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ABSTRACT

We use the multi-mode lasing equations of Haken to analyze the stationary state lasing patterns of two-
dimensional dielectric microcavity lasers of different shape, including the circle and various smooth deformations
of the circle. We find a generic increase in the power output with deformation which is relatively insensitive
to the specific form of the shape deformation. In addition we find strong mode selection in favor of librational
modes (including but not solely the bow-tie modes) in the case when the pumping is concentrated near the
center of the cavity. These results point towards an explanation of the dramatic results on power increase with
deformation obtained by Gmachl et al. in quantum cascade micro-cylinder lasers. The sensitivity of the lasing
solutions to the nature of the ray dynamics (chaotic, integrable and mixed) will also be analyzed.
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1. INTRODUCTION

There has been a great deal of experimental and theoretical work on dielectric cavity microlasers, starting with
the spherical, cylindrical and disk-shaped lasers1–3 and more recently focusing on smooth deformations of these
shapes, known as asymmetric resonant cavity lasers (ARCs).4–7 The theoretical interest in the ARC lasers is
motivated from the fact that the ray dynamics in such shapes is typically at least partially chaotic and the passive
cavity represents a realization of a wave-chaotic system. The closed dielectric geometry allows a wide range of
modes with different internal spatial intensity patterns and external emission patterns to have a reasonably high
Q, unlike a typical Fabry-Perot cavity. This situation make the determination of the lasing mode(s) for an ARC
laser a more challenging and interesting problem. Conversely, one can regard the shape of the resonator as design
parameter, which can be varied to achieve desired features in the output properties of the laser. A recent set
of experiments8 demonstrated very high sensitivity of the output emission pattern to variations in the resonator
shape for polymer ARC cylinder lasers. This and a number of other experiments6, 9–11 have been interpreted
in terms of specific modes of the passive ARC which can be classified as stable, unstable and chaotic. In all of
these cases the lasing mode was not predicted in advance of the experiments. At least as dramatic as the shape
sensitivity of the emission patterns from ARCs was the large increase in the output power of quantum cascade
semiconductor ARC lasers with increasing deformation demonstrated in the experiments of Gmachl et al..6 At
smooth deformations from circular symmetry of 16% the lasing mode was argued to be based on a stable ray orbit
with the geometry of a bow-tie; however the overall power increase with deformation was relatively smooth and
for deformations of 20% was over two orders of magnitude compared to identical lasers of circular cross-section.
No theory of this impressive improvement of the output power with deformation has been presented up to this
point.

The difficulty in the theory is that consideration of the passive cavity is clearly insufficient to explain the
phenomena. The passive cavity can give us insight into the relative Q-values of the modes and their emission
patterns; however only a non-linear theory which includes many modes and their competition can address the
mode selection and output power of these lasers. In particular, the circular (cylindrical) laser cavities will have
individual modes with approximately the same Q-values as the bow-tie modes believed to be responsible for the
lasing output at high deformations in the experiments of Gmachl et al.6 However clearly the mode competition
and spatial distributions of the modes should be different in the two cases and must be responsible for the vastly
different output properties.

In this manuscript, we will study the interacting mode problem for 10-100 micron-scale lasers based on
dielectric resonators, both cylindrical and deformed cylinders(ARCs). To do this one needs to study a non-linear



lasing theory with many modes interacting. We start with the semi-classical laser theory, developed by Haken,12

Lamb13 and others, which leads to the coupled non-linear Maxwell-Bloch equations. An approximate multi-mode
treatment of these equations, valid near threshold, was developed by Haken and Sauermann14 and is used below
in this new context to address the output power and selection of the lasing modes in such systems. This model
has the virtue of allowing the simultaneous treatment of a large number of modes, consistent with the number
of modes relevant to lasing in the experimental systems of interest. The drawback of the model is that it likely
overestimates the number of lasing modes, due to the near threshold approximation (we will comment on this
further below). However it is currently not possible to improve this approximation and still include the number
of modes required for treatment of the realistic system. In this regard, we note that there have been a number
of interesting recent papers by Harayama and coworkers15–17 on the theory of such lasers working with the full
Maxwell-Bloch equations or a slightly simplified (so-called Schrödinger-Bloch) version. These papers address
a number of issues as to possible lasing modes and mode-locking effects which we shall also discuss below;
however they do not address mode selection, shape sensitivity and power output in the many mode regime as
we do in the current work. Our results suggest that both the overall decrease in Q-values with deformation and
spatial selective pumping effects account for the power increase observed in the experiments of Gmachl et al. In
addition, the output emission pattern observed in that experiment reflects the importance of mode-locking of
quasi-degenerate bow-tie modes, in a similar manner to the recent observation of Fukushima et al.16

2. DERIVATION OF MULTI-MODE EQUATIONS FROM THE MAXWELL-BLOCH
EQUATIONS

The starting point for our theoretical treatment is the following form of the Maxwell-Bloch (MB) equations:

ė =
i

2ωa

[

ω2
a + c2∇2

]

e+ 2iπωap (1)

ṗ = −γ⊥p+
g2

i~
eD (2)

Ḋ = γ‖ (D0 −D) − 2

i~
(ep∗ − pe∗) (3)

