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Resonances arising in elastic scattering or emission prob-
lems are investigated as a probe of the Kolmogorov-Arnol’d-
Moser (KAM) transition to chaos and its wave manifesta-
tions. The breaking of symmetries that leads to this transi-
tion affects all the intrinsic properties of a resonance, which
suggests applications where these properties can be con-
trolled and predicted in parameter ranges beyond the reach
of perturbation theory.
Convex dielectric optical microcavties are studied which sup-
port long-lived “whispering-gallery” (WG) modes that clas-
sically correspond to rays trapped by total internal reflection
in orbits close to the interface with the outside lower-index
medium. These resonantors with substantial but always con-
vex deformation are termed asymmetric resonant cavities
(ARCs). The connection between individual resonances and
ray ensembles in an asymmetric billiard is established via a
novel application of Einstein-Brillouin-Keller (EBK) quanti-
zation, based on the adiabatic approximation of Robnik and
Berry which describes WG trajectories even when the defor-
mation exceeds the threshold at which Lazutkin’s caustics
cease to exist in the relevant regions of phase space. At such
strong distortions, resonance lifetimes are determined not by
the wavelength as in symmetric cavities, but by the classical
diffusion time from the EBK initial condition in phase space
to an escape window corresponding to classical violation of
the total internal reflection condition.
Instead of the isotropic emission from rotationally invari-
ant objects, highly asymmetric resonantors exhibit strongly
peaked intensity in directions which can be predicted from
the phase space structure near the classical escape window.
This creates unambiguous fingerprints of the KAM transi-
tion in the emission anisotropy of ARCs, which are universal
for all classically chaotic WG modes. Ray calculations are
compared to numerical wave solutions as well as to experi-
ments, and good agreement is found especially for the direc-
tionality. Ray predictions for the lifetimes fail when wave
mechanical corrections such as chaos-assisted tunneling and
dynamical localization are important.
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3.9 The Poincaré map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9.1 Area-preservation . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Billiard maps and the transition to chaos 43

4.1 Birkhoff coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 SOS of the circle and the ellipse . . . . . . . . . . . . . . . . . . . . . 44

4.3 Fixed points and tangent map . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Symmetries of the billiard map . . . . . . . . . . . . . . . . . . . . . 48
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Chapter 1

Introduction

This thesis attempts a synthesis of ideas from two active research fields: The study
of dielectric optical microcavities, and the theory of dynamical systems whose clas-
sical phase space is partially chaotic. In the process, the theory has been extended
to capture novel phenomena which are relevant to applications in optics as well as
other fields, like the physics of solid state microstructures. The pivotal objects of
the present work are long-lived resonant states whose properties can be predicted
and tailored with great flexibility, thus making them amenable to application devel-
opment.

As a historical example for such an application, we mention the Fabry -
Pérot interferometer of 1899, which has proven to be one of the most valuable tools
in optical spectroscopy. The resonant tunneling diode is an example for electronic
applications of the same ideas which have become feasible since semiconductor fab-
rication techniques make the wave nature of the electron accessible.

Generally, resonances are long-lived quasi-bound states in an open system
that arise due to interference, and they give rise to sharp variation in scattering
phase shifts, cross sections, transmission coefficients, etc., as the incident wave-
length is varied. An open system is characterized by the existence of propagating
waves at large distance from the region where the quasi-bound states are formed.
The long lifetime of photons in a laser resonator is what makes it possible to obtain
coherent stimulated emission. The sharply peaked wavelength-dependent transmis-
sion of a Fabry - Pérot interferometer is the basis of high resolution spectroscopy.
The characteristic wavelengths λ at which resonances occur, as well as their lifetimes
τ , are device-specific. In optics, one uses the Q factor as a figure of merit for the
resonator, where Q ≡ ωτ , ω ≡ 2πc/λ.

The intrinsic properties of a resonant state, like ω and τ , can usually be
determined straightforwardly when the wave equation is separable in some coordi-
nate system due to the existence of conservation laws. When there exist as many
conservation laws as there are degrees of freedom, a system is called integrable. The
complexity of the problem is greatly increased in non-integrable systems, where it
becomes impossible to reduce the wave equation to a collection of separate first-
order differential equations. In optical device applications, one therefore prefers to
work with symmetric geometries where (approximate) rotational or translational
invariance provides the desired simplification of the wave equation.

This luxury is not always available to physicists studying electronic transport
in microstructures, simply due to the nature of the lithographic techniques used in
manufacturing these devices.1 While it has become possible to fabricate structures
in which electrons move ballistically, i.e. are scattered only by the boundaries of
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the device and not by impurities or phonons, the shape of the boundaries generally
leads to non-integrability even in the simplest non-interacting electron description.
Transport experiments on open ballistic microstructures2,3 have, beginning with the
theoretical work of Jalabert, Baranger and Stone in 1990,4 become both a cata-
lyst and a testing ground for important new developments in the field of quantum

chaos. For an overview, see for example the chapters by Stone and by Smilansky in
Ref.5. Quantum chaos is the study of nonseparable Schrödinger equations based on
a knowledge of the underlying classical mechanics, which can be chaotic when the
system is non-integrable, as will be explained below.

Meanwhile in optics, a theory of nonintegrable resonators only existed in the
form of perturbation approaches6,7 where the breaking of symmetries was treated
in the limit where it causes only a small correction to the symmetric solutions.
Technological development did not seem to require a more general theory, although
there existed experimental evidence for novel phenomena that occur in strongly
asymmetric resonator geometries beyond the reach of perturbation theory8,9. When
such situations are encountered, it is in principle always possible to solve the wave
equation numerically, albeit with significant effort due to computational difficulties
that arise especially for quasibound states (as opposed to off-resonant scattering),
and are compounded when wavelengths are short compared to the cavity dimensions.

It has recently been realized10 that nonperturbative effects may in fact be
useful in device applications, and one therefore desires models that could make pre-
dictions and provide explanations for phenomena observed in strongly non-separable
wave equations. It is at this juncture that we propose to build a bridge to the ap-
proach that was successful in ballistic microstructures, the main buiding blocks being
the similarity between optical and quantum mechanical wave equations and the re-
sulting classical limits, i.e. mechanics and ray optics. We shall in this way arrive at
phenomena and questions that do not arise in microstructures.

This work grew out of earlier studies concerning aspects of ballistic electronic
transport in non-intergable microstructures where progress can be made using gen-
eral methods of quantum scattering theory. The author first became acquainted
with non-integrable systems during this earlier part of the thesis research, which
will however not be included here. For details on this microstructure work, the
reader is referred to Refs.11–15 Although the open systems studied there are non-
integrable, we were able to derive statements about the limits between which the
conductance (or transmission in the language of scattering theory) can vary when
resonances are encountered, and about the possible lineshapes. In this context we
turned also to some model systems which have as their distinguishing feature the fact
that their resonance lifetimes can be tuned externally by applying a magnetic field
in various ways. In fact, these systems can in principle support infinitely long-lived
states in the continuum, due to the existence of selection rules that prevent decay.
The magnetic field is introduced as a symmetry-breaking perturbation that destroys
these selection rules. What was learned from these systems is that the loss of the
selection rule does not cause the long-lived state to vanish abruptly, but instead to
smoothly decrease in lifetime. External in situ control over resonance lifetimes is
desirable from the point of view of potential applications, and this has led us to
investigate related mechanisms in optics. It should, however, be stressed that many
of the ideas put forward here could prove useful in microstructure and even nuclear
physics as well. This is why the more general title was chosen for this thesis.

The prototypical optical system that spurred our interest is the microcavity

laser, which has been realized experimentally both in liquid droplets with a lasing
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dye,16 and as a disk containing an InGaAsP-InGaAs quantum well laser17. Typical
diameters are 10µm for the disks, and 30µm for the droplets. These novel geometries
also point the way to other optical devices18,19, as well as to novel probes of non-
linear optical and cavity-quantum-electrodynamical effects20–22. In particular the
disks which can be pumped electrically23 could enter into competition with the
currently widespread vertical-cavity surface-emitting lasers, due to the fact that
microcavities provide a confinement of the modes in all spatial dimensions, leading
to an enhancement η of the spontaneous emission coefficient of the lasing medium
in the cavity as compared to its vacuum value. One finds17,24 that the figure of
merit β, which measures how much of the total spontaneous emission goes into each
cavity mode, is given by β = (1 + η−1)−1, so that β can be increased toward its
maximum, β = 1, if η is made large. Now the enhancement factor η is given by the
ratio between the frequency spacing of the resonances and their width25. Therefore,
one desires a large mode spacing, and consequently a small quantization volume, in
conjunction with a small resonance width, in order to increase β. The latter then
lowers the pump threshold for lasing.

Conventionally, one uses Bragg reflectors to provide Fabry-Pérot type mode
confinement, but this does not lead to quantization of all degrees of freedom, and one
faces limitations in the feasibility of fabricating small devices. The reason is that the
bragg reflectors then become large in relation to the actual cavity. To achieve suffi-
cient reflectivity, these mirrors have to consist of at least 40 quarter-wave layers17.
The microcavity lasers mentioned above, on the other hand, do not require bragg
reflectors at all. They make use of modes propagating inside a dielectric close to the
interface with the air outside. These modes correspond to rays traveling around the
perimeter, confined to the dielectric by total internal reflection at the interface. If
the interface can be made clean and smooth, the only leakage out of such a cavity
stems from the fact that the surface has a finite curvature so that total internal
reflection is violated, allowing a small fraction of the internal intensity to escape.
This mechanism is closely related to quantum mechanical tunneling, and the escape
rates are correspondingly small. The most recent record for the highest quality
confinement was achieved in fused-silica microspheres of 500 − 1000µm diameter,
where Q ≈ 0.8 × 1010 was measured at optical wavelength27. These high-Q modes

Figure 1.1: Integrable shapes (left) in two and three dimensions and their non-integrable deformed
counterparts.
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Figure 1.2: Ray trajectories for circle (a), and quadrupole-deformed circle (b) parametrized by
r(φ) = 1+ ε cos 2φ in polar coordinates for ε = 0.08 corresponding to an 8% fractional deformation.
Rays are launched from the boundary at the same φ and angle of incidence sinχ0 = 0.7 in both
cases; ray escape by refraction occurs in case (b).

are also referred to as whispering-gallery (WG) modes, after Lord Rayleigh, who
explained that analogous acoustic modes cause whispers to propagate unattenuated
along the walls of St. Paul’s Cathedral while being inaudible in the center of the
hall28. The WG modes of a dielectric sphere or disk are confined by total internal
reflection because the angle of incidence χ between the rays and the normal to the
boundary is conserved at each reflection. This conservation law implies that a ray
which satisfies the total internal reflection condition,

sinχ >
1

n
, (1.1)

n being the refractive index of the cavity, will never be able to violate it.

The question we want to address is, what happens to such a WG orbit
when the rotational symmetry that is the reason for the conservation of sinχ is
broken, as sketched in Fig. 1.1. This purely classical problem was rigorously solved
for rays moving in a plane bounded by perfectly reflecting walls only in 1973 by
Lazutkin29. The difficulty is how to guarantee that sinχ will not fall below 1/n
after some number of reflections, given that there is no symmetry any more forcing
χ to be constant. The situation is described in Fig. 1.2. Chaos theory already
lurks behind this seemingly innocuous problem, if we for the moment define chaos
to be associated with irregular trajectories of the type shown in Fig. 1.2(b). One
might argue that there is no need to build strongly asymmetric cavites beyond the
reach of wave-mechanical perturbation theory. However, symmetric microcavities
have shortcomings that are precisely due to their high symmetry. One of these is
their isotropic emission caused by the absence of a preferred direction. To couple
the lasing emission into an adjacent optical component like a fiber, one would wish
for a strongly peaked intensity in as small a solid angle as possible. Disk lasers that
achieve a certain degree of directionality have been realized using gratings of varying
spacing around the disk edge, or a tab-like extention on one side of the disk30.

Based on Lazutkin’s theorem, we will see that simpler types of deformation
lead to potentially stronger emission anisotropy while preserving a higher Q-factor
if desired. The theorem asserts that for sufficiently smooth convex deformations of
the circle, the situation in Fig. 1.2(b) does not occur for certain families of WG tra-
jectories while it may occur for others. This separation of the ray dynamics into two
distinct classes is a consequence of the Kolmogorov-Arnol’d-Moser (KAM) theorem
of Hamiltonian classical mechanics (to be discussed later), applied here to ray optics.
It implies, among other things, that a shape perturbation does not abruptly cause
all trajectories to become chaotic. Consequently, we will in this thesis study the
particular class of resonators characterized by a (not necessarily small) deformation
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which however preserves convexity everywhere along the boundary. We call this
class asymmetric resonant cavities (ARCs). Asymmetric resonant cavities hold
great promise as experimental systems in which to test more detailed predictions of
KAM theory.

Despite the mathematical complexity of these underlying theorems, our basic
ideas and predictions are very tangible and pertinent to the applied problems of
controlling frequency, width and directionality of quasibound states. The results that
are obtained for whispering gallery modes in simple convex but strongly asymmetric
resonant cavities can be summarized as follows:

Red shift: The resonance frequency always shifts to lower values with increasing
deformation when constant area is maintained. This can be explained using an
adiabatic approximation based on the proximity to the boundary and hence
to Lazutkin’s caustics.

Broadening: The resonance lifetime, τ , always decreases with deformation. For
each resonance, there is a classical threshold deformation beyond which its
lifetime is dominated by classical ray escape as opposed to tunneling (i.e.
the small violation of total internal reflection present even in the circle). At
such large deformations, τ becomes independent of frequency provided ω is
large enough. The universal resonance broadening depends only on the index
of refraction and the angle of incidence characterizing the whispering gallery
orbits (in a sense to be defined below).

Directionality: Emission from a quasibound state is highly anisotropic at strong
deformations, with intensity peaks in directions that are determined to high
accuracy by the phase space structure of the classical ray dynamics inside the
cavity. At deformations high enough for classical escape to dominate over
tunneling, the directionality is furthermore universal for all whispering gallery
resonances, and the only parameter that affects it is the refractive index.

To arrive at these conclusions, we have to establish a link between the problem
of solving the wave equation for the resonator on one hand, and the classical ray
optics picture to which we can apply the theory of nonlinear dynamics. After all,
resonances are manifestly a wave phenomenon.

Contact between waves and rays is made using semiclassical approximations.
Together with statistical approaches originally devised in nuclear physics and the
study of random systems31,32, these methods are at the heart of quantum chaos, and
they have been applied successfully to open systems33–35. A comparison between
the stochastic and semiclassical methods can be found in Ref.36. Both in open and
closed systems, semiclassical methods can provide information even on the level of
individual states. For example, in the scattering off three hard disks in the plane one
can express the complex resonance positions as well as the differential cross sections
in terms of a sum over periodic orbits which exist in infinite number despite the
openness of the system37. This is an application of Gutzwiller’s trace formula,38

one of the central semiclassical approaches to locating poles of the Green function.
The trace formula can even become exact, as it does for the scattering phase shift
of a particle entering a “box” in a space of constant negative curvature through
an attached horn extending to infinity33. However, in many other applications this
approach faces severe convergence problems39, which can sometimes be overcome by
truncating the problematic series on the grounds that a physical cutoff is provided
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by some dephasing mechanism40. These arguments, however, cannot be made in our
optical systems, and consequently the Gutzwiller approach is not used here.

Instead, a more direct version of the well-known WKB (or eikonal quantiza-
tion) method is employed, in spite of the fact that the latter requires integrability to
be rigorously valid. This approach consists in quantizing the actions associated with
the conserved quantities. In the presence of chaos, this is in general not possible,
but for WG modes in convex billiards the chaotic diffusion of the relevant action is
found to be sufficiently slow, so that reasonable results are obtained. The reason
for this is the slow departure of the ray trajectory from the annular region near the
boundary to which it is initially confined, cf. Fig. 1.2(b) where one observes that the
trajectory does not explore the whole billiard area but looks reminiscent of the path
in the circle. This phase-space transport property is characteristic of convex billiards
where, according to Lazutkin’s theorem, chaos and regular motion coexist, but it
has not been explicitly utilized in previous quantization approaches for billiards.
The quantization of systems with such mixed phase spaces is currently the subject
of intense study, because the only cases that are generally well understood are the
extremes of fully integrable and completely chaotic dynamics. A method like ours
which, unlike the period-orbit approach, incorporates phase space transport effects
a priory, may prove advantageous for more general applications than considered in
this thesis.

Whereas the semiclassical part of our method is based on the fact that even
chaotic WG trajectories do not show large variation in χ over many reflections, it
is precisely this slow change in χ that is responsible for the possibility of classical
escape. Therefore, our calculation of the resonance lifetimes must take into account
the associated phase space diffusion. This is done by extracting an initial condition
for the diffusion process from the result of the semiclassical approximation (which
neglects diffusion), and then determining the diffusion time as the average time
needed to escape.

