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Photon Statistics of Random Lasers with Resonant Feedback
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We have measured the photon statistics of random lasers with resonant feedback. With an increase of
the pump intensity, the photon number distribution in a single mode changes continuously from Bose-
Einstein distribution at the threshold to Poisson distribution well above the threshold. The second-order
correlation coefficient drops gradually from 2 to 1. By comparing the photon statistics of a random laser
with resonant feedback and that of a random laser with nonresonant feedback, we illustrate very different
lasing mechanisms for the two types of random lasers.
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Over the past two decades, there has been much progress
in the study of light transport in a disordered dielectric
medium. Most studies are within the framework of ray
optics or wave optics. Light diffusion in the weak scatter-
ing regime can be modeled by ray optics. The enhanced
backscattering and light localization can be explained by
the interference effect in the wave optics [1-3]. How-
ever, quantum statistical properties of the light in a random
medium have received little attention. Recent theoretical
studies of photon statistics in random media aim to bridge
the gap between random media and quantum optics [4].
In this Letter, we present an experimental study of photon
statistics of random lasers and show that photon statistical
behavior provides an insight into the lasing mechanism in
a disordered medium.

There are two kinds of random lasers: one is with non-
resonant (incoherent) feedback; the other is with resonant
(coherent) feedback. From the ray optics point of view, las-
ing with nonresonant feedback is related to the instability
of light amplification along open trajectories in a random
medium, while lasing with resonant feedback corresponds
to the instability of light amplification along closed loop
paths. Through recurrent scattering, light may return to
its original position through many different paths. All the
backscattered waves interfere with each other, and their
phase relationship determines the lasing frequencies. We
investigate quantum statistical properties of random lasers
with resonant feedback.

ZnO nanoparticles with an average diameter of 80 nm
are cold pressed under a pressure of 200 MPa to form a
pellet. The pellet is a disk of thickness 2 mm and diameter
1 cm. The transport mean free path / in the ZnO pellet
is characterized in the coherent backscattering experiment
[1]. From the angular width of the backscattering cone, we
estimate [ ~ 2.3A [5].

The ZnO pellet is optically excited by a train of 20 ps
pulses separated by 100 ms from a frequency-tripled (A =
355 nm) mode-locked Nd:YAG laser. The pump beam is
focused by a lens to a spot of ~15 um in diameter on the

4524 0031-9007/01/86(20)/4524(4)$15.00

PACS numbers: 42.50.Ar, 42.25.Fx, 42.55.—f, 71.55.Jv

sample surface. Another lens collects the sample emission
in a single transverse mode and focuses it to the entrance
slit of a 0.5 m Jarrell-Ash spectrometer. The output port
of the spectrometer is connected to a Hamamatsu streak
camera whose entrance slit is perpendicular to that of the
spectrometer. The streak camera has a temporal resolution
of 2 ps. Its photocathode width gives an observable spec-
tral window of 6.7 nm with a spectral resolution of 0.1 nm.
Partial output of the pump laser goes directly to a fast pho-
todiode whose output signal triggers the streak camera. A
Peltier-cooled charge-coupled-device (CCD) camera, op-
erating at —50 °C for reduced dark noise, is used to record
the streak image. The streak camera operates in the photon
counting mode. A threshold is set to eliminate the contri-
bution of the dark-current noise. Thus, in the absence of
an input signal, no photons are counted.

