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We study a Kondo spin coupled to a mesoscopic interacting quantum dot that is described by the
‘‘universal Hamiltonian.’’ The problem is solved numerically by diagonalizing the system Hamiltonian in
a good-spin basis and analytically in the weak and strong Kondo coupling limits. The ferromagnetic
exchange interaction within the dot leads to a stepwise increase of the ground-state spin (Stoner staircase),
which is modified nontrivially by the Kondo interaction. We find that the spin-transition steps move to
lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong
Kondo coupling. The interplay between Kondo and ferromagnetic exchange correlations can be probed
with experimentally tunable parameters.
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A singly-occupied localized electron level (an ‘‘impu-
rity’’ spin) interacting with a delocalized electron gas is a
paradigmatic system in quantum many-body physics. It
gives rise to the nonperturbative Kondo effect in which
the localized electron’s magnetic moment is fully screened
by the delocalized electrons below the Kondo temperature
TK. The Kondo effect was well studied in the context of an
impurity moment embedded in a bulk metal [1]. Recently,
Kondo physics has been the subject of much renewed
interest [2], following its observation in quantum dots [3]
in which key parameters may be tuned experimentally.

These experimental advances have been accompanied
by progress in the theoretical treatment of the mesoscopic
Kondo problem [4–9]. In mesoscopic systems, either the
electrons in the leads or the electrons in a large dot play the
role of the ‘‘electron gas’’ and a small spin-1=2 dot repre-
sents the Kondo spin. Here we focus on the latter case [see
Fig. 1(a)], where the discrete spacing � and the mesoscopic
fluctuations of the single-particle levels in the large dot
may alter the Kondo effect when TK � � [5–8].

A formidable challenge for both mesoscopic and bulk
Kondo theory is to take into account electron-electron
interactions in the electron gas. In the mesoscopic case
this task is simplified when the electron gas is confined to a
large quantum dot in which the electron dynamics is cha-
otic [10,11]. When the dot’s Thouless energy ET is large
compared with �, the effects of the electron-electron in-
teraction are captured by the so-called universal
Hamiltonian (UH) [12], valid in an interval ET around
the dot’s Fermi energy EF. For a fixed number of electrons,
the dominant interaction in the UH is a ferromagnetic
exchange interaction. Detailed comparison between theory
and experiment for the statistics of Coulomb blockade
peak heights and spacings shows that including the UH
ferromagnetic exchange term is both necessary and suffi-
cient to obtain quantitative agreement [13]. Thus, one can
use this UH to obtain an experimentally relevant descrip-

tion of a large interacting dot (henceforth called the ‘‘dot’’)
that is Kondo coupled to a small dot with odd electron
occupancy (henceforth called the ‘‘Kondo spin’’ SK). Such
a model was first discussed in the framework of a mean-
field approximation [7], where Kondo correlations in a dot
close to its ferromagnetic Stoner instability Js � � were
investigated. A regime just below the instability was iden-
tified where the Kondo coupling substantially reduces the
dot’s polarization. In contrast, studies in the bulk [14]
found that a Kondo impurity enhances the polarization of
a surrounding gas of electrons at similar high values of
Js & �.

The simplicity of the UH allows one to look for signa-
tures of the Kondo interaction in the magnetic properties of
the dot without necessarily assuming that the dot is very
close to its bulk Stoner transition (in a quantum dot, Js is
typically a fraction of � [12,13]). Standard numerical
methods for the Kondo problem such as quantum
Monte Carlo [8] and numerical renormalization group
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FIG. 1 (color online). (a) Schematic diagram of a small quan-
tum dot with spin SK (Kondo spin) that is coupled antiferro-
magnetically (coupling constant Jk) to a large quantum dot with
spin Sd. The large dot, described by the universal Hamiltonian, is
characterized by a ferromagnetic exchange interaction (coupling
constant Js). We assume the large dot to have N equally spaced
single-particle levels (with spacing �) in a band of width 2D
(half-filling). (b) The large dot is represented in the site basis
(squares), in which SK couples only to site 0.
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techniques [9] are, however, not easily applied to this
problem because the ferromagnetic exchange coupling
introduces a sign problem in the former and nonlocal
correlations in the latter. Here we apply a customized
diagonalization method that takes advantage of the global
spin-rotation invariance and uses the good-spin eigenstates
of the UH as a basis [13,15].