In calculating the positions and widths of WG resonances, we thus apply
novel methods to the determination of familiar quantities. In fact, the spectrum
(which in our case is complex) has been the focus of by far the most quantum-
chaos studies39. Only more recently has the wavefunction itself attracted increased
interest,41 in particular after the discovery of wavefunctions “scarred” by classical
periodic orbits42. In the present work, properties of the wave function, and their
relation to classical phase space, play a crucial role. Quantitative comparison be-
tween our predictions for the resonance widths based on classical diffusion and exact
numerical solutions of the wave equation gives insight into the size of the neglected
quantum effects. There are two such effects that we observe to be important.

The first is dynamical localization, which has been studied first in periodically
driven systems43,44. An experimantal realization exists in the form of the Hydrogen
atom in a microwave field of nonperturbative intensity45,46. There, the observed
ionization thresholds as a function of the driving field strength can be predicted on
a classical basis, with the ionization mechanism being a classical diffusion process
in phase space. Quantitative discrepancies to the experimental thresholds arise
because the chaotic diffusion occuring in that system is suppressed when one makes
the transition to quantum mechanics. This is in close analogy to what we find for the
escape rates of the leaky billiard. The problem of dynamical localization in billiards
has in itself attracted appreciable attention recently47–50, and optical resonators have
been recognized as actual applications of the theoretical developments in this field50.
The consequence of dynamical localization for the WG wave function is, loosely
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speaking, that it contains fewer low-angular momentum (hence low-sinχ) admixtures
than would be expected from the chaotic spreading of the classical trajectory.

A second quantum effect is chaos-assisted tunneling, which was introduced
even more recently as an explanation for anomalously large tunnel splittings be-
tween non-chaotic states in a mixed system, mediated by the mere presence of chaos
in classically inaccessible parts of phase space51. Whereas such enhanced tunnel
splittings are still exponentially small and thus experimentally almost impossible to
access, we propose a similar mechanism for the observed enhancement of resonance

widths in dielectric resonators at small but non-perturbative deformations. The nu-
merical data suggest that resonances can be found for which the widths in question
should be experimentally resolvable. The manifestation of chaos-assisted tunnel-
ing in wave functions has been demonstrated using the Husimi distribution and a
modification thereof,54–56 and one finds qualitatively that the chaotic enhancement
results from the fact that the tunneling distance between two points in phase space
can be significantly reduced if part of the way is navigable by means of classically
allowed diffusion.

The relationship between quantum decay and properties of the wave function
has been previously investigated for strongly chaotic systems and with an emphasis
on statistical statements about collections of resonances52,53. It should be stressed
that we are interested in the decay of modes in a KAM (i.e. only partially chaotic)
system where narrow resonances exist not by virtue of physical tunnel barriers but
due to the phase space structure itself (i.e. local conservation laws). Furthermore,
we will be able to make statements about individual resonances in an open system,
as well as to identify universal properties.

Motivated by the microcavity laser applications, we are concerned with a
pure emission problem in the absence of an incoming wave. The predictions for
resonance positions and widths do not depend upon this assumption, but our theo-
retical approach mirrors this quasibound- state point of view. A quantity that does
depend on the choice of the incoming wave (or its presence in the first place) is the
partial scattering cross section. In the emission problem we assume the photon has
been created inside the cavity in one of its quasibound states, and therefore the re-
sulting directionality of escape is entirely an intrinsic property of that state. There
is no free parameter such as the incident wavevector to vary, in contrast to the par-
tial cross section. This type of emission directionality from highly deformed leaky
billiards will be of fundamental importance in various applications, but it has not
been investigated before. One reason for this may be that in microstructure physics,
which has provided much of the motivation for recent theoretical efforts, leads are
attached to the sample, thus prescribing where the decay has to occur. Clearly the
escape directions are not prescribed in this way in a free-falling microdroplet, and
the observed emission anisotropy is all the more interesting.

The necessary concepts from classical mechanics and semiclassical theory
are expounded in some detail in chapters 3 to 6. These chapters contain novel
elements as well as known results, and each builds on the previous one to form a
logical presentation of the methods. However, the central ideas and results can be
understood at a lower level of detail, and for this purpose an introductory primer
is provided in chapter 2. This synopsis of the subsequent chapters 3 to 6 will
enable the reader to proceed directly to chapter 7 and the following, where it is
shown in detail how the classical and semiclassical concepts are applied to open
resonators. To better appreciate the results presented in the later chapters, the
reader may eventually want to return to the earlier chapters for further details on
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classical Hamiltonian dynamics, in particular on the consequences of integrability
versus non-integrability for phase space transport, and for a discussion of the specific
model systems that are used repeatedly.

The outline of the classical-mechanics chapters is as follows: After making
the transition from continuous-time dynamical systems to the discrete mappings
induced by them, the appearance of chaos is described with the help of the Poincaré
surface of section. This is a tool which proves valuable to our understanding of global
phases space structure, which in turn is crucial to the predictions listed above. The
ray escape from an asymmetric cavity is a transport process in phase space, so we
devote some discussion to the phenomena that occur there. An important result
is that diffusion in the variable whose value is critical for the possibility to escape
(namely the angle of incidence) can be sufficiently slow to allow a semiclassical
treatment in the spirit of that used for integrable systems.

This is explained after the general ideas of the semiclassical approach have
been introduced. Before the semiclassical and ray dynamics theories are combined to
make contact with the wave properties of asymmetric resonant cavities, we describe
the numerical techniques developed to solve the quasi-bound emission problem ex-
actly. The final chapters contain the results of our theory and comparisons with
numerics as well as experiments.
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Chapter 2

Synopsis of the classical ideas

As mentioned in the introductory chapter 1, we want to make predictions about
frequency shifts, broadening and directional emission from whispering gallery reso-
nances in dielectric cavities. This requires a connection between wave and ray optics
using a semiclassical approximation, and further an application of results from KAM
theory to the ray optics. In chapters 3 to 7, these ideas are developed for closed
systems, and their relevance to the open resonant cavities is explored afterwards.

In this synopsis we explain the importance of classical phase space struc-
ture both for understanding the transition to chaos and for predicting the intrinsic
properties of quasibound states in dielectric resonators. The reader should thus be
enabled to enter the more detailed treatment of our semiclassical method in chap-
ter 7 immediately, referring to the intervening chapters on the classical mechanics
whenever the need for expanded discussion arises.

2.1 Transition to chaos in closed billiards

Although we will devote some discussion to resonant cavities in the shape of de-
formed spheroids, most of our theory is developed for the dynamically simpler case
of dielectric cylinders with a convex but asymmetric cross section. The classical ray
optics in a closed cavity of this shape is equivalent to a point particle undergoing
specular reflections at the walls and moving in a straight line segment otherwise.
Because of the translational symmetry along the cylinder axis, the only nontrivial
motion takes place in the projection on a two-dimensional cross section. This is the
well-studied plane billiard problem. Any billiard trajectory can be completely spec-
ified by the sequence of points on the boundary where successive collisions occur.
These points simply have to be connected by straight lines. When the boundary
is everywhere convex, the bounce positions are uniquely identified by their polar
angle along the boundary, i.e. one only needs the sequence φν with ν numbering
the consecutive reflections. This level of solution to the problem is referred to as
ray tracing, and it allows us, e.g., to identify periodic orbits as infinite repetitions
of some finite sequence φν , ν = 1, . . . N .

The majority of trajectories are not periodic, and one can ask if it is possible
to classify these orbits further. Indeed, it is known in ray optics57 that non-periodic
rays can under certain circumstances form caustics. These are curves or surfaces
in real (configuration) space to which rays are tangent between any two successive
reflections during their motion inside the cavity. Their existence can be identified
by ray tracing, see Fig. 3.1(a). However, ray tracing quickly loses its usefulness
when attempting a meaningful description of trajectories that are neither periodic
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nor constrained by a caustic. This situation is encountered in deformed cavities.
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Figure 2.1: Poincaré surface of section of a quadrupole-deformed billiard, parametrized in polar
coordinates by r(φ) ∝ 1 + (e2/4) cos 2φ, at eccentricity e = 0.55, containing five trajectories.
The corresponding real-space images are indicated to the right with arrows. The direction φ = 0
coincides with the horizontal in the ray plots.

As was shown (to our knowledge for the first time) in Ref.58, the study of ray
optics in asymmetric resonators can profit greatly from the Poincaré section method
that is ubiquitous in nonlinear dynamics. In contrast to ray tracing, the Poincaré
surface of section (SOS) allows one to describe the ray dynamics, because information
is retained about the motion in phase space, not just real space. This is realized
by recording not only the sequence of bounce positions φν along the boundary, but
also the successive values of sinχν , where χ is the angle of incidence with respect to
the normal to the billiard wall, as defined in the introduction. A trajectory is then
plotted as a sequence of points (φν , sinχν) as shown in Fig. 2.1. The Poincaré section
is obtained by repeating this for a (relatively small) number of orbits launched with
different values of initial φ and sinχ, following each for typically 500 reflections. This
plot represents a section through the classical mechanical phase space, because sinχ
is proportional to the tangential component of the momentum at the point of collision
with the boundary, and this momenum component is canonically conjugate to the
position along the boundary where the reflection occured, which is in turn measured
by φ. The trajectory shown at the top exhibits a caustic very close to the boundary,
which is typical of whispering gallery orbits. In the SOS, this manifests itself in the
existence of a one-dimensional curve sinχ(φ) on which all points generated by the
orbit must lie. That the existence of sinχ(φ) and the caustic are equivalent is easy
to see. Given any bounce position φ, the value of sinχ is completely determined (up
to a sign) by the requirement that the trajectory be tangent to the given caustic
curve. The figure assumes a convex deformation of quadrupolar shape. It has in
fact been shown by Lazutkin that there exist orbits with caustics for any convex
billiard as long as it is sufficiently smooth (see section 4.10).

Note that the existence of a curve sinχ(φ) to which an orbit is confined and
which we therefore call invariant curve, is highly non-trivial in view of the fact that
angular momentum conservation is destroyed in the deformed billiard. This conser-
vation law is the reason why in the circle sinχ is constant for successive reflections.
In the absence of the additional constraint equation due to angular momentum con-
servation, there is at first sight nothing that prevents a given trajectory from filling
out a whole area in the SOS instead of merely a line. The figure does indeed show
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a single trajectory which fills a finite domain of the SOS. The corresponding real-
space image (the second from below) clearly does not show a caustic. Trajectories
exploring a finite area of the SOS are called chaotic. The coexistence of trajectories
with a caustic and chaotic orbits is typical of arbitrary convex billiards (except for
circles and ellipses), and such billiards can be counted as members of the larger
class of KAM systems. The scenario named after Kolmogorov, Arnol’d and Moser is
encountered when a Hamiltomian mechanical system is perturbed away from a state
where the number of conservation laws equals the number of degrees of freedom. In
the transition to chaos that ensues, a crucial role is played by the periodic orbits. In
their vicinity, the perturbation leads to the break-up of invariant curves, and hence
to the disappearance of caustics. In the SOS, the simple invariant curves are then
replaced by island chains. Three examples are shown in the figure. The island cen-
ters correspond to periodic orbits which are stable against deviations in their initial
conditions. This is shown in the real-space plots, where trajectories close to the
six-, four- and two-bounce periodic orbits are seen to oscillate around the periodic
orbit without ever deviating from it beyond some limit. Each chain of stable islands
is accompanied by an equal number of unstable periodic orbits, in whose vicinity
trajectories become chaotic.

Figure 2.2: Left: A single trajectory in the quadrupole billiard at eccentricity e = 0.55 as in the
previous figure. Right: The same trajectory in real space. This trajectory is seen in the SOS to
encircle the islands shown in the previous figure. This is not apparent from the real-space plot.

To illustrate how the SOS method reveals information about trajectories
that is obscured in the real space motion, consider Fig. 2.2, which shows a single
chaotic trajectory in the SOS representation (left) and in real space (right). The
real-space plot indicates that there is no caustic, because not all segments of the
orbit are tangent to one and the same smooth curve between any two reflections.
Other than this and the observation that small values of sinχ do not seem to occur,
one would be hard-pressed to draw any further conclusions from the ray tracing
picture. However, the SOS shown to the left reveals additional structure in phase
space: Although collisions occur at all possible positions φ, there are some com-

binations of (φ, sinχ) that are conspicuously absent, forming blank islands in the
region of the SOS explored by the trajectory. Comparison with Fig. 2.1 shows, of
course, that these are precisely the four-bounce islands whose corresponding sta-
ble orbits we already encountered. The fact that stable and chaotic motion form
non-communicating, disjoint sets in the SOS, is of great importance for phase space
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transport theory, and it follows simply from the limited amplitude of the island
motion around stable periodic orbits. Any orbit started inside an island remains
there forever due to the stability of the motion, implying that conversely no chaotic
trajectory can ever enter an island. In a similar way, invariant curves that have
not yet been destroyed by the perturbation form impenetrable barriers to chaotic
trajectories, preventing any phase space flow from one side to the other.

2.2 Poincaré section and classical ray escape

The surface-of-section method is not only a tool allowing us to visualize the global
phase space structure during the transition to chaos, but it is also ideally suited
for a discussion of the whispering-gallery modes in open dielectric resonators, be-
cause the canonical variable sinχ is exactly the quantity the value of which decides
whether or not total internal reflection can take place. Classically, we can draw a
straight horizontal line in the SOS at the critical value sinχc = 1/n, where n is the
refractive index. If a trajectory generates points below this line, total internal reflec-
tion is violated and classical escape can occur. At this point we can already make
the important statement that a convex asymmetric resonant cavity will certainly
support long-lived whispering-gallery resonances, due to Lazutkin’s theorem which
guarantees the existence of families of orbits with caustics. For these, the allowed
fluctuations in sinχ are bounded from below, so that orbits near sinχ = 1 will re-
main trapped classically. This existence theorem is not widely known in the optics
community, but provides us with a justification to push on to higher deformations,
knowing that long-lived states will not vanish immediately.

The KAM theorem allows us to make an even stronger statement which
previously has neither been expected nor observed: There will be a threshold de-

formation above which a given resonance of interest ceases to be supported by an
invariant curve of the KAM type. This is because the regions of chaos in the SOS
grow with deformation, encroaching on the WG region near sinχ = 1. A qualitative
change in the dependence of lifetimes on both frequency and deformation parameter
should be anticipated when this threshold is exceeded, because the ray picture indi-
cates a transition from motion on an invariant curve to chaotic motion with much
weaker limitations on sinχ. In fact, the evolution of sinχ for a chaotic trajectory
can approximately be described as a diffusion process which is biased to lower values
of sinχ (cf. chapter 6).

A further problem which can be attacked efficiently with the help of the
SOS is that of determining the emission directionality of a quasibound state. Since
the diffusion which constitutes our classical escape mechanism is influenced by the
structure of the SOS, we can make inferences about allowed and forbidden escape
directions for the rays. Not only must the chaotic trajectory bypass stable islands,
but the diffusion to lower sinχ also becomes slower the higher is the initial sinχ.
This relates directly to the existence of Lazutkin’s invariant curves at even larger
sinχ. The slowness of the diffusion means, in a quantitative example, that it can
take several hundred reflections for a trajectory started near a point (φ0, sinχ0)
with sinχ0 ≈ 0.8 to reach a point in the SOS that has roughly the same φ0 but a
significantly lower value of sinχ = 0.7. Another way of saying this is that for a few
hundred reflections sinχ is roughly the same when returning to the same φ0, i.e.
(since φ0 is arbitrary) there exists an almost unique function sinχ(φ) on which the
trajectory moves for intermediate times. As illustrated for two chaotic orbits in Fig.
2.2, this “almost” invariant curve guides the flow of trajectories in phase space even
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Figure 2.3: Fluctuations in sinχ become stronger for orbits moving in the lower-sinχ regions of the
SOS. Still, the motion follows a well-defined pattern for an intermediate number of reflections, see
text. The escape condition sinχc is drawn as the grey line, Eq. (2.1) as solid lines. The phase-space
flow near sinχc determines the positions and orientations with which rays can escape.

though the motion is chaotic so that a finite area of the SOS will be filled by the
orbit after a large number of reflections. The functional form of these curves can be
derived in an adiabatic approximation due to Robnik and Berry59, which assumes
that the curvature κ of the billiard varies slowly on the length scale set by the
distance between successive reflections, i.e. the small parameter is dκ/dφ cosχ� 1.
The result is (cf. section 6.5)

sinχ(φ) =
√

1− (1− p̃2)κ(φ)2/3, (2.1)

where p̃ is the typical value around which sinχ oscillates due to the oscillation of
κ(φ). If this formula constitutes an acceptable description of the ray dynamics even
near the critical line for escape, sinχc = 1/n, then we can immediately predict the
escape directionality. Classical escape is possible only after the rays have diffused
from their initial condition down to the adiabatic curve which is just tangent to
sinχc from above. Then, the trajectory will reach the minima of this curve within a
few hundred bounces (or less). Since these are also the points of tangency to sinχc,
escape will occur in the narrowly defined φ-intervals near the points of tangency.
From Eq. (2.1), we see that these are just the points of highest curvature. Upon
escape, the rays are refracted according to Snell’s law. The slowness of the diffu-
sion has an additional consequence here in that the distribution of sinχ at escape
is sharply peaked at sinχc. That is to say, there is no time for significant diffu-
sion further down below sinχc once the tangent invariant curve has been reached.
The combination of narrow φ- and sinχ- intervals for escape gives rise to a highly
anisotropic emission pattern even in the far-field.

