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CHAPTER 1

PROGRESS IN ASYMMETRIC RESONANT CAVITIES:

USING SHAPE AS A DESIGN PARAMETER IN

DIELECTRIC MICROCAVITY LASERS

H. G. L. Schwefel, H. E. Tureci, A. Douglas Stone and R. K. Chang

Department of Applied Physics, Yale University,

P.O. Box 208284, New Haven, CT 06520, USA

We report on progress in developing optical microresonators and mi-
crolasers based on deformations of dielectric spheres and cylinders. We
review the different semiconductor and polymer dye microlasers which
have been developed and demonstrated using this approach. All the
lasers exhibit highly directional emission despite the presence of ray
chaos in the system. Lasing has been demonstrated using both optical
pumping and electrical pumping in the case of InGaP quantum cascade
lasers and very recently in GaN MQW lasers. Lasing modes based on sta-
ble and unstable periodic orbits have been found as well as modes based
on chaotic whispering gallery orbits; the lasing mode depending on the
material, shape and index of refraction. The lasing from modes based on
unstable orbits dominated for certain shapes in the GaN cylinder lasers,
and is related to the “scarred” states known from quantum chaos theory.
Extreme sensitivity of the emission pattern to small shape differences has
been demonstrated in the polymer microlasers. Large increases in output
power due to optimization of the resonator shape has been demonstrated,
most notably in the quantum cascade “bowtie” lasers. Efficient numer-
ical approaches have been developed to allow rapid calculation of the
resonant modes and their directional emission patterns for general res-
onator shapes. These are necessary because the lasing modes are not usu-
ally amenable to standard analytic techniques such as Gaussian optical
or eikonal theory. Theoretical analysis of the directional emission from
polymer lasers has shown that highly directional emission is compatible
with strongly chaotic ray dynamics due to the non-random character
of the short-term dynamics. Very recently uni-directional emission and
electrical pumping have been demonstrated in the GaN MQW system
using a spiral-shaped resonator design, bringing this general approach in
which shape is used as a design parameter closer to useful applications.
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1. Introduction

1.1. Overview

Microresonators based on spherical, cylindrical and disk-shaped dielectrics

have been studied for applications to lasers and integrated optical devices

for at least two decades.1,2,3 These devices exploit the (nearly) total internal

refection which confines whispering gallery modes of such structures and

leads to high-Q resonances. However obtaining useful output from such de-

vices, both in terms of lasing power and in terms of controllable directional

out-coupling has always been challenging due to their intrinsic isotropy and

the fact that out-coupling is typically dominated by random features such

as surface roughness. Nine years ago Nöckel, Stone and Chang4 proposed

that smooth deformations of such resonators, which they termed asymmet-

ric resonant cavities (ARCs), could achieve both usefully high-Q modes and

controlled out-coupling which might be optimized by varying the shape as

a design parameter. In the previous volume of this series the basic physical

concepts and theory behind ARCs were presented along with very prelim-

inary experimental results obtained from deformed spherical microdroplet

lasers.5 The ARC concept is of theoretical interest because such resonators

are examples of wave-chaotic systems, similar to systems studied in the field

of quantum chaos.6 The motion of a light ray confined in such a resonator

is in many cases chaotic in the technical sense that this motion exhibits

exponential sensitivity to small differences in initial conditions; as a re-

sult the analysis of such resonators can be related to a well-known class of

problems in non-linear physics, that of classical and quantum billiards, as

discussed in detail in the initial and subsequent work.5,6 Since that initial

work at least four different realizations of semiconductor ARC lasers have

been developed and studied,7,8,9,10,11 as have polymer ARC dye lasers.12 We

will review much of that experimental work in the current chapter. Over-

all this work has deepened our understanding of wave-chaotic resonators

and of using shape as a design parameter in optimizing the performance

of microresonators. It has also shown that a number of the assumptions of

the initial theoretical work have a limited range of validity and that the

properties of these resonators are more diverse and complex than initially

anticipated.

To summarize the major new results prior to a detailed exposition:

• One can get highly directional emission from smoothly-deformed

(ARC) resonators and also from dielectric resonators with abrupt
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deformations from circular symmetry (such as the “spiral” laser

discussed below.13)

• The lasing modes can have a wide range of geometries and proper-

ties: these include chaotic whispering gallery modes, modes based

on stable periodic orbits, modes based on unstable periodic orbits

(“scarred modes”), and chiral whispering gallery modes (modes

strongly favoring one sense of rotation).

• Fully chaotic laser resonators (i.e. those with no stable or

marginally stable periodic orbits) can still have highly directional

emission due to non-random short-term dynamics.

• The high emission directions are extremely sensitive to the shape

of the resonator and its index of refraction in a manner which can

be understood by analysis of the phase space for ray motion.

• The lasing mode selected also depends on the shape of the resonator

and its index of refraction and gain, however in a manner which is

not yet fully understood.

• Theoretical analysis of the passive cavity based on efficient new

computational algorithms allows one to identify the lasing mode

based on comparison with experiment.

• Deformation of the resonator from circular symmetry can lead to a

substantial improvement in the peak power output (several orders

of magnitude) for lasing media with the same gain.

• An efficient electrically-pumped microlaser in the GaN materials

system with uni-directional emission has been demonstrated using

the shape design approach.

We will review the experimental and theoretical work leading to these

conclusions below.

2. Review of theoretical techniques

2.1. Background

The use of mirror-based “open” resonators was a key step in the develop-

ment which led from the maser to the laser. The theory of mirror-based res-

onators is well developed for standard Fabry-Perot and ring resonator con-

figurations, and in itself fills several hundred pages in standard textbooks.14

In such a case the location of the mirrors defines an optical path which leads

to high-Q resonances and feedback (in the case of an active cavity); in most

cases this path is a simple linear motion between parallel mirrors. The shape

and spacing of the mirrors defines the stability of the ray motion between
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them and other properties of the output beam. Another important type of

resonator for semiconductor lasers is based on distributed Bragg reflectors,

dielectric layers which are spaced to cause destructive interference, hence

acting as efficient mirrors for light at normal incidence. Again for this case

the light path is simply a linear back and forth motion with reflection at

normal incidence. The ray motion in such resonators can be fitted into the

general framework of paraxial optics and “ABCD” matrices which describe

propagation through a series of optical elements such as lenses and mirrors.

This ray description is easily translated into solutions of the wave equa-

tion using the methods of Gaussian optics if the ray path is stable and

periodic.14,15 In contrast, dielectric resonators allow trapping of many dif-

ferent light trajectories for long times and mode geometries which are much

more complex. The paradigm of a simple correspondence between a peri-

odic ray orbit and a set of resonant modes of the cavity fails. Even for the

case of simple whispering gallery orbits of a perfectly-reflecting cylinder the

resonant modes are determined by zeros of the Bessel function which are

not in general equally spaced in wavevector as are the modes of resonances

based on stable periodic ray orbits. However in this case of a perfectly cir-

cular cylinder it is possible to write down approximate analytic solutions of

the wave equation based on ray trajectories using eikonal theory.16 A much

more fundamental problems arises in generically deformed cylinders. In this

case both of the familiar analytic methods for treating resonators, Gaussian

optics and eikonal theory, are simply not applicable to a large fraction of

the spectrum due to the possibility of chaotic ray motion. This is a crucial

point which does not seem to have been appreciated anywhere in the optics

literature: all conventional methods of geometric or Gaussian optics fail in

a resonator which has chaotic ray motion. We shall explain the origin of

this failure shortly. Several analytic methods for making short-wavelength

approximations to such chaotic wave problems have been developed in the

recent past for the Schrödinger equation in the study of “quantum chaos”,

but these methods do not allow one to construct individual solutions as one

can for regular ray motion using Gaussian or eikonal methods. Therefore

it is particularly important to have efficient numerical approaches to these

problems; we present such an approach and some representative results

from it below.
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2.2. Failure of conventional geometric optics

We begin by explaining how the presence of ray chaos leads to the failure of

conventional methods of eikonal theory and Gaussian optics for treating the

wave equation in a dielectric resonator analytically in the short-wavelength

limit. Both eikonal theory and Gaussian optics apply only in the limit in

which the wavelength of the modes is much less than typical geometric

features of the resonator, such as relevant chord lengths and radii of cur-

vature of the boundary. Gaussian optics, based on the parabolic equation

method,15,17 only allows one to determine the modes of the resonator that

are localized in the vicinity of isolated stable periodic orbits, and may be

regarded as an improved version of the eikonal method; the latter method

works both for such stable orbit modes and for a more general class of

marginally stable modes to be discussed below. Hence we will focus mainly

on the failure of eikonal methods in our initial discussion and at the end

explain the relationship to Gaussian optics. As noted, both methods are

based on approximations to the exact wave equation which are only valid

when kR À 1, where we shall use R to refer to a typical linear dimension

of the resonator and assume all radii of curvature are of order R. It should

also be noted that all of the problems we will be interested in correspond

to non-separable boundary conditions on the wave equation and hence can-

not be solved exactly by separation of variables or by any other known

analytic method. Therefore short-wavelength approximations are the nat-

ural method to use to attempt a solution. For almost all microresonators

that have been studied experimentally the resonator is indeed in the limit

kR À 1 which would appear to be sufficient to validate such approaches.

Nonetheless the methods fail; a more detailed version of the argument ex-

plaining this failure has been given recently in Ref. 18. Interestingly, the

basic argument goes back to a little-known paper by Einstein in 1917.19

For simplicity, throughout this article we will be dealing with the res-

onances of an infinite uniform dielectric rod of index of refraction n and

arbitrary cross-section ∂D, and will focus on planar solutions for which the

z-component of conserved momentum, kz = 0. For this system the solutions

have either the electric field (TM solution) or magnetic field (TE solution)

solely in the the z-direction and the amplitude of this field Ez(x, y), Bz(x, y)

satisfies the scalar wave (Helmholtz) equation:

(∇2 + n2k2)ψ(x, y) = 0. (1)

Here ψ(x, y) refers to the electric or magnetic field for the TM, TE cases

respectively and we assume a harmonic time-dependence with frequency
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ω = ck. This is a reasonable model for a micropillar resonator with a
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Fig. 1. Illustration of the reduction of the Maxwell equation for an infinite dielectric rod
of general cross-section to the 2D Helmholtz equation for the TM case (E field parallel
to axis) and k‖ = kz = 0.

large aspect ratio of height to radius. The highest Q modes will be the

planar modes which do not escape through the top and bottom. The cor-

rect boundary conditions for the problem are the continuity of ψ and ∂n̂ψ

across the boundary, where the wavevector changes from nk (inside) to k

(outside). These conditions will describe the physics of near total internal

reflection and Fresnel refraction and reflection at the interface. Below we

will present briefly a new numerical method to solve Eq. (1) with these

boundary conditions very efficiently, and we will show many numerical re-

sults obtained with this method. However to illustrate why such a problem

is not amenable to analytic description using ray optical or eikonal meth-

ods, it is sufficient and simpler to consider perfectly reflecting boundary

conditions corresponding to ψ = 0 everywhere on the boundary. It can be

straightforwardly shown that dielectric matching boundary conditions do

not remove the fundamental limitation which we now describe.20 For the

perfectly reflecting case we need only consider ψ(x, y) inside the domain D

of uniform index n and hence we can set n = 1 for convenience.

The eikonal method consists of attempting an asymptotic solution of

Eq. (1) (now with n = 1) of the form

ψ(x, y) = A(x, y)eikS(x,y) (2)

where kR À 1 and S,A are real functions independent of k and A ≡ A0 is

the first term in a power series in k−1. This ansatz is used in Eq. (1) and

terms of lower order in k−1 are initially neglected to yield the eikonal and

transport equations:

(∇S)2 = n2(x, y) (3)

2∇S · ∇A+A∇2S = 0 (4)
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for S(x, y) and A(x, y). S(x, y) is a scalar field whose level curves describe

the “wavefronts’ of the solution which are assumed to be slowly varying in

space, as the factor k in the exponent takes care of the rapid variation on the

scale of the wavelength; the unit vector field ∇S describes the direction of

ray motion at a given wavefront. For a uniform medium a ray originating on

one wavefront must “move” in a straight line, even though the wavefronts

themselves cannot be straight lines if the confining boundary of the medium

is curved. For the current discussion the properties of the amplitude A and

the transport equation which determines its properties once S is known are

not crucial except for one property. The Dirichlet boundary conditions we

are assuming require that ψ vanish on the boundary; one can easily see that

if one attempts to satisfy this by setting A = 0 on the boundary that the

transport equation will give A = 0 everywhere in the domain D. Thus the

boundary conditions must be satisfied by the cancellation of two or more

terms of the form Eq. (2) and for eikonal solutions within a bounded region

the solution must have the form:

ψ(x, y) =

N
∑

n

An(x, y)e
ikSn(x,y) (5)

where N ≥ 2. Thus any eikonal solution must involve at least N ≥ 2 sets

of wavefronts defined by S1(x, y), S2(x, y) . . . SN (x, y) and N sets of rays

determined by ∇S1,∇S2 . . .∇Sn. A further implication of the boundary

conditions is that the functions Sn must be pairwise equal on the bound-

ary and their gradients on the boundary must satisfy “specular reflection”

pairwise, i.e. n̂ ·∇S1 = −n̂ ·∇S2 and so on, for each pair. The key question

raised by these constraints is whether such a set of wavefronts and associ-

ated ray vector fields can be consistently constructed for a given boundary

∂D?

We can reduce the previous question to a very specific question about

ray dynamics in a perfectly reflecting “billiard” (the term for the problem

of a point mass specularly reflecting from hard boundaries in two dimen-

sion). Modern research in non-linear dynamics then allows us to answer this

question generically. Consider a point r0 = (x0, y0) in the domain which is

arbitrary except that the solution we are seeking ψ(x0, y0) and ∇ψ(x0, y0)

are non-zero at that point and in a small neighborhood around it. Then

at this point there are N different ray directions defined by ∇S1,∇S2 . . ..

Choose one of these direction e.g. ∇S1 and follow it in a straight line to the

boundary (for a uniform medium this line will run exactly along ∇S1 as

noted). The specular reflection boundary condition just mentioned implies
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that upon reaching the boundary and specularly refecting this ray the new

direction corresponds to a ray of another of the vector fields, e.g. ∇S2. We

can thus be assured that each ray we follow from (x0, y0) will stay on one of

the allowed ray directions determined by the N sets of wavefronts defined

by the Sn. By a well-know property of classical mechanics in a bounded

system this ray must eventually return to the neighborhood of (x0, y0) over

and over. If such eikonal solutions exist, such a ray by assumption must

pass through this neighborhood each time in one of the N allowed ray di-

rections defined at r0. However this is a special dynamical behavior which

need not hold. It turns out that three situations are possible.

P

C

Fig. 2. The wavefronts and the corresponding set of rays generated by an elliptic bound-
ary. There are two sets of wavefronts S1 = const. and S2 = const. (and their corre-

sponding rays), drawn in red and blue respectively, which together satisfy the boundary

conditions on the elliptic boundary, provided the caustic curve and the wavevector k is

chosen according to the EBK quantization conditions. In this figure, a (red) ray is started

at point P , towards the caustic C. Subsequent iterations according to the specular re-

flection rule generate rays which are always tangent to the elliptic caustic C. Irrespective
of the starting position P , there can be one and only one other return direction (blue)
at P . This is the unique hallmark of integrable ray motion. Note that we consider only
one sense of rotation for rays; the other sense of rotation is disjoint from this set (ray

dynamics conserves the “chirality”) and the corresponding wavefronts generate a second
linearly independent eikonal solution.

• If the ray dynamics of this system allows this special behavior to

occur for all initial ray choices at r0, then we can construct a full

spectrum of consistent eikonal solutions with a finite number of

terms N . The quantization condition on k arises from requiring

the single valuedness of ψ at each point r0; an elegant means to

implement this condition is described in the classic paper by Keller
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and Rubinow16 following the suggestion by Einstein. Such cases are

referred to as integrable. A solvable example for which the method

works is an elliptical boundary. The relevant ray fields and wave-

fronts are illustrated in Fig. 2.

• If the number of ray return directions tends to infinity as t →
∞ for all choices of initial ray directions at r0 then no consistent

eikonal solutions exists. This will be the case for systems which are

completely chaotic.

• If the number of ray return directions at r0 is sometimes finite and

sometimes tends to infinity depending upon the initial ray direction

then the system is referred to as mixed and in principle it will be

possible to find eikonal solutions for only a subset of the spectrum.

In practice, for the mixed case, eikonal solutions are only easily

found near stable periodic orbits and quasi-periodic KAM tori.

Modern research in non-linear dynamics tells us that the third, mixed case

is the generic case. For example, any smooth deformation of a circular

boundary which is not exactly elliptical will lead to the mixed case. We

shall see below that a simple smooth quadrupolar deformation of the circle

generates a very high degree of chaos and makes it impossible in practice to

use the eikonal method except near the few remaining short stable periodic

orbits.

To summarize the basic point of the previous argument: in order to

generate a resonant mode within a given boundary one has to be able to

launch a finite set of waves from each point which bounce around in the

cavity and return so as to constructively interfere and form a standing wave.

Only certain very special symmetric boundaries allow one to do this from

all points in the cavity using waves propagating in an arbitrary direction.

When it is not possible to do this the eikonal method does not apply.

It is important to realize that even when the eikonal approach fails

there exists the same average density of modes as for the more symmetric

shapes; this is guaranteed by various theorems, such as the Weyl theorem.21

However these solutions do not have wavefronts that are smooth on the

scale of the wavelength and hence cannot be obtained by the asymptotic

(eikonal) method.

Having explained this fundamental limitation on the use of the eikonal

method for chaotic or mixed systems, we now briefly discuss how similar

considerations apply to the method of Gaussian optics. In this method we

search for solutions localized near periodic ray orbits of the problem. It
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Fig. 3. (a) Real space plot of the simulation of a ray initially started in the stable

bouncing ball region of an elliptical billiard of deformation ε = 0.12. (b) The EBK
wavefronts corresponding to a bouncing ball mode generated by an elliptic boundary.

