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Dramatic shape sensitivity of directional emission
patterns from

similarly deformed cylindrical polymer lasers
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Recent experiments on similarly shaped polymer microcavity lasers show a dramatic difference in the far-field
emission patterns. We show, for different deformations of the ellipse, quadrupole and hexadecapole, that the
large differences in the far-field emission patterns are explained by the differing ray dynamics corresponding
to each shape. Analyzing the differences in the appropriate phase space for ray motion, it is shown that the
differing geometries of the unstable manifolds of periodic orbits are the decisive factors in determining the
far-field pattern. Surprisingly, we find that strongly chaotic ray dynamics is compatible with highly direc-
tional emission in the far field. © 2004 Optical Society of America
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1. INTRODUCTION
Spherical, cylindrical, and disk-shaped dielectric cavities
have been of interest as compact, high-Q optical resona-
tors to be used in microlasers and integrated optics
applications.1,2 The high-Q modes of such devices are
‘‘whispering-gallery modes’’ (WGs), which circulate inside
the boundary confined by total internal reflection. Due
to their intrinsic rotational symmetry, such devices re-
quire additional symmetry-breaking elements to couple in
a directional manner and to optimize the Q values for a
given application. Some time ago, it was shown by
Nöckel, Stone, and Chang3–5 that smooth deformations of
such rotationally symmetric cavities (termed ARCs for
asymmetric resonant cavities) still have WG modes,
which now have intrinsically directional emission, and Q
values, which are tunable by the degree of deformation in-
troduced. The optical physics of such resonators is non-
trivial and interesting because the ray dynamics in such a
case is partially chaotic, and standard real-space ray trac-
ing is not helpful in analyzing their properties. Instead,
phase-space methods taken from nonlinear classical dy-
namics such as the surface-of-section method (see below)
allowed a much clearer picture of the physics, leading to
qualitative predictions for the high-intensity emission di-
rections from quadrupole-deformed ARCs.4–6 This
phase-space picture and associated ray simulations were
shown to agree semiquantitatively with exact numerical
calculations of the linear resonances of quadrupole
ARCs.5,6

The essence of the Nöckel–Stone ray model for ARCs
was that emission from deformed WG modes could be
viewed as refractive escape of rays that were initially
trapped by total internal reflection, but which, due to
their chaotic dynamics, could diffuse chaotically in angle
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of incidence, x, until they reach the critical angle, sin xc
5 1/n (n is the index of refraction of the resonator, as-
sumed to be surrounded by air) and refracted out. One
might naively assume that such chaotic ray dynamics
would generate a fluctuating and pseudorandom emission
pattern, but in fact, the ray motion follows a dominant
flow pattern in the phase space favoring escape at certain
points on the boundary and in certain directions in the far
field. Both numerical experiments and later experimen-
tal measurements on ARC lasers found highly directional
emission patterns in the far field. For the quadrupole
and related ARCs, it was argued that the flow pattern
was approximately describable as rapid motion along
adiabatic invariant curves (which could be calculated
from knowledge of the boundary shape) and slow diffu-
sion in the transverse direction. However, major devia-
tions from the flow pattern would occur in the vicinity of
stable periodic ray orbits, for reasons to be discussed in
detail below. As the shape of the adiabatic curves and
the location of stable and unstable periodic orbits is quite
sensitive to boundary shapes, this theory predicted a
rather dramatic sensitivity of the emission patterns from
ARC microlasers to the shape of the boundary. In the
current work, we explore a range of interesting ARC
shapes, both within and outside the range of earlier
theory. One of our goals is to test the earlier theoretical
predictions experimentally, for the first time to our knowl-
edge, with a controlled series of boundary shapes for poly-
mer ARC microlasers. The shapes we consider are quad-
rupole, elliptical, and hexadecapole ARCs (see definitions,
caption of Fig. 1). We find the following: (1) There is a
remarkable and reproducible difference in the lasing
emission patterns from ARC lasers with very similar
boundary shapes. (2) The basic difference between cha-
2004 Optical Society of America
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otic (quadrupole) and nonchaotic (elliptical) ARC emission
patterns is in agreement with the predictions of Nöckel
and Stone based on the adiabatic model. (3) Nonethe-
less, the persistence of highly directional emission pat-
terns for highly deformed quadrupolar ARCs is inconsis-
tent with the adiabatic model and is a quite surprising
experimental discovery. (4) A new theoretical model is
proposed that attributes the high-emission directions ob-
served for the chaotic shapes to the flow pattern produced
by the unstable manifolds of short periodic orbits; this
flow pattern differs significantly from the adiabatic
model. This model is shown to explain both the persis-
tence of narrow emission peaks in the quadrupole at high
deformation and the major shift in emission directionality
at large deformation for ARCs with hexadecapole defor-
mation. It also predicts that completely chaotic bound-
ary shapes, such as the stadium, can nonetheless exhibit
highly directional emission.

Further below (Section 4), we will review the basic
ideas of mixed phase space, which describes systems with
a mixture of chaotic and regular dynamics. At that
point, we will explain in detail the adiabatic model of
Nöckel and Stone and how it fails to account for the emis-
sion data for the highest deformations of resonators with
mixed phase space. However, we review here just a few
basic concepts to put the current experimental and theo-
retical work in perspective. At maximal radial deforma-
tions of order 15% from a reference circle, the quadrupole
and hexadecapole resonators have primarily chaotic ray
dynamics, and this implies that most initial conditions
corresponding to total internal reflection belong to ray
trajectories that eventually will strike the boundary be-
low total internal reflection and hence will escape rapidly
by refraction. The prior model posited a correspondence
between a set of totally internally reflected initial condi-
tions on rays and WG modes of the deformed resonator.
This correspondence, based on adiabatic invariants, will
be described below. The correspondence is essentially ex-
act for the ellipse but is only a rough approximation for
the quadrupole. Once ray initial conditions are chosen,
the emission patterns can be calculated using straightfor-
ward ray simulations as described in Refs. 4 and 5, and a
qualitative understanding of the emission patterns is pos-
sible based on properties of the phase-space flow. Using