The emission directionality can be seen from the previous arguments to de-
pend only on the phase space flow near sinχc and not on the starting condition
for the rays, as long as the latter is above the tangent adiabatic curve. This holds
true even when island structure invalidates the adiabatic approximation near sinχc,
resulting in a significantly different emission directionality, as we will discuss in
subsection 11.3.3.

To make quantitative predictions for the resonance lifetimes, however, one
needs to determine the initial condition for the ray diffusion, which is specific to
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each individual resonance. That topic will be addressed in chapter 7.
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Chapter 3

Hamiltonian systems

It is a surprising fact for nonspecialists that such an ancient discipline as
classical mechanics turns out to be incomplete and makes its first steps
nowadays whereas nonrelativistic quantum mechanics which only started
in the twentieth century has acquired its mathematical apparatus entirely
and now is a very elaborate and transparent branch of mathematical
physics.
– V. F. Lazutkin, KAM Theory and Semiclassical Approximations to

Eigenfunctions, 1993.

The second part of this statement must provoke objections from anyone studying
the quantum mechanics of more than two interacting particles, but it sets the stage
for the analysis we shall attempt in this thesis. We will be dealing with the single-
particle Schrödinger equation and more importantly a close relative, the scalar wave
equation of optics, where Lazutkin’s remark about the mathematical apparatus is
not in dispute. Nevertheless, the problem of actually calculating solutions to non-
separable wave equations can be a daunting task plagued with numerical difficulties.
It is a current field of investigation to understand the observed connection between
numerical problems and the occurence of chaos in the classical counterpart of the
physical system under consideration60. The main thrust of our work will be in
a different direction, however: Taking for granted the existence of numerical and
experimental data about real wave phenomena, significant new insights into the
physics behind the wave solutions will be gained by making use of classical ideas.
The mathematical apparatus of classical mechanics therefore will provide many of
the concepts that are needed in subsequent chapters. We shall introduce this sub-
ject in a way that is tailored to our purposes. We will primarily be interested in
two-dimensional billiard systems, whose classical mechanics can be discussed conve-
niently from the point of view of their Poincaré map – a two-dimensional, discrete,
“stroboscopic” sampling of the trajectories as they evolve in phase space. However,
for a semiclassical quantization of the billiard, one needs to interpret this map in the
light of the underlying continuous-time dynamics, which is that of a conservative
Hamiltonian system. Therefore, we first discuss the full phase space of these sys-
tems, leading us from the fundamental role of symplectic matrices and generating
functions to conservation laws and action-angle variables in integrable systems. The
examples that are presented will serve as the basis for an understanding of all other
specific systems discussed in the later chapters.

Billiards are closed domains in which a point particle is confined by infinitely
hard walls. The latter has the effect that some derivatives of the Hamiltonian be-
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come singular when momenta are reversed abruptly upon reflection at the boundary.
However, we will include billiards under the species of Hamiltonian systems, and use
them as illustrative examples. One might think of the hard wall condition as being
the limiting case of some family of smooth potentials which do generate differen-
tiable Hamiltonian dynamics. In that way, the discussion requires less formalism as
compared to the more rigorous theory based on the geometry of symplectic mani-
folds, of which we only use a bare minimum. The interested reader is referred to
the book by Arnol’d64 for a more formal treatment of Hamiltonian mechanics using
the calculus of differential forms, and to Lazutkin’s book, Ref.61, for an advanced
study that includes the KAM transition in billiard systems. The treatment that
we present tries to capture the essentials of the geometry of phase space, and thus
departs from usual texbook approaches62,63. For example, we do not go through the
variational principles that underly all of classical mechanics, and which can also be
made the basis of a study of billiard dynamics, cf. Ref.65.

It is common82,81 to introduce the notion of chaos in Hamiltonian systems
by discussing classical perturbation theory and its breakdown, and this is in fact the
central point of the famous Kolmogov-Arnol’d-Moser (KAM) theorem. However, we
do not follow this route, because the important concepts can be introduced more
directly and with less formalism after the billiard motion has been cast in the form
of a map on the Poincaré surface of section. The pivotal role is then played by the
Poincaré-Birkhoff fixed point theorem.

3.1 The flow in phase space

We shall take as our defining equation of Hamiltonian mechanics the equation of
motion in phase space for a system with N degrees of freedom,

df

dt
= {f,H}+

∂f

∂t
, (3.1)

{f,H} =
N
∑

i=1

[

∂f

∂qi

∂H

∂pi
− ∂H

∂qi

∂f

∂pi

]

, (3.2)

where f is some function of coordinates qi, momenta pi and continuous time t; H
is the Hamiltonian function, and curly brackets indicate the Poisson bracket. This
can be considered for now as merely a mathematician’s way of defining the subject,
and it is not meant to explain classical mechanics, because a certain familiarity with
the subject on the part of the reader is assumed. This starting point is consistent
with the role classical mechanics plays in our work: none of the systems of interest
to us are genuinely classical, but we know that in quantum mechanics the correct
wave equation is obtained by the usual quantization of the classical Hamiltonian
(replacing momenta by −ih̄∇ etc.); and that is precisely the way in which Eq.
(3.1) leads back to the Heisenberg equation of motion66. In subsequent chapters, a
prominent question will be how to use the results of classical mechanics in order to
find approximate solutions to the corresponding wave equation.

Equation (3.1) with f = qi or f = pi immediately implies Hamilton’s equa-
tions,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (3.3)

which hold even if H is time-dependent. The Poisson bracket with H can be thought
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of as a differential operator,

{·,H} =
N
∑

i=1

[

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

]

, (3.4)

which in turn can be written as the following bilinear product of two 2N -dimensional
vectors:

{·,H} = −
(

~∇xH
)t

Γ ~∇x. (3.5)

Here we have defined the 2N × 2N matrix

Γ =

(

∅N −11N

11N ∅N

)

, (3.6)

and the phase space gradient

~∇x ≡
(

∂/∂p
∂/∂q

)

. (3.7)

Unlike a scalar product, this is a skew-symmetric bilinear (also called symplectic)
form, as follows already from the definition Eq. (3.1). Using this vectorial form and
the corresponding definition

~x ≡
(

p
q

)

, (3.8)

Eq. (3.3) can be written as
d

dt
~x = Γ ~∇xH. (3.9)

Clearly, H is a constant of motion if it has no explicit time dependence; but even if
H is not conserved we still have

0 = −{H,H} =
(

~∇xH
)T

Γ ~∇xH =
(

~∇xH
)T d

dt
~x. (3.10)

This means that the phase space trajectories are perpendicular to the gradient of H
at all times. We now specialize to time-independent Hamiltonians, where H = E.
For such Hamiltonians, the trajectory moves on a hypersurface H(~x) = E.

3.2 The first Poincaré invariant

What distinguishes the flow defined by Eq. (3.9) from a general flow that might be
encountered in fluid dynamics, is the existence of additional quantities that remain
invariant over time; one of which is the phase space volume itself (Liouville’s the-
orem). Of particular importance in the discussion below is the first of Poincaré’s
integral invariants,

∮

C

p · dq, (3.11)

where C is the q-space projection of any closed curve in phase space, and all pi and
qi are evaluated at a the same time t. The quantity in Eq. (3.11) is independent of
t, even though C will change with t according to the equations of motion. To show
the invariance of Eq. (3.11), consider each term pi dqi in the scalar product p · dq
separately and apply the integration [of course each such integral is just a special
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case of Eq. (3.11) where only one qi varies along C]. The result is clearly just the
area |Ai| in the pi-qi plane enclosed by the loop, which can also be expressed as

|Ai| =
∮

pi dqi =

∫

Ai

dpi dqi. (3.12)

Now after some time ∆t, the point (qi, pi) is mapped onto a new point (q̄i, p̄i) so
that the new area

∣

∣Āi

∣

∣ is

∣

∣Āi

∣

∣ =

∫

Āi

p̄i dq̄i =

∮

p̄i dq̄i. (3.13)

The last contour integral is equal to the original one,
∮

pi dqi if one can show
∣

∣Āi

∣

∣ =
|Ai|. In terms of the old coordinates, we have

∣

∣Āi

∣

∣ =

∫

Ai

∣

∣

∣

∣

∂(q̄i, p̄i)

∂(qi, pi)

∣

∣

∣

∣

dpi dqi. (3.14)

In order to find the Jacobian in this integral, we let ∆t→ dt become infinitesimal,
so that q̄i → qi + δqi and p̄i → pi + δpi, with δqi = q̇i dt and δpi = ṗi dt. Then to
leading order one can equate

∂H

∂pi
≈ ∂H

∂p̄i
, (3.15)

and Hamilton’s equations of motion yield

q̄i = qi + q̇i dt = qi +
∂H

∂p̄i
dt, (3.16)

p̄i = pi + ṗi dt = pi −
∂H

∂qi
dt. (3.17)

Here we take as the independent variables the old coordinate qi and the new mo-
mentum p̄i, considering the remaining quantities H, q̄i and pi as functions of the
former. Integrating the first equation over p̄i or the second over qi, we obtain a
generating function

F (qi, p̄i) ≡ qi p̄i +H(qi, p̄i) dt, (3.18)

from which both Eqs. (3.16) can be recovered as derivatives,

pi =
∂F

∂qi
(3.19)

q̄i =
∂F

∂p̄i
. (3.20)

From the existence of this generating function it can be shown that the Jacobian of
the infinitesimal transformation is unity,

det[
∂(q̄i, p̄i)

∂(qi, pi)
] = 1. (3.21)

The proof is given as theorem 3.3.1.1 in the next section, because we will refer to it in
various different forms and contexts later on. We devote a whole section to that and
related issues because they are in fact central to an understanding of Hamiltonian
systems and maps.
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To complete the discussion of the Poincaré invariant, note that since the
Jacobian for any finite ∆t is the limit of a product of infinitesimal transformations,
that Jacobian is also unity. Therefore, Eq. (3.14) reduces to Eq. (3.12), which proves
that Eq. (3.11) is indeed an invariant.

A geometric interpretation of this Poincaré invariant can be obtained by
rewriting the Jacobian in Eq. (3.21) as a cross product

det[
∂(q̄i, p̄i)

∂(qi, pi)
] =

(

∂q̄i/∂qi
∂p̄i/∂qi

)

×
(

∂q̄i/∂pi

∂p̄i/∂pi

)

. (3.22)

The two vectors appearing here point in the direction of the coordinate lines that
are obtained by applying the time evolution to the canonical basis of the pi-qi plane.
They form a parallelogram whose area, given by the cross product above, remains
constant in time. This is not the same as the conservation of phase space volume,
because we have been concerned with simple two-dimensional areas in each pi-qi
plane, and their separate conservation is in fact a stronger statement than the con-
stancy of phase space volume (the latter can be derived from the former67, but we
will not need it here).

Having derived the first of Poincaré’s integral invariants, the curious reader
will want to know what the other Poincaré invariants are. We only mention that
the phase space volume is in fact the N -th invariant (for N degrees of freedom), and
refer to the literature for further details82,38. Only the first invariant will be needed
later, when we introduce action-angle variables for integrable systems.

3.3 Transformations with a generating function

3.3.1 Lagrange bracket

In the previous section the crucial step in showing the invariance of
∮

p dq was to
obtain a unit Jacobian for an infinitesimal transformation. It is the existence of
a generating function which allows us to make this and some other far-reaching
statements about the transformation it applies to. Consider the two pairs (q,p)
and (u,v), where the vectors are N -dimensional. Denote the corresponding 2N -
dimensional phase space vectors by

~x ≡
(

p
q

)

, (3.23)

~w ≡
(

v
u

)

. (3.24)

Define further the Lagrange bracket of the transformation from (q,p) to (u,v) as

[xj , xk] ≡
(

∂ ~w

∂xk

)T

Γ
∂ ~w

∂xj
. (3.25)

Note that for N = 1, this can be used directly to express the Jacobian determinant
of the transformation,

[q, p] = det[
∂(u, v)

∂(q, p)
]. (3.26)

The difference to the Poisson bracket is that the summation in Eq. (3.25) is over
the new variables in the numerator, and not over the old variables with respect to
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which the derivatives are formed. Poisson and Lagrange bracket become equivalent
in the case N = 1, because

[q, p] = {u, v}. (3.27)

3.3.1.1 Theorem

If there exists a function F (q,v) such that

p =
∂F

∂q

∣

∣

∣

∣

v

, u =
∂F

∂v

∣

∣

∣

∣

q

, (3.28)

then the Lagrange bracket [as defined in Eq. (3.25)] satisfies

[xi, xj ] = Γij (i = 1 . . . 2N), (3.29)

with the matrix Γ as defined in Eq. (3.6), or more explicitly

[qi, qj ] = [pi, pj ] = 0, [qi, pj ] = δij (i = 1 . . . N). (3.30)

Another useful way of rewriting this statement is obtained by writing out the def-
inition of the Lagrange bracket. Then one can write Eq. (3.29) as an equation for
the 2N × 2N matrix of derivatives, D~w/D~x:

(

D~w

D~x

)T

Γ
D~w

D~x
= Γ. (3.31)

A matrix that satisfies this condition is called symplectic. Because ΓΓ = −1N , a
symplectic matrix A with AT ΓA = Γ automatically satisfies the reverse relation

AΓAT = Γ. (3.32)

Since the infinitesimal transformation generating the Hamiltonian flow sat-
isfies the symplectic condition due to Eq. (3.18), the flow is also called symplectic.
Hamiltonian systems are in fact only a special case of the more general class of
symplectic flows61.
Proof

Consider F as a function of ~x, then the partial derivatives with respect to these old
variables are

∂F

∂qi

∣

∣

∣

∣

p

=
∂F

∂qi

∣

∣

∣

∣

v

+
∑

k

∂F

∂vk

∣

∣

∣

∣

q

∂vk

∂qi

∣

∣

∣

∣

p

(3.33)

= pi +
∑

k

uk
∂vk

∂qi

∣

∣

∣

∣

p

, (3.34)

∂F

∂pi

∣

∣

∣

∣

q

=
∑

k

∂F

∂vk

∣

∣

∣

∣

q

∂vk

∂pi

∣

∣

∣

∣

q

(3.35)

=
∑

k

uk
∂vk

∂pi

∣

∣

∣

∣

q

. (3.36)

If we now form the second derivatives, the order of differentiation has to be inter-
changeable because dF is an exact differential. As a result we obtain the following
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relations:

(A)
∂2F

∂qi∂qj
=

∂2F

∂qj∂qi

⇒
∑

k

{

∂uk

∂qj

∂vk

∂qi
+ uk

∂2vk

∂qi∂qj

}

=
∑

k

{

∂uk

∂qi

∂vk

∂qj
+ uk

∂2vk

∂qj∂qi

}

⇒ [qi, qj ] = 0 (after canceling the last terms) (3.37)

(B)
∂2F

∂qi∂pj
=

∂2F

∂pj∂qi

⇒ δij +
∑

k

{

∂uk

∂pj

∂vk

∂qi
+ uk

∂2vk

∂qi∂pj

}

=
∑

k

{

∂uk

∂qi

∂vk

∂pj
+ uk

∂2vk

∂pj∂qi

}

⇒ [qi, pj ] = δij (3.38)

(C)
∂2F

∂pi∂pj
=

∂2F

∂pj∂pi

⇒
∑

k

{

∂uk

∂pj

∂vk

∂pi
+ uk

∂2vk

∂pi∂pj

}

=
∑

k

{

∂uk

∂pi

∂vk

∂pj
+ uk

∂2vk

∂pj∂pi

}

⇒ [pi, pj ] = 0. (3.39)

This completes the proof of Eq. (3.30), and Eq. (3.29) follows from the definition of
Γ in Eq. (3.6).

3.3.2 Canonical transformations

We now apply Eq. (3.31) to a Hamiltonian flow ~x which hence satisfies Eq. (3.9).
Then the following theorem holds:

3.3.2.1 Theorem

Consider the 2N dimensional vectors ~x and ~w, where

d

dt
~x = Γ ~∇xH, (3.40)

and the matrix of first derivatives for the transformation from ~x to ~w is symplectic.
Then ~w is also a Hamiltonian flow, i.e. satisfies Eq. (3.40), and the transformation
from ~x to ~w is called canonical.