For simplicity we have only plotted two of the four sets of the wavefronts above the
major axis. The other two sets of wavefronts represent the time-reversed motion. We
also plot the tranverse variation of the resulting eikonal solution in red. Note that this
solution has a singularity on its hyperbolic caustic. In black is plotted the Gaussian-

optical approximation to the bouncing ball mode, which is uniformly valid over the
whole transverse cross-section of the wavefield.

is helpful to note that such localized solutions can always be found using

the eikonal method as well. The eikonal solutions near stable periodic or-

bits are of the type found near the stable two-bounce orbit of the ellipse

billiard illustrated in Fig. 3. A ray emanating from a point in the neigh-

borhood of the periodic orbit moving in approximately the same direction

will bounce back and forth in the vicinity of the orbit indefinitely; each

segment of its trajectory will be tangent to a hyperbolic caustic curve and

hence will satisfy the property of only returning to the initial point in four

possible directions. Therefore we can build up consistent wavefronts lead-

ing to standing waves in the vicinity of the periodic orbit and quantize the

wavevector by imposing periodicity. One finds the following quantization

rule:

kL = 2πm+ (q + 1/2)φ+ π (6)

where L is the total length of the two-bounce orbit, m, q are integers, φ

is the phase velocity of the orbit as it rotates around the fixed point, and

is directly obtainable in terms of the radius of curvature at the bounce

points and length of the orbit. The additional phase π is the specific value

for the two-bounce orbit with Dirichlet boundary conditions of the Maslov

phase which appears for any such periodic orbit; the general value of this

phase for an arbitrary periodic orbit depends on the boundary conditions,

number of bounces and topological properties of the orbit.15 Thus we have
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two characteristic constant modes spacings: the longitudinal mode spacing

or free spectral range (FSR), ∆kL = 2π/L and the transverse mode spacing

∆kT = φ/L. This quantization rule, obtained from the eikonal method,16 is

identical to that obtained by the Gaussian optics method15 when specialized

to this two-bounce case. The actual solution ψ(x, y) one constructs via the

eikonal method will however have a diverging amplitude at the caustic of the

ray motion, which is a standard limitation of the eikonal method, analogous

to the well-known divergence of WKB solutions at a classical turning point.

The Gaussian optical solution is somewhat different as it begins from

the reduction of the wave equation to a parabolic differential equation in

the large k limit, which it then solves by the Gaussian ansatz. The solutions,

while having the same quantized k-values as the eikonal solution, provide a

more accurate description of the mode in space, which does not diverge at

the caustic. Instead the Gaussian solution has a finite peak at the caustic

and is well-defined everywhere in space (see Fig. 3(b)). In fact the Gaussian

optics method can be regarded as an improved eikonal ansatz in which the

phase function S(x, y) is complex (something we excluded earlier) leading

to a uniform approximation which allows continuation across the caustic

(or classical turning point).

Fig. 4. Realspace plot of the simulation of a ray initially started close to the long

diameter of the quadrupole of deformation ε = 0.07.

However the Gaussian approach does not provide a solution to the fun-

damental problem of quantizing chaotic motion. Chaotic motion occurs in

the vicinity of unstable periodic orbits. A ray emanating from a point near

an unstable periodic orbit will not remain near that orbit, confined by a

caustic. Instead it will propagate far away from the original orbit and gener-

ically will return to the original neighborhood in a random direction (see

Fig. 4). Therefore both eikonal and Gaussian methods will fail here. Techni-

cally, in the derivation of the Gaussian solutions, stability of the associated
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periodic orbit is required in order for the transverse behavior to have a

Gaussian decay; if the orbit is unstable the transverse solution oscillates

without decay and this violates the assumptions one makes in defining the

approximation.15 Thus, like eikonal theory, Gaussian optics fails to pro-

vide an analytic description of modes associated with regions of chaotic ray

motion.

However in generic (mixed) systems there always exist stable periodic

orbits and the Gaussian method is a convenient analytic method to extract

the subset of the resonant modes which are associated with stable periodic

orbits. The application to dielectric resonators has been worked out in detail

in reference 15 and some results using the method applied to stable “bowtie”

resonances are reviewed in Section (5.1) below.

2.3. The phase space method for ray dynamics

In the previous section we argued for the failure of analytic short-wavelength

approximations to describe a finite fraction of the spectrum in generic res-

onators. We based the argument on modern results describing the motion

of a point mass moving freely within a perfectly reflecting two-dimensional

boundary or billiard, which is mathematically identical to ray motion within

a closed resonator. In introducing the phase space methods for treating such

systems we will initially treat only this closed case; afterwards we will note

the change in the picture necessitated by the possibility of ray escape. The

crucial result we quoted was that for a billiard which is a smooth defor-

mation of a circle the ray dynamics is mixed, meaning that some initial

conditions lead to regular motion tangent to a caustic curve and other ini-

tial conditions lead to chaotic motion which is pseudo-random at long times.

This statement has an important meaning in phase space. The phase space

for a point mass in two dimensions is four dimensional, but as the energy

is assumed conserved, any given trajectory must lie on a three-dimensional

subspace of phase space. If there is a second constant of the motion, such as

the angular momentum for the circle (or its generalization for the ellipse),

then each trajectory lies on a two-dimensional subspace of the constant

energy surface with the topology of a torus. However if there is no sec-

ond global constant of motion, as for generic deformations of a circular

billiard, then the results of Kolmogorov-Arnold-Moser (KAM) theory22,23

imply that for such mixed systems some initial conditions result in trajecto-

ries which explore a finite fraction of the three-dimensional constant energy

surface and other initial conditions result in trajectories which remain on
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a two-dimensional subspace of this surface with the topology of a torus (a

“KAM” torus). To get an overall view of the phase space dynamics for a

given shape it is very convenient to use the tool of the Poincaré surface of

section, introduced in this context some time ago,5 which we now briefly

review.

As the behavior we are describing is known from KAM theory to be

generic for smooth deformations of the circle we will restrict ourselves in

the subsequent discussion to the simple example of the quadrupole billiard

described by the boundary shape:

R(φ) = 1 + ε cos 2φ (7)

which in the zero deformation limit ε = 0 reduces to a circular billiard

and is integrable. Variation of the parameter ε starting from zero induces

a transition to chaos, meaning a fraction of finite measure of the initial

conditions lead to chaotic motion. This measure increases with increasing

deformation but does not reach unity for any known smooth deformation

(there are non-smooth deformations of a circle, such as the stadium billiard

for which the fraction is known to be unity). Real-space ray-tracing is not

helpful to analyze this transition since chaotic trajectories tend to fill the

entire real-space even if they do not fill the constant energy surface uni-

formly; thus much of the structure is not visible. Instead, to visualize the

increase in the chaotic fraction of phase space we image a set of trajectories

each time they hit the boundary and plot the result in a two-dimensional

graph known as the surface of section21,24 (see Fig. 5).

In this two-dimensional phase-space representation, the internal ray

motion is conveniently parametrized by recording the pair of numbers

(φi, sinχi) at each reflection i, where φi is the polar angle denoting the

position of the ith reflection on the boundary and sinχi is the correspond-

ing angle of incidence of the ray at that position (see Fig. 5). Each initial

point is then evolved in time through the iteration of the SOS map i→ i+1,

resulting in two general classes of distributions. If the iteration results in a

one-dimensional distribution (an invariant curve), the motion repre-

sented is regular. On the other hand exploration of a two-dimensional re-

gion is the signature of chaotic motion which covers a finite fraction of the

constant energy surface in phase space.

The transition to ray chaos in the quadrupole billiard is illustrated in

Fig. 6. At zero deformation the conservation of sinχ results in straight line

trajectories throughout the SOS and we have globally regular motion. These

are the well-known whispering gallery (WG) orbits. As the deformation is
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Fig. 5. The construction of the surface of section plot. Each reflection from the bound-
ary is represented by a point in the SOS recording the angular position of the bounce
on the boundary (φ) and the angle of incidence with respect to the local outward point-

ing normal (sin χ). For a standard dynamical billiard there is perfect specular reflection
and no escape. For “dielectric billiards” if sin χ > sin χc > 1/n, total internal reflection
takes place, but both refraction and reflection according to Fresnel’s law results when

a bounce point (bounce #4 in the figure) falls below the “critical line” (shown in red)
sin χ > sin χc. Note that sin χ < 0 correspond to clockwise sense of circulation. We do

not plot the sin χ < 0 region as the SOS has reflection symmetry. Below we will plot the
SOS for ideal billiards without escape unless we otherwise specify.

increased (see Fig. 6) chaotic motion appears (the areas of scattered points

in Fig. 6) and a given initial condition explores a larger range of values

of sinχ. Simultaneously, islands of stable motion emerge (closed curves in

Fig. 6), but there also exist extended “KAM curves” (the SOS projection

of KAM tori)23 (open curves in Fig. 6), which describe a deformed WG-

like motion close to the boundary. These islands and KAM curves cannot

be crossed by chaotic trajectories in the SOS. As the transition to chaos

occurs, a crucial role is played by the periodic orbits (POs), which appear as

fixed points of the SOS map. The local structure of the islands and chaotic

layers can be understood through the periodic orbits which they contain.

Thus, the center of each island contains a stable fixed point, and close

to each stable fixed point the invariant curves form a family of rotated

ellipses. The Birkhoff fixed point theorem24 guarantees that each stable

fixed point has an unstable partner, which resides on the intersection of

separatrix curves surrounding the elliptic manifolds. Chaotic motion sets

in at separatrix regions first, and with increasing deformation pervades

larger and larger regions of the SOS. Already at ε = 0.1, much of the

phase space is chaotic and a typical initial condition in the chaotic sea
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explores a large range of sinχ, eventually reversing its sense of rotation.

For ε = 0.18 the entire SOS above sinχ ≈ 0.4 appears chaotic. There

is an important practical implication of these results. For rather smooth

shapes and relatively small deformations chaotic motion dominates and the

failure of analytic methods for such shapes is a barrier to understanding

the spectrum of the corresponding wave problem.

a) b)

c) d)

PSfrag replacements

ε = 0.0

ε = 0.05

ε = 0.11

ε = 0.18

Fig. 6. The SOS of a quadrupole at fractional deformations ε = 0, 0.05, 0.11, 0.18. The

closed curves and the curves crossing the SOS represent two types of regular motion,

motion near a stable periodic orbit and quasi-periodic motion respectively. The regions

of scattered points represent chaotic portions of phase space. A single trajectory in this

“chaotic component” will explore the entire chaotic region. With increasing deformation

the chaotic component of the SOS (scattered points) grows with respect to regular com-
ponents and is already dominant at 11 % deformation. Note in (b) the separatrix region

associated with the two-bounce unstable orbit along the major axis where the transition
to chaotic motion sets in first.

We now comment briefly on the relevance of these results for the closed

behavior for the dielectric billiards. As we are always assuming kRÀ 1 we

are in the limit for which ray optics describes a light ray interacting with the

dielectric boundary. Therefore internal reflection for light rays hitting with

sinχ > 1/n is almost total and the closed billiard description for the portion

of trajectories which remain for some time in this region of phase space
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is quite accurate. However any portion of the trajectory which involves

reflection with sinχ < 1/n will be subject to refractive escape, typically

within a few bounces. Therefore in the context of the analysis of dielectric

resonators we introduce a critical line sinχ = 1/n; portions of the SOS

below this line are not to be regarded as supporting long-lived resonances

even though they might do so in the closed resonator. Typical resonances

we will be interested in emit most of their radiation from the vicinity of

the critical line as we shall see below. Certain aspects of these resonances

can be modeled by following ray bundles in the SOS and allowing rays to

escape with the probability given by the Fresnel law when a ray passes

below the critical line. The phase space “flow pattern” then determines the

directional emission from these resonances as shown in detail in Section (3).

The reason that ray models have some relevance to the wave solutions

even in the chaotic case is that even in this case it is possible to associate

wave solutions with different regions of phase space and (neglecting inter-

ference effects) hence with bundles of rays. In the next sections we will

illustrate this fact by formulating the resonance problem and a numerical

method for its solution, and then show how such solutions can be projected

onto the SOS and interpreted in terms of ray dynamics.

2.4. The resonance problem

We now briefly review the formulation of the exact resonance problem, spe-

cializing to an infinite uniform dielectric rod of arbitrary cross-section D.

For this geometry the Maxwell equations for the problem reduce to the

Helmholtz equation (1) for the E-field (TM), and B-field (TE) polariza-

tions, which we have denoted ψ(x, y), assuming a uniform solution in the

z-direction. As also noted the electromagnetic boundary conditions reduce

to continuity of ψ and it normal derivative on the boundary ∂D. Assum-

ing the boundary is a smooth deformation of the circle it is convenient to

expand the solutions inside and outside the rod in terms of the solutions of

the Helmholtz equation at a given wavevector in polar coordinates:

ψ1(r, φ) =

∞
∑

m=−∞

(

αmH+
m(nkr) + βmH−

m(nkr)
)

eimφ r < R(φ) (8)

ψ2(r, φ) =

∞
∑

m=−∞

(

γmH+
m(kr) + δmH−

m(kr)
)

eimφ r > R(φ) (9)

where H−
m,H

+
m are the incoming and outgoing Hankel functions respectively.

If we assume a single incoming wave with unit amplitude for angular mo-
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mentum m, the matching conditions are sufficient to find a solution for all k

values and the coefficients of the outgoing waves define a unitary S-matrix

Sm,m′(k). However we are only interested in the special values of k at which

a long-lived resonance of the system exists, as these will correspond (ap-

proximately) to the emitting modes of the active cavity. We could look

for rapid variations in the S-matrix as we vary k, which indicate resonant

scattering, but this is inconvenient for various reasons. Instead we define

the quasi-bound states as the solutions of this matching problem with no

incoming wave from infinity (δm = 0 in Eq. (9)). Due to the violation of

flux conservation, no such solution exists for real wavevectors k, but a dis-

crete set of solutions exist at complex wavevectors k = q − iγ, known as

the quasi-bound states or quasi-normal modes of the system. Long-lived

resonances have q À γ and the Q-value can be defined as Q = 2q/γ. After

the resonance wavevectors are found, the corresponding mode can also be

determined and plotted both within the resonator and in the farfield. The

farfield solutions have the unphysical feature that they increase in inten-

sity as exp[2γr], reflecting the decay from the cavity, but this unphysical

dependence does not affect the angular distribution of radiation, which is

the farfield quantity we are interested in. Introducing an imaginary part

of the index into the problem (representing amplification in the cavity)

would lead to solutions for real k with the same angular dependence and

no exponential growth at infinity.

An approach to solving this problem termed the “S-matrix method” has

been developed over a number of years;25,26,20,18 the most recent version of

this approach is highly efficient for the specific problem of ARC resonators.

The numerical results plotted in the remainder of this paper were all ob-

tained by this method. The approach begins by integrating the matching

conditions over the azimuthal angle φ with r = R(φ); this eliminates the

spatial dependence and transforms the matching conditions into an infinite

set of linear relations for the coefficients {αm}, {βm}, {γm}. This infinite

set of relations can be truncated because for m À nkR the correspond-

ing Hankel functions have negligible weight in the cavity. We thus end up

with order 2nkR linear relations which must be satisfied by the coefficients.

These relations and the regularity condition on the solution at the origin

yield a determinantal equation for the form:

ζ(k) = det[1 − S(k)]. (10)

The matrix S(k) is not the unitary scattering matrix of this problem, but

it is nearly unitary for real k; the complex values of k which make the
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determinant zero (eigenvalue of S = 1) are the quasi-bound wavevectors we

seek. Once they are known the coefficients {αm}, {γm} can be determined

and the quasi-bound state can be constructed from Eqs. (8),(9).

At this level of description a complex root search of this determinantal

equation is needed in order to actually find the solutions of interest, which

does not appear to make the method more efficient than various other

brute force methods one might employ, such as point matching on the

boundary. However there are two reasons the current method is much more

powerful. First, as has been known for some time, the eigenvectors of S don’t

change much over a range of k corresponding to the mode spacing; hence the

“unquantized” solutions have the same physical content as the true quasi-

bound solutions. Therefore basic physical properties such as directional

emission patterns and distributions of Q-values can be obtained without

the root search. Second, quite recently it was shown18,20 that there exists

an efficient extrapolation method to find the roots once the eigenvalues of

S are found at two values of k, so that no true root search is necessary.

The technical details supporting and expanding on these statements can be

found in Ref. 18.

Once we have obtained numerical solutions to the resonance problem we

would like to interpret their “classical” (ray dynamical) meaning and use

our knowledge of the phase space structure and flow to explain the prop-

erties of the resonance spectrum, such as the directional emission patterns

and distribution of Q-values. Despite the fact that there exists no simple

classical construction of individual solutions, the correspondence between

solutions and properties of the ray phase space is quite helpful in extract-

ing the physical properties we are interested as we shall demonstrate below.

The technique for extracting ray dynamical information from a real-space

solution is

known as Husimi projection;18,27 this technique allows us to represent

a solution within the ray phase space of the problem and ultimately on the

surface of section. Such a representation attempts to extract both momen-

tum and position information simultaneously and just as for a quantum

mechanics, we cannot have full information about real-space and momen-

tum space at the same time due to the analog of the uncertainty principle

for the electromagnetic wave equation (often written as ∆x∆k ≥ 1, this is a

basic property of Fourier transforms). Phase space coordinates involve both

position and momentum and our resolution in phase space will be limited

by this uncertainty relation.