Fig. 1. Cross-sectional shapes of micropillar resonators studied:
(a) the quadrupole, defined in polar coordinates by R 5 R0(1
1 e cos 2f ); (b) the ellipse, defined by R 5 R0$1 1 @(1 1 e)4

2 1#sin2 f %21/2; and (c) the hexadecapole, defined by R 5 R0@1
1 e(cos2 f 1 3/2 cos4 f )#, all at a deformation of e 5 0.12. Note
that all shapes have horizontal and vertical reflection symmetry
and have been defined so that the same value of e corresponds to
approximately the same major-to-minor axis ratio. In (b), x is
the angle of incidence of a ray with respect to the local normal.
In (a) and (c), we show short periodic orbits (diamond, rectangle,
triangle) relevant to the discussion in text.
this picture of phase-space flow, Nöckel and Stone
predicted4–6 that quadrupole resonators with deforma-
tions in the range of 10–12% and index of refraction n
5 1.5 would emit very differently than elliptical resona-
tors with the same major-to-minor axis ratio. (Similarly,
but less relevant here, they showed that an n 5 2 quad-
rupole resonator of exactly the same shape would emit
differently from the n 5 1.5 case). Specifically the ellip-
tical resonators would emit from the points of highest cur-
vature on the boundary roughly in the tangent direction
(90°), while the quadrupoles of the same index would emit
at roughly a 35°–45° angle to the major axes. It was ar-
gued that the origin of this effect is the presence in the
quadrupole of a stable four-bounce periodic ray orbit that
prevents emission from the highest curvature points in
the tangent direction, an effect they termed ‘‘dynamical
eclipsing’’.4,5 This finding was supported by numerical
solutions of the linear wave equation for the quasi-bound
states and their far-field emission patterns. Mode selec-
tion and nonlinear lasing processes were not treated in
the theory. A subsequent experiment on lasing droplets
by Chang et al.6 was successfully interpreted as strong
evidence for such dynamically eclipsed lasing modes.
However, this experiment was less direct than desirable
for two reasons. First, the droplet was a deformed
sphere with many possible lasing modes, most of which
were not of the two-dimensional (2D) type considered in
Refs. 4 and 5; it was argued, but not experimentally
shown, that the 2D ‘‘chaotic’’ modes dominated the lasing
emission. Second, the droplet shape deformation was not
controlled and could not be manipulated to turn the effect
on and off. Recently, Lacey et al.7 reported an experi-
ment on nearly spherical resonators where they ad-
dressed the former but not the latter problem. The ex-
periments reported here remedy both of these
shortcomings. First, the lasers are deformed cylinders,
and the lasing modes are truly 2D. Second, we have fab-
ricated the boundary shapes using a mask to conform to
the desired cross-sectional profile. Hence we can directly
compare, e.g., quadrupolar and elliptical ARC lasers, and
observe the presence or absence of the dynamical eclips-
ing effect over a range of deformations.

2. EXPERIMENTAL DATA
The experiments we report were performed on differently
shaped dye, 4-dicyanomethylene-2-methyl-6-( p-dimethyl-
aminostyryl)-4H-pyran, (DCM)-doped polymer poly(m-
ethyl methacrylate) samples that are fabricated on top of
a spin-on-glass buffer layer coated over a silicon substrate
through a sequence of microlithography and O2 reactive-
ionic-etching steps. The effective index of refraction of
these microcavities is 1.49, much lower than for earlier
experiments performed using a similar setup on GaN,
where the index of refraction is n 5 2.65.8,9 They are op-
tically pumped by a Q-switched Nd:YAG laser at l
5 532 nm incident normal to the plane of the micropillar.

Light emitted from the laser is imaged through an aper-
ture subtending a 5° angle and lens onto an intensified
charge-coupled device (ICCD) camera that is rotated by
an angle u in the far field from the major axis. The ap-
erture ensures a large enough depth of field that the
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whole cavity is in focus. A bandpass filter restricts the
imaged light to the stimulated-emission region of the
spectrum. The ICCD camera records an image of the in-
tensity profile on the sidewall of the pillar as viewed from
the angle f, which is converted from pixels to angular po-
sition f. In this paper, we studied microcavities with el-
liptic, quadrupolar, and hexadecapolar shape of an aver-
age radius R0 5 100 mm (see formulas in Fig. 1 caption).
The observed modes have a linewidth that is below the
resolution of our spectrometer; this indicates that the Q
factors must be larger than Qsp 5 l/Dl ' 3 3 104.
Each shape was analyzed at eccentricities of e 5 0.12,
0.14, 0.16, 0.18, and 0.20. The lasing is most likely mul-
timode, although we have no direct evidence for this.

In Fig. 2, we show the experimental results in a color-
scaled ICCD image. The two angles are the sidewall
angle f (for the horizontal coordinate) and the camera
angle u (for the vertical coordinate). We omit the data for
e 5 0.14 deformation, as it does not exhibit any effect not
captured by the data at the other deformations. To ob-
tain the far-field pattern with respect to u, we integrate
the image over all sidewall angles f. The boundary im-
age field is calculated by integrating over u for each f.
As insets, we show the exact shape of each of the micro-
Fig. 2. Two-dimensional display of the experimental data showing in false-color scale the emission intensity as a function of sidewall
angle f (converted from ICCD images) and of the far-field angle u (camera angle). Columns from left to right represent the quadrupole,
ellipse, and hexadecapole, respectively. Insets show the cross-sectional shapes of the pillars in each case (for definitions, see Fig. 1).
The graphs at the bottom show the far-field patterns obtained by integration over f for each u, normalized to unity in the direction of
maximal intensity. The deformations are e 5 0.12, 0.16, 0.18, 0.20 (red, blue, black, and green, respectively).
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cavities. Although the shapes appear very similar to the
eye, we find dramatic differences in the far-field emission
patterns, which, in the case of the ellipse versus the quad-
rupole, persist over a wide range of deformations. Spe-
cifically, the far-field emission intensity for the quadru-
pole exhibits a strong peak at u 5 34° –40°, which
remains rather narrow over the observed range of defor-
mations. Over the same range of deformation, the
boundary-image field for the quadrupole changes sub-
stantially and does not exhibit one localized point of emis-
sion. In contrast, the ellipse emits into the u ; 90° di-
rection in the far field, but with a much broader angular-
intensity distribution, while the boundary-image field
remains well localized around f ; 0° (the point of high-
est curvature in the imaged field). For the quadrupole–
hexadecapole, we see a far-field directionality peak that
shifts from u ; 90° to u ; 30° and an almost constant
boundary-image field. Thus we see three qualitatively
different behaviors for the three shapes studied over the
same range of variation of the major-to-minor axis ratios.