The symplectic condition is satisfied in particular when there exists a gener-
ating function with the properties of Eq. (3.28). Canonical transformations are an
essential tool in the solution of many mechanics problems, and we will use them to
introduce the action-angle variables later on.
Proof

Use the matrix of first derivatives to perform a transformation of variables in

d

dt
~w =

D~w

D~x

d

dt
~x =

D~w

D~x
Γ ~∇xH, (3.41)

where we used Eq. (3.9). Transforming the gradient to the variable ~w, we get

d

dt
~w =

D~w

D~x
Γ

(

D~w

D~x

)T
~∇wH = Γ ~∇wH, (3.42)

using Eqs. (3.31) and (3.32) in the last equality. This constitutes Hamilton’s equa-
tions for ~w.
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3.3.3 Eigenvalues and determinant of symplectic matrices

If A is a symplectic matrix, its eigenvalues come in pairs λi, 1/λi, so that its deter-
minant is unity. We do not have to do any work to prove this for N = 1 because of
Eq. (3.26) which tells us that the Jacobian determinant is unity provided Eq. (3.31)
holds. Since the matrix in question is 2× 2, its eigenvalues have to be reciprocals of
each other. To prove the statement in the general case, assume A is diagonalized by
similarity transformation with a matrix X. First we note that the resulting diagonal
matrix is trivially symmetric, so that we can transpose to find that AT has the same
eigenvalues as A. Consider an eigenvalue ~y such that

AT ~y = λ~y, (3.43)

then we multiply from the left by Γ (AT )−1/λ to get

1

λ
Γ ~y = Γ

(

AT
)−1

~y. (3.44)

On the righthand side, we want to use the symplectic condition,

AT ΓA = Γ (3.45)

⇒ ΓA =
(

AT
)−1

Γ (3.46)

⇒
(

AT
)−1

= −ΓAΓ, (3.47)

where we used ΓΓ = −11.With this, Eq. (3.44) becomes

1

λ
Γ ~y = AΓ ~y, (3.48)

which means that 1/λ is an eigenvalue of A (with eigenvector Γ ~y) as we claimed.

3.4 Integrable systems

In most isolated mechanical systems occuring in nature, the only conserved quantity
is the total energy. As soon as there is more than one degree of freedom, it becomes
very difficult to solve the equations of motion under these circumstances. Practically
all textbook examples for motion in more than one dimension therefore belong to
a special class of systems which are called integrable because the trajectory can be
found by a set of quadratures.

Assume that in addition to the Hamiltonian H, we found another function
K(~x) of the phase space variables that is also conserved, i.e. {K,H} = 0. The
system is integrable if there are N conserved quantities like H and K which are
also pairwise independent and have vanishing Poisson bracket with each other. Let
us explore this situation for the special case of N = 2. Independence of H and K
means that we require their gradients to be linearly independent,

~∇xH 6= α ~∇xK, (3.49)

everywhere except at isolated points in the four-dimensional phase space. The tra-
jectory is constrained by the two equations H(~x) = E and K(~x) = const, and
therefore lies on a 2D surface F . Any point on that surface can serve as the initial
condition for a unique trajectory consistent with the conservation laws, and the re-
sulting set of trajectories defines a new vector field: the projection of d

dt~x onto the
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local tangent plane of F . This 2D field covers the whole surface, and it is nonzero
everywhere provided d

dt~x 6= 0. The latter condition is assumed to be valid in the
cases of interest here, as is done the textbook by Arnol’d64.

In order for F to be covered by an everywhere nonvanishing vector field,
its topology must be that of a torus. One can easily visualize that a sphere does
not admit such a field (the problem is equivalent to combing the hair on a coconut
without introducing a part or an eddy38). Thus we have to introduce a handle on the
sphere, which can then be deformed into a torus. This topology is consistent with
our requirement. In fact it is the only such topology, because introducing further
handles on the torus will again make it impossible to avoid points of vanishing field.

The generalization of the above arguments to more than two degrees of
freedom is that the trajectory will move on an N -dimensional torus in the 2N -
dimensional phase space. However, the case N = 2 is of particular interest to us.

Concerning the assumption that the vector field on F is nonvanishing, it
should be pointed out that there are counter-examples, namely the rational polygon
billiards68, which consist of flat billiards bounded by straight line segments enclosing
an angle which is a rational multiple of π. These systems are called pseudo-integrable,
and the motion of a trajectory is confined to a two-dimensional manifold in phase
space. However, the possibility of (classical) “beam splitting” at sharp corners
implies that singularities of the above vector field can occur. As a result, the surface
F is a multi-handled sphere, which becomes so complicated that the system shows
some properties commonly associated with nonintegable dynamics, as for example
level repulsion in the quantum mechanical spectrum.

3.5 Action-angle variables

The torus on which a trajectory in an integrable system moves suggests that we
choose coordinates that are adapted to this special topology, namely the action-
angle variables. In standard textbooks on classical mechanics, these variables are
introduced either for one-dimensional systems only62, or it is assumed that a sepa-
ration of variables in the Hamilton-Jacobi equation (see below) has been performed
such that one is left with N effectively one-dimensional problems63,69. However,
we want to apply the action-angle formalism to systems that cannot be reduced to
these simple cases. Therefore, we want to use only the definition of integrability
given above. This will allow us to define actions and angles even for tori that are
embedded in a partially chaotic phase space.

For the sake of clarity we will again specialize to N = 2 degrees of freedom,
so that there are exactly two types of loops on the torus that can not be transformed
into one another: If we think of the familiar doughnut, we can generate these different
curves by cutting either through the large or the small cross section. Then we can
calculate the first Poincaré invariant along two such inequivalent curves and call
them J1, J2, or action variables due to their dimension.

An important point here is that the particular choice of loops is immaterial
as long as they are topologically inequivalent. We have not shown this so far – all
we know is that the Ji are time-indepedent; but the fact that J1 and J2 depend
only on the topology of the paths is crucial if we want to use them as a complete
parametrization of the torus that could then replace the old parameters H and K.
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3.5.1 Path-independence on the torus

The claim is that we obtain the same Poincaré invariant,

Ji =

∮

Ci

p dq, (3.50)

if the curve Ci is deformed without changing the number of times we wind around
either of the torus cross sections described above. Such a deformation can be in-
troduced simply by adding to the original loop integral another closed loop, part of
which is antiparallel to the first path and thus cancels the corresponding segment.
The added closed loop C0 must be topologically reducible to a point in order to
leave the number of windings unchanged. The projection of p onto the q-plane has
at least two sheets, corresponding to the different values p can have on the “top”
or “bottom” side of the torus (there may be more sheets if the torus lies oblique to
the q-plane). We want to show that

∮

C0

p dq (3.51)

is zero for a reducible loop on each sheet of p. An equivalent statement for the
path-independence is that each sheet of p(q) must be irrotational if J is kept fixed.

All we need for the proof (with N = 2) is that there exist two conserved
phase-space functions H and K that have vanishing Poisson bracket,

{K,H} = 0. (3.52)

First, let us use the conservation of H to write one of the momenta as a function of
the remaining three phase space variables and the energy:

p̃1 = p1(q1, q2, p2,H) or (3.53)

p̃2 = p2(q1, q2, p1,H), (3.54)

where the tilde identifies a function that depends on one momentum and both coor-
dinates. If we use in addition the conservation of K, both momenta can be written
as a function of the two coordinates only, and this is how the pi without tilde should
be understood. The explicit momentum dependence in the p̃i allows us to take the
partial derivative

∂p̃1

∂p2
=

(

∂p̃2

∂p1

)−1

. (3.55)

where all other quantities are considered fixed. We want to express this in terms of
derivatives of the Hamiltonian, which was used to define p̃i. A very useful formalism
that allows one to deal with transformations of variables in partial derivatives (in
particular to keep track of sign changes that are otherwise not so obvious) is based
on the Jacobi determinant1. The above derivative can then be written as

∂p̃1

∂p2

∣

∣

∣

∣

H

= det[
∂(p̃1,H)

∂(p2,H)
] = det[

∂(p̃1,H)

∂(p1, p2)

∂(p1, p2)

∂(p2,H)
]

= −det[
∂(p̃1,H)

∂(p1, p2)

∂(p1, p2)

∂(H, p2)
] = − ∂H

∂p2

∣

∣

∣

∣

p1

(

∂H

∂p1

∣

∣

∣

∣

p2

)−1

. (3.56)

1to understand the manipulations, the reader can simply write out the determinants.
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Note the minus sign that arises when we exchange p2 and H in the second Jaco-
bian. Similarly, we have for the partial derivative with respect to the corresponding
(conjugate) coordinate,

∂p̃i

∂qi

∣

∣

∣

∣

H

=
∂(p̃i,H)

∂(qi,H)
= −∂(p̃i,H)

∂(pi, qi)

∂(pi, qi)

∂(H, pi)

= − ∂H

∂qi

∣

∣

∣

∣

pi

(

∂H

∂pi

∣

∣

∣

∣

qi

)−1

. (3.57)

If we insert p̃1 into K, then the only remaining momentum variable that is still
unknown is p2. We can in principle use the conservation ofK to write p2 as a function
of the qi alone. Our goal is to solve for ∂p2/∂q1. Further below, we shall similarly
solve for ∂p1/∂q2, and then use the results to show that ∂p2/∂q1− ∂p1/∂q2 = 0, i.e.
that p is irrotational, which proves the path-independence of the action integral.

Now take the total derivative of the equation K = const with respect to q1,
given the substitution just described. The result is

0 =
dK

dq1
=
∂K

∂q1
+
∂K

∂p1

dp̃1

dq1
+
∂K

∂p2

dp2

dq1
. (3.58)

In the last term, p2 does not carry a tilde because, as mentioned above, it is only a
function of the qi. This actually means that

dp2

dq1
=
∂p2

∂q1
. (3.59)

Alternatively, we can insert p̃2 into K and differentiate with respect to q2, obtaining
thus the analogous equation

0 =
dK

dq2
=
∂K

∂q2
+
∂K

∂p1

∂p1

∂q2
+
∂K

∂p1

dp̃2

dq2
. (3.60)

The remaining total derivatives can be expanded as

dp̃i

dqi
=
∂p̃i

∂qi
+
∂p̃i

∂pj

∂pj

∂qi
, (3.61)

where j 6= i labels the momentum that appears explicitly in p̃i. This is now used in
Eqs. (3.58) and (3.60) to obtain the two equations

−∂K
∂q1

− ∂K

∂p1

∂p̃1

∂q1
=

∂p2

∂q1

(

∂K

∂p2
+
∂K

∂p1

∂p̃1

∂p2

)

, (3.62)

−∂K
∂q2

− ∂K

∂p2

∂p̃2

∂q2
=

∂p1

∂q2

(

∂K

∂p1
+
∂K

∂p2

∂p̃2

∂p1

)

. (3.63)

In the second equation, we multiply both sides by ∂p̃1/∂p2 and use Eq. (3.55). This
makes the term in brackets on the righthand side identical to the one in the first
equation. Then we divide the first by the second equation to obtain

∂p2

∂q1

(

∂p1

∂q2

)−1

=

(

∂K

∂q1
+
∂K

∂p1

∂p̃1

∂q1

) (

∂K

∂q2
+
∂K

∂p2

∂p̃2

∂q2

)−1 (∂p̃1

∂p2

)−1

. (3.64)
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Here, one can eliminate all derivatives of the dependent momenta (carrying a tilde)
through the use of Eqs. (3.56) and (3.57):

∂p2

∂q1

(

∂p1

∂q2

)−1

= −
[

∂K

∂q1
− ∂K

∂p1

∂H

∂q1

(

∂H

∂p1

)−1
]

× (3.65)

[

∂K

∂q2
− ∂K

∂p2

∂H

∂q2

(

∂H

∂p2

)−1
]−1

∂H

∂p1

[

∂H

∂p2

]−1

(3.66)

= −
[

∂K

∂q1

∂H

∂p1
− ∂K

∂p1

∂H

∂q1

] [

∂K

∂q2

∂H

∂p2
− ∂K

∂p2

∂H

∂q2

]−1

(3.67)

But the numerator is just the negative of the denominator because of the condition
{K,H} = 0. Thus we finally arrive at

∂p2

∂q1
=
∂p1

∂q2
. (3.68)

This means that the curl of p is zero on the sheet under consideration. Therefore,
the action integral in Eq. (3.50) is path-independent as long as the deformation can
be described by attaching a reducible loop to the original path, as described above.

3.5.2 The action function

This fact allows one to define the following function of position, which we will also
call the action function (not to be confused with the action variables):

S(q,J) =

q
∫

q0

p(J,q′) dq′, (3.69)

where the starting point q0 is arbitrary but fixed. Because of the path-independence
of this integral, S is indeed only a function of the arguments q, J (dS is exact) under
the above condition of unchanged number of windings around the torus. Hence this
function can serve as the generating function for a canonical transformation from
the variables qi, pi to a new set Φi, Ji according to the rule

p =
∂S

∂q
(3.70)

Φ =
∂S

∂J
. (3.71)

The second equation defines the angle variables. The reason for this definition is
that it guarantees that the transformation is canonical, which means Φi, Ji satisfy
the same equations of motion as qi, pi. This follows immediately from the theorem
3.3.2.1. Note also that S has as many different sheets over the q plane as does p,
due to Eq. (3.70).

As a consequence of the above definition, H can depend only on J and not
on Φ, because the action variables are constants so that

0 =
d

dt
J = −∂H

∂Φ
. (3.72)

But since neither H nor the Ji depend on time, we also conclude

d

dt
Φ =

∂H

∂J
= ~ω = const. (3.73)
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This means the angle variables grow linearly in time with angular frequency ωi. To
clarify the physical meaning of the angle variables and their frequencies, note that
the generating function in Eq. (3.69) reduces to the Poincaré invariant, Eq. (3.50),
when the former is evaluated along a closed loop winding around the torus (C1 or
C2 in our notation). More generally, if we wind around Ci a number of times µi,
then the action increases by Ji. Therefore, one concludes for the change ∆S upon
completion of the loop

∆S(µ1, µ2) = µ1 J1 + µ2 J2. (3.74)

For the same loop, the change in the angle variable is calculated from Eq. (3.71) to
be

∆Φi = ∆
∂S

∂Ji
=
∂∆S

∂Ji
= µi. (3.75)

Thus, Φi changes by exactly unity for each trip around the torus along a loop
equivalent to Ci.

3.6 The Hamilton-Jacobi differential equation

The function S is also called Hamilton’s characteristic function, and it satisfies the
Hamilton-Jacobi differential equation,

H(q; ∂S/∂q) = E, (3.76)

which is obtained by substituting Eq. (3.70) for the momenta into the Hamiltonian
function and equating it to the energy. The name “characterstic function” stems
from the fact that the field lines of ∇S = ∂S/∂q are just the characteristics of the
elliptic differential equation (3.76). This equation is merely a by-product of our
derivation, but it is often a useful tool in solving dynamical problems. Once one has
determined S from this differential equation, the dynamical variables can be deduced
from the properties of S as a generating function. This situation is quite similar to
the Schrödinger approach to quanntum mechanics, where one solves a differential
equation to find the wave function, from which the actual physical variables can
then be deduced. We will see later in the discussion of the WKB approximation
that this analogy is not entirely coincidental.

A special situation arises when the Hamilton-Jacobi equation is separable.
Then the solution can be written as a sum,

S(q) =
∑

i

Si(qi), (3.77)

which means that all momenta pi are going to be functions of the respective conjugate
coordinate qi alone, instead of depending on all other qj as well. Thus the degrees
of freedom are decoupled from each other, and we only have to deal with a collection
of effectively one-dimensional problems.

As mentioned earlier, the action-angle variables are often introduced under
the explicit assumption that one has already found a coordinate system in which
the Hamilton-Jacobi differential equation is separable. Then the actions are defined
for the resulting one-dimensional systems. As noted by Gutzwiller38, this is an un-
necessarily restrictive program, because it precludes us from considering systems for
which a separation of variables either cannot be achieved or is too complicated. In
particular, the KAM theorem to be discussed later shows that there are noninte-
grable (and hence surely non-separable) systems for which one can still find tori in
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phase space. Our broader definition of action-angle variables still applies to such
KAM tori, even though the proof of path-independence has to be modified when
there is no globally conserved quantity K.