The specific procedure which is widely followed to project a real-space
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solution into phase space is a version of a “windowed” Fourier transform

known as Husimi projection which involves integrating the real-space solu-

tion ψ(x) against windowing functions peaked around position x̄

Zx̄p̄(x) =

(

1

πη2

)1/4

exp(ikp̄ · x) exp

(

− 1

2η2
|x − x̄|2

)

(11)

where the width parameter η = σ0/
√
k, σ0 is a dimensionless parameter

which can be chosen for convenience, and we note that the momentum

vector has been factorized as kp̄ so that p̄ is a unit vector denoting the

direction of the wavevector. The Fourier transform of this windowing func-

tion will also be a Gaussian in the unit vector p peaked around p̄. In these

scaled variables, which are the appropriate choice for projecting onto the

billiard SOS, the uncertainty relation takes the form:

∆x · ∆p ≥ 1

2k
. (12)

The function Zx̄p̄(x) and its Fourier transform Z̃x̄p̄(p) have standard de-

viations which satisfy,

∆x =
σ0√
2k

=
η√
2

∆p =
1√

2kσ0

, (13)

hence they saturate this inequality and represent a “minimum uncertainty”

basis for projecting the solutions onto phase space (these function are the

“coherent states” often used in quantum mechanics). The Husimi density

in phase space is then defined as:

ρψ(x̄, p̄) =

∣

∣

∣

∣

∫

d2xZ∗
x̄p̄

(x)ψ(x)

∣

∣

∣

∣

2

, (14)

which is positive semi-definite on the phase space of the problem. Since we

have scaled p̄ to be a unit vector this phase space is already confined to the

three-dimensional constant energy surface of the four-dimensional phase

space, but we now wish to project it down one dimension further onto

the surface of section. For this purpose it is useful to introduce windowing

functions in cylindrical coordinates18 and calculate the Husimi distribution

at a fixed radius r = Rc. Careful limiting procedures must be observed to

get a meaningful result as described in Ref. 18. The resulting Husimi-SOS

distribution at r = Rc is given by:

Hψ(φ̄, sin χ̄) =

∣

∣

∣

∣

∣

∞
∑

−∞

αmH+
m(nkRc)e

−inkRc(sinχ−sin χ̄)φ̄e−σ
2

0
(nkRc)

2(sinχ−sin χ̄)2/2

∣

∣

∣

∣

∣

2

(15)
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where equal spatial and momentum resolution in the SOS is achieved by

choosing σ0 ∼ 1/
√
nkRc. Note that the numerical real-space wavefunc-

tion enters this expression through the coefficients αm which are assumed

known.

Equation (15) is a perfectly good Husimi-SOS distribution, but it

doesn’t correspond to our conventional choice of the SOS at the bound-

ary. However, for each value of (φ̄, sin χ̄) we can simply calculate the val-

ues of (φ, sinχ) that would result from following this ray to the boundary

and assign the corresponding point on the boundary the values of the cir-

cle Husimi-SOS at (φ̄, sin χ̄) corrected by a Jacobian factor for the Gaus-

sian propagation between the two sections. This is the quantity we use to

compare and interpret wave solutions in the classical SOS of the problem.

Again, a detailed recipe for constructing these Husimi distributions is given

in Ref. 18. Note that for the Husimi-SOS the uncertainty relation (12)

∆φ · ∆sinχ ≥ 1

2nkR
. (16)

is saturated at its lower bound, i.e. ∆φ ∼ ∆sinχ ∼ 1/
√

2nkR, where R is

the average radius of the billiard and we have used the approximation that

the arc length along the boundary is R∆φ. Hence EM wave solutions only

resolve the classical structures in the SOS on a scale of area (2nkR)−1; this

is the EM analog of the statement in quantum chaos theory that wavefunc-

tions only are sensitive to classical structures of order 1/~.

To illustrate how the ray-wave correspondence works for billiards in the

mixed regime we present three examples of numerical solutions for reso-

nance wavefunctions of the quadrupole billiard calculated by the S-matrix

approach and their corresponding Husimi-SOS transforms. In Fig. 7(a,b) we

show a whispering gallery mode of a slightly deformed quadrupole billiard

(ε = 0.03); this is a typical wavefunction corresponding to quasi-periodic

ray motion which could be calculated analytically (in principle) using the

eikonal method. Projection of the state onto the SOS shows it follows closely

an invariant curve of the problem, but smeared out to agree with the uncer-

tainty relation just noted. In Fig. 7(c,d) we show a two-bounce stable orbit

mode of the type one could calculate using the Gaussian optical method. In

the Husimi it is well-localized on the stable island and is relatively insen-

sitive the the existence of chaos elsewhere in the system. Thus these quite

conventional modes can coexist with chaotic modes at the same deforma-

tion, as we will discuss further in Section (5.1). In Fig. 7(e,f) we show a

highly chaotic mode of the strongly deformed quadrupole (ε = 0.18). Note

the “tangled” wavefronts in much of the resonator which vary in direction
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(d)

(f)

(b)

Fig. 7. Real-space false color plots and Husimi projections of (a,b) a deformed whis-

pering gallery mode at ε = 0.03 and n = 2, (c,d) transverse excited bouncing ball mode

at ε = 0.16 and n = 2, (e,f) mode localized on the chaotic portion of the phase space at
ε = 0.18 and n = 2.65.

on the scale of the wavelength. The Husimi projection shows this mode

lives completely in the chaotic portion of the SOS, although it is not com-

pletely spread out on the chaotic component. From experience we find that

“chaotic” solutions are still not fully randomized on the chaotic compo-
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nent at the values of nkR ∼ 100−300 which we can treat by our numerical

method. Nonetheless the ray-wave correspondence is clearly present in these

chaotic resonators and we will use it as the primary tool for interpreting the

exciting experiments which have been done on ARC and spiral microlasers.

3. Ray dynamics and shape-dependent directional emission

from ARCs

In the previous sections we have reviewed the phase space formulation of ray

dynamics in ARCs and the formulation of the resonant scattering problem.

In the current section we will begin to present the most recent experimen-

tal and theoretical developments relating to ARC resonators and lasers.

First, we will review some of the experimental techniques used in the stud-

ies we report. Then we will briefly review the ray model for the directional

emission of ARCs and present experimental data from two different sets of

experiments on low-index ARC resonators. The first of these studied las-

ing emission from differently-shaped polymer ARC cylindrical microlasers12

and the second of these studied resonant scattering from passive ARC silica

microspherical cavities.28 The first part of this section focuses on the lasing

experiments and how they can be understood in terms of the phase space

ray-dynamical method for ARCs.

3.1. The imaging technique for the study of microcavity

resonators

The detection part of the experiment was designed in accordance with the

information contained in the SOS diagram. The detector must be able to

extract two pieces of information: 1) where along the sidewalls the light

is emerging from the microcavity, that is, the angle φ, and 2) what the

angle of the emitted ray is which is related to the internal incident angle χ

by Snell’s law of refraction. A detector that can only measure the farfield

radiation pattern is insufficient because it misses where the light emerges

along the sidewall. The farfield pattern alone is not unique in that the

same pattern can occur for different sidewall distributions of emission. Any

detection system ought to be able to distinguish between the two different

emission types shown in Fig. 8, where the farfield patterns are similar, but

the image patterns along the sidewalls are different.

Figure 9 shows the detection system that was settled upon as the best

compromise between obtaining the farfield pattern while maintaining spa-
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Fig. 8. Two possible emission patterns with different emitting points on the boundary,

which yet can result in identical farfield distributions.

tial resolution along the sidewalls. In this setup, microlaser devices are op-

tically pumped normal to the plane of the pillar and light emitted from the

side-walls is collected through an aperture in the farfield, passed through

a lens and collected on a CCD camera. The key element in this detection

system is the aperture placed before the collection lens. The aperture ac-

complishes two purposes: 1) it limits the solid angle of the collected light;

and 2) it extends the depth of field that the light is collected from. The

aperture sets a solid-angle limitation and restricts the farfield profile to

an angular resolution of 5 degrees. The small aperture extends the depth

of field to be larger than the longest diameter of the microstructure. The

depth of field associated with the numerical aperture (NA = 0.047) is 200

µm. The largest microcavity being imaged has the longest dimension of 120

µm. Thus the entire microcavity is in focus at the same time, regardless of

the rotational alignment of the microcavity with respect to the camera.

The relative angle between the CCD camera and the major axis of the

quadrupolar shaped microcavity is designated as θ. The relative angle is

accurate to plus or minus 5 degrees and is determined by making laser-

emission measurements from a square-shaped microcavity, specifically de-

signed on the photographic mask to serve the purpose of alignment. All the

other microstructures, during the mask designing time, are aligned relative

to the square. The square, acting as a calibration marker, emits laser radia-

tion (8 beams) only at its four corners and propagates parallel to its edges.

Therefore, when the CCD camera is normal to one edge of the square, two

equally bright spots should appear from the two edges. The relative an-

gle is varied by either rotating the sample while keeping the CCD camera
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Fig. 9. Experimental setup for measuring simultaneously farfield intensity patterns and
images of the sidewall emission.

stationary or vice versa.

At any given camera angle, the horizontal axis corresponds to different

locations along the sidewalls. That horizontal strip gives false color coded

intensity information as a function of pixels on the CCD camera, which

can be converted to a position φ on the resonator boundary. The next

angle forms another strip which is placed directly under the former strip.

Measurement of the intensity is made every 5 degrees from 0 to 360. This

yields a two-dimensional plot, called the imagefield, where a given data

point I(φ, θ) denotes the intensity emitted from sidewall position φ towards

the farfield angle θ. The latter can easily be converted to an incidence angle

sinχ, using Snell’s law and basic trigonometry. Hence, what is recorded is

actually a phase space plot of the emitted radiation. This correspondence

is put into a rigorous basis in Ref. 18. Such 2D imagefield plots will be

presented throughout the text for many of the experiments.

The farfield intensity at any angle is obtained by summing up all the

pixels within the horizontal strip. This sum at a given angle is called the

farfield intensity at that camera angle; we show many such plots below.

This way of obtaining the farfield intensity is subtly different from placing a

photomultiplier (with a pin hole) to define the angular resolution. Similarly,

the boundary image field is obtained by integrating over all farfield angles

for a fixed point φ on the boundary. This allows us to identify the brightest

emission points on the sidewall (we rarely show these plots below, but they

are used in our interpretation of the data).

A few comments are in order here. The aperture has an important role

of defining a window in the direction space (∆ sinχ), so that a given pixel

on the camera can be identified upto a diffraction limited resolution with a
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pair (φ, sinχ). Mathematically, the effect of the lens-aperture combination

is equivalent to a windowed Fourier transform of the incident field on the

lens.29 Note that infinite aperture limit is simply a Fourier transform of the

incident field and we lose all the information about direction sinχ, consis-

tent with our intuition with conjugate variables. It has to be emphasized

that we are only probing the farfield, and hence the image-data does not

contain the “nearfield” details we would see in a typical numerical solution,

nor does it contain information about the internally reflected components

of the internal cavity field (see Ref. 20 for further details). On the other

hand, it provides us with valuable information as to the sinχ–φ correlations

in the emitted field, allowing us to put forward a ray interpretation of the

emission and hence the internal resonance.

3.2. Phase space ray escape model for emission from ARCs

In Section (2.3) we discussed the ray dynamics of ARCs using the sur-

face of section to illustrate the generic properties of mixed phase space

and contrast them with integrable dynamics. In that section the ARC was

treated as a closed two-dimensional billiard with specular reflection and

zero loss. We saw that the ray dynamics is qualitatively different for an

integrable billiard shape, such as the circle or ellipse, as compared to a

generic, partially-chaotic billiard shape such as the quadrupole. An impli-

cation of that difference (illustrated in Fig. 14 below) is that for the ellipse,

which is integrable for any eccentricity, phase space flow occurs on a one-

dimensional curve in the SOS and the variations in angle of incidence sinχ

are bounded for any initial condition. For generic shapes there are regions of

phase space corresponding to chaotic motion for which motion in the SOS

fills a two-dimensional region in a diffusive manner, and for deformations

above 10% these chaotic regions typically make up a large fraction of the

phase space. A dielectric cavity differs from an ideal metallic cavity in that

rays at angles of incidence below the critical angle sinχc = 1/n are par-

tially refracted out of the cavity providing a new mechanism for emission

into the farfield which differs from the evanescent coupling of whispering

gallery modes. In a series of papers beginning in 1994, Nöckel, Stone and

Chang4,5,30,31 proposed to model the resonant emission from ARCs by a

ray escape model in which an initial bundle of rays was propagated in phase

space and allowed to escape the ARC according to a physically-motivated

“escape rule”; the mean rate of escape and the distribution in angle of

the outgoing rays were used to predict the Q-values and emission patterns
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from ARCs. The escape rule reduces to the Fresnel law of refraction from

a flat interface for angles of incidence below the critical angle but takes

into account the tunneling (evanescent) leakage which occurs for a curved

interface when the angle of incidence is above the critical angle for total

internal reflection. It should be pointed out that these tunneling corrections

are unimportant when the ray dynamics is highly chaotic and the critical

angle is rapidly crossed, but become crucial for small perturbations where

initial rays remain above the critical angle (this situation will be relevant

to the silica ARC experiments reported below).

A challenging point for the general definition of such a model is that in

the case of chaotic dynamics there is no simple correspondence between a set

of rays and a set of modes of the wave equation (as there is in the integrable

case – see Section (2.2)). Nöckel and Stone proposed5,31 that an appropriate

set of initial conditions for ARCs would be to start a uniform distribution

of rays on an adiabatic curve of the boundary,23,32 which can be thought of

as the curve in the SOS that a ray would follow in the absence of chaos (this

approximation describes the exact flow in the ellipse, see Fig. (10) for an

example). Using this model they were able to predict a striking difference

in the emission patterns from quadrupole resonators with index n = 1.5

as opposed to index n = 2.0. They also noted that this difference was not

highly sensitive to the choice of initial conditions. The theoretical analysis

we present here indicates that the adiabatic model does not apply over most

of the experimental range but that the ray escape model still gives good

results, because its predictions for high deformations are almost completely

independent of initial conditions for ARCs with index of refraction n ≈ 1.5.

The ray model and its independence of initial conditions for a strongly

deformed quadrupole ARC is illustrated in Fig. 10.

3.3. Tests of the ray model in polymer ARC lasers

Note that the emission pattern for the quadrupole at ε = 0.12 and index

n = 1.5 is predicted by the ray model to be highly directional with a peak in

roughly the 35◦direction in the farfield. Below we will see that this emission

directionality for this shape is observed experimentally and also is found

in numerical solutions of the wave equation. As pointed out in the initial

work,30,5,31 this emission pattern contradicts the intuitive expectation that

the resonator should emit from the points of highest curvature (φ = 0, π)

in the tangent direction (critical emission) which would lead to peaks at

θ = ±π/2 in the farfield. Moreover in later work33 it was shown that an
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Fig. 10. left: Surface of section of the quadrupole ARC with ε = 0.12 and index of
refraction n = 1.5. The portion of the SOS below sin χc = 1/n is shaded to indicate that

in this region rays escape rapidly by refraction. In color we have indicated two possible
types of initial conditions used in the ray escape model; the blue curve represents one of

the possible adiabatic curves which were used as initial conditions in the Nöckel-Stone
model and the red circles initial conditions localized on the unstable 4-bounce orbit. A

third initial condition used extensively below is simply to start randomly on all possible
points in the SOS originating in the trapped region above the critical line. Right: farfield
emission plots calculated using the ray escape model for this system with the three pos-

sible choices of initial conditions just described. The qualitative and semi-quantitative

features of the emission patterns are seen to be independent of the choice of initial con-

ditions for this system. right: Ray simulations of the farfield emission patterns for the

quadrupole with ε = 0.12 (a), ε = 0.18 (b) with different types of initial conditions.

The solid curve is the result of choosing random initial conditions about the critical
line sin χ = 1/n, the dashed curve is for initial conditions on the adiabatic curve with

minimum value at the critical line. The dotted curve is for initial conditions localized
around the unstable fixed point of the rectangle periodic orbit. In each of the ray sim-

ulations 6000 rays were started with unit amplitude and the amplitude was reduced

according to Fresnel’s law upon each reflection, with the refracted amplitude “collected”

in the farfield. The emission pattern found by the ray model agrees well with microlaser

experiments.

ellipse with the same index of refraction and the same major to minor axis

ratio emits in the ±π/2 direction as intuitively expected. This suggested

a very dramatic shape sensitivity of the emission patterns, as the ellipse

and the quadrupole are identical shapes to leading order in ε. In that same

work33 experiments on deformed spherical lasing droplets were interpreted

in terms of the ray model for the quadrupole ARC (Fig. 10). While sugges-

tive, those experiments did not have the ability to study a specific defined



October 29, 2003 17:34 WSPC/Trim Size: 9in x 6in for Review Volume chapter˙ws

28 Schwefel and Tureci et al.

shape and were complicated by the three-dimensional nature of the modes

of the droplet. Here we focus on experiments on polymer microcylinder

lasers which do not suffer from these drawbacks.

In the polymer lasing experiments deformed cylindrical lasers were fab-

ricated with shapes defined by a mask to approximate closely shapes which

would exhibit these different behaviors. In the specific experiments we now

discuss the shapes studied were cylinders with elliptical, quadrupolar and

hexadecapolar deformations of between ten and twenty percent12 (see pre-

cise definitions, caption of Fig. 11). As noted, the ellipse for any eccentricity

gives integrable ray dynamics and the quadrupole and hexadecapole are two

simple examples of generic shapes with mixed dynamics. We will see that

the boundary shape of the microlaser does indeed have a dramatic influence

on the emission patterns. Here we will only discuss in detail the compari-

son of the ellipse and the quadrupole; a more detailed study including the

quadrupole-hexadecapole shaped ARCs is reported in Schwefel et al.12

As already noted, earlier work33 had predicted that quadruple ARCs

with index n = 1.5 and deformation in the range of 10-12% would emit

primarily in the θ = 35◦ − 45◦ direction in the farfield while an ellipse

with the same major-minor axis ratio emits primarily in the θ = 90◦ di-

rection (as one might have expected). It was argued that the origin of this

effect is the presence in the quadrupole of a stable four-bounce periodic

ray orbit which prevents emission from the highest curvature points in the

tangent direction, an effect termed “dynamical eclipsing”.30,31 This finding

was supported by numerical solutions of the linear wave equation for the

quasi-bound states and their farfield emission patterns. Mode selection and

non-linear lasing processes were not treated in the theory. This earlier work

on ARCs did not look extensively at deformations above ε = 0.12 for the

case of low index materials such as polymers or glass. The belief was that

the adiabatic model would become questionable at higher deformations as

the phase space became more chaotic and the ray motion departed from

the adiabatic curves very rapidly. A natural expectation was that due to

increased chaos the emission patterns in the farfield would become less di-

rectional and more fluctuating. The experimental data we now review12

strongly contradicts this expectation.