Several different samples with the same boundary
shape were measured in each case and confirmed that the
basic features of this data set just described are repro-
duced within each class (with small fluctuations).10 This
shows that the effects measured are a property of the
boundary shape and not of uncontrollable aspects of the
fabrication process. Moreover, the theoretical calcula-
tions, which we will present next, are based on uniform
dielectric rods with the ideal cross-sectional shape speci-
fied by the mask; therefore the agreement of these calcu-
lations with the measurements also confirms that the dif-
ferences are due to controllable shape differences.

3. THEORETICAL CALCULATIONS
In Figs. 3–5, we compare the experimental results for the
far-field emission patterns for the three shapes measured
at e 5 0.12, 0.18 to two theoretical models, one based on
solutions of the wave equation and the other based on
simulations of ray escape. The agreement in both cases
is quite good. We briefly summarize here the two models
used.

It is conventional in treating high-Q laser cavities to
approximate the lasing mode by the appropriate resonant
mode of the passive cavity (the cavity in the absence of
pumping and gain.11 In the current case, we can model
the passive cavity as a 2D resonator because the penetra-
tion depth of the pump laser is of the order of micrometers
and amplification due to reflection from the sidewall oc-
curs primarily within the horizontal plane of the resona-
tor. The wave equation for the time-harmonic solutions
in two dimensions within the uniform dielectric reduces
to the Helmholtz equation for the electric field (TM
modes) and magnetic field (TE modes), and we can solve
the Helmholtz equation by imposing Sommerfeld bound-
ary conditions (no incoming wave from infinity). We use
an efficient new numerical method developed for these
systems described in Ref. 12. The method yields a large
set of resonances over the entire range of Q values, the
real part of the wave vector giving the resonance fre-
quency and the imaginary part giving its width. Experi-
ments have indicated that mode selection is complicated
in these dielectric resonators and that there is no simple
rule relating the observed lasing mode to the Q value of
the mode in the passive cavity. Due to the low output
coupling, high Q modes are not necessarily the observed
lasing modes in the far field. Thus from the set of calcu-
lated resonances, we choose the resonance that coincides
well with the observed far-field pattern and has a rela-
tively high Q 5 22 Re@k#/Im@k#. We also confirmed that
theoretical boundary image data9 coincide well with the
experimental results. Moreover, in all cases discussed
here, there were many resonances that gave good agree-
ment with the data, indicating the existence of a robust
class of modes, any of which could be the lasing mode. In
Figs. 3–5, we show as a solid curve the numerical far field
by calculating the asymptotic expansion of our wave func-
tion in the far field. Numerical limitations prevent us
from performing the calculations at the experimental val-
ues of kR0 ; 1000, but the major features of the emission
pattern are not sensitive to kR0 over the range we can
study numerically. The finding (discussed next) that we
can reproduce these patterns from ray-escape simulations
also suggests that the wavelength is not a relevant pa-
rameter for the features we are studying. With a dash-
dotted curve we show the experimental results. We see
that the numerical calculations agree with the measured
far field very well.

As just noted, the experiment is performed well into the
short-wavelength limit, and we are motivated to develop
ray-optical models for the emission, following Refs. 4 and
5. In the ray simulation, an initial distribution of rays is
assumed, and each ray is given unit initial amplitude.
At each reflection on the boundary, the amplitude is re-

Fig. 3. Far-field intensity for the quadrupole with (a) e 5 0.12
and (b) 0.18. The dash–dotted curve is the experimental result,
dashed is the ray simulation, and solid is a numerical solution of
the wave equation. The ray simulation was performed starting
with 6000 random initial conditions above the critical line and
then propagated into the far field in the manner described in the
text. The numerical solutions selected have kR0 5 49.0847
2 0.0379i with a Q 5 2593.05 and kR0 5 49.5927 2 0.0679i
with Q 5 1460.72 for e 5 0.12 and 0.18, respectively.
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duced according to the Fresnel formulas. The outgoing
amplitude is recorded in the direction determined by
Snell’s law, and the reflected ray is followed until its am-
plitude falls below 1024. To compare with the experi-

Fig. 4. Far-field intensity for the ellipse with (a) e 5 0.12 and
(b) 0.18. Dash–dotted, dashed, and solid curves are experiment,
ray simulation, and wave solution. The ray simulation was per-
formed starting with 6000 initial conditions spread over seven
KAM curves separated by D sin x 5 0.02 below the critical KAM
curve (that just touches the critical line). The numerical wave
solutions shown correspond to kR0 5 49.1787 2 0.0028i with
Q 5 17481.38 and kR0 5 49.2491 2 0.0110i with Q 5 4488.20
for e 5 0.12 and 0.18, respectively.

Fig. 5. Far-field intensity for the hexadecapole with (a) e
5 0.12 and (b) 0.18. Dash–dotted, dashed, and solid curves are

experiment, ray simulation, and wave solution, as described
in the caption to Fig. 3. The numerical wave solutions
shown correspond to kR0 5 50.5761 2 0.0024i with Q
5 42573.77 and kR0 5 49.5642 2 0.0092i with Q 5 10741.93
for e 5 0.12 and 0.18, respectively.
mental data, we collected the transmitted rays in 5° bins.
A subtle issue in the calculations is the choice of the ini-
tial ray distribution. In Figs. 3 and 5, we show the far-
field distribution for a randomly chosen set of initial con-
ditions above the critical angle; in the case of the ellipse
(Fig. 4) we chose initial conditions appropriate to its inte-
grable dynamics (see the discussion below). The ray
model is found to reproduce the main features of the data
quite well. In Section 5 we show that the far-field emis-
sion pattern for chaotic shapes is insensitive to the initial
ray distribution over a wide range. Specifically, in Fig. 9
below, we compare the far-field patterns for different pos-
sible initial distributions, confirming the approximate in-
dependence of the patterns to this choice.