By combining the spectrometer with the streak cam-
era, we are able to separate different lasing modes and
measure the temporal evolution of each mode. Figure 1 is
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FIG. 1. The measured streak image of the emission from the

ZnO pellet. The incident pump pulse energy is 4.5 nJ.
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a two-dimensional (2D) streak image taken by the CCD
camera. The horizontal axis is the time, and the vertical
axis is the wavelength. When the pump power exceeds
a threshold, discrete peaks appear in the emission spec-
trum. The linewidth of these peaks is less than 0.2 nm.
Simultaneously, the emission pulses are dramatically
shortened from 200 ps below the threshold to less than
50 ps above the threshold. For different modes, lasing
starts at different times and lasts for different periods of
time. To measure the photon statistics of a single lasing
mode, we draw on the streak image a rectangle whose
one side is wavelength interval AA and the other side
is time interval Az. The number of photons inside this
rectangle is counted for each pulse. With one counting
interval per emission pulse, the sampling rate is equal
to the pulse repetition rate (10 Hz). The sampling time
At is short compared to the emission pulse width. After
collecting photon count data for a large number of pulses,
the probability P(n) of n photons within the wavelength
interval AA and the time interval Az is obtained. Be-
cause the sampled radiation field is within a frequency
interval Av = ¢AA/A?, its relaxation must occur on the
time scale longer than 1/Av. We set the sampling time
At < 1/Av so that it is shorter than the coherence time of
the radiation field. From another point of view, when
Av - At < 1, the counting area corresponds to a single
electromagnetic (EM) mode. For a single-mode coher-
ent light, the photon number distribution P(n) satisfies
Poisson distribution P(n) = (n)"e " /n!, where (n) is
the average photon number. For a single-mode chaotic
light, the photon number distribution P(n) satisfies Bose-
Einstein (BE) distribution P(n) = (n)"/[1 + {(n)]""!.
Note that the above distribution holds only for a single
mode. For a multimode chaotic light, the photon
number distribution approaches Poisson distribution.
From P(n), we obtain the normalized second-order
correlation coefficient G, = 1 + (((An)?) — (n))/(n)>.
For Poisson distribution, G, = 1. For BE distribu-
tion, G, = 2.

To check the reliability of our spectrometer-streak cam-
era setup for photocounting, we have measured photon sta-
tistics of a coherent light. The ZnO sample is replaced
by a pellet made of TiO, nanoparticles. Since the band
gap energy of TiO, is larger than the pump photon energy,
the pump laser light is not absorbed; instead it is scat-
tered. The spectrometer is tuned to the pump wavelength
355 nm. Photon counting is done at the time of maximum
intensity of each laser pulse, and the sampling time At =
3.9 ps. The wavelength interval AA = 0.1 nm, and the
corresponding Av = 2.4 X 10'! Hz. Hence, Av - At =
0.93. Figure 2(a) plots the measured photon count distri-
bution of the scattered laser light. From the data of P(n),
we calculate the count mean (n) = >, nP(n) and obtain
the Poisson distribution for the experimental value of (n).
As shown in Fig. 2(a), the measured photon count distri-
bution is very close to the Poisson distribution with the
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FIG. 2. (a) The solid columns are the measured photon count
distribution of the laser light scattered by the stationary TiO,
pellet. The dashed columns are the Poisson distribution for the
same count mean. (b) The solid columns are the measured pho-
ton count distribution of the laser light scattered by the rotating
TiO, pellet. The dotted columns are the Bose-Einstein distribu-
tion for the same count mean.

same count mean. Using the data of P(n), we calculate
G, = 0.97.

Next, the TiO, pellet is driven by a motor and starts ro-
tating at 200 rpm. The part of the sample hit by the focused
laser beam moves with a speed of ~100 mm/s. Since
the distance it moves during the pulse duration (20 ps) is
much less than the laser wavelength and the TiO, grain
size (0.4 pwm), the sample is practically at rest when il-
luminated by a single laser pulse. However, during the
100 ms interval between the pulses, the part of the sample
which is hit by the laser pulse moves out of the focal region
of the lens, and the next pulse hits a different part of the
sample. Hence, the speckle pattern changes from pulse to
pulse. In our setup, the detection area is less than the av-
erage speckle size. The counting parameters, e.g., Ar and
A\, are the same as before. Every pulse of the scattered
laser light is sampled only once, and the sampling time is
shorter than the pulse width. After collecting many pulses,
we obtain a random superposition of a great number of co-
herent beams. The photon number distribution is known
to be BE distribution [6]. Figure 2(b) plots the measured
photon count distribution and the BE distribution for the
same count mean. The measured distribution follows the
BE distribution closely and has a G, of 1.88.