3.6.1 Winding numbers

Consider now a special deformation of the “primitive” loops Ci, which consists in
following the actual time evolution of the starting point in phase space. Recall that
we have so far chosen our phase space loops without any relation to the trajectories,
the only restriction being that the loop be on the surface of the torus. In order for
the real trajectory to provide us with a closed loop, the trajectory itself has to be
periodic, of course. Let us say the trajectory closes on itself after µi revolutions
around the respective primitive loops. It is very useful to charaterize such periodic
trajectories by their winding number

w =
µ1

µ2
=

∆Φ1

∆Φ2
. (3.78)

By definition, the time it takes to evolve to ∆Φ1 is the same as that for ∆Φ2, because
we followed the trajectory; it is simply

t = ∆Φi/ωi. (3.79)

Using this to replace the ∆Φi above, we arrive at one of the useful properties of
action-angle variables:

w =
ω1

ω2
=
∂H/∂J1

∂H/∂J2
. (3.80)

Hence we know the winding numbers of all trajectories as soon as we have expressed
the Hamiltonian in terms of the action variables. This is often much easier to do
than solving the equations of motion.

3.7 Example: Classical mechanics of the circular billiard

At this point it behooves us to illustrate the concepts introduced so far. This will
be done by first discussing the simple special case of a point particle moving inside a
flat billiard with a circular hard wall of radius R. This circular billiard will serve as
the prototype systems in many of the later sections, where we deal with noncircular
billiards. First, we will look at the problem in polar coordinates; later we shall
show how the same answers are obtained without the use of this special coordinate
system.

3.7.1 Polar coordinates

The standard way of treating systems with rotational symmetry is to write down
the Hamiltonian in polar coordinates, because then the angle that is canonically
conjugate to the conserved angular momentum does not appear in H, it is cyclic.
In polar coordinates, the Hamiltonian for the free motion of the particle between
collisions with the circular boundary is

H =
1

2m

(

p2
r +

p2
φ

r2

)

, (3.81)
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where the conjugate momenta are pr = mṙ and pφ = mr2φ̇. Since φ is cyclic, the
angular momentum pφ is conserved. The reflections at the boundary reverse pr, but
do not affect pφ. This does not mean, of course, that the angular velocity stays
constant, because r varies with time. As can be seen in Fig. 3.1(a), r is in fact a
periodic function of time, independent of whether the orbit closes on itself or not.
The inner turning point of the radial motion, i.e. the minimum of r, is obtained by

Figure 3.1: (a) A typical quasiperiodic trajectory in the circular billiard. (b) Five-bounce periodic
orbits.

equating the Hamiltonian with the total energy E and setting pr = 0:

r0 =
pφ√
2mE

. (3.82)

In polar coordinates, all degrees of freedom execute periodic motion in the form of
either rotation (φ) or libration (r). This would not generally be true in cartesian
coordinates, since one could, e.g., start a particle at x = R on an orbit which does
not close on itself so that this x never recurs. The Hamilton-Jacobi differential
equation, H(q;S) = E, is separable in polar coordinates if one multiplies both sides
by r2.

Having identified the periodic and decoupled degrees of freedom, it becomes
particularly easy to calculate the action variables, because

∮

p dq decomposes into
the sum of two integrals along each coordinate direction. This is possible because
the integrand pi depends only on one coordinate qi (or none at all, as for pφ); the
reason being the separability of the Hamilton-Jacobi equation, cf. Eq. (3.77). We
get

Jφ =

2π
∫

0

pφdφ = 2π pφ (3.83)

Jr = 2

R
∫

r0

prdr. (3.84)

Both Jφ and Jr are manifestly constants of the motion because the dependence on
φ and r has been integrated out. They could, however, still be functions of energy.
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The radial action is obtained by substituting

pr =

√

2mE −
p2

φ

r2
(3.85)

into Eq. (3.84):

Jr = 2

R
∫

r0

dr

√

√

√

√2m

(

E −
p2

φ

2mr2

)

, (3.86)

where the factor 2 accounts for the fact that the closed loop runs from r0 to R and
back with opposite sign of pr. In principle, this can now be solved for E in terms of
Jφ and Jr. One has thus rewritten the Hamiltonian as a function of the constants
of motion alone. If we interpret Jφ and Jr as generalized momenta, the conjugate
variables Φφ and Φr by definition satisfy Hamilton’s equations,

Φ̇φ =
∂H

∂Jφ
, (3.87)

Φ̇r =
∂H

∂Jr
. (3.88)

These partial derivatives are just constants, so that the angle variables all have a
simple linear time dependence:

Φφ = ωφ t+ Φφ,0, (3.89)

Φr = ωr t+ Φr,0. (3.90)

To carry out the solution with these variables, one has to evaluate the radial integral,

Jr = 2

R
∫

r0

dr
pφ

r

√

r2

r20
− 1 (3.91)

= 2pφ

[
√

R2

r20
− 1 + arcsin

r0
R
− π

2

]

. (3.92)

We cannot solve this directly for E (which is contained in r0) to obtain the derivatives
of the energy with respect to the action variables needed in Eq. (3.87). However,
some progress can be made by implicit differentiation 2 of Eq. (3.92), considering Jr

and Jφ as the independent variables. Using the definition of r0 and the abbreviation

β ≡ 2mER2, (3.93)

we can rewrite Eq. (3.92) as
√

β

p2
φ

− 1 + arcsin
pφ√
β

=
π

2
+

Jr

2pφ
. (3.94)

Take the derivative with respect to Jr, which yields

1

2p2
φ

√

β/p2
φ − 1

∂β

∂Jr
+

1
√

1− p2
φ/β

[

− pφ

2β3/2

∂β

∂Jr

]

=
1

2pφ
(3.95)

⇒ 1

2

∂β

∂Jr





1

pφ

√

β − p2
φ

− pφ

β
√
β − p2

φ



 l =
1

2pφ
(3.96)

⇒ ∂β

∂Jr
=

β
√

β − p2
φ

. (3.97)

2This was pointed out to me by Henrik Bruus
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Now we similarly differentiate Eq. (3.94) with respect to pφ:

1

2
√

β/p2
φ − 1

[

1

p2
φ

∂β

∂pφ
− 2β

p3
φ

]

+ (3.98)

1
√

1− p2
φ/β

[

1√
β
− pφ

2β3/2

∂β

∂pφ

]

= − Jr

2p2
φ

(3.99)

⇒ ∂β

∂pφ
= 2 pφ β





1

p2
φ

− Jr

2p2
φ

√

β − p2
φ



 . (3.100)

This provides us with enough information to determine the winding number, cf. Eq.
(3.78), which is given by the frequency ratio

w =
ωφ

ωr
=

∂H/∂Jφ

∂H/∂Jr
=
∂β/∂Jφ

∂β/∂Jr
=

∂β/∂pφ

2π ∂β/∂Jr
(3.101)

=
1

π

[√

β

p2
φ

− 1− Jr

2pφ

]

. (3.102)

Here we still have the problem that β = 2mER2 has to be known as a function of
Jr and Jφ (or pφ) if we want to express w in terms of these actions. Even without
this knowledge, we can however illuminate the relation between the winding number
and the angle of incidence χ with respect to the normal at the boundary. In the
expression for w, we first eliminate Jr by means of Eq. (3.94) to get

w =
1

π

[

π

2
− arcsin

pφ√
β

]

. (3.103)

If the linear momentum is p =
√

2mE, then the angular momentum at each reflection
is

pφ = |R× p| = Rp sinχ (3.104)

=
√

β sinχ. (3.105)

We could also derive the last equality purely from geometry, using the definition of
the inner turning point, Eq. (3.82), and the fact that the angle of incidence at the
boundary is given by

sinχ = r0/R = pφ/
√

β. (3.106)

This allows us to eliminate β from the previous expression, so that we can write

π w =
π

2
− χ, or cos πw = sinχ. (3.107)

The first equality implies 0 ≤ w ≤ 1, because −π/2 ≤ χ ≤ π/2. If w is rational,
w = l/k, then the orbit closes on itself after k reflections, having wound around the
azimuthal direction l times. As an example, Fig. 3.1(b) shows closed orbits with
k = 5. From the figure, it can also be seen that w = 2/5 and w = 3/5 are simply
time-reversed versions of each other, which reflects the general relation implied by
Eq. (3.107),

(w → 1− w) ⇒ (sinχ→ − sinχ). (3.108)

In the circle, there is an infinite family of closed orbits for each rational w, obtained
by rotating all reflection points by an arbitrary angle. The energy E has no effect
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on the geometry of the trajectories, it only determines how fast they are traced out.
This is a peculiarity of the hard-wall boundary.

Most trajectories, namely the ones with irrational winding number, never
close on themselves. As shown in Fig. 3.1(a), they exhibit instead a caustic, consist-
ing of the circle of radius r0 to which all rays are tangent between any two reflections,
as follows from the radial equation. The caustic is the line at which the real-space
projection of the phase-space torus becomes singular, in the sense that a flat mea-
sure on the surface of the torus will give rise to a divergent density on the caustic
(an equivalent statement is that the probability per unit time of finding a particle
at its classical turning points diverges, if the potential is smooth).

Even when the orbit does not close on itself, it is possible to associate the
irrational winding number with the number of reflections per revolution around the
billiard. The general relation is

w =
1

2π
lim
i→∞

φi − φ0

i
, (3.109)

where φi is the position where the i-th reflection occurs, not taken modulo 2π. This
definition has the advantage of being applicable even in systems where one cannot
determine the action-angle variables.

3.7.2 Actions from the caustic

When we introduced the action-angle variables, it was a deliberate choice not to
rely on the separability of the Hamilton-Jacoby equation but instead to use only
the torus topolgy resulting from the existence of N constants of the motion. It is
illuminating to show for the circle that the actions can be calculated even if one does
not use polar coordinates, just based on the fact that the real space trajectories in
general create a caustic of known shape.

This is the procedure followed by Keller and Rubinow99. The main subject
of their 1960 paper is the semiclassical quantization of various billiard systems (we
will return to this question below), and a crucial part of that work is the calculation
of the action variables.

For the circle, the caustic is also a circle whose radius is related to the angle
of incidence χ by

r0 = R sinχ. (3.110)

In calculating
∮

pdq, Keller’s and Rubinow’s approach is to choose all the loops
Ci such that p and dq are either parallel, antiparallel or perpendicular. I.e., the
loop always follows some ray, except for segments where pdq = 0 which hence make
no contribution to the integral. For loop segments where p and dq are parallel, the
actions reduce to

√
2mE times the length of the respective loop, since the magnitude

p =
√

2mE is constant. The same holds for antiparallel p and dq, except for a
negative sign in front of their contribution to the integral.

In the integration, one has to keep track of which sheet of p is being used.
To characterize these sheets, note that at each point q in the annulus between r0

and R, there are four possible values of p (always keeping in mind that all rays are
tangent to the caustic): one can draw a ray through q that encircles the caustic
in the counterclockwise sense (positive angular momentum), and either is directed
away from the caustic or toward it; the analogous two possibilities exist for clockwise
sense of rotation. We can discard the clockwise trajectories because of time-reversal
invariance, so that only two sheets of p are left. The corresponding sheets of S
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will be denoted by SCB and SBC . The former yields for every point q the ray that
passes through q in the direction from the caustic to the boundary, and vice versa
for SBC , always in the counterclockwise sense. Recall that p = ∇S(q), so we have
to consider the different sheets of S. The first loop that is considered consists of the
caustic itself, taken entirely on a single sheet, e.g. SCB . This can be considered as
the limiting case of the contour shown as the sawtooth line in Fig. 3.2 (a), and the
resulting action is simply

Jφ =
√

2mE 2π r0 = 2π R p sinχ = 2π pφ, (3.111)

in agreement with Eq. (3.83). Thus we have re-derived the azimuthal action.

Figure 3.2: Knowing the shape of the boundary (B) and caustic (C) in the circle, one can obtain
the azimuthal (a) and radial (b) action. The integration loops (indicated as bold lines) are either
parallel to the rays [dashed lines in (a)] or follow the contour lines of S [dotted lines in (a)]. The
resulting saw-tooth line in (a) never crosses the caustic, but can be drawn infinitesimally close to
it, so that its length becomes equal to that of C. In (b), this limit has already been performed, but
one needs to cross (C) and (B) once each.

To calculate the radial action, we choose the loop shown in Fig. 3.2 (b),
which has to involve both sheets of p because clearly two different directions of p
intersect at the boundary point. If we start at this point in the counterclockwise
sense, the first segment of the loop uses SBC up to the caustic. The next segment is
the shorter of the two arcs between the points of tangency at the caustic. For this
we can remain on the sheet SBC , but the loop is antiparallel to the rays so that this
contribution has to be subtracted from the first segment. Alternatively, one could
use the longer arc with SBC , and the the contribution would be positive since the
loop runs parallel to the ray directions. However, the results differ by Jr because
one would in addition have encircled the azimuthal loop by going along the longer
arc. Finally, we have to cross over to the sheet SCB at the second point of tangency
to the caustic, in order to return to the starting point on the boundary. The sum
of all three contributions is

Jr = p

[

2
√

R2 − r20 − 2

(

π

2
− χ

)]

(3.112)

= 2 p r0

[
√

R2

r20
− 1−

(

π

2
− arcsin

r0
R

)

]

, (3.113)

where we have used sinχ = r0/R. But this is identical to Eq. (3.92) because pφ =
p r0.
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The result of this more geometric calculation is thus the same as that of the
previous subsection, and there was no need to use polar coordinates explicitly.

3.8 Example: Elliptical billiard

The billiard with elliptical boundary seems at first sight to be reducible to the
circular billiard, because we can transform the boundary given by

x2

a2
+
y2

b2
= 1 (3.114)

into a circle by the linear substitution x′ = x/a, y′ = y/b, which at the same time
maps straight line trajectories onto straight lines. However, this transformation
does not map the specular reflection law in the ellipse onto specular reflection in
the circle. I.e., a real trajectory in the ellipse will, after the above contraction and
dilation, not be geometrically identical to a real trajectory of the circle assuming
specular reflection. This can be seen for example by taking a trajectory in the circle
which reflects at 45◦ angle of incidence from the point with polar angle φ = 45◦. If
one contracts the y-axis to create an ellipse, the incoming and outgoing rays remain
horizontal and vertical, respectively, whereas the normal no longer bisects the angle
between incident and reflected ray.

It is in fact a problem of some recent interest70 to discuss conservation laws in
the ellipse billiard and its three-dimensional generalization, because of its relation to
Poincelet’s theorem of projective geometry71. This theorem states that if a trajectory
closes on itself after p reflections, then so do all others that are tangent to the same
caustic. From the point of view of our Hamiltonian mechanics, it is evident that
all trajectories on the same torus have the same winding number, so Poincelet’s
theorem comes as no surprise. However, it remains for us to show that a trajectory
in the ellipse does indeed move on a torus, i.e. that the billiard is integrable.

3.8.1 Integrability of the ellipse

The conserved quantity we are looking for is the product of the angular momenta
L1, L2 with respect to the two foci F1, F2. This is stated without proof in Ref.72,
and we shall verify this result here. The crucial property of the ellipse billiard is
that the normal at any point A on the boundary exactly bisects the angle 6 F1AF2

subtended by the two foci.
To show this, write the equation for the elliptical boundary in cartesian

coordinates,
x2

a2
+
y2

b2
= 1, (3.115)

and find the normal by taking the gradient of this,

n ∝
(

x/a2

y/b2

)

. (3.116)

The unit vectors pointing to A = (x, y) on the boundary from the foci are

d1 =
1

√

(x− c)2 + y2

(

x− c
y

)

, (3.117)

d2 =
1

√

(x+ c)2 + y2

(

x+ c
y

)

, (3.118)
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Figure 3.3: The normal bisects the angle between incoming and outgoing ray in the ellipse. Since
it also bisects the angle between the focal rays, the two angles denoted by α are the same.

where c =
√
a2 − b2 is the distance of the foci from the origin, assuming without

loss of generality a > b. Now we form the ratio

n · d1

n · d2
=

(x− c)x/a2 + y/b2

(x+ c)x/a2 + y/b2

√

(x+ c)2 + y2

(x− c)2 + y2
. (3.119)

Here one can eliminate y2 using y2 = b2 − x2b2/a2, to obtain

n · d1

n · d2
=

1− cx/a2

1 + cx/a2

√

x2(1− b2/a2) + a2 + 2xc

x2(1− b2/a2) + a2 − 2xc
(3.120)

=

√

(a4 + x2c2 − 2xca2) (x2c2 + a4 + 2xca2)

(a4 + x2c2 + 2xca2) (x2c2 + a4 − 2xca2)
(3.121)

= 1, (3.122)

where we used the definition of c and multiplied through by a3. This result means
that d1 and d2 form the same angle with the normal, which is what we wanted to
show. Now it is a simple matter to convince ourselves that the angle α1 between
incoming ray and d1 is the same as the angle α2 between outgoing ray and d2,
because the angles of in-and outgoing rays with the normal have to be equal, too.
This is illustrated in Fig. (3.3). We denote

α1 = α2 = α. (3.123)

If χ is the angle of incidence, then the angle between incident ray and d2 is 2χ− α,
and the same is true for the reflected ray and d1. Let ri be the distance from A to
Fi, then the product of angular momenta for the incoming ray is

L12 ≡ L1 L2 = p2 r1 r2 sinα sin(2χ− α), (3.124)

where p is the constant magnitude of the linear momentum. But the same is found if
we consider the outgoing ray. Therefore, this product is unchanged by the collision
with the boundary, and hence it is a constant of the motion because the angular
momenta are individually conserved between bounces.