4. NOVEL FEATURES OF THE DATA
In the previous section, we showed that we can reproduce
the experimental data with two different theoretical mod-
els. First, by solving the linear wave equation in the di-
electric and choosing an appropriate resonance, and sec-
ond, by ray-escape simulations. This gives us confidence
that the major differences in the experimental emission
patterns are due to the different shapes of the laser cavi-
ties. The strong sensitivity of the emission patterns to
small differences in boundary shape is quite striking and
is a major result of this study. This sensitivity was pre-
dicted in the earlier work of references4–6 and was not un-
expected. However, there are major aspects of the ex-
perimental data that are quite surprising, even in light of
the earlier work on ARCs. In particular, the persistence
of highly directional emission in the quadrupolar shapes
at quite high deformations was not predicted theoretically
and was unexpected for reasons we will now discuss. In
order to understand the unexpected features of the data
and to develop principles to predict the emission patterns
for untested boundary shapes, we will review and extend
the phase-space approach introduced originally by Nöckel
and Stone.

To explain the basic concepts, it is useful to begin by ne-
glecting the possibility of refraction out of the resonator.
The problem of ray motion in a resonator with perfectly
reflecting walls is equivalent to the billiard problem first
posed by Birkhoff13 and since widely studied in the non-
linear dynamics community. The billiard problem is that
of a point mass moving freely in two dimensions within a
boundary of general shape defined by a perfectly (specu-
lar) reflecting wall. In such a system, classical mechan-
ics is reduced to a simple geometric construction, whose
properties nonetheless turn out to be remarkably com-
plex. An important tool to study dynamical systems such
as billiards was devised by Poincaré,14 the Poincaré Sur-
face of Section (SOS). The SOS images the trajectories in
phase space instead of in real space. For even the sim-
plest nontrivial dynamical systems (a point particle in
two dimensions) the phase space is four dimensional;
however, the SOS is a 2D plot that is a stroboscopic image
of a set of trajectories as they cross a certain hyperplane
in phase space. For billiards, this image is taken at each
reflection from the boundary; the coordinates of the SOS
are the angular position (f) and the tangential momen-
tum sin x (scaled to unit total momentum) of each trajec-



928 J. Opt. Soc. Am. B/Vol. 21, No. 5 /May 2004 Schwefel et al.
tory as it reflects from the boundary (Fig. 1). The topol-
ogy of the resulting plot gives us critical information
about the phase-space flow in the particular billiard of in-
terest.

When the motion is partially chaotic, a real-space trace
of the trajectory is essentially useless, while the SOS can
reveal useful information. An example of this is shown
in Fig. 6. Here we show a SOS for the quadrupole and
the ellipse with a deformation of e 5 0.072; we calculated
and plotted trajectories arising from ;30 different initial
conditions and iterated them for 500 reflections. We see
that for the chaotic orbit Fig. 6(A)(c), the real-space pic-
ture does not provide any useful information, whereas the
SOS shows us an underlying structure, specifically, that
such a chaotic orbit nonetheless avoids large regions of
phase space in this case. This plot illustrates a typical
structure for a mixed phase space. Such a structure is
generic for all smooth deformations of a circular billiard,
although the fraction of phase space that is covered by
chaotic motion increases with deformation. We will not
attempt to review the general properties of mixed dy-
namical systems that are described by Kolmogorov–
Arnold–Moser (KAM)15 theory and by other theorems due
to Poincaré, Birkhoff, and Lazutkin. However, a key to
understanding a given billiard is to study its periodic or-
bits. The ‘‘diamond’’ periodic orbit in Fig. 6(A)(b) shows
up in the SOS as four points that are referred to as fixed
points in the billiard map. For this deformation, the dia-
mond orbit is stable, as motion in the vicinity of the fixed
point is bounded. Iteration of an initial condition close to
a stable fixed point will result in a quasi-periodic orbit
that fills a one-dimensional curve in the SOS densely.

Fig. 6. Poincaré surface of section for (A) the quadrupole and
(B) the ellipse with e 5 0.072. The schematics (A) (a–c) on the
right show three classes of orbits for the quadrupole: (A)(a) a
quasi-periodic orbit on a KAM curve, (A)(b) a stable period-four
orbit, (the ‘‘diamond’’), and (A)(c) a chaotic orbit. Schematics
(B)(a, b) show the two types of orbits that exist in the ellipse,
(B)(a) the whispering-gallery type, with an elliptical and (B)(b),
the bouncing ball type, with a hyperbolic.
The set of all the points in the neighborhood of a stable
fixed point that are quasi periodic is called an island.
Another type of quasi-periodic motion is shown in Fig.
6(A)(a); in this case, we have motion on a KAM curve that
is similar to the WG modes found in the circle and is not
associated with any stable periodic orbit. The final type
of motion that occurs in a mixed phase space is shown in
Fig. 6(A)(c). Here, we show a chaotic orbit that fills a
two-dimensional region of the SOS densely; hence this is
a qualitatively different type of motion. Within this re-
gion, nearby initial conditions will separate exponentially
in time (until they are separated by a distance of the or-
der of the size of the chaotic region). As noted above, the
existence of these three types of motion is generic for
smooth deformations of a circle and hence for ARC reso-
nators.