This is a set of non-linearly coupled spatio-temporal partial differential equations for the field amplitudes
e(x, y, t), p(x, y, t) and the inversion D(x, y, t). The full electric and polarization field are given by E(x, y, t) =
e(x, y, t)e−iωat + c.c. and P (x, y, t) = p(x, y, t)e−iωat + c.c.. Here we have concentrated on the kz = 0 TM
modes of the electric field with polarization in the z-direction (along the axis of the cylinder). Hence there is
no z-variation (neglecting edge effects at top and bottom) and the fields are functions of the transverse coor-
dinates x = (x, y) making the problem effectively two-dimensional. The parameters ωa and g are the atomic
transition frequency and the dipole moment matrix element, while γ⊥ and γ‖ are phenomenological damping
constants for the polarization and the inversion, respectively. Note that field damping is implicit in the operator
L = i

2ωa

[ω2
a +c2(∂2

x +∂2
y)] which in this way will provide us with mode-dependent cavity decay rates κµ, contrary

to the conventional models with a fixed, heuristic κ.

We will focus on semiconductor lasers (Class B)18 for which we can adiabatically eliminate the polarization,
i.e. ṗ = 0 and

p(x, t) =
g2

i~γ⊥
e(x, t)D(x, t) (4)

In this case the adiabatic elimination is well-justified as for typical semiconductor lasers γ⊥ is at least three
orders of magnitude larger than the other time scales κ and γ‖.

A multi-frequency solution19 is only possible when the inversion is stationary D(x, t) = D(x), so that Ḋ = 0
also. A stationary multi-mode solution can be found when the typical mode spacing ∆ À γ‖ so that time-
dependent (beating) terms in D(x, t) are reduced by the factor γ‖/∆. The typical mode spacing for a roughly
circular cavity scales as ∆ ∼ c/kR2, where R is the average radius of the cavity; as is well-known, closely-
spaced modes of the cold cavity may frequency-lock in the active cavity. Due to the discrete symmetries of the
cavities we consider (such as reflection) there are guaranteed to be quasi-degenerate multiplets from stable orbit



modes20 which in the cold cavity would violate our assumption that the mode spacing is much greater than γ‖;
however we will assume that such modes frequency-lock and the resulting modes are then well-separated and
treatable within our adiabatic approximation. We will discuss the effect of this frequency-locking in more detail
in Section 5 below; for the moment we include this effect by allowing the possibility of two different cold-cavity
modes having the same frequency. Implementing Ḋ = 0 gives

D(x) =
D0

1 + 4g2

~2γ⊥γ‖
|e(x)|2

(5)

We now introduce expansions of the fields in the cold-cavity modes ψµ(x), which we assume to be real:

e(x) =
∑

µ

eµ(t)ψµ(x), p(x, t) =
∑

µ

pµ(t)ψµ(x) (6)

where eµ(t) = e
(0)
µ eiΩµt and we do not assume that the lasing frequencies Ωµ are given by the cold-cavity

frequencies. It is conventional in this approach to take the cold cavity modes as the solutions of the ideal closed
cavity, which have real frequencies and are orthogonal. In the results given below we will follow this approach
and use approximate arguments to estimate the transmissivity and lifetimes of the corresponding modes of the
open dielectric cavity. We are developing an improved treatment in which the modal expansion is in terms of
linear amplifying states, which are solutions of the wave equation for piecewise constant (in space) complex
(amplifying) index of refraction with real k, and satisfy somewhat more complicated orthogonality relations.

Rewriting Eq. (5) and neglecting terms of lower order after time-averaging over fast motion

D(x) =
D0

1 + 1
e2

c

∑

m em

∑

m̄ em̄ψm(x)ψm̄(x)
(7)

where the sum on m runs over all lasing modes but the sum on m̄ runs just over any frequency-locked cold cavity

modes corresponding to m. Here, ec =
~
√

γ‖γ⊥

2g
, the typical electric field scale above the laser threshold (after

the exponential growth). Note that the inclusion of retardation effects for the polarization degree of freedom

could be taken into account by replacing ec by a mode-dependent e−2
cµ = 4g2γ⊥

~2γ‖

1
Ω2

µ
+γ2

⊥
, although we will not do

this here.

Plugging Eq. (7) into Eq. (1), using Eq. (6) and spatially integrating both sides of the equation against ψµ(x),
(using the orthogonality of the modes) we obtain

ėµ = (i∆̃µ − κ̃µ)eµ +
∑

ν

Dµνeν (8)

Here, we have scaled the time and all frequencies with respect to a typical cavity decay scale κ (this could be
the cavity decay rate of the shortest lifetime mode in a given spectral interval within the linewidth of the laser).
The symmetric inversion matrix Dµν is given by

Dµν = D̃0

∫

d2x
ψµ(x)ψν(x)

1 + 1
e2

c

∑

m,m̄ eme∗m̄ψm(x)ψm̄(x)
(9)

Here D̃0 = D0/Dc, where Dc = ~κγ⊥

2πωag2 is the single mode pump threshold corresponding to a chosen reference
mode with lifetime κ. It is here that we make the key near-threshold approximation and expand the denominator
of Eq. (7) to give

ėµ = (i∆̃µ − κ̃µ + D̃0)eµ − D̃0

∑

mm̄ν

eνeme
∗
m̄Γµmm̄ν . (10)

The expansion is valid as long as our pump satisfies |D0 −Dc| ¿ Dc. Here,

Γµmm̄ν =

∫

d2xψµ(x)ψm(x)ψm̄(x)ψν(x) (11)