By measuring the photon statistics of a coherent light
and a “synthesized” chaotic light, we have confirmed the
reliability of our apparatus for the photon statistics mea-
surement. We then switch to the ZnO pellet and measure
the photon statistics of random lasers with resonant feed-
back. The pump intensity is above the threshold where
discrete spectral peaks appear, so that we can measure
the photon statistics of a single peak. We pick up one
of the brightest emission peaks and set AA = 0.12 nm
around the center wavelength Ay of the peak. Photon
counting is done every time the emission intensity at Ag
reaches its maximum following a pump pulse. The sam-
pling time At = 3.9 ps, and Av - At = 0.95. Since both
radiative and nonradiative recombination times of ZnO are
longer than a single pump pulse but much shorter than the
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interval between the pump pulses, the system is always
in the transient regime. However, the emission intensity
is nearly constant within a counting interval, because the
sampling time is much shorter than the emission pulse
width.

Figure 3(a) shows the measured photon statistics of ZnO
emission at the threshold where discrete spectral peaks ap-
pear. The measured photon count distribution is almost
identical to the BE distribution of the same count mean.
The value of G, is 1.94. As we increase the pump inten-
sity, the photon statistics of ZnO emission starts deviating
from the BE statistics. As shown in Fig. 3(b), when the
pump intensity is 1.5 times of the threshold, the measured
photon count distribution is between the BE distribution
and the Poisson distribution. G, becomes 1.51. When the
pump intensity is increased to 3 times of the threshold, the
photon count distribution of ZnO emission gets closer to
the Poisson distribution [Fig. 3(c)]. G, is reduced to 1.19.
Eventually, when the pump intensity is 5.6 times of the
threshold, the photon count distribution is nearly identical
to the Poisson distribution [Fig. 3(d)]. The corresponding
G, is 1.06.

Figure 4 shows the value of second-order correlation
coefficient G, as a function of pump intensity. As the
pump intensity increases, G, decreases gradually from 2
to 1. Because we take only a finite number of pulses in the
measurement, the rms error in G, is equal to (2/K{n)?)'/2,
where K is the number of pulses. The sampling error for
G, is calculated and plotted for each data point in Fig. 4.
Figures 3 and 4 illustrate that the photon statistics of the
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FIG. 3. The solid columns are the measured photon count
distribution of the emission from the ZnO pellet. The dot-
ted (dashed) columns are the Bose-Einstein (Poisson) distribu-
tion for the same count mean. The incident pump intensity is
(a) 1.0, (b) 1.5, (c) 3.0, and (d) 5.6 times of the threshold inten-
sity where discrete spectral peaks appear.
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emitted light from the ZnO pellet changes continuously
from BE statistics at the threshold to Poisson statistics well
above the threshold.

In principle, the measured photon count distribution is
not necessarily equal to the actual photon number distribu-
tion inside the random medium. Let 8 be the probability
of a photon escaping through the boundary of the random
medium and being counted by our detector. The value of 3
is estimated to be less than 10~# in our experiment. Fortu-
nately for our experiment, the BE distribution and the Pois-
son distribution are not affected by 8 [7]. Namely, when
the original photon number distribution inside the random
medium is BE distribution (or Poisson distribution), the
measured photon count distribution remains BE distribu-
tion (or Poisson distribution) regardless of the value of .
Therefore, our data illustrate that the photon statistics of
the light field inside the random medium changes from BE
statistics at the threshold to Poisson statistics well above
the threshold.