While the behavior of the quadrupole shown in Fig.
6(A) is generic, there do exist special billiards that exhibit
the two extremes of dynamical behavior. One limiting
case is exemplified by the ellipse billiard whose SOS is
shown in Fig. 6(B). For the ellipse, all orbits lie on one-
dimensional curves in the SOS, and there are no chaotic
regions of the phase space. This type of system is called
integrable and has regular dynamics because there exists
one constant of motion for each degree of freedom. For
the elliptical billiard, these constants are the energy and
the product of the angular momenta with respect to each
focus (degenerating to the angular momentum in the case
of the circular billiard).16,17 The ellipse is the only con-
vex deformation of a circular billiard that is integrable.18

A recent proof of this long-standing conjecture was given
by Amiran.19 At the opposite extreme is the Bunimovich
stadium billiard (see inset in Fig. 13), for which it is
proven20 that there exist no stable periodic orbits and the
entire phase space (except sets of measure zero) is cha-
otic. We will study theoretically the emission from
stadium-shaped resonators in Section 7.

Due to its integrability, phase space flow in the ellipse
is particularly simple: every initial condition lies on one
of the invariant curves given by Eq. (1) below, and the tra-
jectory retraces this curve indefinitely [see Fig. 6(B)].
Curves that extend along the entire horizontal interval of
the SOS correspond to real-space motion tangent to a con-
focal elliptical caustic Fig. 6(B)(a); curves that are
bounded in a smaller interval of f represent motion tan-
gent to a hyperbolic caustic in real space Fig. 6(B)(b).
These two types of curves are separated by a critical curve
called a separatrix.

Phase-space flow in mixed systems is much more com-
plex and is ergodic in each chaotic region. However, a
key property of mixed dynamical systems is that the dif-
ferent dynamical structures in phase space are disjoint;
this implies that, in two dimensions, KAM curves and is-
lands divide phase space into regions that cannot be con-
nected by the chaotic orbits. This puts constraints on
phase-space flow despite the existence of chaos in a sig-
nificant fraction of the phase space. For small deforma-
tions (;5%), most of phase space is covered by KAM
curves, the form of which can be determined using an
adiabatic approximation.5 This approximation gives the
exact result for all deformations in the case of the ellipse;
it can be written in the following form:
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sin x~f ! 5 A1 1 ~S2 2 1 !k2/3~f, e!, (1)

where k is the radius of curvature along the boundary and
S is a constant. Plotting this equation for different val-
ues of S, e gives an SOS of the type shown in Fig. 6(B).
For the mixed case, exemplified by the quadrupole bil-
liard in Fig. 6(A), Eq. (1) describes quite accurately the
behavior for values of sin x near unity, but does not work
well at lower sin x, where chaos is more prevalent.

Up to now, the discussion has been based on the ideal
billiard, where a ray is trapped indefinitely by perfectly
reflecting walls. In the short-wavelength limit, the di-
electric resonator behaves very similarly to the ideal bil-
liard for angles of incidence above sin xc 5 1/n (i.e., the
evanescent leakage could be neglected); however, for inci-
dence below sin xc , rays would rapidly escape by refrac-
tion according to Fresnel’s law. If a correspondence could
be made between a set of initial conditions for rays and a
set of solutions of the wave equations (modes), then the
emission pattern could be calculated by propagating those
rays forward in time and allowing them to escape into the
far field, according to Snell’s and Fresnel’s laws. For the
case of the ellipse, there was an obvious correspondence
between a set of rays chosen on a given invariant curve of
the ellipse and a set of solutions. This correspondence
can be formalized using the eikonal method of Keller.21

The difficulty was in finding the correspondence in the
chaotic regions of phase space of generic shapes, for which
there exist no invariant curves.

In Refs. 5 and 17, a model was proposed based on an
adiabatic theory to describe the ray–wave correspondence
in the generic case of mixed dynamics. Initial conditions
on the adiabatic invariant curves, e.g., of the quadrupole,
were chosen. Due to the presence of chaos in the true dy-
namics, rays initially on such a curve diffuse in phase
space until they escape by refraction. The resulting
emission pattern can be calculated by ray simulations of
the type we have presented above. Moreover, this model
led to qualitative predictions about the emission patterns
without doing any simulations. The adiabatic invariant
curves for the quadrupole have their minimum values of
sin x at the points of highest curvature on the boundary
f 5 0,6p, just as they do in the ellipse. If the diffusion
in phase space is sufficiently slow, emission would be near
these points of highest curvature and at the critical angle,
i.e., in the tangent direction, as in the ellipse. This rea-
soning held as long as the escape points sin x 5 1/n, f
5 0,6p occurred in the chaotic region and were reach-
able from the totally internally reflected region of sin x
. 1/n. However, for n 5 1.5 and deformations around
10%, these points are enclosed by the stable island corre-
sponding to the four-bounce ‘‘diamond’’ orbit and are due
to the disjoint nature of the dynamics; ‘‘chaotic’’ rays can-
not escape there. Instead they will escape at higher or
lower values of f, leading to a large change in the emis-
sion pattern from that of the ellipse with a similar minor–
major axis ratio. This is the phenomenon termed ‘‘dy-
namical eclipsing,’’ and it was predicted to occur for the
n 5 1.5 quadrupole at e ; 0.12 some time ago.4,5 Our
experimental data confirm this prediction for the e
5 0.12 case. Figure 7 contrasts the phase space for the
ellipse and the quadrupole for this deformation. The is-
land associated with the stable diamond orbit is smaller
than at e 5 0.072, but still present for the quadrupole;
there is no such island at any deformation for the ellipse.
Note that in the experimental data for the quadrupole at
e 5 0.12, we do not see a bright spot at the boundary at
f 5 0, consistent with the dynamical eclipsing model in
which the island structure forces the chaotic WG modes to
emit away from the point of highest curvature. In con-
trast, the bright spot in the ellipse that emits to u 5 90°
clearly is at f 5 0 for e 5 0.12. Thus the adiabatic
model of Refs. 4 and 5 does seem to provide a reasonable
description of the data for e 5 0.12, and the observed dra-
matic difference between the ellipse and quadrupole
shapes is as predicted.