The usual approximation to this third order theory would neglect the possibility of mode-locked cold cavity
states and set m̄ = m; we shall refer to this as the diagonal theory. Then, multiplying both sides of Eq. (10) by
e∗µ and time-averaging the product e∗µeν we obtain:

1

2
ṅµ = −(κµ −D0)nµ −D0

∑

ν

Aµνnνnµ (12)

Here nµ = |eµ|2 are the modal intensities, we have dropped the tilde for the scaled quantities, relabeled the index
m→ ν and Aµν are the overlap integrals

Aµν = Γµνµν =

∫

d2xψ2
µ(x)ψ2

ν(x). (13)

3. RESULTS OF DIAGONAL THEORY

Setting ṅµ = 0, the steady state solution of Eq. (12) yields

1 − κµ

D0
=
∑

ν

Aµνnν (14)

Therefore the near threshold modal intensities are determined by solving an inhomogeneous linear system deter-
mined by the overlap matrix, Aµν (which encodes both the mode volume effects in the diagonal terms and the
spatial hole-burning effects in the off-diagonal terms), the lifetimes of the cold cavity modes κµ, and the pump
power D0. However there is an important constraint on this equation which prevents a straightforward inversion:
all physical solutions require nµ > 0. The technique we use to implement the constraints is described below.
Our results on power output below will all be based on the solution of this set of near threshold equations for
various resonators.

As just noted, a physical solution requires all nµ > 0. It is possible to satisfy this constraint by varying
the number of modes included; above the lowest lasing threshold one is guaranteed that at least one solution
exists with some nµ 6= 0 and all others zero. Typically one finds solutions with tens of modes lasing in the
parameter region we investigate. However Eq. (14) does not have a unique solution using this approach for a
given pump strength. The solution depends strongly on the set of included modes {ψµ}. Only one of these
solutions represents a stable solution at a given pump value D0, all the other solutions being unstable. We
find this stable solution in the following way: One starts with the mode ψ0 which has the lowest threshold and
determines the instability threshold of the next mode by finding the lowest value of D0 at which inclusion of the
mode {ψµ}, µ 6= 0 yields a positive solution. This is then iterated by including more and more modes.

3.1. Circular resonators

We first consider circular resonators; the non-linear modes of such resonators have been studied previously by
Harayama et al..21 For this problem each mode is exactly degenerate, corresponding to angular variations
cosmφ and sinmφ, and as we will show below, in the non-linear regime these modes combine (lock) with a phase
difference of π/2. Hence the basis set of cold-cavity modes we will use have an angular variation of e±imφ. For
the circular dielectric cavities we have a very accurate analytical approximation for the lifetimes κµ using the
semiclassical interpolation formula22

κµ =
1

2
log

[

n− 1

n+ 1

]

Jm(kR)Ym−1(kR) − Jm−1(kR)Ym(kR)

J2
m(kR) + Y 2

m(kR)
. (15)

To obtain the output intensity, we will multiply the modal intensities nµ obtained from the solution of Eq. (14) by
the associated semiclassical transmissivity Tµ = 4κµ cosχµ,22 where we use the WKB value for sinχµ = m/nkµR.

The calculated overlap matrices Aµν are shown in Fig. 1. Note that the diagonal elements are the inverse
mode volumes; along with the lifetimes, they determine the internal/external intensities in the single-mode
theory. The mode volumes are lowest for the extreme whispering gallery modes and are largest for values of
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Figure 1. The overlap matrix Aµν . The modes are ordered such that sin χ increases monotonically with sin χ ≈ 1
corresponding to whispering gallery modes and sin χ ≈ 0 corresponds to bouncing ball (Fabry-Perot) modes

sinχ ∼ 0.4; they decrease again for bouncing ball type modes which pass through the center of the resonator.
The off-diagonal elements are typically 2-8 times less then the diagonal elements and decrease away from the
diagonal since modal interactions are strongest for spatially overlapping modes.

The stable solution for input and output modal intensities to Eq. (14) for the input data given in Fig. 1 is
plotted in Fig. 2 for D0 = 1.1. The internal modal intensities are controlled by mode volume effects with a
maximum away from the critical angle for total internal reflection; however the external modal intensities are
modified strongly by the escape probabilities, so that very intense whispering gallery modes give little external
intensity while leakier modes nearer the critical angle give the largest contribution. This demonstrates the
necessity of having an optimal Q value to provide efficient output and the selection of such modes in the circle.
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Figure 2. (a) Internal and (b) external modal intensities (in units of ec) calculated within the single-mode theory
compared to the model with modal interactions Eq. (14) for D0 = 1.1 and an absorption of κ0 = 0.3. The gain center is
at nkR ≈ 128 and the linear index of refraction of the cavity is n = 3.3. The last mode lasing corresponds to a mode with
an angle of incidence given by sin χ = 0.2785, which is a classically emitting mode below the critical angle sin χc = 0.3030.
The interacting modal intensities are much smaller than the non-interacting (single-mode) intensities and have been scaled
by a factor of 5 for the internal, and by a factor of 30 for the external case to expedite the comparison

The thresholds within the interacting mode model are strongly modified with respect to their single-mode
values, as can be seen from Fig. 3.
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Figure 3. Interacting (squares) and single-mode (circles) threshold pump intensities upto a maximum pump power of
D0 = 1.1.