Our numerical simulation of random lasers with reso-
nant feedback also confirms the generation of coherent
light above the threshold. We calculate the classical EM
field in an active random medium by solving the Maxwell
equations [8]. A seed pulse is launched inside the ran-
dom medium of finite size. Below the lasing threshold,
the seed pulse dies away from the random medium into
the absorbing boundary layers. Only when the optical gain
exceeds a threshold, the EM field builds up inside the ran-
dom medium. Since the classical EM field represents the
coherent part of the quantum field, our simulation result
indicates that the quantum field in the random medium has
no coherent part below the threshold; its coherent compo-
nent appears only above the threshold.

The quantum statistical properties of light reveal very
different lasing mechanisms for the two types of random

2,

1.8 }
o 1.6 {
O

1.4 ¢

L3
1.2 LI
(]
¢ s
®
1 T T T T
0 2 4 6 8 10

FIG. 4. The second-order correlation coefficient G, as a func-
tion of the ratio of the incident pump intensity /,, to the threshold
intensity Iy,.
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lasers. The photon statistics of a random laser with reso-
nant feedback is very different from that of a random laser
with nonresonant feedback. For a random laser with non-
resonant feedback, the fluctuation of the total number of
photons in all modes of laser emission is smaller than that
of blackbody radiation with the same number of modes
[9,10]. However, the photon number distribution in a
single mode remains BE distribution even well above the
threshold. Based on these experimental results, we propose
a qualitative explanation for the random lasers with the
concept of quasistates. The quasistates are the eigenmodes
of the Maxwell equations in a finite-sized random medium.
The boundary condition for quasistates is the absence of
any incoming waves [11]. The eigenenergies are complex
numbers, whose imaginary parts represent the decay rates.
The decay of a quasistate results from light leakage through
the boundaries of the random medium and loss of its pho-
ton to other quasistates. When k/ > 1 (k is a wave vec-
tor; [ is the transport mean free path), the average decay
rate of a quasistate is larger than the average frequency
spacing of adjacent quasistates. Hence, the quasistates
are spectrally overlapped, giving a continuous emission
spectrum.

In the case of weak scattering, the quasistates decay
fast, and they are strongly coupled. Because of photon
exchange among the quasistates, the loss of a set of inter-
acting quasistates is much lower than the loss of a single
quasistate. In an active random medium, when the optical
gain for a set of interacting quasistates at the frequency
of gain maximum reaches the loss of these coupled qua-
sistates, the total photon number in these coupled states
builds up. This process is lasing with nonresonant feed-
back [12]. The drastic increase of photon number at the
frequency of gain maximum results in a significant spectral
narrowing [13]. Well above the threshold, gain saturation
quenches the total photon number fluctuation. However,
strong coupling of the quasistates prevents stabilization of
the photon number in a single state.

With an increase in the amount of optical scattering, the
dwell time of light in the random medium increases, and
the mixing of the quasistates is reduced. Thus the decay
rates of the quasistates decrease. When the optical gain
increases, it first reaches the threshold for lasing in a set of
coupled quasistates at the frequency of gain maximum. As
the optical gain increases further, it exceeds the loss of a
quasistate that has a long lifetime. Then, lasing occurs in a
single quasistate. The spectral linewidth of the quasistate is
reduced dramatically above the lasing threshold. A further
increase of optical gain leads to lasing in more low-loss
quasistates. Laser emission from these quasistates gives

discrete peaks in the emission spectrum. This process is
lasing with resonant feedback [14,15]. When the scattering
strength increases further, the decay rates of the quasistates
and the coupling among them continue decreasing. Be-
cause of large dispersion of the decay rates of quasistates,
the threshold gain for lasing in individual low-loss quasis-
tates becomes lower than the threshold gain for lasing in
the coupled quasistates at the frequency of gain maximum.
Thus, lasing with resonant feedback occurs first. Because
of weak coupling among the quasistates, the photon num-
ber fluctuation in each lasing state is quenched by the gain
saturation effect well above the threshold.
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