3.4. Experimental results

The experiments we report were performed by Rex et al.10,12 on differently

shaped dye (DCM)-doped polymer (PMMA) samples that are fabricated
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φ

χ

b)
Quadrupole

a)
Hexadecapole

c)
Ellipse

Fig. 11. Cross-sectional shapes of micropillar resonators studied: a) The quadrupole,
defined in polar coordinates by R = R0(1 + ε cos 2φ), b) The ellipse, defined by R =

R0(1 + ((1 + ε)4 − 1) sin2 φ)−1/2 and c) The Quadrupole-Hexadecapole, defined by
R = R0(1 + ε(cos2 φ + 3

2
cos4 φ)) all at a deformation of ε = 0.12. Note that all shapes

have horizontal and vertical reflection symmetry and have been defined so that the same
value of ε corresponds to approximately the same major to minor axis ratio. In a) we
show short periodic orbits (“diamond, rectangle”) relevant to the discussion below.

on top of a spin-on-glass buffer layer coated over a silicon substrate via

a sequence of micro-lithography and O2 reactive ionic etching steps. The

effective index of refraction of these microcavities is 1.49, much lower than

for other experiments (discussed below) which were performed using a sim-

ilar set-up on GaN, where the index of refraction is n = 2.65.34,11 The

cavities are optically pumped by a Q-switched Nd:YAG laser at λ = 532

nm incident normal to the plane of the micropillar. Light emitted from the

laser is imaged through an aperture subtending a 5◦ angle and lens onto a

ICCD camera which is rotated by an angle θ in the farfield from the major

axis. A bandpass filter restricts the imaged light to the stimulated emission

region of the spectrum. The ICCD camera records an image of the inten-

sity profile on the sidewall of the pillar as viewed from the angle φ which

is converted from pixels to angular position φ. Here we show microcavities

with elliptic and quadrupolar shape of an average radius R0 = 100µm (see

formulas in Fig. 11 caption). Each shape was analyzed at eccentricities of

ε = 0.12, 0.14, 0.16, 0.18 and 0.20.

In Fig. 12 we show the experimental results in the form of a color scale

2D imagefield (φ, θ) plot as discussed previously. We omit the data for

ε = 0.14 deformation as it indicates no effects not captured by the data at

the other deformations. As insets we show the exact shape of each of the

microcavities. Although the shapes appear very similar to the eye, we find

dramatic differences in the farfield emission patterns, which in the case of

the ellipse vs. the quadrupole, persist over a wide range of deformations.

Specifically, the farfield emission intensity for the quadrupole exhibits a

strong peak at θ = 34◦−40◦ which remains rather narrow over the observed
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Fig. 12. Two-dimensional display of the experimental data showing in false color scale
the emission intensity as a function of sidewall angle φ (converted from ICCD images)

and of the farfield angle θ (camera angle). Columns from left to right represent the
quadrupole, ellipse and quadrupole-hexadecapole respectively. Insets show the cross-

sectional shapes of the pillars in each case (for definitions see Fig. 11). The graphs at the
bottom show the farfield patterns obtained by integration over φ for each θ, normalized to

unity in the direction of maximal intensity. The deformations are ε = 0.12, 0.16, 0.18, 0.20

(red, blue, black and green respectively)

range of deformations. Over the same range of deformation the boundary

image field (not shown) for the quadrupole changes substantially and does

not exhibit one localized point of emission. In contrast, the ellipse emits

into the θ ∼ 90◦ direction in the farfield, but with a much broader angular

intensity distribution, while the boundary image field remains well-localized

around φ ∼ 0◦(the point of highest curvature in the imaged field). Thus

we see qualitatively different behaviors for the two shapes studied over the
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same range of variation of the major to minor axis ratios. The hexadecapole

shape shows yet a third behavior with a cross-over between ellipse-like and

quadrupole-like patterns with increasing deformation; the origin of this is

discussed in Ref. 12; this shape will not be analyzed further here.

Several different samples with the same boundary shape were measured

in each case and confirmed that the basic features of this data set are re-

produced within each class (with small fluctuations).10 This shows that

the effects measured are a property of the boundary shape and not of un-

controllable aspects of the fabrication process. Moreover the theoretical

calculations, which we will present next, are based on uniform dielectric

rods with the ideal cross-sectional shape specified by the mask; therefore

the agreement of these calculations with the measurements also confirms

that the differences are due to controllable shape differences.

3.5. Ray and wave simulations of polymer experiments

The experiment is performed well into the short-wavelength limit, and we

employ the ray escape model of Nöckel and Stone described above (caption,

Fig. 10) to calculate the emission patterns. To compare with experiment

we collected the emitted rays in 5◦ bins. As shown above (Fig. 10), for the

quadrupole the basic results are independent of initial conditions over a

wide range and we employ a uniform random set of ray initial conditions

above the critical line for escape. In the case of the non-chaotic ellipse

the results are not independent of initial conditions and we chose initial

conditions localized on invariant curves near the critical angle (this improves

agreement with experiment and is more physically reasonable).

In addition to these ray simulations we also performed exact numeri-

cal calculations of the resonances of the passive cavity using the S-matrix

method described in Ref. 35 and reviewed in Section (2.4). This method

generates the entire range of high-Q and low-Q resonances for such a cavity

and thus there is some arbitrariness in choosing which resonance to com-

pare with the experiment. Previous experiments have indicated that mode

selection is complicated in these dielectric resonators and that there is no

simple rule relating the observed lasing mode to the Q-value of the mode

in the passive cavity. Due to their low output coupling and the multi-mode

nature of these lasers, high Q-modes are not necessarily the observed lasing

modes in the farfield. This set of experiments did not allow the collection

of spectral data and the Q-values of the lasing modes are not directly mea-

sured. Thus from the set of calculated resonances we chose the resonance
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which coincides well with the observed farfield pattern and has a relatively

high Q = −2Re[k]/Im[k]. We also confirmed that theoretical 2D imagefield

data coincides well with the experimental results. Moreover in all cases dis-

cussed here, there were many resonances which gave good agreement with

the data, indicating the existence of a robust class of modes any of which

could be the lasing mode.
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Fig. 13. Farfield intensity for the quadrupole (a, b) and ellipse (c, d) with ε = 0.12
(a, c) and 0.18 (b, d). The dash-dotted curve is the experimental result, dashed the ray

simulation and solid a numerical solution of the wave equation. The ray simulation for the

quadrupole was performed starting with 6000 random initial conditions above the critical

line and then propagated into the farfield in the manner described in the text. The ray

simulation for the ellipse was performed starting with 6000 initial conditions spread over

seven caustics separated by ∆ sin χ = 0.02 below the critical caustic (the caustic that
just touches the critical line). The numerical solutions selected for the quadrupole have

kR0 = 49.0847−0.0379i with a Q = −2Re[kR0]/Im[kR0] = 2593.05 and kR0 = 49.5927−
0.0679i with Q = −2Re[kR0]/Im[kR0] = 1460.72 for ε = 0.12 and 0.18 respectively. The

numerical wave solutions for the ellipse shown correspond to kR0 = 49.1787 − 0.0028i

with Q = −2Re[kR0]/Im[kR0] = 17481.38 and kR0 = 49.2491 − 0.0110i with Q =

−2Re[kR0]/Im[kR0] = 4488.20 for ε = 0.12 and 0.18 respectively.

In Fig. 13 we compare the experimental results for the farfield emission

patterns for the two shapes measured at ε = 0.12, 0.18 to both the ray model

and the wave calculations. The agreement in both cases is quite good. In

Fig. 13 we show in red the numerical farfield by calculating the asymptotic

expansion of our wavefunction in the farfield. Numerical limitations prevent
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us from performing the calculations at the experimental values of kR0 ∼
1000 but the major features of the emission pattern are not sensitive to kR0

over the range we can study numerically. The finding (discussed next) that

we can reproduce these patterns from ray escape simulations also suggests

that the wavelength is not a relevant parameter for the features we are

studying. In green we show the experimental results.

4. Surprising features of the data

The strong sensitivity of the emission patterns to small differences in bound-

ary shape is quite striking. This sensitivity was predicted in the earlier work

of Refs. 30, 31, 33 and was therefore not unexpected. However there are ma-

jor aspects of the experimental data which are quite surprising even in the

light of the earlier work on ARCs. In particular, the persistence of highly

directional emission in the quadrupolar shapes at quite high deformations

was not predicted theoretically and was unexpected for reasons we will now

discuss. In order to understand the unexpected features of the data and to

develop principles to predict the emission patterns for untested boundary

shapes we now present recent theoretical arguments about phase space flow

in these systems which can account for the persistence of directional emis-

sion to high deformations and high degree of chaos.

4.1. Dynamical eclipsing effect

We begin by briefly reviewing the adiabatic picture used previously to dis-

cuss the directional emission from the quadrupole. In Section (2.3) we re-

viewed the concept of phase space flow and the Poincaré surface of section.

In Fig. 14 we exhibit the difference in phase space structure between the

ellipse and the quadrupole. While the behavior of the quadrupole shown

in Fig. 14A) is generic there do exist special billiards that exhibit the two

extremes of dynamical behavior. One limiting case already noted is the inte-

grable billiard exemplified by the ellipse billiard, the SOS of which is shown

in Fig. 14B). Due to its integrability, phase space flow in the ellipse is par-

ticularly simple: every initial condition lies on one of the invariant curves

given by Eq. (17) below, and the trajectory retraces this curve indefinitely

(see Fig. 14B)). Curves which cross the entire SOS correspond to real-space

motion tangent to a confocal elliptical caustic Fig. 14B)(a); curves which

do not cross the entire SOS represent motion tangent to a hyperbolic caus-

tic in real space Fig. 14B)(b). The ellipse was conjectured to be the only

convex deformation of a circular billiard which is integrable,36 and a recent
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proof of this was given by Amiran.37 At the opposite extreme is the Buni-

movich stadium billiard (see inset in Fig. 19) for which it is proven that

there exist no stable periodic orbits and the entire phase space (except sets

of measure zero) is chaotic. We will study theoretically the emission from

stadium-shaped resonators in Section (4.4).

a)

b)

−π/2

1

0.5

0
0−π π/2 π c)

−π/2−π ππ/2

A)

a)

b)

B)

Fig. 14. The Poincaré surface of section
for the quadrupole A) and the ellipse B)
with ε = 0.072. The schematics A)(a-c) on

right show three classes of orbits for the

quadrupole, A)(a) a quasi-periodic orbit

on a KAM curve, A)(b) a stable period-

four orbit, (the ‘diamond’), and A)(c) a

chaotic orbit. Schematic B)(a, b) show the
two types of orbits which exist in the el-

lipse, the whispering gallery type, with
an elliptical caustic B)(a) and B)(b), the

bouncing ball type, with a hyperbolic caus-

tic.

Fig. 15. Comparison of the Poincaré sur-
face of section for the quadrupole and
the ellipse with ε = 0.12 showing mostly

chaotic behavior in the former case and

completely regular motion in the latter.

The red line denotes sin χc = 1/n, the

critical value for total internal reflection;

rays above that line are trapped and those
below escape rapidly by refraction. The

quadrupole still exhibits stable islands at
φ = 0, π and sin χ = sin χc which prevent

escape at the points of highest curvature

in the tangent direction

Phase space flow in mixed systems is much more complex and is ergodic

on each chaotic region. However a key property of mixed dynamical systems

is that the different dynamical structures in phase space are disjoint; this

implies that in two dimensions KAM curves and islands divide phase space

into regions which cannot be connected by the chaotic orbits. This puts

constraints on phase space flow despite the existence of chaos in a significant

fraction of the phase space. For small deformations (∼ 5%) most of phase
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space is covered by KAM curves the form of which can be estimated using

an adiabatic approximation.31 This approximation gives the exact result for

all deformations in the case of the ellipse; it can be written in the following

form:

sinχ(φ) =
√

1 + (S2 − 1)κ2/3(φ, ε) (17)

where κ is the radius of curvature along the boundary and S is a constant.

Plotting this equation for different values of S, ε gives an SOS of the type

shown in Fig. 14B). For the mixed case, exemplified by the quadrupole

billiard in Fig. 14A), Eq. (17) describes quite accurately the behavior for

values of sinχ near unity, but doesn’t work well at lower sinχ where chaos

is more prevalent.

Nöckel and Stone used the adiabatic curve picture to give a qualitative

explanation for the difference in emission patterns between the quadrupole

at n = 1.5 and the ellipse for the same index (or the quadrupole for n = 2.0).

The idea was that for some range of deformations the phase space flow in the

quadrupole could be seen as rapid motion along adiabatic curves and slow

diffusion between them. The adiabatic invariant curves for the quadrupole

have their minimum values of sinχ at the points of highest curvature on the

boundary φ = 0,±π, just as they do in the ellipse. If the diffusion in phase

space is sufficiently slow, emission would be near these points of highest

curvature and at the critical angle, i.e. in the tangent direction, as in the

ellipse. This reasoning held as long as the escape points sinχ = 1/n, φ =

0,±π occurred in the chaotic region and were reachable from the totally-

internally-reflected region of sinχ > 1/n. This is the calculated behavior

for n = 2 quadrupole.31 However for n = 1.5 quadrupole and deformations

around 10%, these expected emission points are enclosed by the stable

island corresponding to the four-bounce “diamond” orbit and due to the

disjoint nature of the dynamics, “chaotic” rays cannot escape there. Instead

they will escape at higher or lower values of φ leading to a large change in

the emission pattern from that of the ellipse with similar minor-major axis

ratio. This phenomenon was termed “dynamical eclipsing”.

Figure 15 contrasts the phase space for the ellipse and the quadrupole

for ε = 0.12. The island associated with the stable diamond orbit is smaller

than at ε = 0.072, but is still present for the quadrupole; there is no such

island at any deformation for the ellipse. Note that in the experimental

data for the quadrupole at ε = 0.12 we do not see a bright spot at the

boundary at φ = 0, consistent with the dynamical eclipsing model in which

the island structure forces the chaotic WG modes to emit away from the
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point of highest curvature. In contrast the bright spot in the ellipse which

emits to θ = 90◦ clearly is at φ = 0 for ε = 0.12. Thus the adiabatic

model of Refs. 31, 30 does seem consistent with the data for ε = 0.12 in

the quadrupole.

0 0.05 0.1 0.15 0.2

−2

0

2

4

6

8
10

���������������
���������������

���������������
��������������� ������������������������������

���������������
������
���

	�	�		�	�		�	�	

�
�

�
�

�
�


���������������
��������������� ���������������������

������
���
������
���

���������������
���������������

PSfrag replacements ε

T
r
M

Fig. 16. Poincaré surface of section for the quadrupole with ε = 0.18. The grey line
indicates the critical angle of incidence. The diamonds indicate the location of the fixed

points of the (now) unstable “diamond” orbit and the squares the fixed points of the
unstable rectangular orbit. In the inset we show the trace of the monodromy (stability)

matrix (see Eq. 20) for the diamond orbit versus deformation. When the magnitude of

the trace of the monodromy matrix is larger than two its eigenvalues become real, the

periodic motion becomes unstable and the associated islands vanish. For the diamond
this happens at ε = 0.1369 (see dashed vertical line in the inset) and the simple dynamical

eclipsing picture of Fig. 15 does not apply at larger deformations.

4.2. Short-time dynamics and Unstable Manifolds

At higher deformations chaotic diffusion is fast and rays tend to escape

rapidly even if they are initially well confined (i.e. far away from the critical

angle). It is not at all clear that the motion in phase space is equivalent

to slow diffusion between adiabatic curves. An iteration of random initial

conditions above the critical angle for 50 steps in the closed billiard is

shown in Fig. 17. It reveals a structure in the short-term dynamics which is

not similar to the adiabatic curve model and actually breaks the reflection

symmetry of these curves (and of the infinite time SOS) around φ = 0. The

colored curves which actually determine this flow pattern are the unstable

manifolds of short periodic orbits in the system. We now review briefly this

fundamental concept in non-linear dynamics.
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4.3. Unstable Manifolds

The SOS is defined by a discrete map of the billiard dynamics. One can get

a good idea of the short term dynamics of a chaotic region of such a map by

linearizing it in the neighborhood of unstable fixed points (corresponding

to unstable periodic orbits in real space). If we take the initial position and

direction/momentum of one ray at the boundary to be (s, u) = (φ, sinχ)

we define the map which projects the ray to the next position and direction

to be

T : (φ, sinχ) → (φ′, sinχ′). (18)

A set of fixed points of order N is defined by

TN (φ, sinχ) = (φ, sinχ). (19)

We can propagate an initial ray corresponding to a small deviation from

the fixed point values by linearizing the map around the fixed point.

T (φ, sinχ) ∼M(φ, sinχ) =

(

∂s′(s,u)
∂s

∂u′(s,u)
∂s

∂s′(s,u)
∂u

∂u′(s,u)
∂u

)

(φ, sinχ)T (20)

The nature of the nearby motion can then be characterized by calculating

the eigenvalues and eigenvectors of M . For Hamiltonian flows M is always

an area-preserving map, i.e. detM = 1. The matrix M is also known as

the monodromy, or stability matrix. The eigenvalues can be either com-

plex on the unit circle or purely real and reciprocal to each other. If the

eigenvalues are complex, the fixed points are stable (elliptic) and nearby

points oscillate around the fixed points tracing an ellipse in the SOS. In

this case the long-time dynamics is determined by the linearized map to a

good approximation. In the case of real eigenvalues there will be one eigen-

value with modulus larger than unity (unstable) and one with modulus

less than unity (stable) and there will be two corresponding eigendirections

(not usually orthogonal). In the stable direction, deviations relax exponen-

tially towards the fixed points; in the unstable direction deviations grow

exponentially away from the fixed points. Generic deviations will have at

least some component along the unstable directions and will also flow out

along the unstable direction. Therefore, in a short time generic deviations

move out of the regime of validity of the linearized map and begin to move

erratically in the chaotic “sea”. Hence the linearized map is not a good

tool for predicting long time dynamics in a chaotic region of phase space.