In Fig. 4 we study the effect of mode interactions on the output modal intensities. We plot the ratio of the
maximum output modal intensities obtained from the single-mode (neglecting interactions) theory to that with
interaction included. In all cases turning on interactions suppresses somewhat the intensity, but only by a factor
of roughly three for the internal intensity, whereas it can suppress the external intensity by factors of as much as
thirty. Moreover the output intensity is highly sensitive to the value of the pump, whereas the internal intensity
is not. This indicates that for the circular lasers we can get a much lower output intensity than what we would
expect from the lifetime of a given mode based on single-mode considerations.

As already noted, our near threshold theory cannot give us a completely realistic description of experiments,
where saturation effects play a role. The near threshold theory actually underestimates the modal intensities for
a given mode which is well above threshold. An indication of this comes from the single-mode approximation,
for which one can directly compare near threshold and saturated expressions for the modal intensities. In this
analysis it is important to include the linear absorption loss within the resonator.

The saturated expression for external modal intensities is given by

nout
µ = 4κµ cosχµ

(

D0

κ0 + κµ

− 1

)

(16)

Here, κ0 is the linear absorption rate. We will compare this expression to our near-threshold form

nout
µ = 4κµ cosχµ

(

1 − κ0 + κµ

D0

)

(17)

Note that the threshold condition is identical in both expressions, however the behavior well above threshold is
very different. The near threshold form will lead to a saturation of the modal intensities with pump strength at a
dimensionless value of unity, whereas the general expression leads to a linear increase in modal intensities for high
pump strength. Thus the modal intensities are underestimated for the higher Q modes within the near threshold
theory, leading to an underestimate of the power output. This error is smaller the larger is the linear absorption
coefficient, which brings down the Q values of whispering gallery modes; thus the near threshold theory improves
with larger linear absorption at a given value of the pump, as shown in In Fig. 5. This underestimate of the
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expression with saturation (solid) and without saturation (dashed). Here, the pump D0 is such that the mode with
sin χ = 0.46 is at the threshold i.e. it’s varying with κ0.

modal intensities makes quantitative comparison with experiments difficult; nonetheless it allows qualitative
conclusions. When modal interactions are included, we no longer can compare the near threshold theory to a
more exact result, however we expect the effect of mode competition to be even greater in the exact theory. The
larger intensities of the modes which are already lasing prevents modes with large spatial overlap (and similar
lifetime) from lasing to an even greater degree than we find in our near threshold theory. This likely accounts for



the larger number of lasing modes our theory finds in both the circular and deformed resonators in comparison
to experiments.

4. DEFORMED CYLINDRICAL RESONATORS AND POWER OUTPUT

Having established that mode competition plays a major role in suppressing power output from circular resonators
we now analyze deformed cylinders (ARCs) of both elliptical and quadrupolar shapes. The elliptical deformations,
defined by r(φ) = R0/(1 + [(1 + ε)4 − 1] sin2 φ), are special because they are known to induce no chaos in the
ray dynamics. In contrast, the quadrupolar deformation, defined by r(φ) = R0(1 + ε cos 2φ), induces ray chaos
for a large fraction of the phase space for deformations above roughly 20 % major to minor axis ratio (ε ≥ 0.10)
(see Fig. 6). Nonetheless the quadrupolar shape in this deformation range does have one stable short periodic
orbit (other than the two-bounce Fabry-Perot motion, which does not provide high-Q resonances); that is the
bow-tie orbit (see Fig. 6(B)) mentioned above as the mode which appears to be the dominant lasing mode in
the experiments of Gmachl et al.6 It is the huge power increase which deformation, as well as the selection of
the bow-tie mode, which we hope to explain with our theory.

(a) (C)

(D)
(B)

(A)

PSfrag replacements

χ

φ
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(E)
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χ
φ

Figure 6. Surface of section for (a) a quadrupole and (b) an ellipse at deformation ε = 0.16 obtained for 30 different
trajectories iterated for 600 reflections. (A) The coordinate system used, (B) the stable “bowtie” orbit, (C) a chaotic
orbit, (D) the unstable “bird” orbit, (E) a quasi-periodic whispering gallery orbit and (F) a quasi-periodic bouncing-ball
type orbit.

It should however be noted that while the emission from the “bow-tie” lasers becomes highly directional and
consistent with a bow-tie mode at deformations around ε = 0.16, the power output increase with deformation is
found to be smooth and does not show a sharp spike at the deformation at which the emission pattern suggests
that the bow-tie mode is “turning on”. It therefore is likely that the power increase is a more general phenomenon,
not associated specifically with the bow-tie modes. Moreover the resonator shape for Gmachl et al. was not an
exact quadrupole but was actually somewhat flatter, suggesting that the exact shape is not crucial.

4.1. Deformation and uniform pumping

We calculated the cold-cavity modes for a range of quadrupolar and elliptical shapes covering roughly the range
measured experimentally, constructed the overlap matrices Aµν and then solved the constrained linear system
of equations Eq. (14) in the manner already described. This yielded the internal and external lasing spectrum
for a given shape and by summation over modes, the power output from that shape.

In Fig. 7 we show the power output vs. deformation for both the quadrupolar and elliptical deformations. We
find that both the ellipse and the quadrupole exhibit roughly a factor of four increase in power with deformation
up to the value of ε = 0.16 indicating an effect which does not depend sensitively on the type of shape deformation.
As noted above, our near threshold theory likely underestimates the power output one expects in a theory with
saturation, therefore the factor of four increase found is still significant.