The earlier work on ARCs did not look extensively at
deformations above e 5 0.12 for the case of low-index ma-
terials such as polymers. The belief was that the adia-
batic model would become questionable at higher defor-
mations as the phase space became more chaotic and the
ray motion departed from the adiabatic curves very rap-
idly. A natural expectation was that, due to increased
chaos, the emission patterns in the far field would become
less directional and more pseudorandom. More specifi-
cally, for the n 5 1.5 quadrupole, one finds that the ‘‘dia-
mond’’ orbit becomes unstable at e ' 0.1369 (the associ-
ated islands shrink to zero), and one would not expect
highly directional emission at higher deformations (see
inset in Fig. 8). Thus a plausible extrapolation of the

Fig. 7. Comparison of the Poincaré surface of section for (a) the
quadrupole and (b) the ellipse with e 5 0.12 showing mostly cha-
otic behavior in the former case and completely regular motion in
the latter. The dash–dotted line denotes sin xc 5 1/n, the criti-
cal value for total internal reflection; rays above that line are
trapped, and those below escape rapidly by refraction. The
quadrupole still exhibits stable islands at f 5 0, p and sin x
5 sin xc , which prevent escape at the points of highest curva-
ture in the tangent direction. In (a) we show an adiabatic curve
(solid black curve) that has the minimum on the critical line.
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adiabatic model suggests a steady broadening of the
quadrupole emission with deformation with at least some
significant emission in the tangent (90°) direction. Our
experimental data strongly contradict this expectation, as
the observed emission patterns remain peaked around
35° and do not broaden at all up to e 5 0.20. A similar
analysis would show that the adiabatic theory provides no
qualitative explanation for the switch in the far-field di-
rectionality for the hexadecapole at high deformations.
Thus we are motivated to look for a model of the phase-
space flow that can explain the persistence in highly di-
rectional emission at high deformations where almost all
of the phase space is chaotic. This model will be pre-
sented in the next section.

5. SHORT-TIME DYNAMICS AND
UNSTABLE MANIFOLDS
An indication that the emission patterns we observe are
not closely linked to adiabatic curves is obtained by look-
ing at the dependence of the ray-emission directionality
on initial conditions. The original work of Nöckel and
Stone began the ray simulations with an ensemble of rays
uniformly distributed on the adiabatic curves. This is ob-
viously correct for the ellipse, as one can use the eikonal
method to calculate modes corresponding to the different
invariant curves. However, as already noted, the ellipse
is special since chaotic diffusion is absent. In Fig. 9, we
compare ray-emission patterns arising from three differ-
ent choices of initial conditions in the quadrupole: uni-
form on the adiabatic curve (dashed), initial conditions lo-
calized on the unstable fixed points associated with the
rectangular periodic orbit shown in Fig. 1 (dotted), and fi-
nally, initial conditions chosen randomly above the criti-
cal angle for escape (solid). These three quite different
choices all lead to similar far-field intensity patterns, in
good agreement with the experimental measurements

Fig. 8. Poincaré surface of section for the quadrupole with e
5 0.18. The black line indicates the critical angle of incidence.
The diamonds indicate the location of the fixed points of the
(now) unstable ‘‘diamond’’ orbit, and the squares indicate the
fixed points of the unstable rectangular orbit. In the inset, we
show the trace of the monodromy (stability) matrix (see Section
5) for the diamond orbit versus deformation. When uTr@M#u
. 2, its eigenvalues become real, the periodic motion becomes
unstable, and the associated islands vanish. For the diamond,
this happens at e 5 0.1369 (see dashed vertical line in the inset),
and the simple dynamical eclipsing picture of Fig. 7 does not ap-
ply at larger deformations.
(dash–dotted). More generally, we found that the ray
simulations are quite insensitive to the choice of initial
conditions, as long as a significant fraction of the rays are
started within the chaotic sea. (Ray bundles only started
in an island would obviously lead to different results.)
We now explain the qualitative origin of this insensitivity.

In a mixed system such as the quadrupole and hexade-
capole billiards, a single trajectory beginning in a chaotic
component of the phase space will cover that component
uniformly for long times. However, for short times, the
motion is not simply uniform diffusion but instead can be
analyzed conveniently by looking at the unstable fixed
points (periodic orbits) of the billiard or SOS map and
constructing the linearized map, M, near these points.
The nature of the linearized motion near the fixed points
can then be characterized by calculating the eigenvalues
and eigenvectors of this monodromy or stability matrix M.
For Hamiltonian flows, M is always an area-preserving
map, i.e., det M 5 1. The eigenvalues can be either com-
plex on the unit circle (stable case) or purely real and re-
ciprocal to each other (unstable case). Therefore for the
stable case, uTr@M#u , 2, and for the unstable case,
uTr@M#u . 2 (see Fig. 8 inset). All periodic orbits in the
chaotic component will be unstable, and the eigenvector
of the eigenvalue with modulus larger than unity will de-
fine the unstable direction of the flow near the fixed
points, while that corresponding to the eigenvalue with
modulus less than unity defines the stable direction. In

Fig. 9. Ray simulations of the far-field emission patterns for the
quadrupole with (a) e 5 0.12 and (b) e 5 0.18 with different
types of initial conditions. The solid curve is the result of choos-
ing random initial conditions above the critical line sin x 5 1/n;
the dashed curve is for initial conditions on the adiabatic curve
with a minimum value at the critical line. The dotted curve re-
sults for initial conditions localized around the unstable fixed
point of the rectangle periodic orbit. In each of the ray simula-
tions, 6000 rays were started with unit amplitude, and the am-
plitude was reduced according to Fresnel’s law upon each reflec-
tion, with the refracted amplitude ‘‘collected’’ in the far field.
The dash–dotted curve is the experimental result; clearly all
three choices give similar results, in good agreement with experi-
ment.
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the stable direction, deviations relax exponentially to-
ward the fixed points; in the unstable direction, devia-
tions grow exponentially away from the fixed points. Ge-
neric deviations will have at least some component along
the unstable directions and hence under iteration will
flow out along the unstable direction. The concept of
stable and unstable directions near a fixed point can be
generalized to the exact nonlinear map by defining stable
and unstable manifolds as the set of points that asympoti-
cally approach the fixed points as t → ` and as t
→ 2`, respectively. Near the fixed points, these mani-

folds coincide with the eigendirections of the linearized
map, which can usually be calculated analytically; away
from the fixed points, the manifolds begin to oscillate rap-
idly and can only be calculated numerically up to some
distance. Note that for integrable systems, there is only
one asymptotic manifold for both past and future, and it
coincides exactly with the invariant curves, which can be
calculated analytically in many cases (e.g., the ellipse).

