a zero-mean uniform distribution whose width determines the transport mean 
free paths lt (see Supplementary Section 2.1 for details). After calculating the 
field transmission matrix t for the entire slab using the recursive Green’s function 
method39, we obtain the incident wavefront Vn of an eigenchannel via τ=†t tV Vn n n,  
and calculate its spatial profile with such an incident wavefront. In this work 
we focus on scattering systems in the diffusive regime of transport, namely 

≫ ≫Nl L lt t, where N ≈ kW/π is the number of modes.

Participation number. The lateral width of an eigenchannel is given by the 
participation number of its transverse intensity profile. The input width is found 
from the expression
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