However, in open billiards, rays will escape if they wander away from the

fixed points into the part of the chaotic sea which is below the critical angle
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for total internal reflection. Therefore we find the unstable eigenvectors of

the short periodic orbits useful in predicting ray escape. For the short peri-

odic orbits in our shapes it is possible to calculate the matrix M giving the

linearized map around all of the short periodic orbits. Thus we can calcu-

late the eigendirections and determine the unstable directions analytically.

For deviations away from the fixed points which are outside the range of

validity of the linear approximation to the map one can still define gener-

alized curves known as the stable and unstable manifolds of the periodic

orbit which describe the set of points which would approach the fixed points

asymptotically closely as t→ ∞, t→ −∞ respectively. Each unstable fixed

point has associated with it stable and unstable manifolds which coincide

with the eigendirections as one passes through the fixed point. Note that for

integrable systems there is only one asymptotic manifold for both past and

future and it coincides exactly with the invariant curves, which can be cal-

culated analytically in some cases (e.g. the ellipse). For the non-integrable

case, e.g. the quadrupole, we can only calculate the eigendirections near the

fixed point analytically and must trace out the full manifolds numerically.

As the unstable manifolds deviate further from the fixed points, generically

they begin to have larger and larger oscillations. This is necessary to pre-

serve phase space area while at the same time have exponential growth of

deviations. This tangling of the unstable manifolds has been used to devise

a mathematical proof of chaotic motion.38 Strikingly, we see in Fig. 17 that

the phase space flow at large deformations is perfectly predicted by the

shape of the unstable manifolds of the short periodic orbits in that region

of phase space.

One can argue qualitatively that the unstable manifolds of the short

periodic orbits ought to control the ray escape dynamics at large deforma-

tions. The manifolds of short periodic orbits are the least convoluted as

they are typically the least unstable; hence the unstable direction is fairly

linear over a large region in the SOS. A typical ray will only make small

excursions in phase space until it approaches one of these manifolds and

then it will rather rapidly flow along it. If the direction leads across the

critical line for escape, that crossing point and the portion just below will

be highly favored as escape points in phase space. Note further that the

different unstable manifolds must fit together in a consistent manner and

cannot cross one another; if they did such a crossing point would define a

ray which asymptotically in the past approaches two different sets of fixed

points, which is not possible. Because of this non-crossing property the un-

stable manifolds define just a few major flow directions in the SOS. To see
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a)

b)

Fig. 17. (a) Ray simulations of short-term dynamics for random initial conditions above

the critical line, propagated for 10 iterations, plotted on the surface of section for the

quadrupole with ε = 0.18. The areas of the SOS covered are delineated very accurately
by the unstable manifolds of the short periodic orbits which are indicated in the schemat-

ics at right. These manifolds are overlaid in the figure with appropriate color coding. (b)
Flow of phase space volume in the surface of section of the quadrupole with ε = 0.18. A

localized but arbitrary cloud of initial conditions (red) is iterated six times to illustrate

the flow. The initial volume is the circle at the far left, successive iterations are increas-
ingly stretched by the chaotic map. The stretching clearly follows closely the unstable

manifold of the rectangle orbit which we have plotted in blue.

this more explicitly, in Fig. 17b) we propagate an arbitrary but localized

set of initial conditions and see that they are stretched along and parallel

to nearby unstable manifolds. Thus it appears that for the highly deformed

case the phase space flow of a generic ray is much better predicted by simply

plotting these manifolds.

As a confirmation that these manifolds do control escape we perform

a further ray simulation for the “open” billiard. We propagate, as before,

an ensemble of rays with a uniform random distribution above the critical

angle. As we have done in calculating the ray emission pattern, we asso-



October 29, 2003 17:34 WSPC/Trim Size: 9in x 6in for Review Volume chapter˙ws

40 Schwefel and Tureci et al.

ciate to every starting ray in the surface of section an amplitude which

decreases as the ray propagates forward in time according to Fresnel’s law

(if the point falls below the critical line). Instead of following the refracted

amplitude into the farfield, in this case we plot the emitted amplitude onto

the surface of section, as shown in Fig. 18a). The emission amplitude is

almost completely confined within the two downwards “fingers” created by

the unstable manifold of the four-bounce rectangular orbit. As noted ear-

lier, the availability of the two-dimensional data obtained from the imaging

technique (see Fig. 12), gives us a unique ability to reconstruct the emitting

part of the lasing mode both in real space and momentum space directly

from experimental data. It is therefore possible to check directly this ray

simulation in phase space against experimental data. The intensity data is

sorted into intensity pixels according to both its sidewall location (the angle

φ from which emitted intensity originated) and its farfield angle, which by

geometric considerations and Snell’s law can be converted to the internal

angle of incidence sinχ. Therefore we can project this data “back” onto

the SOS for emission. In Fig. 18b) we show this projection for the same

deformation as in Fig. 18a); we find remarkable agreement between the

projected data and the ray simulation. As noted above, this is a much more

demanding test of agreement between theory and experiment than simply

reproducing the experimental farfield patterns.

Although the phase space flow along the unstable manifolds leads to

a highly non-uniform emission pattern in phase space, this alone does not

fully explain the very narrow farfield emission peak observed in the data.

We see in Fig. (18a) that there is still a significant spread of angles of

incidence for escape. In fact the spread of escape angle we see in Fig. 18

would lead to an angular spread of nearly 80◦ in the farfield if all the escape

occurred from the same point on the boundary. However as we see from

Fig. 18, the point of escape and the angle of incidence are correlated and

vary together according to the shape of the unstable manifold. Because the

boundary is curved, different angles of incidence can lead to the same angle

of emission in the farfield. It is straightforward to calculate the curves of

constant farfield for a given shape; for the quadruple at ε = 0.18 this curve

for the peak observed emission angle of 34◦ is plotted in Fig. 18. The curve

tends to lie remarkably close to the unstable manifold. Therefore we find

that the curvature of the boundary tends to compensate almost completely

for the dispersion in the angle of incidence at escape.
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Fig. 18. a) Ray simulation of emission: emitted ray amplitude (color scale) overlaid
on the surface of section for the quadrupole with ε = 0.18. b) Farfield intensity from

experimental image data Fig. 12 projected in false color scale onto the surface of section

for the quadrupole with ε = 0.18. The blue line is the unstable manifold of the periodic

rectangle orbit. In green we have the line of constant 34◦ farfield (see the discussion in

Section (4.3)). Absence of projected intensity near φ = ±π in (b) is due to collection of
experimental data only in the first quadrant.

4.4. Directional Emission from Completely Chaotic

Resonators

The existence of highly directional emission for the highly deformed

quadrupole (ε = 0.20) suggests that the slow diffusion in phase space, char-

acteristic of mixed systems, is not essential to get this effect. Therefore we

decided to study theoretically resonators for which the corresponding bil-

liard is completely chaotic and for which there exist no stable periodic orbits

at all. The Bunimovich Stadium (see inset in Fig. 19), mentioned above,

was a natural choice due to its similarity to the quadrupole. As before we

did both ray escape simulations and numerical solutions of the wave equa-

tion. In Fig. 19 we show our predictions. We find again highly directional



October 29, 2003 17:34 WSPC/Trim Size: 9in x 6in for Review Volume chapter˙ws

42 Schwefel and Tureci et al.

30

30

60

60

90

90

0

0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0b)

a)

2 ε
1

Fig. 19. Farfield emission patterns for the
stadium with ε = 0.12, 0.18. The dash-

dotted curve is the ray simulation and the
solid a numerical solution of the wave equa-

tion; no experimental data was taken for
this shape. The ray simulation was per-

formed with random initial conditions ex-

actly as in Fig. 10. The numerical solutions
were for resonances with kR = 50.5401 −

0.0431i with Q = −2Re[kR]/Im[kR] =
2342.71 and kR = 48.7988 − 0.1192i with

Q = −2Re[kR]/Im[kR] = 818.83 for ε =

0.12 and 0.18 respectively. The inset shows

the shape of the stadium; it is defined

by two half circles with radius one and a

straight line segment of length 2ε.

Fig. 20. Ray emission amplitude (color

scale) overlaid on the surface of section for

the stadium with ε = 0.12 (a) and ε = 0.18
(b). Solid blue curve is the unstable man-

ifold of the periodic rectangle orbit. The
green curve is the line of constant 55◦(a)

and 48◦ (b) emission direction into the

farfield. The thick black lines mark the end

of the circle segments of the boundary and

coincide with discontinuities in the mani-
folds.

emission with a peak direction (55◦) slightly shifted from the quadrupole;

the narrowness of the farfield peak in the stadium is comparable to that of

the farfield peak in the quadrupole. We can associate this peak with the

slope and position of the manifold of the unstable rectangular orbit in the

stadium, Fig. 20a). The noticeable shift between the ε = 0.12 and ε = 0.18

deformation (see inset in Fig. 19) originates from the change in the slope of

the unstable manifold of the rectangular orbit, Fig. 20b). The discontinu-

ities of slope in the unstable manifolds of the periodic orbits in the stadium
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result from its non-smooth boundary. These results indicate clearly that a

fully chaotic dielectric resonator can nonetheless sustain highly directional

lasing modes. It would be interesting to test this in future experiments.

4.5. Tunneling versus refractive directional emission

We have seen in the previous sections that low-index ARC polymer lasers

exhibit highly directional emission at high deformations with emission pat-

terns that are extraordinarily sensitive to the specific shape of the boundary.

The observations and simulations of directional emission at such high de-

formations in the quadrupole ARC indicate clearly that such modes are

supported by the chaotic component of the ray phase space and emit in a

manner determined by the chaotic phase space flow (specifically determined

by the unstable manifolds of short periodic orbits as just discussed). Very

recent experiments by Lacey et al.28 on fused silica microspherical ARCs

complement the lasing experiments nicely by looking at low deformations

in which the phase space flow is non-universal and one can have either re-

fractive emission from chaotic modes or tunneling emission from regular

modes. The two types of modes have very different Q-values and farfield

emission patterns, with the chaotic modes showing a kind of symmetry-

breaking which would be quite surprising for standard resonators. The in-

dex of refraction of these systems is n = 1.45 and the phase space structures

determining the behavior are the same as in the polymer experiments, i.e.

the stable and unstable diamond and rectangle orbits in the quadrupole

and motion in their vicinity. These experiments are also important as they

directly probe resonant elastic scattering from the passive cavity, for which

the wave calculations are essentially exact, as opposed to lasing emission

from ARCs for which issues of non-linearity and mode selection may con-

tribute to the observed behavior.

In this experimental work deformed spherical ARCs are fabricated by

fusing two silica spheres with a CO2 lasers at different durations of exposure,

leading to nearly spherical silica “beads” on a stem with a range of defor-

mations with major to minor axis ratios corresponding to ε = 0.01 − .07.

Light is scattered from the spheres using frustrated total internal reflection

coupling via an adjacent prism. This allows strong coupling into relatively

high-Q modes not accessible via a focused beam input. These shapes lack

axial symmetry, which implies that the overall phase space motion is in

five dimensions, not three as in the cylindrical or axial-symmetric spherical

case. However for small deformations the authors argue that the escape is
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dominated by the same phase space structures as in the 2D quadrupole,

with the crucial difference that phase space barriers such as KAM tori are

not impassable classically, but can be “crossed” by Arnold diffusion in the

higher dimensional phase space. The authors admit that surface scattering

and other effects may play a major role as well, but the upshot is that

while the prism injection excites modes with sinχ0 ≈ 1 the emission takes

place from lower values of sinχ determined by the fastest escape channel.

The experiments find qualitatively different emission patterns for different

deformations which can be explained by the assumption that different 2D

resonances dominate the emission in the different cases.

 

 

 

 

 

 

 

Fig. 21. (a), (b): Farfield emission patterns of WG modes. Insets: bottom view of the

resonators showing the progression of shapes in the x − y cross section ε = 6.7% and
ε = 1.2% respectively. WG modes were launched at sin χo ≈ 1. (c), (d): the spectra

corresponding to the modes in (a), (b), from which we deduce the Q factors.

Experimental results are shown in Fig. 21 for prism excitation; note that

in such a scattering experiment only one sense of rotation of the waves is ex-

cited (see inset Fig. 21a). For relatively large deformation (ε = 0.067 is still

much smaller than in the polymer experiments reported above) there is a
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Fig. 22. Ray and wave calculations for modes in the quadrupole with index of refraction

n = 1.45. Left column has a deformation of ε = 0.065, right column of ε = 0.034.

Emission patterns with qualitatively different symmetry are found in agreement with the
silica ARC experiments just reported. Top: Intensity pattern of escaping rays with a ray
simulation based on a Gaussian bundle of rays around the unstable period four fixed point

(A) and a Gaussian bundle above the separatrix (B). In both cases we used the modified

Fresnel formula20,39 with kR = 1000 which takes into account tunneling corrections
due to curvature. We propagate a Gaussian bundle of 6000 rays for 600 reflections. (C)

and (D) show intensity pattern of two associated WG modes with kR = 112.63 and

kR = 112.452 respectively. (E) and (F) show the associated Husimi distribution and the

SOS. The purple line indicates the critical angle of incidence sin χc = 1/n.

single emission peak in the θ = 45◦ (the other symmetric one at θ = 225◦ is

not visible due to the presence of the prism). This pattern is essentially the

same behavior as the polymer ARC lasers at higher deformation when one

takes into account the presence of only clockwise circulating waves (note
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the authors’ opposite convention on the farfield angle such that θ is positive

in the fourth quadrant). There is no similar bright emission in the θ = 135◦

directions (dashed vs. bold arrows in Fig. 21(a)); hence the pattern breaks

the symmetry one might have expected for emission from modes based on

the rectangular four-bounce orbit. Note that we have already seen this sym-

metry breaking in the ARC polymer lasers and understand that it arises

from the asymmetry of the stable and unstable directions near this unstable

orbit. A very different pattern is seen for samples with lower deformations

(ε = 0.012); here two equal peaks are seen symmetrically situated around

θ = 90◦, coincident with much higher Q-factors (Fig. 22(d)). This is con-

sistent with emission from the points φ = ±45◦ on the boundary as one

might expect from a mode based on the rectangle orbit.

The authors28 provide a simple explanation of this difference based on

the phase space structure of the quadrupole near the critical line. First,

as they emphasize, any non-elliptical deformation of the circle is non-

perturbative in that it destroys an infinity of symmetry-related periodic

orbits (e.g. squares and rhombi) and replaces them by two periodic orbits

(the unstable rectangle and the stable diamond). The size of the stable is-

land of the diamond scales as
√
ε and not as ε and hence is much larger

than naive expectations from perturbation theory. Similarly, the separatrix

region of chaos near the unstable rectangle orbit will extend over a large

range of sinχ ∼ √
ε. Hence even very small deformations can give highly

directional emission patterns. The authors assume that Arnold diffusion

or some other mechanism allows injected rays to emit lower down in the

surface of section than their injection angle. With this assumption they

offer the following explanation of the data. The non-symmetric emission

patterns observed at ε = 0.067 are based on refractive emission from sep-

aratrix states near the rectangular orbit; the symmetric patterns at lower

deformation are based on states slightly higher in the surface of section

which do not reach the critical angle and emit by tunneling (evanescent

leakage) from points on the boundary symmetrically placed around φ = 0

(see Fig. 22). Such states should have much higher Q (as observed) because

they involve leakage from modes which would be totally-internally reflected

classically. In Fig. 22 we see examples of such symmetric (tunneling) modes

and non-symmetric (refractive) modes calculated numerically, with their

respective Q-factors differing as in the experiment. These experiments pro-

vide another dramatic indication of the influence of non-perturbative phase

space structure on the emission patterns from deformed spheres and cylin-

ders. They are complementary to the polymer ARC laser experiments as the
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passive cavity mode emission patterns and Q-values are directly measured,

whereas the cavity shapes are not precisely controlled as in the polymer

ARCs and the phase-space diffusion mechanism in the 3D cavity is not

fully understood.

4.6. Overview of low-index ARCs

To summarize the results of this section: low-index ARC lasers and

resonators show dramatic differences between the emission patterns of

similarly-shaped devices which can be understood by analysis of the phase-

space ray dynamics. These differences are particularly dramatic when com-

paring integrable shapes such as the ellipse with non-integrable billiard

shapes such as the quadrupole. The persistence of highly directional emis-

sion in strongly deformed quadrupole ARC lasers was not consistent with

the earlier adiabatic model,31 and a more recent model12 in which emission

directionality at large deformations is controlled by the geometry of the un-

stable manifolds of short periodic orbits gave a much better account of the

data. Calculations indicate that fully chaotic ARC laser resonators should

also give highly directional emission. Recent experiments using prism cou-

pling to passive ARC cavities also indicate the coexistence of modes of

different Q-value and very different directional coupling. The nature of this

difference arises from the different out-coupling mechanisms (tunneling vs.

refractive emission). In all cases, study of the phase space structures in the

surface of section gives qualitative explanations of the observed emission

patterns and ray models can reproduce semi-quantitatively the experimen-

tal and wave-optical results.

5. Semiconductor ARC lasers

In the previous section we reported in some detail experiments on poly-

mer and silica ARC resonators and lasers with index of refraction n ≈ 1.5.