The Hamiltonian of our system, schematically illus-
trated in Fig. 1, is given by [7,12]

 H �
X

�;���

"�c
y
��c�� � JsS2

d � JkSK � sd�0�: (1)

The first two terms in (1) constitute the UH of the dot [12]
(ignoring a constant charging energy and a Cooper channel
term), described by N spin-degenerate single-particle lev-
els "� and spin Sd � 1

2

P
���0c

y
�����0c��0 (� are Pauli

matrices). The coupling of the dot to the Kondo spin SK
(with SK � 1=2) is mediated by its spin density sd�0� �
1
2

P
����0���0�c

y
�����0�	��0�c��0 at the tunneling position

r � 0 [���r� is the orbital wave function of level �]. The
parameters Js and Jk are the exchange and Kondo coupling
constants, respectively. In this Letter we ignore mesoscopic
fluctuations, taking equally spaced single-particle levels
[covering a band of width 2D � �N � 1��] and ���0� �

1=
����
N
p

. We also assume half-filling of the band so that the
number of dot electrons is N. The average local density of
states of the dot is � � 1=�N�� [6].

The spin-rotation invariance of the Hamiltonian (1)
implies the conservation of the total spin Stot � Sd � SK,
so that Stot and Sztot � Mtot are good quantum numbers. To
take advantage of this symmetry, we construct a good total
spin basis by coupling the eigenstates of the UH with those
of the Kondo spin. The UH eigenstates with dot spin Sd are
characterized by j�SdMdi (� denotes orbital occupations
n� and other quantum numbers distinguishing between
states of the same dot spin Sd). Thus a basis of the coupled
system with good total spin is j�SdStotMtoti (for simplicity
the quantum number SK � 1=2 is omitted). In this basis the
UH is diagonal with energies

P
�	�n� � JsSd�Sd � 1�.

The Kondo term HK � JkSK � sd�0� is a scalar product of
vector operators in the uncoupled spaces. Thus, its matrix
elements in the coupled basis conserve Stot, Mtot and are
given by
 

h�0S0dStotMtotjHKj�SdStotMtoti

� Jk��1�Sd�1=2�Stot

���
3

2

s (
S0d 1 Sd

1=2 Stot 1=2

)


 ��0S0d k sd�0� k �Sd�; (2)

in terms of a Wigner-6j symbol and the reduced matrix
element of the spin density sd�0� (known in closed form
[15]). In this formulation, the full Hamiltonian H has a
block diagonal structure in Stot, Mtot.

The problem is further simplified by transforming to the
basis of sites i (0 � i � N � 1), in which the one-body

part of the dot’s Hamiltonian is tridiagonal and HK �
JkSK � s0 with si the spin at site i [1] [see Fig. 1(b)]. The
exchange interaction is invariant under such transforma-
tion and has the same form as in Eq. (1) with Sd �PN�1
i�0 si. We can thus recast our formalism in this site

basis, where only neighboring sites are coupled and the
Kondo spin interacts solely with site 0. Because of these
features the many-body Hamiltonian matrix in the site
basis is more sparse than in the orbital basis, allowing for
an efficient diagonalization in each subspace of good Stot

using a Lanczos-Arnoldi algorithm. In this approach we
can conveniently diagonalize (1) for dots with up to N �
12 levels, where the total Hilbert space contains �5:4

106 basis states.

We calculated the lowest many-body energy eigenvalue
for each value of Stot and thereby determined the ground-
state value of the total spin for different values of Js and Jk.
This quantity has been studied theoretically [7,8] and can
be probed experimentally [16]. As Js increases, the
ground-state spin Stot is expected to undergo successive
transitions to higher values (known as the Stoner staircase)
until the dot becomes fully polarized at Js � �. For Jk !
0, the spin transitions occur at Jms � ��m� 1�=�m� 2�,
with m � 1; 3; 5; . . . (m � 2; 4; 6; . . . ) for an odd (even)
number of dot electrons N. These transition steps in the
Stoner staircase are shifted by the Kondo interaction. In
Figs. 2(a) and 2(b) we show the transition curves (solid
lines) separating regions of fixed ground-state spin Stot in
the two-dimensional parameter space of Js, Jk. We observe
that these curves are monotonically decreasing for Jk� & 1
and monotonically increasing for Jk� * 1. In the strong-
coupling limit, they converge to values of Js that are either
lower (for smaller Stot) or higher (for larger Stot) than their
corresponding weak-coupling values Jms .

To gain insight into the behavior of the transition curves,
we evaluate them for weak Kondo coupling in first-order
(degenerate) perturbation theory. We find

 Jms � ��m� 1��� 
mJk
=�m� 2
; (3)

where 
m are positive constants of order one. These per-
turbative results (dotted lines in Figs. 2(a) and 2(b)] agree
well with the numerical calculations for Jk� & 0:1.