Inspection of Eq. (3.124) reveals that the phase space of the ellipse is quite
different from that of the circle. Depending on the sign of L12, the real space trajec-
tories are either so-called whispering gallery orbits (L12 > 0), or of the “bouncing-
ball” type (L12 < 0). The latter always cross the x-axis in the interval [−c, c], i.e.
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Figure 3.4: The two types of trajectories in the ellipse are whispering-gallery orbits (left) and
bouncing-ball orbits (right). The caustics can be identified clearly as ellipses (left) and hyperbolae
(right), to which the rays are tangent between any two reflections For bouncing ball orbits, this
tangency may require a ray segment and the hyperbola to be continued to the outside of the billiard.

between the focal points; the former cross the x axis outside that range. These two
classes os trajectories are shown in Fig. 3.4. To see how the bouncing-ball orbits
arise, note that the sign of L12 can be negative if either α or 2χ − α is negative.
Assume without loss of generality α < 0 (the other case can be treated by reversing
time). This corresponds to trajectories that impinge on the boundary from inside
the triangle F1AF2, and the reflected ray will be inside the same triangle so that it
has to cross the x-axis between F1 and F2. At the next collision, the same scenario
applies because L12 is conserved. The whispering gallery orbits are forbidden from
crossing the x-axis between the foci, by similar arguments.

The real-space projections of the invariant torus is therefore a deformed
annulus for L12 > 0, but not for L12 < 0. In the latter case the forbidden region is
located around the highest-curvature points, because precisely at these points the
angle between d1 and d2 shrinks to zero, making it impossible to have a trajectory
impinge from “within” this degenerate triangle unless α = 0 (which in turn implies
L12 = 0).

It can be shown73 that the caustics are confocal ellipses for L12 > 0 and
confocal hyperbolae for L12 < 0. An important application of this knowledge is
the semiclassical quantization procedure employed by Keller and Rubinow99, where
the caustics figure prominently. In view of the fact that we intend to modify that
quantization procedure such that a knowledge of the caustics is not required, we will
at this point only mention that the actions for a WG orbit can be calculated along
the same types of loops as in the circle, with the integrations along the elliptical
caustic giving rise to elliptic integrals of the second kind.

3.8.2 An expression for the angle of incidence

Let us rewrite Eq. (3.124) as

L12 = p2 r1 r2 sin

(

χ− ∆

2

)

sin

(

χ+
∆

2

)

, (3.125)

where ∆ = 6 F1AF2 is the angle between the two focal rays through the point A
where the reflection occurs. It is straightforward to bring this into the form

L12 = r1 r2

(

sin2 χ− sin2 ∆

2

)

(3.126)

36



⇒ sin2 χ = sin2 ∆

2
+

L12

p2 r1r2
. (3.127)

Now one can also express ∆ in terms of the ri, because the triangle F1AF2 satisfies

4c2 = r21 + r22 − 2r1r2 cos ∆. (3.128)

This leads to

cos ∆ =
r21 + r22 − 4c2

2r1r2
(3.129)

= − 2c2

r1r2
+

(r1 + r2)
2 − 2r1r2

2r1r2
(3.130)

= − 4c2

2r1r2
+

4a2

2r1r2
− 1 (3.131)

=
2b2

r1r2
− 1, (3.132)

where we have used r1 + r2 = 2a. This allows us to write

sin2 ∆

2
=

1

2
(1− cos∆) = 1− b2

r1r2
, (3.133)

which we insert into Eq. (3.127) with the result

sin2 χ = 1 +
L12/p

2 − b2

r1r2
. (3.134)

This result can be written in a different way by making use of the striking fact that
the curvature of the ellipse satisfies the relation

κ =
ab

(r1r2)3/2
. (3.135)

With this, we finally obtain

sinχ =

√

1 +
(L12/p2 − b2)

(ab)2/3
κ2/3. (3.136)

In this fashion we have expressed the dynamic variable sinχ purely in terms of the
curvature at the bounce point (and of course the constant of motion). This result is
central to our approach for finding the actions, as will be discussed now. It reduces to
the correct result in the circle, because then L12 = L1 L2 = L2

1, a = b = r1 = r2 = R,
so that pR sinχ = L1.

3.8.3 Actions from the curvature

As advertised above, we at this point calculate the action variables for the ellipse
assuming nothing about the detailed shape of the caustic. This will be done only for
the whispering gallery orbits, because they are the ones of special interest later. The
method will be applicable to general convex billiards as a way of finding approximate
invariants, because all we assume here is that the spatial projection of the torus is
two-sheeted and forms a deformed annulus, and that we possess an expression for
sinχ at the boundary as a function of φ,

sinχ =

√

1−
[

κ(φ)

K

]2/3

. (3.137)
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Figure 3.5: Integration contours for the radial and azimuthal action in the ellipse.

Here, K is an abbreviation for the constants appearing in Eq. (3.136). As will be
shown later (chapter 5), an expression of precisely this form can in fact serve as an
approximate description of the intermediate-time dynamics even in nonintegrable
convex billiards.

The classical torus on which the trajectory moves is completely specified by
the energy and the constant K in Eq. (3.137). The loops we choose for the action
integrals are the following: Let C1 be a closed curve infinitesimally close to the
boundary, and C2 the loop made up of a ray intersecting the boundary at φ0 = 0
and φ1 6= 0 together with the short segment of the boundary between φ0 and φ1

(see Fig. 3.5). As we trace out these curves, we have to keep track on which sheet
of the projection of S onto the spatial coordinate plane we are, either SBC or SCB.
Here, we use the same terminology as in subsection 3.7.2, i.e., SBC increases if one
follows its rays from the boundary (B) to the caustic (C), and SCB has the opposite
behavior. For definiteness it is assumed from now on that we start on the boundary
at φ0 = 0.

Along C1 we can stay on one sheet, say SCB, and the line element dl is
parallel to the boundary tangent vector t, so that ∇SCB · t =

√
2mE sinχ. At this

point we make use of Eq. (3.137) which provides an explicit expression for p(φ) in
terms of the unknown constant K. Thus the azimuthal action is is

Jφ =
√

2mE

2π
∫

0

dφ
√

r2 + ṙ2

√

1−
[

κ(φ)

K

]2/3

. (3.138)

Here we used the arc length element dl =
√
r2 + ṙ2 dφ in polar coordinates.

For the loop C2, we go from the boundary to the caustic along the ray
segment on SBC , cross to SCB and continue straight on to the boundary point at
φ1. The integral along this segment is just the momentum times the length L of the
straight line between φ1 and φ0. To return to φ0, we cross back to SBC at φ1 and
integrate along the arc, obtaining a contribution analogous to Eq. (3.138). However,
the integration extends from φ1 down to φ0,

√
2mE

φ0
∫

φ1

dφ
√

r2 + ṙ2

√

1−
[

κ(φ)

K

]2/3

. (3.139)

This produces a negative sign after we make φ0 the lower boundary of the integral,
so that the result for the radial action is

Jr =
√

2mE L(K)−
√

2mE

φ1(K)
∫

φ0

dφ
√

r2 + ṙ2

√

1−
[

κ(φ)

K

]2/3

, (3.140)
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where we wrote an explicit dependence of φ1(K) and L(K) on the constant K. The
reason is that K determines sinχ at φ0 through

p(0) =

√

1−
[

κ(0)

K

]2/3

, (3.141)

which in turn fixes the point φ1 at which the ray intersects the boundary, and
consequently its length L.

The semiclassical quantization to be introduced later will rely mainly on Eqs.
(3.138) and (3.140). These are the correct actions in the ellipse. For shapes other
than the ellipse, similar action integrals might be surmised to exist. However, that
would necessarily require integrability of the billiard, i.e. the existence of a quantity
analogous to L12. This leads us to the question of whether or not other integrable
billiards exist.

3.8.4 How exceptional is the ellipse billiard ?

The only smooth and convex deformation of the circle for which the classical dy-
namics still possesses two constants of motion is the ellipse. This is a claim with
far-reaching consequences, as we will see later. In fact, the proof of this statement,
entitled “Smooth convex planar domains for which the billiard ball map is integrable
are ellipses” was given only recently74.

The Hamilton-Jacobi differential equation, Eq. (3.76), for the hard-wall el-
lipse billiard is separable in elliptical cylinder coordinates as we show below; one can
also separate it in the so-called Jacobi variables which are derived from the elliptical
ones70. Recalling that polar coordinates allow to decouple the equations of motion
for any rotationally invariant potential V (r), it is natural to expect that the same
should hold in elliptical coordinates for any V whose equipotential lines are also
coordinate lines.

Surprisingly, however, the Hamilton-Jacobi equation for such a V is not

separable in elliptical coordinates for any potential other than hard walls. The
analogous statement holds for ellipsoidal billiards, too75. To elaborate on this, we
derive the Hamilton-Jacobi equation by starting from the Lagrangian. The elliptical
coordinates are defined through

x = c cosh ρ cosφ, y = c sinh ρ sinφ (3.142)

where c is a positive constant corresponding to half the distance between the foci of
the ellipse. The boundary is assumed for definiteness to be parametrized by ρ = 1.
The Lagrangian in these coordinates is

L =
1

2
mc2

[

(ρ̇2 + φ̇2) (sinh2 ρ+ sin2 φ)
]

− V (ρ, φ), (3.143)

and the resulting Hamiltonian is

H =
1

2mc2 (sinh2 ρ+ sin2 φ)
(p2

ρ + p2
φ) + V (ρ, φ). (3.144)

The Hamilton-Jacoby equation for the characteristic function W (ρ, φ) is

1

2mc2 (sinh2 ρ+ sin2 φ)

[

(

∂W

∂ρ

)2

+

(

∂W

∂φ

)2
]

+ V (ρ, φ) = E. (3.145)
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This could be solved by the separation ansatz

W (ρ, φ) = R(ρ) + F (φ) (3.146)

if one could multiply through by 2mc2 (sinh2 ρ + sin2 φ) and arrive at an equation
where each term contains functions of either ρ or φ separately. However this is not
possible if we assume the equipotential lines to coincide with the curves of ρ = const,
because then we will be left with a cross term sin2 φV (ρ).

The potential V for a hard wall billiard is V = ∞ for ρ > 1 and V = 0
otherwise. The fact that the only nonzero value of V is infinity can be used to
write the potential in a from that makes a separation of variables possible. In close
analogy to70 we define the hard wall as a limit of the smooth potential

V (ρ, φ) =
Vε(ρ)

2mc2 (sinh2 ρ+ sin2 φ)
(3.147)

where Vε(ρ) is any differentiable function of ρ that satisfies the requirements

Vε(ρ) =

{ V0

ε (ρ > 1 + ε)
0 (ρ < 1− ε)

(3.148)

with some positive constant V0 that serves only to guarantee that V blows up when
the limit ε → 0 is taken. At the same time the transition region where the rapid
increase occurs, ]1 − ε, 1 + ε[, shrinks to a point. The resulting potential will thus
be the hard wall, but we must perform the separation of variables at finite ε.

Inserting Eq. (3.148) in Eq. (3.145), we arrive at

(

∂W

∂ρ

)2

+

(

∂W

∂φ

)2

+ Vε(ρ) = 2mc2E (sinh2 ρ+ sin2 φ), (3.149)

which is clearly separable.

We have thus seen that the ellipse with hard walls is indeed a unique point
in a large space of possible shapes and potentials, so that integrability and hence a
rigorous generalization of Eq. (3.136) is not achieved in generic systems of the types
discussed.

3.9 The Poincaré map

The discussion of the ellipse billiard immediately leads to the question of how the
absence of integrability manifests itself and how it can be characterized. In order
to address these issues, we have to introduce one of the principal tools of chaos
theory, namely the Poincaré surface of section. It is used in fields as diverse as fluid
dynamics76 and astronomy38.

Consider again a two-dimensional system with energy conservation, so that
the phase space motion is restricted to a three-dimensional subspace. Irrespective
of whether there is a second constant of motion or not, one therefore can express
one phase space variable as a function of the other three, as was done in Eq. (3.54)
with the function p̃2, which was then converted to a function only of q1 and q2 with
the help of the second conservation law. Since this latter step cannot be taken in
general, we could reduce the number of independent dynamical variables artificially
by considering q2 as a parameter. In particular, we could fix q2 in such a way that
trajectories repeatedly cross the plane q2 = qSOS

2 , and then record the sequence
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of tuples (q1, p1) generated by the trajectory upon successive crossings. We will
also agree to record only those intersections with this Poincaré surface of section

(SOS) for which q2 crosses qSOS
2 in the direction of increasing q2. In this way the

continuous-time dynamics gives rise to a discrete map of the q1−p1 plane onto itself,
the Poincaré map. Given a point (q0

1, p
0
1) on the SOS, the map takes this point as the

starting point of a trajectory and yields by definition the next intersection (q1
1, p

1
1)

of the trajectory with the plane qSOS
2 in the increasing direction.

3.9.1 Area-preservation

An important property of Poincaré sections for Hamiltonian systems is that their
resulting mappings are area-preserving, i.e. a loop on the SOS is mapped in the
next iteration onto a new loop which encloses the same area. This statement is
not obvious, because not all points on such a loop take the same time ∆t to cross
the plane qSOS

2 again. In other words, if we start all trajectories on the initial
loop at t = 0, and wait until one of them crosses the SOS again at time ∆t, then
some other trajectories may already have crossed the SOS while others have yet
to reach it. The new loop in the SOS is therefore not taken at equal time t, and
consequently we cannot immediately use the Poincaré invariant of Eq. (3.11) to show
area preservation in the Poincaré map.

The invariant named after Poincaré,
∮

C pdq, exists for all Hamiltonian sys-
tems, but it is required that the loop C be taken at equal times. For integrable

systems it was shown that such a loop can be deformed on the surface of the phase-
space torus without effect on the integral. There is an even more general invariance
property, the Poincaré-Cartan theorem, which concerns the extended phase space
where time has been added as an extra coordinate, its conjugate momentum being
the energy76. In this space a loop C generates a tube along the time axis, with vary-
ing cross-sectional shape. One can then show that for conservative systems, the loop
in the Poincaré invariant can be replaced by another one that is not taken at equal
time, and the result is the same for all such loops as long as they encircle the same
tube of trajectories. This is sufficient to show area-preservation in the context of
the SOS. Instead of using this theorem, we give a direct proof for the case of N = 2
degrees of freedom. The key point is to consider the parameter q2 as a new “time”
variable. This can be done for each interval in which q2 is a monotonic function of
the real time t, so that one can invert q2(t) and substitute this into q1, p1. Then
one has

dq1
dq2

=
q̇1
q̇2

=
∂H/∂p1

∂H/∂p2
=

∂

∂p1
(−p̃2), (3.150)

dp1

dq2
=

ṗ1

q̇2
=
−∂H/∂q1
∂H/∂p2

= − ∂

∂q1
(−p̃2), (3.151)

where we first used Hamilton’s equations for q̇i, ṗ1, and then applied Eqs. (3.56)
and (3.57). This result has the interpretation that −p̃2(q1, p1; q2) acts as a new
Hamiltonian governing the dynamics in the reduced phase space q1, p1, with q2 as
the new time. Note that the new Hamiltonian is explicitly time-dependent, unlike
the original H. Even for time-dependent Hamiltonians, however, the first Poincaré
invariant exists, as we showed. Therefore, a loop in the SOS at qSOS

2 encloses the
same area for any q2, and in particular will have the same area whenever q2 returns
to the SOS. Therefore, the Poincaré map is area-preserving.

For billiard maps, area-preservation can also be proved directly, without
recourse to the Hamiltonian65. The idea is to derive a Legendre transformation of
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the generating function that is needed in theorem 3.3.1.1. It is given simply by the
action of the straight line trajectories between three bounces, which in turn is just
the path length.

In the following sections, the classical dynamics of billiard systems will be
discussed mainly from the point of view of the Poincaré map, and its area-preserving
property will in fact emerge as an important ingredient in the transistion from
integrable to chaotic dynamics.
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Chapter 4

Billiard maps and the transition
to chaos

In this chapter, we begin the discussion of billiard systems, and explore how a shape
deformation introduces chaotic trajectories into the dynamics. A self-contained
treatment of the classical mechanics in various billiard systems, including the circle
and the ellipse, has been given in Ref.72.