One can argue qualitatively that the unstable mani-
folds of the short periodic orbits ought to control the ray-
escape dynamics at large deformations. The manifolds of
short periodic orbits are the least convoluted, as they are
typically the least unstable; hence the unstable direction

Fig. 10. (a) Ray simulations of short-term dynamics for random
initial conditions above the critical line, propagated for 10 itera-
tions, plotted on the surface of section for the quadrupole with
e 5 0.18. The areas of the SOS covered are delineated very ac-
curately by the unstable manifolds of the short periodic orbits,
which are indicated in the schematics at right. These manifolds
are overlaid in the figure with appropriate color coding. (b)
Flow of phase-space volume in the surface of section of the quad-
rupole with e 5 0.18. A localized but arbitrary cloud of initial
conditions (red) is iterated six times to illustrate the flow. The
initial volume is the circle at the far left; successive iterations are
increasingly stretched by the chaotic map. The stretching
clearly follows closely the unstable manifold of the rectangle or-
bit, which we have plotted in blue.
is fairly linear over a large region in the SOS. A typical
ray will only make small excursions in phase space until
it approaches one of these manifolds, and then it will
rather rapidly flow along it. If the direction leads across
the critical line for escape, that crossing point and the
portion just below will be highly favored as escape points
in phase space. We can check this qualitative argument
with a few simple numerical experiments.

In Fig. 10(a), we show the results of a short time itera-
tion of a uniform random set of initial conditions above
the critical curve in comparison to the unstable manifolds
of the various relevant short periodic orbits. Note that
the different unstable manifolds must fit together in a
consistent manner and cannot cross one another; if they
did, such a crossing point would define a ray, which as-
ymptotically in the past approached two different sets of
fixed points, which is not possible. Because of this non-
crossing property, the unstable manifolds define just a
few major flow directions in the SOS. We see clearly in
the simulation that the actual short-time flow of random
points in the chaotic sea is controlled and approximately
bounded by these unstable manifolds. To further support
our statement that the general motion in phase space is
governed by the unstable manifolds of these short orbits,
in Fig. 10(b) we propagate an arbitrary but localized set of
initial conditions and confirm that they are stretched
along and parallel to nearby unstable manifolds. Thus it
appears that, for the highly deformed case, the phase-
space flow of a generic ray is much better predicted by
simply plotting these manifolds.

Fig. 11. (a) Ray simulation of emission: emitted-ray amplitude
(color scale) overlaid on the surface of section for the quadrupole
with e 5 0.18. (b) Far-field intensity from experimental image
data (Fig. 2) projected in false-color scale onto the surface of sec-
tion for the quadrupole with e 5 0.18. The blue curve is the un-
stable manifold of the periodic rectangle orbit. In green, we
have the curve of constant 34° far field (see the discussion in Sec-
tion 6). Absence of projected intensity near f 5 6p in (b) is due
to collection of experimental data only in the first quadrant.
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As a confirmation that these manifolds do control es-
cape, we perform a further ray simulation for the ‘‘open’’
billiard. We propagate, as before, an ensemble of rays
with a uniform random distribution above the critical
angle. As we have done in calculating the ray-emission
pattern, we associate to every starting ray in the surface
of section an amplitude that decreases as the ray propa-
gates forward in time according to Fresnel’s law (if the
point falls below the critical curve). Instead of following
the refracted amplitude into the far field, in this case we
plot the emitted amplitude onto the surface of section, as
shown in Fig. 11(a). The emission amplitude is almost
completely confined within the two downward ‘‘fingers’’
created by the unstable manifold of the four-bounce rect-
angular orbit. As noted earlier, the availability of the
two-dimensional data obtained from the imaging tech-
nique (see Fig. 2), gives us a unique ability to reconstruct
the emitting part of the lasing mode both in real space
and momentum space directly from experimental data.
It is therefore possible to check directly this ray simula-
tion in phase space against experimental data. The in-
tensity data are sorted into intensity pixels according to
both their sidewall location (the angle f from which emit-
ted intensity originated) and their far-field angle, which
by geometric considerations and Snell’s law can be con-
verted to the internal angle of incidence sin x. Therefore
we can project these data ‘‘back’’ onto the SOS for emis-
sion. In Fig. 11(b), we show this projection for the same
deformation as in Fig. 11(a); we find remarkable agree-
ment between the projected data and the ray simulation.
We note that this is a much more demanding test of
agreement between theory and experiment than simply
reproducing the experimental far-field patterns.

6. RAY DYNAMICAL EXPLANATION OF
THE EXPERIMENTAL DATA
In the previous section, we established that typical rays
above the critical angle escape by following closely the un-
stable manifolds of the short periodic orbits. This leads
to a ray-escape probability that is relatively localized in
the surface of section [Fig. 11(a)]. However, despite the
nonrandom character of this escape, there is still a signifi-
cant spread of angles of incidence for escape. In fact, the
spread of escape angle we see in Fig. 11 would lead to an
angular spread of nearly 80° in the far field if all the es-
cape occurred from the same point on the boundary.
However, as we see from Fig. 11, the point of escape and
the angle of incidence are correlated and vary together ac-
cording to the shape of the unstable manifold. Because
the boundary is curved, different angles of incidence can
lead to the same angular direction in the far field. It is
straightforward to calculate the curves of constant far
field for a given shape; for the quadruple at e 5 0.18 and
for the peak observed emission angle of 34°, this curve is
plotted in green in Fig. 11. The curve tends to lie re-
markably close to the unstable manifold. Therefore we
find that the curvature of the boundary tends to compen-
sate almost completely for the dispersion in the angle of
incidence at escape.