The negative slope of the transition curves at weak
coupling can be understood by considering that in this
weak-coupling regime the Kondo spin SK plays the role
of an effective magnetic field, polarizing the dot in the
direction opposite to its own spin. This will favor larger
values of Sd and thus also larger values of Stot, hence the
negative slope. As we approach the Stoner instability Js !
� (i.e., as m increases), the gain in exchange correlations
JsSd�Sd � 1� dominates over the gain in Kondo correla-
tions, hence the flattening of the slope in this limit.

A perturbative analysis can also be carried out for the
limit of strong Kondo coupling, which, at zero tempera-
ture, is characterized by TK � �. For dots with sufficiently
large N, this limit can be reached already for Jk�� 1,
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where the Kondo temperature is of the order TK �
De�1=Jk� (at Js � 0) [1]. However, for the present case
of N & 12, the limit TK � � requires Jk� * 1 or, equiv-
alently, Jk * 2D. The latter condition represents the bare
strong-coupling limit for which a perturbative solution is
available (without renormalizing the band width) [17]. In
this limit the Kondo spin SK and the spin s0 at site 0 form a
strongly bound singlet SK;0 � 0 (SK;0 � SK � s0) that is
effectively decoupled from the rest of the spin-chain
with sites i � 1. The tridiagonal one-body Hamiltonian
of sites 1 � i � N � 1 can be rediagonalized to giveP
�� �"� �cy�� �c��, describing a ‘‘reduced’’ dot with new

orbital wave functions ����r� and single-particle energies
�"�. This dot has one less level and one less electron than
the original dot. While the original dot levels are equally
spaced, the level spacings in the reduced dot are given by
�"��1 � �"� � �� � �� ��=N > �, (�� > 0 are of order
1 and increase monotonically from the new band center
towards the band edges).

To explore how the strong-coupling limit is modified in
the presence of exchange interaction in the dot, we rewrite
the latter as �JsS2

d � �Js �S2
d � 2Jss0 � �Sd � 3Js=4 where

�Sd �
PN�1
i�1 si is the spin of the reduced dot. The cross term

�2Jss0 � �Sd has vanishing matrix elements in the singlet
subspace SK;0 � 0 but induces virtual transitions to the
triplet subspace SK;0 � 1 that renormalize the exchange
coupling constant Js ! �Js � Js�1� Js=Jk � � � �� (details
will be presented elsewhere). To lowest order in 1=Jk, our
system is thus described by an effective HamiltonianP
�� �"� �cy�� �c�� � �Js �S2

d that has the form of a UH for the
reduced dot with single-particle energies �"� and exchange
constant �Js ( �Js ! Js for Jk ! 1). The spin-transition
curves of this reduced dot [dotted lines in Figs. 2(a) and
2(b)] are found to be in good agreement with the exact
numerical curves when Jk�� 1. These exact numerical
results further demonstrate that the spin-transition curves
make a smooth crossover between the weak and strong
Kondo coupling limits.

The spin-transition curves in the crossover from weak to
strong coupling (see Fig. 2) are determined by two counter-
acting effects. (i) The effective removal of an electron from
the dot shifts down the Stoner staircase according to Jms !
Jm�1
s . Since the reduced dot has one less electron, the

shifted Stoner staircase is associated with the opposite
number parity of electrons. (ii) The effective removal of
a level from the dot stretches the step size in the staircase
due to the larger level spacing in the reduced dot (i.e.,
�� > �), and thus increases the spin-transition values of
Js. The downward shift in (i) is independent of N, but
weakens for increasing m (where the step values Jms are
more densely spaced). The upward shift in (ii) is a finite-
size correction�1=N that decreases with increasing N, but
increases with increasingm because of the nonuniform ��.
For smaller values of Js, effect (i) dominates over (ii),
resulting in an overall downward shift of the transition
values in the strong-coupling limit (as compared to the
weak-coupling values Jms ). Close to the Stoner instability,
however, finite-size effects (ii) dominate over (i), leading
to transition values larger than Jms .

To investigate the interplay between effects (i) and (ii)
more closely, we compare the spin-transition curves of our
original systems (N � 11, 12) with systems of equal band
width 2D, but different values of N. Results shown in
Figs. 2(c) and 2(d) demonstrate that finite-size effects (ii)
decrease with increasingN, leading to a convergence of the
strong-coupling transition curves towards Jm�1

s .
For dots with a large band width (D� �), truncation of

the band to a size below TK leads to a strong-coupling
Hamiltonian that includes additional interaction terms. It
would be interesting to study the effects of these terms.