4.1 Birkhoff coordinates

To cast the billiard motion into the form of a map, we employ the so-called Birkhoff
coordinates77: For each collision of a straight-line trajectory with the hard wall,
one records the arc length s along the boundary at which the reflection occurs, and
the value of the tangential momentum pt of the incident particle. This is done for
a number N of consecutive reflections, and each pair of these values is labeled in
ascending order by an integer n. The billiard mappingM brings us from one member
of such a sequence to the next,

(sn+1, pt,n+1) = M(sn, pt,n). (4.1)

This notation means that M is a function of sn and pt,n. To show that M is area-
preserving, we first have to convince ourselves that these variables form a conjugate
pair. If the billiard shape is given in cartesian coordinates as

rB(s) ≡
(

xB(s)
yB(s)

)

, (4.2)

then any point r can be uniquely specified by two coordinates s and a that are
chosen according to the equation

r(s, a) =

(

x(s, a)
y(s, a)

)

= a rB(s). (4.3)

In other words, a is a factor by which one scales the billiard shape such that the
boundary goes through r. Then the kinetic energy of the particle is

T =
1

2
m

{

(

∂x

∂s
ṡ+

∂x

∂a
ȧ

)2

+

(

∂y

∂s
ṡ+

∂y

∂a
ȧ

)2
}

, (4.4)
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and the momentum conjugate to s is

ps =
∂T

∂ṡ
= m ṙ · ∂

∂s
r. (4.5)

If this is evaluated at the actual billiard wall (a = 1), this becomes

ps = m ṙ · ∂
∂s

rB = m ṙ · t = pt, (4.6)

because t is the unit tangent at the boundary. Therefore, the map on the plane s, pt

will be area-preserving, according to the result of the previous section, and we will
refer to it as the surface of section of the billiard.

As is commonly done, we shall adopt a slight modification of this coordinate
system whenever a SOS actually has to be displayed. Without losing any informa-
tion, one can replace the arc length s by the conventional polar angle φ, as long as
the dependence s(φ) is monotonic. This in turn is the case as long as the billiard is
a star-shaped domain 1. Since φ and pt are not canonically conjugate except in the
circle, the resulting map is not in general area-preserving, and one should revert to
s, pt if this property is required.

Finally, it is convenient to scale out the energy dependence of pt by using
instead the variable

sinχ = pt/
√

2mE. (4.7)

This is simply the sine of the angle of incidence with respect to the normal. The
pair (s, sinχ) still generates an area-preserving map because we have only scaled
one variable by a constant. For the Jacobian this just means that one row gets
multiplied by

√
2mE and one column divided by

√
2mE, leaving the determinant

equal to one.

4.2 SOS of the circle and the ellipse

The simplest example of a billiard SOS is the circle, whose Poincaré map we can
write down easily:

sinχn+1 = sinχn (4.8)

sn+1 = sn + 2 arccos(sinχ) modulo 2π, (4.9)

assuming the circle to be of unit radius (i.e. an area of π), and taking only coun-
terclockwise trajectories into account. The distinction to clockwise orbits lies in the
sign of sinχ, which is positive for counterclockwise motion and negative otherwise.
In the relevant interval sinχ = 0 . . . 1, the arccos function is then monotonically de-
creasing with sinχ. In particular, the line in the plane s, sinχ defined by sinχ = 1
is a stationary curve of the billiard map, which means sn+1 = sn for any point on it.
We can convince ourselves that this type of stationary curve always exists for convex
billiards of any deformation. The reason is that we must end up at sn+1 = sn if we
try to launch a ray tangentially, because for a convex shape the tangent is always
outside the domain except at the single point sn. This is not the case in billiards
with a non-convex boundary.

The SOS for the circle is shown in Fig. 4.1, and we observe both periodic
orbits with rational winding numbers, cf. Eq. (3.107), and quasi-periodic orbits

1I.e., there exists an origin from which all radial straight lines intersect the bound-
ary once and only once.
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Figure 4.1: Momentum conservation in the circle leads to the invariance of sinχ, so that trajectories
remain on a horizontal line in the SOS. Squares indicate a four-bounce orbit that inscribes a square
in the circle, similarly triangles indicate a three-bounce orbit.

Figure 4.2: Surface of section for the ellipse at eccentricity e = 0.4.

which create horizontal lines because collisions can occur arbitrarily close to any
point along the perimeter.

For the ellipse, the mapping equations can be derived explicitly, but they
are of a more complicated form because the determination of the bounce position
from the previous one requires the solution of a quadratic equation. However, we
can immediately plot the SOS even without writing down the map, thanks to the
integrability of the billiard and the relation for the invariant curves given in Eq.
(3.136), which we rewrite here as

sinχ =
√

1 + (S2 − 1)κ2/3. (4.10)

The constants have been lumped into S, which now plays the role of a “typ-
ical” sinχ around which the invariant curve oscillates due to the oscillation in κ
around κ = 1 (assuming again that the billiard area is π). Note that small values
of S can lead to imaginary sinχ near the points of highest curvature. The intervals
of arc length s where this occurs are inaccessible to the orbit parametrized by the
given S. Orbits for which this happens are of the bouncing-ball type described ear-
lier in section 3.8.1. The resulting SOS shown in Fig. 4.2 shows two islands arising
from the bouncing-ball trajectories. At their center lies the diametral orbit which
reflects back onto itself between the two points of lowest curvature. This should be
compared with the circle, where such a diametral orbit comes with an infinite family
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of twins only differing by arbitrary rotations. The elliptical deformation destroys
this isotropy.

In addition to the short diametral orbit at the center of the islands, the
ellipse displays a long diametral orbit bouncing back and forth between the points
of highest curvature. It is clear from the SOS that this orbit is of a different nature
because it is not surrounded by an island. Trajectories starting in its neighborhood
do not oscillate around this orbit as is the case for the bouncing-ball motion. Instead,
perturbations of the long diametral orbit perform either a bouncing-ball motion (e.g.,
if one starts with with sinχ = 0 and φ = ε 6= 0), or whispering-gallery motion (e.g.
starting at φ = 0 and sinχ = ε 6= 0). As a consequence, the invariant curves in
the neighborhood of the long diametral orbit have the appearance of hyperbolae.
The short diametral orbit, on the other hand, is surrounded by curves that are
approximately ellipses. This different behavior can be quantified by examining the
map M in the neighborhood of these two orbits.

4.3 Fixed points and tangent map

The hyperbolic behavior occurs around the points (φ, sinχ) = (0, 0) and (π, 0),
whereas the ellipses surround the points (±π/2, 0). We have

M(π/2, 0) = (−π/2, 0), M(−π/2, 0) = (π/2, 0), (4.11)

and
M(0, 0) = (π, 0), M(π, 0) = (0, 0). (4.12)

Therefore, each of these points is a fixed point of the squared map M 2. More gener-
ally, any trajectory in the billiard that closes on itself after N reflections generates
in the SOS a number N of fixed points of the iterated map MN . Now one can per-
form a Taylor expansion of the vector-valued function MN to linear order around
one of these fixed points, say (s0, p0), where we use the abbreviation p for sinχ and
reverted to the arc length as our position variable:

MN (s, p) ≈ MN (s0, p0) +D[MN ] ·
(

s− s0
p− p0

)

(4.13)

=

(

s0
p0

)

+D[MN ] ·
(

s− s0
p− p0

)

. (4.14)

Here, D[MN ] is 2 × 2 the matrix of first derivatives of MN . Since M is area-
preserving, so is MN , and consequently the matrix D[MN ] has unit determinant. It
is called the linearized map or tangent map at the fixed point (s0, po).

If we continue to iterate the map starting at the fixed point, then we will
return to it every N steps, i.e. (s0, p0) is also a fixed point of M νN for any integer
ν. Thus we can expand such a higher iterate in the same way as above to get in the
neighborhood of the fixed point

MνN (s, p) ≈
(

s0
p0

)

+
(

D[MN ]
)ν
·
(

s− s0
p− p0

)

. (4.15)

To appreciate the effect of repeated application of the tangent map, we will need its
eigenvalues λ1,2 and eigenvectors d1,2, satisfying

D[MN ]di = λi di. (4.16)
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If we decompose the initial deviation from the fixed point as
(

s− s0
p− p0

)

= A1 d1 +A2 d2, (4.17)

then the iterated deviation becomes

(

D[MN ]
)ν
·
(

s− s0
p− p0

)

= λν
1 A1 d1 + λν

2 A2 d2. (4.18)

The eigenvalues have to satisfy
λ1 = 1/λ2 (4.19)

due to the unit determinant of the tangent map.
Now one can see how the elliptic or hyperbolic shape of the invariant curves

in the vicinity of (s0, p0) comes about: In the expression

λν
1 A1 d1 + λ−ν

1 A2 d2, (4.20)

we could formally consider x ≡ λν
1 as our variable, which would then lead to a

hyperbola

xA1 d1 +
1

x
A2 d2 (4.21)

provided that x is indeed real. This is in fact one of the two possibilities that can
arise in the general case, as we show presently. Of course, x is not a continuous
variable, but each ν puts a discrete point onto one and the same hyperbola, and we
can cover both of its branches by admitting negative ν, corresponding to backward
iteration of the tangent map.

Let t be the trace of D[MN ], then a second equation for the eigenvalues in
addition to Eq. (4.19) is

λ1 + λ2 = t, (4.22)

which leads to a quadratic equation with the solution

λ1,2 =
1

2
t± 1

2

√

t2 − 4. (4.23)

Now we can distinguish three cases.

a) t < 2

which leads to real eigenvalues and consequently hyperbolic behavior near the fixed
point as indicated above. It is also possible that

b) t = 2

in which case λ1 = λ2. This non-generic special case is not of further interest at the
moment. Finally, one can have

c) t > 2

which leads to complex eigenvalues of the form

λ1,2 =
1

2
t± i

2

√

4− t2 (4.24)

whose absolute value is clearly unity, so they can be written with a phase factor β
as

λ1,2 = e±iβ . (4.25)
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Since Eq. (4.17) is real and we apply to it the real matrix
(

D[MN ]
)ν

in Eq. (4.18),

we know that the imaginary part of λν
1 A1 d1 must be canceled by the imaginary

part of λ−ν
1 A2 d2 in Eq. (4.20). Here, we can again substitute

x = λν
1 = eiνβ, (4.26)

and take the real part, which now yields the equation of an ellipse if ν is varied.

4.4 Symmetries of the billiard map

Time reversal invariance manifests itself in a reflection symmetry of the SOS with
respect to the horizontal axis, sinχ = 0. If (φ, sinχ) is a point in the SOS, then by
definition there exists a trajectory which hits the boundary at φ with the given sinχ.
If we reverse time for this motion, then sinχ changes sign, and the resulting trajec-
tory is also a solution of the equation of motion. Therefore, the point (φ, − sinχ) is
also a point in the SOS.

Spatial symmetries lead to further symmetries in the SOS. If the billiard
boundary has reflection symmetry about, say, the x-axis, then the mirror image of
any trajectory under this reflection is also a valid trajectory. A point (φ, sinχ) is
transformed into the point (−φ, − sinχ) by reflection at the x-axis. Combined with
time reversal invariance, this also produces (−φ, sinχ), so that the SOS will have
reflection symmetry around the line φ = 0. If the billiard is, in addition, unchanged
by reflections at the y-axis, then each point (φ, sinχ) in the SOS is accompanied by
the points (π−φ, − sinχ) and (by time reversal) (π−φ, sinχ). Therefore, the SOS
has reflection symmetry about the lines φ = ±π/2 (if we wrap all angles back into
the interval [−π, π]).

Symmetries can be very helpful in finding periodic orbits of a map. It has
been shown78 that any periodic orbit of a reversible twist map is itself symmetric,
meaning that there is a reflection axis that transforms the orbit into its time-reversed
counterpart. However, there can still be periodic orbits with fewer symmetries than
the billiard. For example, in the case of both x- and y- reflection symmetry, it
is impossible for a single periodic orbit with odd-denominator winding number to
satisfy all symmetries of the SOS. Such an orbit can still exist, but it must come
with a twin of the same winding number that is obtained by reflection.

4.5 Poincaré-Birkhoff fixed point theorem

In this section it will be shown that fixed points of the hyperbolic type arise by
necessity when the shape of a billiard is distorted. The billiard mapping for the
circle,

p̄ = p, (4.27)

s̄ = s+ 2 arccos p, (4.28)

has the property that s̄− s is a monotonic function of p, except at the point p = 1.
Leaving out this pathological point (see below), this is the definition a twist map.

We assume again that only positive p need to be considered. This twist
condition has a strong effect on orbits with rational winding number when a pertur-
bation is added to the above map, in the form

p̄ = p+ ε F (s, p), (4.29)

s̄ = s+ 2 arccos p+ εG(s, p), (4.30)
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where the functions F and G are chosen so as to maintain area-conservation. This
is the kind of map we expect to obtain from a small deformation away from cir-
cular shape. An orbit with rational winding number w = n/q corresponds, in the
unperturbed case, to a set of q points in the SOS at

p = sinχ = cos πw. (4.31)

Each of these points is a fixed point of the map M q, and there is an infinite family
of such q-member sets which fills out the line p = cos πw. The whole line is therefore
stationary under application of M q. If we apply M q to points on a line at p+ slightly
above p, they will get mapped to smaller values of s due to the twist condition.
Likewise, points on a line at p− < p get shifted toward higher s under M q. Now we
switch on the small perturbation of the circle. For ε small enough, the horizontal
lines at p+ and p− continue to be shifted by M q in the same direction as in the
circle, even though the amount of the shift may not be the same everywhere along
the respective line. Also, the line at p is in general no longer stationary for ε 6= 0.
In fact, there will generally be no stationary line left near p. The question that the
Poincaré-Birkhoff theorem answers is what remains of the stationary curve when
ε 6= 0. Even if we cannot find a stationary line, we can identify a line that is
stationary at least in the s-direction. By this we mean a set of points (s, p) which
have only their p-component altered by M q, with s being unchanged. We can find
this line between the upper and lower limits p±. For every s, one varies p in the
interval [p−, p+] until the point is found for which s is unchanged under M q. This
point exists in the said interval because the shift in s under M q goes from positive
to negative between p− and p+. This yields the curve p1(s) for which the new s
equals the old.

For some points along the curve p1(s), it may happen that not only s but
also p remains the same under M q. These will be the desired fixed points. To
identify them, we let the map M q act on p1(s), thus obtaining a new curve p2(s).
The intersections of these two curves are exactly the points where neither s nor p
is changed. However, it is not clear that p1(s) and p2(s) will intersect at all, i.e.
there might be no fixed points left in the perturbed map. Here one has to invoke the
area-preserving property of M q. The line p = 1 is a stationary curve independently
of ε, as long as the billiard remains convex. Consider the area of the SOS enclosed
between the lines p = 1 and p1(s). Application of M q to this domain changes only
one of the boundaries, namely the lower one from p1(s) to p2(s). Since the area
enclosed between p = 1 and p2(s) must be the same as before, p2(s) cannot lie
entirely above or below p1(s). The two curves must necessarily intersect, and it
follows that there exist fixed points of M q. This construction also implies that fixed
points come in pairs, because the number of intersections between p1(s) and p2(s)
is even, due to the periodicity in s. Moreover, there will be q pairs of fixed points
of M q. This follows by taking one arbitrary fixed point (s0, p0) and subjecting it to
M . The image point is also a fixed point of M q because

M q(M(s0, p0)) = M(M q(s0, p0)) = M(s0, p0). (4.32)

The same holds for M r(s0, p0) with r = 2 . . . q − 1, and the resulting q fixed
points are all distinct provided that q is the smallest integer for which M q(s0, p0) =
(s0, p0). The arrangement of fixed points resulting from the above argument is shown
schematically in Fig. 4.3. Arrows indicate the direction in which points of the SOS
are mapped by MN , as explained in the caption. From this it can be seen that
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Figure 4.3: Origin of hyperbolic and elliptic points in the Poincaré-Birkhoff fixed point theorem.
The solid black curve is p1(s), the blue curve is p2(s).

elliptic fixed points must always be separated from each other by a hyperbolic fixed
point. The existence of hyperbolic fixed points can be viewed as the origin of chaotic
dynamics in the perturbed map.

4.6 Stable and unstable manifolds and their intersections

Hyperbolic fixed points are characterized by two real eigenvalues of the tangent map
that are reciprocals of each other. The corresponding eigenvectors define directions
in the SOS along which points are mapped either away from or toward the fixed
point under the action of D[M q]. For example, any point on the line given by d1

through the fixed point (s0, p0) approaches this point if λ1 < 1. Since consequently
λ2 = 1/λ1 > 1, the direction d2 leads away from (s0, p0). We call d1 the stable and
d2 the unstable direction. In the stable direction, repeated application of D[M q] will
bring us progressively closer to the fixed point, never away from it. The opposite is
true for the unstable direction, at least until the validity of the tangent map breaks
down.