There have in addition been several experiments on deformed liquid droplet

lasers.40,41,42 In these experiments a universal phase space flow (i.e. a prop-

erty insensitive to initial conditions in phase space) determined the di-

rectional output of the laser. Moreover, all of these have been optically

pumped systems and hence not suitable as prototypes for microcavity lasers

of technological interest. During roughly the same time period a number of

ARC semiconductor lasers have been fabricated and measured, and in two

cases these have been electrically-pumped lasers of some potential techno-

logical interest. In these systems the index of refraction ranged between
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n = 2.65− 3.3 leading to stronger confinement of light rays by (near) total

internal reflection, and hence increasing the fraction of phase space acces-

sible to long-lived modes for lasing. In these lasers the nature of the lasing

modes were more diverse and the issue of how mode selection occurs was

strongly raised (but not yet fully answered). We will review the relevant

experiments in roughly chronological order: electrically-pumped quantum

cascade ARC lasers first, then optically-pumped GaN ARC lasers, and fi-

nally optically and electrically-pumped “spiral” GaN multiple-quantum-

well lasers, which are not really ARCs by our definition, but which were a

natural outgrowth of the shape design program which began with ARCs.

5.1. Quantum Cascade ARC lasers

The development of efficient semiconductor microlasers is of primary impor-

tance for current as well as future photonic or optoelectronic applications. A

major milestone in this direction was the development of quantum cascade

(QC) lasers by the Bell Labs team of Faist, Cappasso et al.43 Typical semi-

conductor lasers are bipolar in character (i.e. are diodes), meaning that the

laser action is fed by the interband electron-hole transitions of a semicon-

ducting heterostructure involving doped and undoped III-IV semiconduc-

tors such as GaAs, InAs, GaN. Quantum Cascade lasers on the other hand

are unipolar and employ the electronic inter-subband transitions between

quantized conduction band states in a multiple quantum well structure.

The unipolar character of QC lasers excludes non-radiative combination

of electrons and holes which is a major problem with diode lasers when

one wants to access shorter or longer wavelengths other than the typical

communication window of about 1.3-1.5 µm. Another attractive feature of

the QC devices is their versatility in emission wavelength. Different transi-

tion energies can be realized by adjusting the individual layer thicknesses

without changing the composition of the constituent materials, covering

virtually the complete infrared spectral region (λ ∼ 3-25 µm).

While the ever-improving semiconductor quantum-engineering technol-

ogy is an important factor in increasing the efficiency of these miniature

lasers, the optimization of the geometric shape of the resonator plays also

a major role. The study of ARC microcylinder QC lasers was undertaken

along these lines in a 1997 collaboration between Yale and Bell labs leading

to the exciting results reported in Gmachl et al.7
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Fig. 23. (a) Scanning electron micrographs of the top and side-view of one of the de-
formed cylindrical quantum cascade microlasers. (b) Angular dependence of the emission
intensity for deformations ε = 0 (triangles), ε = 0.14 (open circles), ε = 0.16 (filled cir-
cles). The right inset shows the coordinate system used and the left inset shows the the

logarithmic plot of the measured power spectrum. The FSR of the peaks is found to
agree with the calculated bowtie FSR (after Ref. 7).

5.1.1. Directional emission from stable bowtie modes

To test the effect of deformation on the lasing properties, a set of micro-

cylinder lasers of increasing quadrupolar deformation were fabricated and

tested on the same chip.7 It was found that while for lower deformations the

emission is more or less isotropic, above a deformation of about ε = 0.14

a large anisotropy rapidly developed. At ε = 0.16, the emission pattern

peaked at about 45◦ with a maximum to minimum ratio of about 30 : 1

(see Fig. 23). While the low deformation data were consistent with emis-

sion from whispering gallery modes, it was clear that a mode of a different

character was dominating the emission at higher deformations. There were

two experimental clues which were available for the determination of the

lasing mode:

• Sudden onset of directionality above a deformation of ε = 0.14.

• The existence of six equally spaced peaks in the measured spectrum

at maximum power.

From the standpoint of ray dynamics, the main difference between semi-

conductor ARCs and lower index polymer ARCs analyzed in the previous

section is their typically higher index of refraction. For the material sys-

tem used in the above experiment (InGaAs/InAlAs), the effective index

of refraction was n ∼ 3.3. Such a large index of refraction makes avail-

able a larger portion of the SOS available for the support of long-lived
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resonances. Particularly, the lower portion of the phase space close to the

critical line (sinχ ∼ 0.3) is a regime which is subject to more (classical)

non-linearity and hence chaos than the higher lying WG region (as a simple

measure, the effective ‘kick strength’ of the quadrupole billiard map goes

as (1 − sin2 χ)3/2).39 Therefore the difference between stable and chaotic

motion is enhanced for intermediate deformations in this part of the SOS,

where large islands of stable motion and strong chaos coexist.
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Fig. 24. Illustration of the motion of the bowtie island with changing deformation.

Drawn in red is the critical line. Inset shows the stability diagram of the bouncing ball

and bowtie orbit as given by the variation of the trace of the monodromy matrix M . For

|TrM | > 2 an orbit is unstable, hence one sees that motion in the vicinity of the bowtie

orbit is stable for 0.11 < ε < 0.23. The bouncing ball restabilizes after the bifurcation
and only becomes unstable at ε ≈ 0.2; a non-generic behavior which is possible due to

the discrete symmetry of the billiard.

The observation of rather sudden onset of directional emission suggested

a mode which (unlike the whispering gallery modes) is not continuously con-

nected to zero deformation. In fact, there is one clear candidate, the stable

bowtie orbit, that does not exist below a deformation of ε = 0.11. For all

ARCs there is a large stable two-bounce (“bouncing ball”) orbit which ap-

pears non-perturbatively for small deformations and which typically desta-

bilizes as the deformation increases. The bowtie orbit arises as a byproduct

of the destabilization of the bouncing ball orbit; it is “born” through a

period doubling bifurcation of this orbit at φ = ±π/2 (see Fig. 24). Below

a deformation of about ε = 0.14, the corresponding bowtie resonances are
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too leaky to provide efficient laser feedback, because as seen from Fig. 24,

the stability island of the bowtie orbit is far below the critical line. How-

ever, further deformation slowly moves the island up in sinχ until at about

ε = 0.16, when the critical line is reached and the data indicate that its

associated mode becomes the favored lasing mode. Since the stable bowtie

motion is strongly localized (Fig. 25) in position and space, it leads to

highly directional emission. Properties of modes based on stable ray mo-

tion close to a periodic orbit are amenable to an analytic study through a

generalized Gaussian optical description.15 Quite similar to the sequence of

Gauss-Hermite modes found in a stable Fabry-Perot cavity, it’s possible to

associate a sequence of modes with an island of stable motion. To lowest or-

der, the resonance frequencies and lifetimes of these modes are functions of

the index of refraction n, the length of the orbit L and the radius of curva-

ture at each bounce b of the periodic ray orbit, {ρb}, and the corresponding

impact angles {sinχb}:

Re[nkL] = 2πm+ mod2π

[(

1

2
N +Nµ

)

π

]

+ (n+
1

2
)ϕ+ ϕf (21)

Im[nkL] = −γf (22)

where ϕf = Re[−i
∑N
b log

[

nµb−1
nµb+1

]

] and γf = Im[−i
∑N
b log

[

nµb−1
nµb+1

]

]. µb

is the ratio of incidence angle to transmitted angle cosχi/ cosχt calculated

from Snell’s law at each bounce b, ϕ is the stability angle for the particular

periodic orbit, N is the number of bounces and Nµ is the Maslov index

which depends on the topology of the phase space motion.15 The resulting

spectrum contains two distinct constant spacings. Here, the longitudinal

mode index m gives rise to a FSR ∆klong = 2π/L and the transverse index

n results in a shorter FSR of ∆ktrans = ϕ/L. Because of the symmetry

of the resonator shape under reflections with respect to its minor and the

major axes, the solutions can be classified into four different classes. Each

class is distinguished by the parity of the corresponding solutions under the

reflection operations, denoted by ++, +−, −+ and −−. For instance the

solution +− has even parity under reflection with respect to the long axis,

and odd with respect to the short axis. The Gaussian theory predicts15 that

for the bowtie mode, solutions with identical parity with respect to the short

axis form degenerate doublets, and that these two parity types ([++,+−]

and [−−,−+]) alternate in the spectrum every FSR. A group theoretical

analysis of the symmetry properties of the exact solutions however shows

that the degeneracy is not exact. In fact, the exact quasi-degenerate so-

lutions display an exponentially small (in k) splitting. As seen in Fig. 25,
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these arguments reproduce the exact (numerical) spectrum quite well.
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Fig. 25. (a) (Left) Surface of section for quadrupole billiard at deformation of ε = 0.17

which supports a stable bowtie orbit (see inset) leading to four islands in the SOS.
A numerical solution of the resonance problem is Husimi-projected onto the SOS and
is plotted in color scale; it localizes on the island and is a stable bowtie mode. (b)

Spectrum weighted by overlap of the Husimi projection of the solutions in a spectral
range with the bowtie island. Note the emergence of regularly spaced levels with two main

spacings ∆klong and ∆ktrans. These spacings, indicated by the arrows, are calculated
from the length of the bowtie orbit and the associated stability angle (see Eq. (21)).

The color coding corresponds to the four possible symmetry types of the solutions, as
explained in the text. In the inset is a magnified view showing the splitting of quasi-

degenerate doublets. Note the pairing of the (++) and (+−) symmetry types. The
different symmetry pairs alternate every FSR (∆klong).

The observed lasing spectrum in the experiments shows six equally

spaced peaks (see Fig. 23), with a FSR of ∆λ = 40.4 nm. This spacing

is approximately equal to the longitudinal FSR (∆λlong = 39.5 nm) cal-

culated from Eq. (21), indicating that it was a particular transverse mode

which was lasing for different values of m. For comparison, the tranverse

mode spacing expected from Eq. (21) is about ∆λtrans = 2.2 nm and the

splitting of quasi-degenerate resonances is about ∆λsplit ≈ 0.1 nm. Just

by looking at the spectrum it’s not possible to discern which transverse

mode or which symmetry class is lasing. At this point, the farfield emis-

sion pattern can be used to pinpoint the lasing mode. A crucial point here

is that each spectral peak is expected to be formed through locking of the

quasi-degenerate modes corresponding to two different symmetry classes. It

has been shown both theoretically44,45 and experimentally46 that if eigen-

frequencies of the modes participating in the non-linear lasing process are

close enough, locked behavior can occur leading to stationary output in-

tensity pattern. This is called cooperative frequency locking. The resulting

non-linear modes are linear combinations of the participating modes and
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may display asymmetric emission patterns despite the fact that the res-

onator is symmetric (a good example of spontaneous symmetry breaking).

To compare to the experiments, we plot in Fig. 26 linear combinations of

the quasi-degenerate transverse modes close to the central lasing frequency.

The farfield emission pattern observed in the experiments is found to be in

conformity with that of the transverse doublet m = 2. Note that the re-

sulting emission pattern peaks at a point away from what is expected from

Snell’s law applied to the bowtie orbit. These findings were reinforced by ex-

periments by the TU-Wien group47 on QC GaAs/AlGaAs microlasers emit-

ting around λ = 10 µm. The boundary deformations investigated in this

work were again quadrupolar and the effective index of refraction around

neff ≈ 3.2. Emission patterns observed were of two distinct types, one of

which was found to correspond to that of the bowtie mode. The robustness

of the emission pattern to a change in lasing wavelength is a testament to the

effectiveness of inferences based on short-wavelength approximations and

ray-optical phase space. As long as the resulting phase space (and the index

of refraction) is identical, similar farfield patterns are expected regardless

of the wavelength and the size of the resonator (provided nkR À 1; in the

Bell Labs-Yale experiment nkR ∼ 120 and in the TU Wien experiment

nkR ∼ 100.).

Although numerical work and physical arguments allowed us to identify

this mode after the experiment, we have no predictive theory for the mode

selection in this case. The second excited bowtie mode is not the highest Q

mode of the cold cavity, nor is it particularly selected by the peak of the

gain curve, which is broad enough to allow other modes to lase.

5.1.2. Power increase and mode selection in ARCs

The issue of mode selection in ARCs is made more salient because of the

second major finding of the Bell Labs experiment. Not only did the bowtie

laser provide highly directional emission, improving the brightness (power

into a given solid angle) of the laser by a factor of order 30; but the de-

formed lasers produced more than a thousand times the output power of the

identically-fabricated circular lasers.7 The demonstrated high output power

and directional emission solve major problems with earlier semiconductor

microdisk lasers and makes their use technologically promising.

The difference in peak output power between the ARC and circular

cylinder lasers is interesting theoretically and not yet explained. The peak

output power certainly depends on the non-linear properties of the las-
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Fig. 26. (a) The numerically calculated resonance corresponding to the m = 2 bowtie-

mode at ε = 0.16 that is consistent with the observed spectrum and emission pattern.
(b) Comparison of experimental data for ε = 0.16 to numerically determined farfield

patterns for the m = 0, m = 1 and m = 2 transverse modes of the bowtie resonance.
We have plotted linear combinations of quasi-degenerate doublets close to nkR = 120.
The peak tranmission is in good agreement with the m = 2 tranverse mode. The arrow
points to the peak angle expected from ray optics, i.e. refracting out of the bowtie-orbit

using Snell’s law.

ing and is not a property of a given mode of the linear wave equation.

The standard and well-verified model of the power output of a single-mode

Fabry-Perot laser14 finds that the power output is optimized for a given

pump power when the external cavity loss (which is the width we are cal-

culating) equals the internal cavity loss (neglected in our model). One may

conjecture then that the bowtie optimizes the power output, even though

it is not the highest Q mode. However this observation is not sufficient

to explain the experiment. The circular lasers measured have a range of

Q-values corresponding to different radial quantum numbers for a given

angular momentum. In particular, there should exist modes with Q very

near that of the bowtie. The main difference between circular and ARC

lasers is that in the circular case this mode will strongly overlap in space

with other higher Q modes; whereas in the ARC strong chaos has wiped

out the competing higher Q modes in the vicinity of the bowtie. Therefore

we conjecture that it is the lack of mode competition in bowtie lasers which

allows it to optimize its output power. The experiment provides some mod-

est support for this conjecture as the circular lasers are consistently found

to lase on several modes simultaneously, whereas the ARC lasers are single
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mode unless they are pumped very hard.7 Work is underway to analyze

mode competition in chaotic lasers and verify these speculations.

Both of the experiments and the accompanying theoretical analysis in-

dicate that the geometrical shaping of the resonator is an important param-

eter in the design of efficient miniature laser devices. It was demonstrated

that by merely optimizing the shape of the resonator, it’s possible to in-

crease the optical output power by three order of magnitude and simulta-

neously obtain a directionality emission asymmetry of 30:1.

5.1.3. Anomalous Q-values of stable ARC modes: a new signature of

chaos

We close this section by reporting a dramatic prediction of the wave chaos

theory relevant to stable orbit modes, but not yet tested experimentally.

This prediction is not relevant to the QC ARC lasers just mentioned for

which the stable orbit is right at the critical angle, but will be very relevant

for modes which are totally internally reflected (TIR). In Section (5.1.1)

above we have noted that the discrete symmetry of quadrupole ARCs (as

opposed to the continuous symmetry of circular resonators) precludes the

existence of exactly degenerate stable (or unstable) modes, despite the fact

that such degeneracies are predicted to occur within the Gaussian optics

approximation for the stable modes. This is a well-known shortcoming of

semiclassical methods which at leading order do not resolve exponentially

small effects due to tunneling, and this short-coming applies to both in-

tegrable ARCs, such as the ellipse, as well as the (generic) non-integrable

ARCs. However it has been predicted15,48 that the absolute size of these

tunneling effects are dramatically sensitive to the presence or absence of

chaos in parts of the phase space away from the stable islands which give

rise to Gaussian modes. We will not attempt to go into any details of the

theory here; they can be found in Refs. 15, 48. The qualitative physics is

the following. Consider any stable periodic orbit which is not self-retracing;

there will exist an independent Gaussian mode series with a distinct field

pattern corresponding to the two senses of traversing the orbit, and within

the Gaussian theory these two series will be exactly two-fold degenerate.

However there is some small tunneling probability for a ray circulating

in one sense to eventually reverse its sense of circulation. This tunneling

between different stable motions at the same energy has been termed dy-

namical tunneling.49 More formally, taking symmetric and anti-symmetric

combinations of the two wavefunctions just mentioned will lead to two
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states of slightly different energy/frequency (differing by twice the tun-

neling rate as in the familiar double-well problem). For objects without

continuous symmetries this rate will always be non-zero, but its value will

depend strongly on the nature of the surrounding phase space. Specifically

for stable island modes surrounded by a chaotic “sea” the tunneling rate is

parametrically larger than in a comparable integrable system, leading to a

much large splitting of the Gaussian modes in the closed system.15 However

these splittings may still be difficult to resolve experimentally.

Very recently, Narimanov50 has pointed out that this enhanced tunnel-

ing rate, known as “chaos-assisted tunneling” (CAT), will have dramatic

observable consequences for ARCs with totally internally reflected stable

orbit modes (TIRSO modes). Here the signature of the effect is in the Q-

values of the modes and not in the splittings, and the effect can be seen

in comparison to circular resonators with zero splitting of the comparable

modes. As reported above,28 it is possible to couple to totally-internally re-

flected modes of passive dielectric cavities using prism coupling. According

to the new prediction of CAT theory for ARCs the measured Q-values of

TIRSO modes will be orders of magnitude smaller than for the same angle

of insertion in the circular cavities. Moreover, the Q-values of TIRSO modes

will fluctuate rapidly between different resonances in the same longitudinal

sequence while no such fluctuations will be observed for the circular case.

This is the signature that escape from the stable orbit modes of ARCs is

mediated by tunneling into the chaotic states of the resonator prior to es-

cape into the farfield, whereas no such escape mechanism exists for circular

resonators. As the phenomenon of chaos-assisted tunneling in wave-chaotic

systems has had few if any experimental demonstrations, it is hoped that

experiments of this type will be attempted in the future.

5.2. Diode ARC lasers

Our arguments and examples up to this point indicates that a key require-

ment for a resonant mode to be the dominant observed mode of a laser

is that its weight in the SOS (as measured e.g. by Husimi projection) be

concentrated near the critical line for refractive escape. Hence, the inves-

tigation of the classical phase space structures in the vicinity of critical

reflection gave us a quick and crude estimate of the emission directionality.