As a further test of the explanatory power of plotting
the unstable manifolds, we can use this method to explain
Fig. 12. Ray-emission amplitude (color scale) overlaid on the
surface of section for the hexadecapole with (a) e
5 0.12 and (b) e 5 0.20. Solid blue and magenta curves are the
unstable manifold of the diamond orbit (a) and of the unstable
rectangular orbit (b). In green and turquoise, we plot the curves
of constant emission in the 75° and 30° directions in the far field.

Fig. 13. Far-field emission patterns for the stadium with (a) e
5 0.12 and (b) e 5 0.18. The dash–dotted curve is the ray
simulation, and the solid is a numerical solution of the wave
equation; no experimental data were taken for this shape. The
ray simulation was performed with random initial conditions ex-
actly as in Fig. 3. The numerical solutions were for resonances
with kR 5 50.5401 2 0.0431i with Q 5 2342.71 and kR
5 48.7988 2 0.1192i with Q 5 818.83 for e 5 0.12 and 0.18, re-
spectively. The inset shows the shape of the stadium; it is de-
fined by two half circles with radius one and a straight line seg-
ment of length 2e.
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the large shift in the far-field directionality in the hexa-
decapole (QHD) with deformation shown in Fig. 2. The
QHD shape is an interesting contrast to the quadrupole
as the diamond and rectangle periodic orbits interchange
their roles. For the QHD at small deformations, the dia-
mond orbit is unstable and gives no islands, whereas the
rectangle is stable and gives rather large islands at e
5 0.12 [see Fig. 12(a)]. Since there is no island at the

point of highest curvature for this deformation, the origi-
nal adiabatic theory would predict emission from the
point of highest curvature approximately in the tangent
(90°) direction. We see in Fig. 5 that we indeed have
such behavior experimentally. The same prediction
would come from looking at the unstable manifolds; in
Fig. 12(a), we find that the maximum ray-escape ampli-
tude comes from near f 5 0 and is bounded by the un-
stable manifold of the diamond orbit. The relevant un-
stable manifolds rearrange as the deformation is
increased to e 5 0.20. The stable rectangle bifurcates at
e ; 0.1115 into two stable, period four, ‘‘parallelogram’’
orbits. As the deformation increases, the islands associ-
ated with these orbits move closer to f 5 0, and although
the islands themselves are quite small, they cause the un-
stable manifolds of the diamond to become steeper (as the
fixed point of the diamond orbit sits right between the two
period-four islands). Due to the noncrossing property,
the rest of the unstable manifolds in this region of the
phase space also become steeper. At e 5 0.20, Figure
12(b) shows that the unstable manifold of the rectangular
orbit dictates the flow of the escaping rays, which now are
emitted into the u 5 30° direction in the far field for es-
sentially the same reason as in the quadrupole. Thus the

Fig. 14. Ray-emission amplitude (color scale) overlaid on the
surface of section for the stadium with (a) e 5 0.12 and (b) e
5 0.18. The solid blue curve is the unstable manifold of the pe-

riodic rectangle orbit. The green curve is (a) the line of constant
55° and (b) the 48° emission direction into the far field. The
thick black lines mark the end of the circular segments of the
boundary and coincide with discontinuities in the manifolds.
QHD is a shape that behaves like the ellipse at low defor-
mations and as the quadrupole at high deformations; this
can be attributed to the evolution in the geometry of its
unstable manifolds.

7. DIRECTIONAL EMISSION FROM
COMPLETELY CHAOTIC RESONATORS
The existence of highly directional emission for the highly
deformed quadrupole (e 5 0.20) suggests that the slow
diffusion in phase space, characteristic of mixed systems,
is not essential to get this effect. Therefore we decided to
study theoretically resonators for which the correspond-
ing billiard is completely chaotic and for which there exist
no stable periodic orbits at all. The Bunimovich Stadium
(see inset in Fig. 13), mentioned above, was a natural
choice due to its similarity to the quadrupole. As before,
we did both ray-escape simulations and numerical solu-
tions of the wave equation. In Fig. 13 we show our pre-
dictions. We find again highly directional emission with
a peak direction (;55°) slightly shifted from the quadru-
pole; the narrowness of the far-field peak in the stadium
is comparable to that of the far-field peak in the quadru-
pole. We can associate this peak with the slope and po-
sition of the manifold of the unstable rectangular orbit in
the stadium [Fig. 14(a)]. The noticable shift between the
e 5 0.12 and e 5 0.18 deformation (see inset in Fig. 13)
originates from the change in the slope of the unstable
manifold of the rectangular orbit [Fig. 14(b)]. The dis-
continuities of slope in the unstable manifolds of the pe-
riodic orbits in the stadium result from its nonsmooth
boundary. These results indicate clearly that a fully cha-
otic dielectric resonator can nonetheless sustain highly di-
rectional lasing modes. It would be interesting to test
this in future experiments.

8. SUMMARY AND CONCLUSIONS
We have reported experimental data from polymer micro-
pillar lasers with different deformations of the cross sec-
tion from circular symmetry. The far-field emission pat-
terns were anisotropic and in most cases highly
directional. The anisotropy was stable and reproducible
and was dramatically different for different boundary
shapes of similar major-to-minor axis ratio. These differ-
ences were reproduced by ray and wave solutions of the
ideal passive cavity. The differences in the emission pat-
terns were explained by reference to the different dynam-
ics of rays trapped within each resonator. The possibility
of highly directional emission from quadrupole resonators
with partially chaotic ray dynamics was predicted earlier,
but was found to be much more robust in the experiment
than previously suspected. The earlier adiabatic model5

could not explain this robustness, and a new model based
on the geometry of unstable manifolds was proposed and
tested. We were able to explain the current data and by
extension predict that fully chaotic resonator shapes such
as the stadium would also exhibit highly directional emis-
sion.
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