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Top: A conventional broad-area laser with stripe-shaped gold contact and cleaved 
facets (left) features a measured spatio-temporal emission pattern exhibiting 
nanosecond-scale fluctuations (right). Middle: A D-cavity with chaotic ray dynamics 
(left), a typical passive cavity mode exhibiting a speckle-like structure (center) and 
a measured spatio-temporal emission pattern without fast fluctuations (right). 
Bottom: One-dimensional cavity with randomly varying refractive index (left) and its 
stable laser emission (right).
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Taming Laser Instabilities 
with Chaos

H igh-power semiconductor lasers are widely 
used for machining, laser surgery, lidar 

systems and large-scale displays. But high 
power levels require broad-area cavities, and 
the nonlinear interaction of many transverse 
modes with the active medium leads to self-
organized spatiotemporal structures, such 
as fi laments, that are prone to modulational 
instabilities.1

The ensuing fl uctuations of output power and 
beam profi le present a severe problem for appli-
cations. Conventional approaches for stabilizing 
these lasers try to limit the system’s complexity 
by reducing the number of transverse modes.2 
Additional transverse modes and thus instabili-
ties frequently re-emerge, however—for example, 
as pump power is increased.

This year, we proposed a counterintuitive 
solution for stabilizing high-power semicon-
ductor lasers: embracing complexity instead 
of fighting it. In addition to the nonlinear 

interaction between light and gain medium, 
we introduced a complex cavity structure by 
replacing the conventional Fabry-Pérot-type 
cavities with deformed microcavities, or adding 
random subwavelength-scale fl uctuations of 
the refractive index in the cavities.3 The cha-
otic ray dynamics in deformed cavities and the 
multiple scatt ering in a randomly structured 
cavity lead to complex wave interference, 
which yields speckle-like intensity distribu-
tions.4 This, in turn, disrupts the formation of 
self-organized structures and prevents spatio-
temporal instabilities.

 We demonstrated the eff ectiveness of this 
approach experimentally with D-shaped, edge-
emitt ing semiconductor lasers and numerically 
in simulations of 1-D randomly structured 
semiconductor lasers.3 Remarkably, the nano-
second-timescale fl uctuations that are typical for 
conventional broad-area semiconductor lasers 
were completely suppressed.

Our scheme of using cavity geometry or 
structural disorder to stabilize spatiotem-
poral instabilities has proved very eff ective 
and robust to fabrication imperfections, since 
these do not qualitatively change the already 
pseudo-random structure of the cavity modes. 
Moreover, multimode lasing is maintained, 
so this solution is inherently compatible with 
high-power operation, which naturally leads 
to multimode lasing.

We believe that this new paradigm for sta-
bilization may be adapted to other laser types 
such as VCSELs, fi ber and solid-state lasers. 
And the idea of manipulating and controlling 
the dynamics of nonlinear wave-dynamical 
systems by means of complex geometries 
could conceivably fi nd applications in other 
fi elds, such as nonlinear optics or turbulent 
fl uid dynamics. OPN