In Fig. 8 we analyze the external lasing spectrum for the quadrupole with ε = 0.16. Many modes again
are lasing as in the circular case and there seems to be no strong selection of particular mode geometries. In
particular there is no evidence of strong selection of bow-tie or other similar (librational) modes. In order to
determine the origin of the power increase with deformation in this case of uniform pumping we tried to separate
out the change in the mode competition with deformation (off-diagonal elements of Aµν ) from the lifetime
effects (κµ). To this end we defined an overlap matrix based on the assumption of Gaussian random modes,
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Figure 7. The total internal modal intensities with respect to deformation for the case of (a) non-interacting (single-
mode theory) and (b) interacting modes. In the lower panel, we plot the total external modal intensities with respect
to deformation for the case of (c) non-interacting (single-mode theory) and (d) interacting modes. The calculations were
performed at a constant pump strength D0 = 0.9 and a linear absorption κ0 = 0.1.
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Figure 8. Output modal intensities for a quadrupolar cavity of ε = 0.16 and a linear index of refraction n = 3.3. The
gain center is at nkR = 128, the pump strength is D0 = 0.9 and the absorption rate is κ0 = 0.1.

as one would get for a system described by random matrix theory.23 Once self-averaging effects are included
this matrix has just constant off-diagonal elements for all pairs of modes, implying a constant level of mode
competition:

Aµν = 1 + 2δµν (18)

We combined this overlap matrix with the cavity decay rate distributions appropriate for the ellipse and
quadrupole of various deformations. The results for the elliptic lifetimes are shown in Fig. 9; those for the



quadrupole were similar. We found that with this constant off-diagonal matrix the total power output increased
even more dramatically with deformation, by roughly a factor of 30, indicating that lifetime effects dominate the
power increase in this case. For the deformed shapes more of the lasing modes are strongly emitting, leading to
an increase in power output with deformation.
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Figure 9. Variation of (a) Internal and (b) external modal intensities with the elliptic deformation parameter ε calcu-
lated for the constant interaction model Eq. (18) and lifetime distributions obtained from the elliptic cavity with the
corresponding deformation. (c) A plot of the cavity decay rate (κ) for the elliptic cavity with varying deformation ε vs.
mode number (ordered from lowest to highest decay rate). The fraction of highly emitting modes increases substantially
with increasing deformation of the ellipse.

4.2. Deformation and selective pumping

The failure of the uniform pumping theory to show any tendency to select bow-tie or similar modes as one might
have expected from the experiments motivated us to conjecture that the experiments do not correspond to the
uniform pumping scenario. In fact in the experiments the current is injected near the axis of the cylinder by a
needle contact and a current spreading layer is fabricated to allow the current to become more uniform across
the cross-section by the time it reaches the active layers. There is no doubt that there is at least somewhat
higher current in the center than at the edges and this would favor modes with high intensity in the center of the
resonator. For the circular cylinders the only such modes are those Fabry-Perot modes with normal incidence
and low Q. In both the ellipse and the quadrupole, as the cross-section is deformed new modes appear which
correspond to ray orbits which cross the center of the resonator but impact the boundary at a steep enough angle
to be well-confined and hence to have much higher Q. The most prominent of these modes is the bow-tie in the
quadrupole (although there are others like it) and there are families of similar oblique-incidence librational orbits
in the ellipse. It is therefore plausible that selective pumping of the central region would be much more efficient
at pumping the deformed shapes than the circular cylinders and that it would not matter too much whether the
deformation was quadrupolar or elliptical.

In Fig. 10 we show the external modal intensities for the quadrupolar deformation of ε = 0.16 within the
same theory, but with selective pumping described by a rotationally-symmetric Gaussian pump profile D0(x) =
D0exp(−|x|2/a2) in space. The spatial non-uniformity of pumping can be easily taken into account in the
near-threshold formalism; Eq. (14) is modified to

Bµµ − κµ

D0
=
∑

ν

Aµνnν (19)

where Bµµ =
∫

d2xD0(x)ψµ(x)ψµ(x) and Aµν =
∫

d2xD0(x)ψ2
µ(x)ψ2

ν(x) to accommodate the position depen-
dence of the pump. With such a selective pumping one finds that the lasing intensities do not vary smoothly
with the single-mode thresholds (our ordering of the mode numbers), but instead a small number of modes are
strongly preferred. When the spatial patterns of the preferred modes are analyzed they are found to be all of the
librational type, with bow-tie modes dominating and a large contribution from the specific second-order bow-tie
modes believed to be observed in the experiments of Gmachl et al.6 (see figure caption and discussion in Sec-
tion 5.1.2 below). Thus we conjecture that spatially selective pumping plays a key role in the selection of bow-tie
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Figure 10. Output modal intensities for a quadrupolar cavity of ε = 0.16 and a linear index of refraction n = 3.3.
The gain center is at nkR = 128, the pump strength is D0 = 1.0 and the absorption rate is κ0 = 0.3. The squares
represent interacting modes, while circles are the data for non-interacting modes. The pumping profile was chosen to be
of a Gaussian profile with a standard deviation of a/R0 = 0.7. The inset shows the spatial structure of some of the lasing
modes: (A) A scarred state based on the “bird” orbit, (B) the second order transverse mode corresponding to the stable
“bowtie” orbit and (C) the ground-state bowtie mode. The sudden onset of directional emission at a 45◦ angle to the
symmetry axes in the experiments of Gmachl et al.6 was interpreted as due to the second order bow-tie although the peak
location is consistent with emission from the“bird” modes as well.

modes in that experiment, but may not be crucial for obtaining a large power increase with deformation. Again
these conclusions appear not to depend strongly on whether the resonator shape is quadrupolar or elliptical.