Particularly, islands of stable motion in the vicinity of critical incidence can

lead to localized modes with highly directional emission, as was the case

for the bowtie modes of the previous section. One of the intriguing and
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well-studied results of quantum chaos theory is the existence of localized

modes based on unstable periodic orbits, known as scarred states.51,52,53 If

such an orbit is trapped by near total internal reflection near the critical

line it may lead to an “unstable” lasing mode. Exactly such a situation was

realized in semiconductor diode microlasers studied by Rex et al.11 We will

now review this experiment and discuss its theoretical interpretation.

In these experiments, microlaser devices were produced by growing GaN

on a sapphire substrate, and etching the resulting wafer using a mask and

standard photolithography into a 2µm high pillar with a quadrupolar de-

formation of the cross-section, r(φ) = R0(1 + ε cos 2φ) where R0 = 100µm

(see Fig. 5.2). The resulting structure, which has an index of refraction

n = 2.65, is optically pumped at 355nm normal to the plane of the pillar

and emits at 375nm. Light emitted from the side-walls is collected through

an aperture subtending a 5◦ angle, passed through a lens and detected by

a CCD camera in the farfield to yield two-dimensional image data plots of

the type described above in Section (3.1).

1 µm

Fig. 27. (a) A scanning electron micrograph of the GaN resonators used in the experi-
ments. The device in the figure has a diameter of 200µm.

We will now focus on the data collected for ε = 0.12 quadrupoles. Note

that this is the deformation at which the polymer cylinder lasers discussed

earlier emitted at roughly a 35◦ direction to the major axis, with a boundary

image showing a single bright spot on the boundary at negative values of

sidewall angle φ which correlated well with the farfield peak if one assumed

tangent emission. The imagefield for the GaN quadrupole lasers is displayed

in Fig. 28(a) and the farfield is shown in Fig. 28(b).

The data show a very different emission pattern than the polymer lasers
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Fig. 28. (a) Experimental data showing in color scale the CCD images (converted to
sidewall angle φ) as a function of camera angle θ. Three bright spots are observed on the

boundary for camera angles in the 1st quadrant, at φ ≈ 17◦, 162◦,−5◦. (b) Calculated
image field corresponding to the scarred mode shown in Fig. 31. (c) Calculated and

experimental farfield patterns obtained by integrating over φ for each θ.

of the same shape, demonstrating the crucial role of the refractive index

in determining the lasing mode selected. For the GaN lasers the maximum

intensity in the 1st quadrant is observed at angle θ ≈ 74◦ and correlates

with emission from the region of the sidewall around φ ≈ +17◦. The data

also show a secondary bright spot at slightly negative φ ≈ −5◦ and another

one at φ ≈ 162◦ which do not lead to strong maxima in the first quadrant

in the farfield. The observation of a small number of well-localized bright

spots on the sidewall suggests a lasing mode based on a short periodic ray

trajectory. In Fig. 29, we have indicated the approximate positions of the

four bright spots on the boundary (the imagefield can be unfolded to the

range θ = 0 . . . 2π using the symmetry of the quadrupole). The imagefields

for the polymer lasers showed more bright spots and a variable number of

them, inconsistent with as single short periodic orbit. In the same figure is

shown a view of the SOS at this deformation.

The only stable structures which would result in localized modes in the

framework of the previous section, are the bouncing ball and the bowtie

islands. For comparison, the stable bouncing ball mode would emit from

φ = 90◦ in the direction θ = 90◦. The stable four-bounce bowtie mode,

dominant in the devices of Ref. 7, is also ruled out by our data. It is very

low-Q at this deformation due to its small angle of incidence and would

give bright spots at φ = 90◦ ± 17◦, far away from the brightest spot at

φ = 17◦ (see Fig. 29). There is however a pair of symmetry-related isosceles

triangular periodic orbits with bounce points very close to the observed

bright spots (see Fig. 29). The two equivalent bounce points of each triangle

at φ = ±17◦ and 180◦ ± 17◦ have sinχ ≈ 0.42, very near to the critical

value, sinχc = 1/n = 0.38, whereas the bounce points at φ = ±90◦ have
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Fig. 29. The SOS of the quadrupolar billiard at a deformation of ε = 0.12. The red

vertical lines indicate the values of φ at which the bright spots in the imagefield are
observed. On the right is a schematic indicating in red the experimental bright spots in

the real space. The location of these spots is strongly inconsistent with the bowtie orbit
at this deformation but is consistent with modes based the two triangle orbits shown.
These orbits would have the two “dark” bounce points (indicated in black) that are well

above total internal reflection for the index of n = 2.65

sinχ = 0.64 and should emit negligibly (Fig. 29). This accounts for the

three bright spots observed experimentally in Fig. 28(a) (the fourth spot at

φ ≈ 197◦ is completely blocked from emission into the first quadrant). Note

furthermore the proximity of the four emitting bounce points to critical

incidence; a simple application of Snell’s law to these rays would lead to

farfield maxima in reasonable agreement with the observed peaks in the

farfield distribution Fig. 28(c) (however not with the imagefield data, see

below).

These basic observations could be explained with generalized Gaussian

modes of the previous section, were it not for the fact that the triangular

periodic orbit is unstable at this deformation. In Fig. 30, we plot the trace

of the monodromy matrix as a function of deformation, which shows that

at deformation ε = 0.12, Tr(M) = −5.27. The triangular periodic orbit

is unstable with a Lyapunov exponent of λ ≈ 1.62 (see Fig. 30). We have

remarked in Section 5.1 that our method of constructing a localized mode

on a periodic orbit fails, if the orbit is unstable. Failure of the method

however doesn’t mean that localized modes do not exist. In fact, numerical

solution of the quasi-bound states at this deformation, using the method

of Section 2.4, finds modes localized on the triangular orbit, as seen in the

configuration space plot in Fig. 31(a). A much clearer picture, free of in-
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Fig. 30. The variation of the trace of the monodromy matrix with respect to the

quadrupolar deformation ε. The black circle indicates the experimental value ε = 0.12,
at which Tr(M) = −5.27. The two dashed lines delimit the regime −2 < Tr(M) < 2 at
which the triangular orbit is stable. In the inset is shown real space simulation of a ray

orbit started with initial conditions which are away from the triangle fixed point at least
by δφ = 10−3, δ sin χ = 10−4, followed for 20 bounces.

terference fringes, is provided by the Husimi plot of this mode in Fig. 31

projected onto the SOS. The brightest spots clearly coincide with the tri-

angular fixed points, and the whole density is localized in the midst of the

chaotic sea. This mode is an instance of a scarred state and is one of the

most surprising and esoteric objects of quantum chaos theory.

Note however that the numerical calculations are performed at nkR ≈
129, whereas the experimental lasing frequency corresponds to nkR ≈ 4400.

Despite this difference of more than one order of magnitude, the agreement

between experimental results (farfield and imagefield) and simulation is

quite good. To understand this we need to discuss some further aspects of

scarred modes.

“Scarring” refers strictly to the imprint left by unstable periodic orbits in

a group of states.51 There is still a lot of discussion about the quantification

of this imprint,53 but for our purposes here, the simplest and most intuitive

of such measures is the enhancement of eigenstate intensity along (a tube

surrounding) a given unstable periodic orbit and its invariant manifolds (the

latter is best measured in the SOS). Understanding the phenomenon of scar-

ring requires a major departure from the approaches of EBK and Gaussian

optics which allow construction of individual modal solutions of the wave

equation. Scarring on the other hand refers to a statistical phenomenon.

It’s a statistically significant correction to Berry’s conjecture54 that for er-
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Fig. 31. (a) Real-space false color plot of the modulus of the electric field for a calculated
quasi-bound state of nkR0 ≈ 129 (n is the index of refraction, k is the real part of the

resonant wavevector) and ε = 0.12 which is scarred by the triangular periodic orbits
shown in the inset (M. V. Berry has termed this the “Scar of David”). The four points of

low incidence angle which should emit strongly are indicated. (b) Husimi (phase-space
distribution) for the same mode projected onto the surface of section of the resonator.
The x-axis is φW and the y-axis is sin χ, the angle of incidence at the boundary. The

surface of section for the corresponding ray dynamics is shown in black, indicating that
there are no stable islands (orbits) near the high intensity points for this mode. Instead

the high intensity points coincide well with the bounce points of the unstable triangular
orbits (triangles). The black line denotes sin χc = 1/n for GaN; the triangle orbits are just

above this line and would be strongly confined whereas the stable bowtie orbits (bowtie
symbols) are well below and would not be favored under uniform pumping conditions.

godic systems (in the short-wavelength limit), individual eigenstates will

cover uniformly all the available energy hypersurface (translated to optical

resonators, this means that the local angular spectrum calculated at any

point in the resonator will contain all the possible directions uniformly),

up to uncorrelated Gaussian fluctuations. In the extreme short-wavelength

limit no individual mode of the wave equation will localize on an unstable

periodic orbit. Instead, the effect of a short periodic orbit and its associ-

ated hyperbolic manifold will be seen in a group of eigenstates in an energy

range ∆k, where ∆k ∼ u/L (here u is the Lyapunov exponent and L is the

length of the orbit). The broadened spectral peaks corresponding to these

states repeat periodically with a period of 2π/L. Since the average density

of states of a 2D or 3D optical resonator increases with k once kRÀ 1 there

will be many states under this broadened peak and no single state will be

strongly localized on the periodic orbit; the additional statistical weight

will be carried by many of them. In systems of the type we are considering

there are an infinite number of periodic orbits, however the effect of longer

orbits on the spectrum and modes is less significant, because they are more

unstable: ∆k ∼ u/L ∼ constant whereas the spacing of the peaks ∼ 1/L
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so the the broadening becomes much larger than their spacing and no local

density of states oscillations are observable. For the short and not very un-

stable periodic orbits one finds that the averaged wavefunction magnitude

over this range ∆k (and space) is found to display a strong enhancement

in space in the vicinity of the particular periodic orbit with a form depend-

ing only on the parameters of the ray orbit and a simple scaling with k.55

Along similar lines, for optical resonator modes, the farfield averaged over a

given wavelength (spectral resolution of the spectrum analyzer) and spatial

range, would display clearly the effect of a single short periodic orbit and

its linear manifolds. Our numerical solution in Fig. 31 at low nkR is a good

representation how an averaged wavefunction and emission at higher nkR

would manifest, because at lower nkR the range ∆k ∼ u/L will contain

only a few modes and a single mode can be a “strong scar”. One may also

conjecture that the effect of non-linear mode locking may work to create a

single non-linear scar out of many nearby modes in the actual lasing sys-

tem. Therefore a scarred mode, or multi-mode lasing emission consistent

with scarring is a reasonable explanation of the data.

However closer inspection of the imagefield in Fig. 28(a) presents an

intriguing puzzle from the point of view of ray optics. A mode localized

on these triangular orbits might be expected to emit from the four bounce

points approximately in the tangent direction according to Snell’s law; this

means that the bright spot at φ = 17◦ should emit into the direction

θ ≈ 115◦ (Fig. 5.2), whereas the data clearly indicate that the φ = 17◦

bright spot emits in the direction θ = 72◦. (Note that the Snell’s law argu-

ment worked well for the polymer lasers studied above). Thus the emission

pattern here violates the intuitive expectations of ray optics by 43◦, a huge

discrepancy (see Fig. 5.2). Moreover, λ/nR = 2.8× 10−3, so we are far into

the regime in which the wavelength is small compared to the geometric

features of the resonator and ray optics would be expected to be a good

approximation. To ensure that this discrepancy did not arise from some

error in the experimental imagefield we simulated the full experimental set-

up, starting with our numerically-determined scarred solution (Fig. 31(a))

inside the resonator and propagating it through an aperture and lens into

the farfield, reproducing the expected imagefield. The way to do this is de-

scribed in Ref. 20. The imagefield corresponding to the numerical resonance

calculated in this manner is reproduced in Fig. 28(b). The good agreement

with the experimental data in Fig. 28(a) indicates that the effect is real and

is robust over a range of wavelengths.

The physical mechanism for this surprisingly large violation of ray op-
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∆θ

Fig. 32. Schematics showing the three emitted “beams” detected in the experiment
(solid lines) and illustrates their strong deviation from Snell’s law (dashed tangent lines).

tics was given in Refs. 11, 56. From the numerical data of Fig. 31(b), it

is clear that the scarred mode, while localized around the triangle orbit,

has a significant spread in angle of incidence, ∆ sinχ ≈ 0.2. This means

that we must regard the scarred mode as a bounded beam with a large

angular spread, with some components almost totally reflected and other

components transmitted according to the Fresnel transmission law. It was

shown11,56 that such a beam incident on a dielectric interface is strongly de-

flected in the farfield away from the tangent direction expected from a naive

application of Snell’s law resulting in Fresnel Filtering (FF). The farfield

peak-shift, ∆θFF , depends on the beam width ∆ and on n; analysis of the

stationary phase solution gives the result that, for incidence at critical angle

χc,

∆θcFF ≈ (2/ tanχc)
1/2∆−1/2 (23)

It’s clear this effect will be crucial for analysis of the emission patterns

of dielectric microlasers, because the dominant lasing mode will be often

based on long-lived and localized quasi-normal modes which always involve

ray components close to the critical incidence. Furthermore, even if the

experiments are performed deep in the short-wavelength limit nkR → ∞,

localization (in SOS, per coordinate) will be of order 1/
√
nkR0 (as is for

stable island modes for example) leading to a spectral width ∆ ∝
√
nkR0,

so from Eq. (23), the deviation angle at critical incidence θcFF ∝ (nkR)−1/4

and hence may be large for nkR ∼ 102 − 103, as in recent experiments on

semiconductor ARC lasers.7,47,11

Evidence for laser action on a triangular scarred state was also ob-

tained in the Bell Labs experiments on a series of quadrupolarly deformed

semiconductor diode (GaInAs quantum wells embedded in GaAs/GaInP

waveguide) lasers with an effective index of refraction neff = 3.4. There
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were three interesting features of this experiment. First, with the given in-

dex of refraction and a quadrupolar boundary deformation ε ≈ 0.16, one

would expect to observe emission from the stable bowtie modes, because

the situation is almost identical to the QC ARC experiment of the previous

section. However this is not the case because of the preference of the device

towards TE polarized modes. In the QC laser intersubband optical tran-

sitions lead to a selection rule which allows light emission only in the 2D

plane with TM polarization normal to the quantum well layers.7 Because

of the existence of the Brewster angle for TE polarization, the reflectivity

of the boundary drops practically to zero for the TE version of the bowtie

mode before again rising sharply to TIR close to critical angle. Therefore,

the bowtie modes in diode lasers are considerably leakier than their TM

counterparts in QC lasers and apparently are not selected as the lasing

modes. The second notable observation was the nature of transition from

lasing via regular modes to chaotic modes with increasing deformation.

Because imaging or farfield data was not available, they looked for a signa-

ture of this transition in the spectral data. Above a deformation of about

ε = 0.03 − 0.06 (which coincides approximately with the KAM transition

close to the critical line), the spectrum displayed evenly spaced mode dou-

blets with large splitting, which are absent in low deformation data. The

FSR of the doublets are found to be consistent with a triangular periodic or-

bit of the type seen in the Yale GaN experiments and the authors attribute

the relatively large splittings to boundary roughness. Considered as a per-

turbation, boundary roughness effects localized modes to a greater extent

then extended whispering gallery modes of smaller deformation. The final

significant point is that this experiment found a persistence of the lasing

characteristics through the stability-instability transition of the triangular

orbit, which happens at about ε ≈ 0.1. It’s worth reiterating that while the

nature of the mode on the stable side is of Gaussian type, the individual

modes based on unstable motion does not yield to a simple analytic de-

scription and the resulting scarred states can only be obtained numerically.

The numerical solutions are found to yield localized modes on both sides

of the transition.

A more direct demonstration of the last observation was provided by

Rex at al.10 in an extension of the GaN laser experiments to a range

of quadrupole-hexadecapolar deformations, defined by the mathematical

equation:

r(φ) = 1 + ε(cos2 φ+
3

2
cos4 φ). (24)
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Fig. 33. Farfield emission data for quadrupole-hexadecapole for deformations of ε = 0.12
(blue), ε = 0.16 (red), ε = 0.18 (green), and ε = 0.2 (black).

Because the laser operated in the visible (λ ∼ 400nm), it was possible to im-

age the emission from the cavity with conventional optics. The farfield emis-

sion data are reproduced in Fig. 5.2. All the deformations above ε = 0.12

show a well-localized emission which has approximately the same character

over a wide range of deformations. Looking at the SOS of the quadrupole-

hexadecapole at ε = 0.12, we note that there is a stable orbit - again a

triangular one - this time however rotated 90◦ from the one observed in the

quadrupole, with bounce points at φ = 0◦ and φ = 180◦, at which points

the trajectory is incident just above the critical angle for TIR. These are

also the points where the maximum emission is emanating from the bound-

ary, according to the imaging data. Unlike the quadrupole lasers then, for

this shape there is a stable orbit with bounce points near the critical angle

for this deformation and index of refraction and this will support Gaussian

modes similar to the bowtie modes seen in the QC laser. An example of such

a mode localized on the stable triangular orbit and resulting in emission

consistent with the experimental results is shown in Fig. 34.

For this shape, these triangular orbits become unstable above a defor-

mation of ε = 0.13, and despite this change, the farfield data don’t change

in any appreciable way (Fig. 34). Figure 5.2 shows results of calculations

for the deformation ε = 0.16. The Husimi projection of this mode reveals

that it’s localized on the triangular periodic orbit, in the vicinity of which

complete chaos reigns. Thus, the laser operates on a mode which is based on

one and the same classical periodic orbit, insensitive to whether it’s stable

or unstable.