Signatures of the interplay between the intradot ex-
change and the Kondo coupling are revealed by applying
an in-plane field B [16], adding a Zeeman term g�BBS

z
tot to

the Hamiltonian H in Eq. (1) (g is the gyromagnetic factor
and �B the Bohr magneton). This term favors a parallel
configuration of dot spin ( " ) and Kondo spin ( * ), increas-
ing Stot at Jk � 0. The addition of the Kondo interaction
opposes such a parallel alignment ( "* ); correspondingly

0.01 0.1 1

0.5

0.6

0.7

0.8

0.9

Odd

0.01 0.1 1

0.7

0.8

0.9

Even

0.01 0.1 1

0.5

0.6

0.7

0.8

0.01 0.1 1

0.7

0.8

(a) (b)

(c) (d)

2/3

4/5

1/2

3/4

2/3

5/6 4/5

3/4

S
tot

=0

5

S
tot

=1/2

11/2

J
s
/δ  J

s
/δ

 J
k
ρ

 J
s
/δ

 J
k
ρ

 J
k
ρ  J

k
ρ

J
s
/δ

S
tot

=0

S
tot

=1

S
tot

=2

S
tot

=1/2

S
tot

=3/2

S
tot

=5/2N=5

N=11

N=5N=11

N=6
N=12

N=6
N=12

1
3/2

2
5/2

FIG. 2 (color online). Ground-state spin Stot of the system in
Fig. 1 at finite exchange Js and Kondo coupling Jk for an odd
(left column) and even (right column) number of electrons N.
(a), (b) Transition curves for N � 11 (left) and N � 12 (right),
separating regions of fixed Stot. Numerical results (solid lines)
are compared with analytical estimates in the weak- and strong-
coupling limits (dotted lines). (c), (d) Spin-transition curves for
fixed bandwidth 2D but different N (top to bottom): N � 5, 7, 9,
11 (left) and N � 6, 8, 10, 12 (right). For increasing N (at
Jk�� 1), the curves converge to the Stoner staircase of a dot
with N � 1 electrons (vertical arrows).
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we find [see Fig. 3(a)] the spin-transition values of B to
increase monotonically with Jk.

A more subtle behavior appears for Js � 0 [see
Fig. 3(b)], where nonmonotonic spin-transition curves
may arise. The behavior in weak Kondo coupling can again
be understood in perturbation theory, for which the dot spin
can still be regarded as a good quantum number. In the
limit Jk ! 0 the ground state will always be the parallel
configuration ( "* ) aligned with the external field, so that
the spin-transition lines slowly increase with Jk (as for
Js � 0). At larger values of Jk the energy of the antiparallel
( "+ ) configuration (with rearranged orbital occupancies)
becomes lower in each spin subspace. This happens at
lower Jk for the lower value of Stot, leading to a marked
increase in the slope of the transition line. Increasing Jk
further one reaches the point at which the antiparallel
configuration is also favored in the subspace with higher
Stot. This decreases the slope of the spin-transition line,
making it negative in some cases [see, e.g., the lowest
curve in Fig. 3(b)]. For even larger Jk the perturbative
picture breaks down and the transition curves make a
smooth crossover to the strong-coupling limit. Here the
effective exchange constant �Js decreases with increasing
Jk, favoring lower Stot again and giving a positive slope to
the transition curves. The nonmonotonicity of the lower
spin-transition curves becomes more pronounced for larger
values of Js.

The ground-state spin of quantum dots (in the absence of
Kondo coupling) has been measured in a number of experi-
ments by varying an in-plane (Zeeman) field B [16]. A
Zeeman field can be used to map the spin-transition dia-
gram in the following manner. A point where the lowest
energy states with different spin are degenerate at fixed Jk
can be determined by observing a change in the slope of the
Coulomb blockade peak positions vs. an in-plane field B
[18]. Tuning Jk (by means of a pinch-off gate) at fixed Js
will cause these slope changes to shift to higher or lower
values of B in a manner predictable from our calculations.

In summary, the interplay of Kondo and ferromagnetic
(Stoner) correlations in large quantum dots leads to an

interesting ground-state spin diagram. At weak Kondo
coupling the Kondo spin acts as an external field to assist
ferromagnetic polarization. At strong coupling the system
is described again by a universal Hamiltonian, but with a
renormalized exchange constant for a reduced dot with one
less level and one less electron. Ferromagnetic polarization
can be either enhanced or reduced in this limit, depending
on how close the dot is to the bulk Stoner instability. The
weak and strong-coupling limits are described well by
perturbation theory and our exact numerical solutions
find a smooth behavior in the nonperturbative crossover
region.
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FIG. 3 (color online). Spin-transition curves for N � 12 at
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is (a) Js � 0 and (b) Js=� � 0:65. Solid (dotted) lines show the
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