In Fig. 11 we plot the power increase vs. deformation for the two shapes and find them to be almost identical
and both in the range of a factor of five. While we believe our theory gives the right trends and qualitative
features, we do not expect this near-threshold theory to explain the two order of magnitude effect seen in the
experiments. One clear indication of the need for further refinement of the theory is the large number of lasing
modes we find, whereas the experiments found6 only four or five lasing modes above the noise level, and all of
these appeared to be second order (two transverse nodes) bow-tie modes. Our calculations for the quadrupole
finds not only second order bow-tie modes, but first order and ground state modes lasing strongly as well as
other librational modes. It is likely that the specific dominant mode among similar types is quite sensitive to
shape; this is something which requires further study. However as noted above, our near threshold theory likely
produces many more lasing modes than a full theory with saturation would do; so while the theory can be used
to determine the general type of lasing mode selected, it is not able to predict the specific lasing mode.

In conclusion, the power increase with deformation of these dielectric cylinder resonators is a robust and
generic effect which is related to improved output coupling with deformation; this effect can be enhanced by
selective pumping of the central region of the cylinder, which will also select for librational modes which have
high intensity at the center but scatter off the boundary with a high enough angle of incidence to be near the
critical angle for total internal reflection. The effect does not seem to be very sensitive to the nature of the ray
dynamics of the shape and specifically to whether these dynamics are integrable or primarily chaotic. However
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Figure 11. The total external modal intensities with respect to deformation for the case of (a) non-interacting (single-
mode theory) and (b) interacting modes for elliptical and quadrupolar deformations. The interacting case shows a
factor of five increase of output power with deformation and no significant difference between elliptical and quadrupolar
deformations. The calculations were performed at a constant pump strength D0 = 0.9 with selective pumping defined by
a/R0 = 0.7 and a linear absorption κ0 = 0.1.

the effect of shape on the lasing properties and on the emission patterns requires more detailed study before firm
conclusions can be reached.

5. OFF-DIAGONAL THEORY AND MODE-LOCKING

For resonators which have discrete symmetries such as reflection or inversion, multiplets of nearly degenerate
modes are unavoidable as long as there exist modes localized on periodic orbits (such as the bow-tie modes just
discussed). The symmetries will lead to multiple orbits related by symmetry and to quasi-degenerate modes
associated with these orbits. Even if the system has no symmetry, any orbit which does not retrace itself will
have a time-reversed partner leading to degenerate or quasi-degenerate pairs of modes (exact degeneracy only
occurs for the circle). Since the splitting of these multiplets are typically exponentially small they are subject
to mode-locking (cooperative frequency locking) in the non-linear theory. Thus our multi-mode formulation of
the theory must be generalized to take into account this mode-locking behavior as well as competition of such
modes.

Starting with Eq. (10) we will specialize to the case of mode-locked doublets as we would have e.g. in the
circle, or for bow-tie modes in the quadrupole. We will describe the interaction of such locked doublets, where
each linear mode of the doublet denoted by µ locks (i.e. has the same frequency) to their partners µ̄, but there
are many such pairs well-separated in frequency as for a sequence of bow-tie modes corresponding to different
longitudinal node number. The stationary inversion can be written as

D(x) =
D0

1 + 1
e2

c

(

∑

µ |eµ|2ψ2
µ +

∑

µµ̄ eµe∗µ̄ψµψµ̄

) (20)

Here, µ 6= µ̄. Writing eµ =
√
nµeiφµ , multiplying both sides of Eq. (10) with e∗µ, subtracting from the equation

for eµ̄ and performing a time-average over an interval τ À ∆−1, we obtain



1

2
ṅµ = 0 = −(κµ −D0)nµ −D0

(

ηµµnµ + ηµµ̄
√
nµnµ̄ cosφµµ̄

)

(21)

φ̇µµ̄ = 0 = (∆µ − ∆µ̄) + 2D0(
nµ + nµ̄√
nµnµ̄

) sinφµµ̄ηµµ̄ (22)

where ηµα are given by

ηµα =

(

∑

ν

Γµνναnν + 2
∑

νν̄

√
nνnν̄ cosφνν̄Γµνν̄α

)

(δαµ + δαµ̄) (23)

This set of equations by themselves constitute a complete set of equations for the steady-state phases and
amplitudes of the lasing modes of the problem close to the threshold. A further simplification can be achieved
by looking at the steady state condition using the natural variables Bµν =

√
nµnν cosφµν . Note that Bµµ = nµ.

The steady state condition for the phase-differences gives

φµµ̄ = 0, π or ηµµ̄ = 0 (24)

where for simplicity we have neglected the small splitting ∆µ − ∆µ̄. The first solution φµµ̄ = 0, π is not stable,
as one can see by linear stability analysis of the time-dependent equations. The second solution, ηµµ̄ = 0 is
equivalent to a linear homogeneous equation for the variables Bµν :

∑

ν

Γµννµ̄Bνν + 2
∑

νν̄

Γµνν̄µ̄Bνν̄ = 0 (25)

Imposing the steady state condition for the amplitudes, ṅµ = 0 provides a second set of inhomogeneous linear
equations, similar to those in the “diagonal” theory discussed above.