It’s clear from the review of these experiments that lasing modes of

cylindrical microresonators need not be based on ’regular’ modes such as
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Fig. 34. (a) A numerically calculated mode for a quadrupole-hexadecapolar deformation

of ε = 0.12 and n = 2.65. (b) Husimi projection of the mode in (a). Clearly, the projection
is localized on a reflection symmetric pair of stable triangular periodic orbits. (c) The
calculated farfield emission pattern.
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Fig. 35. (a) A numerically calculated mode for a quadrupole-hexadecapolar deformation
of ε = 0.16 and n = 2.65. (b) Husimi projection of the mode in (a). The projection is

localized on a triangular orbit of the same geometry as the one in Fig. 5.2, but at
this deformation the motion in its vicinity is unstable, leading to chaotic motion. The

resulting mode is hence a scarred state. (c) The calculated farfield emission pattern.

stable orbits or whispering gallery modes, but also can get feedback from

unstable ray trajectories. It is worth remarking that unstable Fabry-Perot

laser resonators have been known since almost the initial conception of the

laser57,58 and for many purposes are the best design for high-gain laser

devices14 because of their large modal volumes. In ARC microlasers such

unstable lasing action arises naturally as one increases the deformation,

with the SOS being dominated by more and more chaotic motion. Whether

there is any advantage of microlasers based on unstable modes remains to

be seen. One crucial point that needs emphasis is that there do exist many

complicated chaotic modes which are not related to any single periodic

orbit. Indeed in the passive cavity these modes dominate the spectrum as

kR → ∞. However, it may be that the non-linear effects in lasing cavities,

either by averaging over fluctuating modes or by mode-locking, enhance the

role of modes based on short periodic orbits, whether stable or unstable. It
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is striking that all of the experiments on semiconductor ARC lasers can be

interpreted as demonstrating lasing from such modes.

6. Unidirectional GaN Spiral microlasers

Since the ARC concept was introduced to obtain directional emission from

planar dielectric microlasers one important challenge has been to obtain a

single, directed beam out of these devices. As reviewed in previous sections,

by using the shape of the resonator as a design parameter it is possible to

achieve highly directional emission and other desirable characteristics such

as much improved output power. ARC studies, based on smoothly deformed

cylindrical resonators, have been supplemented by studies of hexagonal,59

triangular,60 and square61 microcavity lasers. However all of these designs

were found to emit in multiple directions and exhibit farfield patterns with

multiple lobes. In fact it would seem that any lasing mode based on non-

normal incidence rays (required for near total internal reflection and hence

high-Q) would generate at least two output beams due to the possibility of

time-reversed motion on the same trajectory.

Particularly for the development of compact, high power UV emitters,

where GaN-based semiconductor compounds are the materials of choice, a

planar emitter with uni-directional output coupling is of great interest. Cur-

rent GaN based lasers use distributed Bragg reflectors (DBRs) in a VCSEL

arrangement to achieve high-Q. However DBRs which are also good conduc-

tors for the injection current are extremely difficult to fabricate because of

the well-known material challenges surrounding the growth of GaN-based

layers. Dielectric microcavities can greatly simplify these materials prob-

lems associated with GaN-based lasers by using the sidewalls for high-Q

feedback while current is fed from the top of the structure. Such structures

would of course be planar emitters as opposed to the DBR-based lasers

which emit vertically, and would be preferable for most integrated optics

applications. However, none of the planar emitters has so far been able to

provide a single, directed beam which is a desirable characteristic peculiar

to the Fabry-Perot configuration.

Very recently, this difficulty has been overcome with the introduction of

spiral-shaped micropillar structures that provide uni-directional emission.13

These devices were based on an InGaN multiple quantum-well (MQW)

active region, sandwiched between waveguide layers for transverse modal

confinement and etched into spiral cross-sections (see Fig. 36), defined by
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Fig. 36. (a) Structure of the InGaN MQW sample.

the following equation

r(φ) = Ro(1 +
ε

2π
φ) (25)

Here ε is the deformation parameter, R0 is the radius of the spiral at φ =0,

and φ is measured in radians. This equation implies that the spiral has a

discontinuity in radius at φ = 0 where the radius changes abruptly from

r = R0(1 + ε) back to R0. Imaging of the emission from the pillar sidewalls

shows that the uni-directional emission is from this “notch” (see e.g. inset,

Fig. 37(b)). Due to its boundary discontinuity, with a sharp corner on the

order of the wavelength at the notch, this structure is not an ARC and is

not expected to be well-described by any pure ray-optical description. The

discontinuity in the boundary of the spiral at the notch clearly scatters

whispering gallery ray trajectories (at least for counter-clockwise rotating

waves), and it was not clear in advance that such a structure would sup-

port any high-Q modes for lasing. Sharp corners are known to give rise to

diffraction, and diffractive effects are in practice thought to be destructive

for device performance. As will be explained shortly, the mechanism of this

novel design which enables uni-directional out-coupling is primarily based

on diffractive effects which couple out a non-emitting (counter-clockwise

rotating) WGM.

Initial studies providing the proof of principle were performed under

optical pumping conditions. Spirals of various deformations (ε =0.05, 0.10,

and 0.15) and sizes (d =100 µm, 300 µm and 500 µm) were examined.

Results showed lasing of the structures at a wavelength of 404 nm, and that

larger sized spirals possess lower thresholds. The spiral with ε = 0.10 had

the most uni-directional and narrow emission lobe, thus we will focus on the

emission characteristics of In0.09Ga0.91N MQWs with ε = 0.10 deformation,

optically pumped with 355 nm radiation.
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Uni-directionality of the observed lasing emission is shown in the farfield

image of Fig. 37(b). This polar plot is obtained by integrating over image

profiles taken at 5◦ intervals of the camera angle θ defined such that at

θ = 0◦ detected emission is normal to the notch (note that this differs from

our standard definitions above for which this direction would be θ = 90◦ if

the notch is along the x-axis). The image field in Fig. 37(a) shows that at

θ = 30◦, the majority of the emission comes from the spiral notch.
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Fig. 37. (a) Image profile of the emission from the spiral microcavity (ε = 0.10 and

d = 500 µm) sidewall at camera angle θ = 30◦. Integrating the image profile at each
camera angle θ gives (b) uni-directional farfield pattern of the spiral. Experimental data

(solid line) are in good agreement with numerical calculation (dotted line). (c) Farfield

pattern obtained when the spiral cavity is pumped uniformly.

A crucial feature in the success of spiral lasers is the selective pumping

method employed. Based on previous experiments62 on circular micropillars,

which have shown that lower thresholds can be attained by a spatially se-

lective pumping of the microcavity, the spiral cavities were optically excited

using an axicon lens to form a ring shaped beam. The aim was to achieve an

optimal overlap with the high-Q mode, following theoretical results which

show that the spiral resonator supports long-lived modes confined close to

the perimeter. This also serves to suppress other unwanted modes and scat-

tering from the discontinuity, which then are dissipated due mainly to the

absorption of the material. The effectiveness of selective pumping method

is demonstrated in Fig. 37(c), which shows a broad emission pattern un-

der uniform pumping conditions. The spatial disposition of the numerically

calculated high-Q modes together with the results of the selective pump-

ing method can be exploited in the design of the electrodes under current
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injection conditions to optimize the emission.

Numerical calculations show that there are indeed such dominantly

notch-emitting quasi-bound states of the spiral microcavity. Figure 38(a)

plots the modulus of the electric field of such a resonance in real-space,

showing that it is concentrated close to the boundary and exhibiting prop-

erties associated with a WG-like mode. However, these modes display a

crucial difference from the regular WG-modes of a circular resonator: the

high-Q resonances of the spiral exhibit a pronounced chirality and are pre-

dominantly composed of clockwise rotating components (corresponding to

ray motion which could not escape at the notch). This can be easily deduced

from the decomposition of the mode into its circular harmonics

E(r) =
+∞
∑

m=−∞

αmJm(r)eimϕ (26)

given in Fig. 38(b).
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Fig. 38. (a) Real-space false color plot of the modulus of the electric field for a calculated

quasi-bound state at nkRo ≈ 200 at ε = 0.10 deformation. (b) Distribution of angular
momenta for the resonance plotted in (a). Note the peak at negative m corresponding

to clockwise rotation (see inset) and the small weight at positive m which constitute the

diffracted waves emitting from the notch.

Interpreting each component m in the sum as representing ray motion

incident on the boundary at an angle of incidence sinχ = m/nkR in the

short-wavelength limit, we get a distribution of incidence angles. The strong

weighting of the distribution to negative components (−m) peaked around

|m| ≈ 160 corresponds to a mode with mostly clockwise-rotating waves

having angle of incidence sinχ ≈ 0.8 and which are hence totally internally
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reflected (the critical angle χc is defined by sinχc = ± 1
n = ±0.38 for

n = 2.6). Such a stationary distribution is counter-intuitive from the point

of view of ray dynamics inside this spiral shaped dielectric billiard. Ray

simulations show that if we start a ray bundle which is predominantly

composed of clockwise rotating rays close to the boundary (sinχ ≈ −1),

the average impact angle diffuses monotonically towards 0, where the rays

strike the boundary at normal incidence, and further towards positive sinχ

(see Fig. 39).
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Fig. 39. (a) The diffusion of a ray started at ϕ = 2π − 0.01, sin χ = −0.96. At the
uppermost point of the curve, the ray leaves the resonator from the notch, (b) the
trajectory plotted in real-space, (c) surface of section of the spiral with ε = 0.1.

For a dielectric billiard, the intensity would then refract out at some

point away from the notch long before it can reverse its sense of rotation.

Furthermore, there are no periodic orbits whose bounce points are entirely

on the smooth portions of the boundary, simply because the curvature is

monotonic. This is clear e.g. for the bouncing ball orbit as due to the mono-

tonic curvature there exist no two points on the boundary with colinear and

opposite normal vectors. More generally any periodic orbit would have to

have pairs of bounces for which ∆ sinχ has both signs, whereas the mono-

tonic variation in sinχ away from the notch does not permit this. Therefore

the only periodic orbits of this billiard have at least one bounce point on the

notch area. Their associated islands of stability are quite small as shown by

the surface of section in Fig. 39 which appears completely chaotic. Modes

based on such long periodic orbits are rarely important. If they are un-

stable they are unlikely to have strong scars for the reasons discussed in

the previous section; if they are stable the islands of stability are typically

very small and the resulting modes have small mode volumes. More impor-
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tantly, our numerical calculations on the passive cavity indicate no weight

in the emitting mode near zero angular momentum, which cannot happen

for periodic orbits in this structure.

In systems where periodic orbits are rare, diffractive contributions can

be significant. It’s known for instance from the study of open microwave res-

onators, that in the regime where there are no stable periodic orbits, orbits

that diffract off the sharp edges of the resonator can have a strong influence

on the spectrum and wavefunctions.63 Similarly, the analysis of the spiral

billiard suggests that for the formation of a notch-emitting high-Q mode,

a mechanism beyond geometric optics (such as diffraction) is necessary. If

a wavepacket of cylindrical waves with dominantly negative components

were injected into the system, the notch, which is discontinuous on the

scale of a wavelength, would diffract a small part of the amplitude into

positively rotating components above the critical angle, which would even-

tually be emitted from the notch. Hence we interpret the small amount

of counter-clockwise (ccw) rotating waves found numerically as responsible

for emission at the notch; and these components are due to diffraction of

the clockwise-waves as they pass the inner corner of the notch (see inset

Fig. 38(b)). Attempts to reproduce the experimental emission patterns with

any reasonable initial ray bundle that only reflects specularly (and refracts

out according to Snell’s Law) fail to reproduce the observed emission behav-

ior for the reasons alluded to above: clockwise ray bundles escape through

the smooth part of the boundary by refraction before they reverse direction,

solely counter-clockwise ray bundles do escape from the notch but would

correspond to an unphysically low Q-value (and contradict wave solutions).

Therefore we believe diffraction effects are crucial to the uni-directional

lasing from this device.

Another counter-intuitive feature of the experimental results is that the

farfield emission lobe is not maximum at θICCD = 0◦ corresponding to

normal emission from the notch, but has two “lobes” peaked at the angles:

θICCD ≈ 30◦ and θICCD ≈ 50◦ (see Fig. 37(b)). This tilt in the vicinity

of the notch arises because the ccw-component of the resonance cannot be

viewed as a Gaussian beam incident on the notch interface; instead there is

a distribution of wavevectors determined by the specific resonance. By an

angular decomposition of the incident field on the notch, we can numerically

propagate it to the farfield.

We assume first that the emitting (part of the) mode is composed of a

single angular momentum component, which is a reasonable starting point

given that the distribution of the positive components in the numerically
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calculated quasi-bound states is narrow, and becomes narrower for higher

wavenumbers. Let the notch interface be at z = 0. At the interface, in-

finitesimally below it, the angular spectrum of the field can be expressed

as

Ψ̃(z = 0−, s) =

∫ ∞

0

dxJm(nkx)e−inksx (27)

Then we can write

Ψ(z = 0+, x) =

∫ ∞

−∞
t(s)Ψ̃(z = 0−, s)eiksx (28)

So that if we propagate this field to points z > 0

Ψ(z > 0, x) =

∫ ∞

−∞
t(s)Ψ̃(z = 0−, s)eik(sx+

√
1−s2z) (29)

Consider the transform in Eq. (27). Only part of the incident radiation will

be incident on the notch interface, so we change the limits of the integral

accordingly. Scaling the variables inside the integral as well, we get:

Ψ̃(s) =
1

nk

∫ nkR0(1+ε)

nkR0

dx̃Jm(x̃)e−isx̃. (30)

In this way, the size scale of the notch (with respect to the wavelength)

enters the calculation. Calculating the field asymptotically at infinity, we

obtain after a saddle point calculation:56

I(θ) ∝
∣

∣

∣

∣

∣

√

n2 − sin2 θ cos θ
√

n2 − sin2 θ + n
√

1 − sin2 θ
Ψ̃(

sin θ

n
)

∣

∣

∣

∣

∣

2

(31)

The results in Fig. 40(a) show a fluctuating emission pattern with no strong

directional peak when Rc = m/nk ¿ R0, i.e. the caustic of the emitting

circular wave is between the edge of the notch at φ = 0, r = R0 and the

origin. Directional emission sets in as the caustic approaches the notch

and a single (though rather broad) peak results, which is displaced from

the normal direction. The angular displacement from the notch normal

vanishes as the mode intensity moves fully into the notch area and becomes

confined closer to the outer rim r = R0(1+ε), as expected from rays incident

increasingly at normal angles to the notch interface.

Finally, it is possible to check whether this asymptotic propagation

method gives a good representation of the actual farfield by calculating

the farfield emission profile of the numerically calculated internal mode

in Fig. 38 using Eq. (31). The result is shown in Fig. 40(b), and is in
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Fig. 40. (a) The variation of the angular shift of the peak emission from the notch with

the position of the caustic of the counterclockwise rotating cylindrical wave (smoothed).
Inset samples the behavior of the field in the farfield for three values of Rc; Rc = 0.86

(black), Rc = 0.95 (red) and Rc = 1.05 (blue). All intensities are scaled to be 1 at
maximum. The calculations are performed for the experimental size parameter nkR ≈
9300. (b) Comparison of the numerically calculated farfield for the resonance in Fig. 38
(solid curve) and the propagated farfield (cf. Eq. (31)) (dashed curve).

good agreement with the numerically determined farfield. The reliability of

Eq. (31) of course is better the higher the size parameter nkR.

If a diffractive mechanism is responsible for the uni-directional emission

from the notch of the spiral resonator then the output characteristics are

expected to be sensitive to the shape and sharpness of the notch. Further

experiments and modeling are required to see if this is the case. It remains

possible that a rather different physical picture of the lasing mode will

emerge under further study. For example a “ray model” of diffraction, based

on isotropic diffraction from the corner of the notch does not reproduce

the experimental behavior. This suggests that there are additional physical

effects which allow this device to perform as well as it does; we hope to

elucidate these mechanisms through further research.

Very recently new experiments have been performed in a PARC-Yale

collaboration on spiral-shaped InGaN MQW lasers with electrical injec-

tion pumping demonstrating low current thresholds and output power of

more than 25mw at 400nm.64 The heterostructure used was identical to the

one reported in the above work. The design (placement and shape) of the

electrode on the top-face of the p-GaN layer, which we pointed out is an

important issue, followed the results of the optical injection investigation.

It is to be noted that while selective optical pumping is limited to having

simple shapes, e.g., in the form of a ring or a line at various tilt angles, se-
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lective injection current pumping can have rather complex designs simply

by incorporating the shape complexities in the mask design, e.g., designing

the opaque electrode patterned after the perimeter of the notch. Future

work is expected to make optimal use of this technique in more complex

scenarios.

In conclusion, the work summarized in this section demonstrates that

the spiral geometry is a viable design of GaN-based laser devices for inte-

grated optical applications.

7. Summary and outlook

A wide range of experiments combined with ray and wave modeling has

shown that non-symmetric dielectric microresonators and lasers have a rich

set of properties. Low index ARC lasers and resonators are remarkably

well described by ray escape models based on flow patterns in partially

chaotic phase space. Semiconductor ARCs show interesting lasing effects

based on short periodic orbits. Basic phenomena of interest in the field

of quantum/wave chaos are observed, such as chaos-assisted tunneling and

scarring. Classical concepts such as the unstable and stable non-linear man-

ifolds of periodic orbits lie at the heart of the observed directional emission

in low index ARCs, which occurs despite the presence of strong chaos. The

semiconductor ARC and spiral lasers are typically not well-described by ray

models but still can be analyzed fruitfully by looking at the high-Q modes

in the ray phase space.

From the point of view of applications these non-symmetric dielectric

resonators have shown two striking advantages. First, at least in the case of

the quantum cascade ARC lasers, deformation from a symmetric boundary

shape led to an enormous increase in output efficiency. Second, for the spiral

laser, chiral whispering gallery modes appear to provide both relatively

high Q and uni-directional emission. This is of particular importance for

the GaN-based blue and UV lasers for which conventional approaches are

difficult or impossible to implement at the same size scale. It is hoped that

during the next period of research and development of asymmetric resonant

cavities these promising device characteristics will allow such cavities to

become part of useful technologies.
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