∑

ν

ΓµννµBνν +
∑

νν̄

Γµνν̄µBνν̄ = 1 − κµ

D0
(26)

We will implement these equations for the circular cavity in the next section.

5.1. Steady State Solutions

5.1.1. Mode-locking in circular resonators

As already noted the cold-cavity modes of a circular resonator display exact degeneracy, hence mode-locking is
an essential phenomenon which must be taken into account in order to predict the observed lasing modes. It
is known within the framework of two-mode dynamics that degenerate modes lock into clock-wise or counter-
clockwise propagating circular waves24 with angular dependence e±imφ. We would like to know whether this
statement is still valid when many such doublets are also interacting with other doublets. The answer is positive,
as we will illustrate by considering two pairs of degenerate cold-cavity modes.

The resulting equations describe four modes in competition, where the modes are of the form:

ψa
(1,2) = Jm(nkar)(cosmφ, sinmφ) ψb

(1,2) = Jn(nkbr)(cosnφ, sinnφ) (27)

where m 6= n. We furthermore have group indices (radial numbers) a, b, denoting the two groups of states.

Then, the steady state condition for the phase differences is given by

φ̇a
12 = 0 = 2D0(

na
1 + na

2
√

na
1n

a
2

) sinφa
12η

a
12 (28)

And similarly for doublet b. Consider the coupling variables. For instance, ηa
12 = Γaaaa

1112B
a
11 + 2Γaaaa

1122B
a
12 +

2Γabba
1122B

b
12 + Γaaaa

1222B
a
22 + Γabba

1112B
b
33 + Γabba

1222B
b
22. Here we have defined Γijkl

mnop =
∫

d2xψi
m(x)ψj

n(x)ψk
o (x)ψl

p(x).



Note that for instance Γaaaa
1112 ∝

∫

dφ cos3mφ sinmφ = 0. Similarly, Γaaaa
1222 = Γabba

1112 = Γabba
1222 = 0, because of parity,

and Γabba
1122 = 0 because of orthogonality (m 6= n). Thence,

ηa
12 =

2

3
AaaB12 (29)

We have used the variables

Aaa =

∫

d2x(ψa
1 (x))2(ψa

1 (x))2, Aab =

∫

d2x(ψa
1,2(x))2(ψb

1,2(x))2 Abb =

∫

d2x(ψb
1(x))2(ψb

1(x))2 (30)

Then, Γaaaa
1122 = 1

3Aaa and Γbbbb
1122 = 1

3Abb. There are two possible distinct stationary solutions: sinφ12 = 0 or
η12 = 0.

For the case of sinφ12 = 0, i.e. φ12 = 0, π, we obtain

1

2
Ḃa

11 = −(κa
1 −D0)B

a
11 −D0

(

ηa
11B

a
11 +

2

3
AaaB

a
12B

a
12

)

(31)

Symmetry considerations give ηa
11 = AaaB

a
11+ 1

3AaaB
a
22+Aab(B

b
11+Bb

22). Noting that (Ba
12)

2 = Ba
11B

a
22 cos2 φa

12,
we end up again with a linear equation for Ba

ij . Similar considerations apply to the modes of the b-doublet. Noting

that the equations are symmetric with respect to Ba
11 ↔ Ba

22 and Bb
11 ↔ Bb

22, defining na = Ba
11 = Ba

22 and
nb = Bb

11 = Bb
22, we obtain

(1 − κa

D0
) = 2Aaana + 2Aabnb (32)

(1 − κb

D0
) = 2Abbnb + 2Aabna (33)

This is the “off-diagonal” version of the linear steady state equations that we have been using (Eq. (14)). Note
that this solution corresponds to φ12 = φ34 = 0, π. As already noted, it can be shown that this solution is
unstable by considering the linear stability analysis of the time-dependent near-threshold equations.

The case η12 = 0 is equivalent to cosφ12 = 0, so that φ12 = ±π
2 . The steady state equations are then

(1 − κa

D0
) =

4

3
Aaana + 2Aabnb (34)

(1 − κb

D0
) =

4

3
Abbnb + 2Aabna (35)

Again, through a linear stability analysis it is possible to show that this is the stable branch. As can be seen,
each degenerate set of modes lock into a clockwise or counter-clockwise rotating wave. Let us note here the
connection to the generalized free-energy approach25: A modal distribution which has the largest modal volume
burns the inversion most efficiently and minimizes a particular action integral. The mode volume is maximized
for the case with φ12 = ±π

2 , corresponding to a uniform running wave e±imφ. This justifies our use of modes
with angular dependence e±imφ in Section 3.1.

5.1.2. Mode-locking in deformed resonators

The situation for deformed resonators is complicated by the fact that exact degeneracies cease to exist once
the cavity shape is deformed smoothly from a rotationally symmetric shape. However, for shapes which are
invariant under discrete point symmetries, near-degeneracies are typical. Specifically, it is known that the subset
of modes based on stable periodic orbits form quasi-multiplets, and that the multiplicity and symmetry properties
of stable-orbit quasi-multiplets are intimately connected to the symmetry and multiplicity of the underlying
periodic orbits.20 The average quasi-multiplet splitting scales as δ ∼ e−AkR, where A is the phase space area
occupied by the corresponding stable island.20, 26 Under such circumstances, a multi-frequency solution can
exist if we assume ∆ À γ‖ À δ, where ∆ is the typical mean level spacing. In that case, as can be seen from
Eq. (3), the beating terms in D(x, t) will be down by γ‖/∆ with respect to the stationary part, while multiplets



are expected to lock to a common lasing frequency contributing to the latter. Thus, there will be a “diagonal”
and an “off-diagonal” contribution to the stationary inversion D(x), as in Eq. (20). The validity of this scenario
of course is complicated by the presence of modes based on the chaotic portion of the phase space, which also
interact with stable orbit modes; further study is required to evaluate the effect of these interactions on the
mode-locking scenarios.

Here however, we will treat only a single pair of such modes in connection with the experiments of Gmachl et
al..6 As noted above, based on evidence from spectral measurements and farfield distributions, the lasing modes
at high deformations were identified to be second order transverse modes corresponding to the stable periodic
orbit with the shape of a bowtie6, 27 (See Fig. 6). In Fig. 12) we display the time dynamics of such a bow-tie
doublet. We find that the frequency locks about a certain pump strength as expected; the critical value of the
pumping depends strongly on ∆, the cold-cavity frequency difference of the modes in question. In addition, the
field intensities and phases approach steady-state values which are equal to those found from the steady-state
method used to produce all the results above. Mode-locking can lead to output patterns which are different from
those of any single cold-cavity mode and even violate the discrete symmetries of the resonator.16 It has already
been shown27 that the experimental emission patterns of Gmachl et al.6 are better fit by superposing cold-cavity
doublet emission patterns as would result from mode-locking. We will present a complete theoretical analysis of
the mode-locked emission from several bow-tie modes elsewhere.28
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Figure 12. (a) The variation with pump strength D0 of the difference in lasing frequencies ∆Ω = Ω1 − Ω2 of the two
modes corresponding to a bow-tie doublet. Note that frequency-locking takes place above a critical value of the pump
strength Dc ≈ 1.1. (b) Time-dynamics of two-mode lasing for quasi-degenerate second order bowtie modes above the
mode-locking threshold. The two mode intensities grow to equal steady-state values and their phase difference locks at
∆φ = π/2 as predicted by the analysis above. at nkR ≈ 122.7. The parameters chosen are γ‖ = 10, κ1 = 1.0, κ2 = 1.02,
D0 = 1.5 and ∆ = 0.01; all parameters are scaled with respect to the cavity decay rate of one of the modes.
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6. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho,
“High-power directional emission from microlasers with chaotic resonators,” Science 280, pp. 1556–1564,
1998.

7. H. G. L. Schwefel, H. E. Tureci, A. D. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities:
Using shape as a design parameter in dielectric microcavity lasers,” in Optical Processes, K. J. Vahala, ed.,
World Scientific, 2004.

8. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss,
“Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer
lasers,” J. Opt. Soc. Am. B 21, pp. 923–934, 2004.

9. N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, “Fresnel filtering in lasing
emission from scarred modes of wave-chaotic optical resonators,” Phys. Rev. Lett. 88, p. art. no. 094102,
2002.

10. C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, “Kolmogorov-Arnold-Moser
transition and laser action on scar modes in semiconductor diode lasers with deformed resonators,” Opt.
Lett. 27, pp. 824–826, 2002.

11. N. B. Rex, Regular and chaotic orbit Gallium Nitride microcavity lasers. PhD thesis, Yale University, New
Haven, USA, 2001.

12. H. Haken, Light (Volume 2), North-Holland Physics Publishing, Amsterdam, Netherlands, 1985.

13. M. S. III, M. O. Scully, and W. E. L. Jr., Laser Physics, Addison-Wesley, Massachusetts, USA, 1974.

14. H. Haken and H. Sauermann, “Nonlinear interactions of laser modes,” Z. Phys. 173, p. 261, 1963.

15. T. Harayama, P. Davis, and K. S. Ikeda, “Whispering gallery mode lasers,” Progress Of Theoretical Physics
Supplement , pp. 363–374, 2000.

16. T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, “Asymmetric stationary lasing patterns in 2d
symmetric microcavities,” Physical Review Letters 91, 2003.

17. T. Harayama, P. Davis, and K. S. Ikeda, “Stable oscillations of a spatially chaotic wave function in a
microstadium laser,” Physical Review Letters 90, 2003.

18. F. T. Arecchi, G. L. Lippi, G. P. Puccioni, and J. R. Tredicce, “Deterministic chaos in laser with injected
signal,” Opt. Commun. 51, pp. 308–314, 1984.

19. H. Fu and H. Haken, “Multifrequency operations in a short-cavity standing-wave laser,” Physical Review A
43, pp. 2446–2454, 1991.

20. H. E. Tureci, H. G. L. Schwefel, A. D. Stone, and E. E. Narimanov, “Gaussian-optical approach to stable
periodic orbit resonances of partially chaotic dielectric micro-cavities,” Opt. Express 10, pp. 752–776, 2002.

21. T. Harayama, P. Davis, and K. S. Ikeda, “Nonlinear whispering gallery modes,” Physical Review Letters
82, pp. 3803–3806, 1999.
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