These considerations are based on the linear approximation to the true map
M q, so the stable and unstable directions are only the linear approximations to
the actual stable and unstable manifolds Ws, Wu. These are curves in the SOS to
which d1,2 are tangent at the fixed point. Along Ws the map M q brings us closer to
the fixed point after many iterations, and along Wu we can apply the inverse map
M−q to achieve the same result of approaching the fixed point closer and closer.
These manifolds are uniquely determined by the tangent directions d1,2 due to the
requirement that a point (s, p) on, say, Ws not only be mapped toward the fixed
point under sufficiently many applications of M q, but that (s, p) itself be the image
of some other point on Ws. In other words, Ws,u are invariant sets and are called the
eigencurves of M q. One consequence of this definition is that neither the stable nor
the unstable manifold can intersect itself. For Ws, such an intersection would have
to be the image of two distinct points on the eigencurve under M q, so that M−q

could not be single-valued. But we know that the map must be invertible because
area-preservation implies

det[D[M q]] = 1 (4.33)

on the whole SOS (here D need not be evaluated at the fixed points as it was
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Figure 4.4: Unstable manifolds emanating from the hyperbolic fixed points Q1 and Q2 are indicated
by an outward arrow, similarly an inward pointing arrow signifies a stable manifold. Only one of
the tangles arising from the intersections of Wu and Ws is sketched. A stable island surrounds the
elliptic fixed point.

so far).Therefore, the self-intersection can be ruled out. The picture becomes much
more complicated if we consider intersections between Wu andWs. The phenomenon
to be described was already noted by Poincaré79. A review of this subject was
provided by Moser80, and the qualitative discussion we rely on here is a variation
of the treatment in various textbooks76,81,82. Since any point of intersection must
remain on both Wu and Ws after any number of iterations of M q, there will in fact
be an infinite number of intersections if there is one to begin with, which we label
by P0. This is true whether Wu and Ws belong to the same hyperbolic fixed point
or to different ones. The former type of intersections are called homoclinic, and the
latter heteroclinic. In Fig. 4.4 we show the resulting complicated structure called a
heteroclinic tangle. The infinite number of intersections between Wu and Ws occurs
in a finite domain but with loops of ever-increasing length as the fixed point is
approached. This follows again from area-preservation: let P1 be an intersection
adjacent to P0, forming with it a loop of area A01. Then the loop formed between
the image points M νq(P0,1) (where ν counts the iterations) must have the same
area. But since the image points accumulate to one of the fixed points, this area
becomes stretched and folded as we follow it to higher iterates of the map. The
stretching loops described so far are, according to the figure, formed by an unstable
manifold of the fixed point to the left, Q1, and accumulate at the other fixed point,
Q2. Likewise, the stable manifold of Q1 also accumulates at Q2, accompanied by
similar stretching and folding.

An actual example of a heteroclinic tangle for a billiard system will be shown
in Fig. 6.6 to illustrate its efect on phase-space transport.

4.7 Chaotic motion

The proof that this stretching and folding leads to chaotic motion near the hyperbolic
fixed points was given by Smale83 using the fact that the behavior of the interlocking
eigencurves near these points can be described by the horseshoe map. We shall
simply make the following qualitative remarks.

The complicated tapestry of interweaving stable and unstable manifolds near
a hyperbolic fixed point forms an invariant set of M q, due to the definition of Wu
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and Ws. Consider two points on this invariant set near Q2 separated from each other
by some distance ε in the SOS. It is possible that the points are on the same or on
different lobes of the tangle, either both on the same eigencurve, or one on Wu (of
Q1) and the other on Ws. This will determine the direction in which the two points
are mapped, and very different outcomes are possible even at small separation ε.
The distance by which the mapping moves the points can also vary widely, due to
the wild oscillations of the eigencurves with the resulting stretching of the loops.
As a result, one finds that the distance between the two neighboring points grows
exponentially up to some saturation distance determined by the size of the chaotic
portion of the SOS.

The exponential growth in separation δ is characterized by the largest Lya-

punov exponent λ according to
δ ≈ δ0 e

λν . (4.34)

This law holds before the saturation time is reached, and one can often assume
that this time is infinite, but it is also possible to extract λ if this is not a justified
approximation81. On the other hand, one also has to wait for a certain number of
iterations of the map to observe the exponential separation. Initially, the motion of
the two trajectories may still be similar, if for example they are not launched in the
midst of the tangle near a strongly hyperbolic point.

This behavior with a positive Lyapunov exponent in a finite neighborhood of
the hyperbolic fixed point can serve as our definition of chaos. Because the Lyapunov
exponent does not necessarily describe the initial evolution of neighboring points,
chaos is a long-time property of a dynamical system. In particular, one finds that a
trajectory launched in the chaotic domain comes arbitrarily close to any dynamically
accessible point in that domain after a long enough time.

4.8 The KAM theorem

Chaos does not flood the whole SOS when integrability is destroyed by a pertur-
bation. We already saw that hyperbolic fixed points alternate with elliptic ones,
around which the trajectories rotate on approximate ellipses. These regions around
elliptic fixed points form islands of stability, surrounded by the chaotic domains
created from heteroclinic tangles of the neighboring hyperbolic fixed points. These
regions connecting hyperbolic fixed points where the motion first starts to become
stochastic are called separatrices. The name can be understood from the ellipse SOS
where the invariant curves through the hyperbolic fixed points separate the rotating
(whispering gallery) from the oscillatory (bouncing ball) motion. In nonintegrable
systems, these invariant curves are the first ones to be destroyed.

From the discussion of the fixed-point theorem, it should be recalled that
families of hyperbolic points were shown to emerge from stationary curves of the
unperturbed map with rational winding number w. The proof fails for irrational
w, so we should ask what the fate of the corresponding invariant curves is. Recall
that irrational winding numbers can be defined even in the absence of action-angle
variables using Eq. (3.109). The theorem that answers this question was initiated
by Kolmogorov84 for Hamiltonian flows and completed in that context by Arnol’d85.
For the case of interest here, namely area-preserving twist maps, the corresponding
theorem was proved by Moser86. The improvement over Arnol’d’s work is that Moser
does not need to assume the existence of an infinite number of derivatives of the
map, whereas Arnol’d does assume an analytic Hamiltonian. The main result of
the KAM theory is that invariant curves with irrational winding number do indeed
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persist under finite perturbations of the integrable system, as expected from the
non-applicability of the fixed-point argument.

The proof (reviewed in different amounts of detail in Refs.67,81,85,61) is based
on a perturbation theory in which one changes the initial conditions for the orbits
with the small parameter ε (characterizing the nonlinearity of the map) in such a way
that the motion maintains a given irrational winding number. It is possible to carry
out the approximation in powers of ε to an infinite number of terms, and to show
the rapid convergence of the resulting series. The difficulties arising in conventional
classical perturbation theory due to small denominators associated with rational
winding numbers are avoided by the requirement that the perturbed winding number
remain equal to the given irrational value. The change in initial conditions necessary
for this is implicit in a set of canonical transformations from the original action-angle
variables with conserved momenta to a new set of variables whose momenta are
again conserved and in fact equal to zero in the presence of the perturbation. The
corrections to the approximate Hamilton equations are cubic in the new momenta,
thus insuring the consistency of the solution with momenta equal to zero.

4.9 Resonance overlap and global chaos

The KAM theorem and the Poincaré-Birkhoff fixed point theorem seem to conflict
with each other because the rationals are dense in the real numbers, so that each
invariant curve with irrational winding number w has in its immediate neighborhood
curves with rational w. The former are predicted to remain intact while the latter are
predicted to break up. The resolution comes from the observation that the resonance
zones associated with large-denominator rational w = m/n are of smaller extent in
the momentum direction than low-order (i.e. small n) resonances. Therefore, if we
choose a sequence of rationals converging to the irrational winding number w∞, it
could happen that the size of successive resonance zones in the momentum direction
decreases faster than the distance between the resonant momenta themselves. If
this occurs, the invariant curve at w∞ does not overlap with the resonance zones of
any of its rational approximates, and thus can be expected to remain intact. The
reason this construction is possible is the fact that the rationals are of measure zero
on the w-axis. This criterion of resonance overlap was first proposed by Chirikov in
the context of escape of charged particles from a magnetic bottle87.

4.9.1 The most irrational numbers

As our sequence of rational approximates, we should choose the wi = mi/ni such
that they are in some sense the best possible rational approximations to w∞. By
this we mean that mi/ni should come the closest to w∞ compared to all rationals
with the same or smaller denominator. This is satisfied88 if we choose the sequence
of continued fractions obtained by truncating the continued fraction expansion of
w∞,

w∞ = [a0, a1, a2, . . .] ≡
(

a0 +
(

a1 + (a2 + . . .)−1
)−1

)−1

. (4.35)

The infinite number of terms in this expression is truncated to give

wi ≡ [a0, a1, . . . , ai]. (4.36)

The irrational w∞ hardest to approximate by rationals in this way are called “noble”
winding numbers. They are characterized by the fact that their continued fraction
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expansions have an infinite tail consisting only of 1’s. The most irrational number
in this sense is the golden mean,89,90

γ =
1 +

√
5

2
= [1, 1, 1, . . .]. (4.37)

As the perturbation of the dynamical system increases, these noble invariant curves
are the last ones to be destroyed. The golden mean itself occurs as the most noble
winding number in the standard map to be discussed presently, but it does not occur
as a winding number in billiards, because there |w| ≤ 1. However, 1/γ is also noble.

The picture of the transition to chaos that thus emerges is the following: The
perturbation first causes invariant curves with rational winding number to disinte-
grate into chains of elliptic and hyperbolic fixed points, the latter being connected
by stochastic layers along separatrices which enclose the islands around the ellip-
tic fixed points. In between such so-called resonance zones, there remain irrational
winding number invariant curves corresponding to rotational motion in the billiard.
These remaining invariant curves disappear at higher values of the perturbation.
When this happens, one speaks of a transition to global stochasticity.

To estimate how large the perturbation has to be in order to destroy the last
KAM tori, one can again use the Chirikov overlap criterion, applied to the primary
resonances, i.e. the ones with the largest separatrix regions. Using a simplified
Hamiltonian that produces only one resonance zone (similar to the ellipse or the
nonlinear 1D pendulum), one can calculate the value of the nonlinearity at which
their separatrices begin to overlap, and that will be the desired critical perturbation.
In fact, since the separatrix regions themselves contain regular islands surrounded
by their own separatrix regions etc., one can improve the above estimate by taking
this self-similar structure into account, using renormalization group arguments81.

4.9.2 The Chirikov standard map

The paradigm system in the study of area-preserving maps is the Chirikov standard
map91,which can be derived as the (real-time) stroboscopic phase space portrait
of a rigid rotor (one degree of freedom) subjected to time-periodic delta-function
kicks81. The standard map describes the generic KAM scenario in the separatrix
region between a family of hyperbolic fixed points. It can be written as

p̄ = p+K sinφ (4.38)

φ̄ = φ+ p̄.

Here, p and φ have the physical meaning of angular momentum and azimuthal
angle, respectively, and the overbar denotes the same quantities after one period of
the driving force. In this map, it has been found81 that the last invariant curve to
be destroyed as the perturbation K increases from K = 0, is the “inverse-golden-
mean” curve with winding number 1/γ. The critical value of the chaos parameter at
which this occurs is Kc = 0.9716354 according to numerical studies. From Chirikov’s
overlap criterion, one overestimates this value to be K = π/4 ≈ 2.47. This is due
to the fact that the separatrices of the primary resonances themselves have a finite
width filled with stochastic motion and other island chains, as mentioned above.
The estimate for Kc can be improved taking this width into account. In practice,
whenever one can approximate a nonlinear map by the form of the standard map in
some region of phase space94, a reasonable estimate for the critical chaos parameter
is simply

K ≈ 1. (4.39)
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Figure 4.5: Poincaré surfaces of section for quadrupolar deformations of the circle (cf. Fig. 1.2)
with fractional deformations ε = 0.065 (a) and ε = 0.1 (b). In the schematic below (a), trajectories
close to the horizontal and vertical diametric orbits are plotted (each below its bounce position in
the SOS).

It must be kept in mind that Chirikov’s overlap criterion is not a rigorous mathe-
matical result, so that it should be viewed as a rule of thumb that works especially
well for mappings that are very similar to the standard map, for which this criterium
has been checked numerically. As regards rigorous results, it is fair to say that there
are none that can be applied to rigorously to predict the onset of global chaos, i.e.
the breaking of the last KAM curve, in general area-preserving maps.

4.10 Lazutkin’s theorem

The description given so far still does not capture the global transition to chaos
correctly in the case of convex billiards. Locally, i.e. in a certain range of winding
numbers, the KAM scenario takes place as described. This is illustrated in Fig.
4.5. However, this SOS also shows that there remain unbroken invariant curves
near sinχ = 1 even at a deformation that has already destroyed all of the “most
irrational” invariant curves: For the undeformed billiard map, we know from Eq.
(3.107) that the momentum is p = cos πw, and that 0 ≤ w ≤ 1. This means that w =
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γ does not occur, but other noble w like 1/γ do exist. In fact, 1/γ = [0, 1, 1, 1, . . .],
so this is the most irrational winding number possible in the billiard, corresponding
to sinχ ≈ ±0.36, using time reversal, Eq. (3.108). It is a peculiarity of billiards
that 1/γ2 = [0, 2, 1, 1, 1, . . .] is just the time-reversed counterpart of the torus with
1/γ. This follows from 1/γ2 = 1 − 1/γ and the fact that w = 1 is the stationary
curve. The figure shows stochastic motion in the region of the inverse golden mean
curve, whereas the extreme whispering gallery orbits remain on invariant curves.
But the latter correspond to winding numbers that tend to zero because the number
of reflections per round trip becomes very large. In fact, w = 0 is a stationary curve
of the convex billiard, even though it is clearly rational.

The existence of infinite families of invariant curves for any convex plane
billiard with a sufficiently smooth boundary was proved by Lazutkin29. The proof is
actually concerned with the existence of caustics, and it is shown that the union of
all such caustics forms a set of positive Lebesgue measure in the billiard plane. The
existence of a caustic, however, is equivalent to the existence of an invariant curve
in the SOS. This follows from the fact that a caustic per definition is a curve to
which a given trajectory is tangent between any two consecutive reflections. Given
a position s at which the reflection occurs and the curve C defining the caustic,
there is only one counterclockwise (and one clockwise) straight line trajectory that
we can draw tangent to C through the boundary point s. This also fixes sinχ, which
is hence a unique function of s. If the trajectory does not close on itself, it will come
arbitrarily close to any s, and thus trace out the curve sinχ(s) in the SOS. This is
the invariant curve; it is smooth because the caustic and boundary are smooth.

A chaotic trajectory does not form a caustic, because it fills a positive area in
the SOS. The latter implies that a reflection at s can eventually (after some number
of intermediate bounces) be followed by another reflection arbitrarily close to s, but
both events may have values of sinχ that differ by a finite amount. If the two rays
were both tangent to a caustic, they would have to intersect, and this intersection
would have to approach the caustic since the bounce positions approach each other.
But this is possible with a finite difference in χ only if the intersection comes very
close to the boundary at the point s. Since this argument applies to a finite interval
of s, we conclude that the caustic is identical to the boundary in this interval. But
this is a contradiction, because only reflections with sinχ = 1 are consistent with
this condition, although we started with two different values of sinχ near s. Hence
the chaotic orbit does not form a caustic.

We still have to understand why the supposedly most noble winding numbers
do not give rise to the most robust invariant curves in the billiard system. It has
been noticed previously92 that the last invariant curves of a Hamiltonian system are
not always associated with the golden mean, and the actual most stable winding
number was found to be determined by the two primary (largest) resonance zones
that bracket the KAM torus. In the billiard system, there is one additional reason for
deviations from the typical KAM behavior, namely the fact that the twist condition
is violated at sinχ = 1. This condition is one of the requirements for the KAM
theorem, and is called “nondegeneracy condition” in that context. Our approach
to an understanding of Lazutkin’s theorem does not follow the literature. Instead,
we rely on the effective map to be discussed shortly, and find that the nonlinearity
of the billiard map is itself a local quantity, dependent on sinχ. That is to say,
regions of the SOS near sinχ = 0 are more strongly perturbed than regions near
sinχ ≈ 1. Hence, the whispering gallery orbits move on invariant curves because
they are locally (in the sinχ-direction) described by a map with small nonlinearity.
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At the same deformation, the nonlinearity felt at sinχ = 0.36 is already so large
that even the most noble invariant curve has disappeared.

The effective map approach cannot make any statements about non-convex
billiards, so we briefly mention one of the few general theorems that are known for
this case. The theorem proved by Mather93 states that for a smooth billiard which
has at least one point of vanishing curvature (but is still C 2), there are trajectories
that reflect from the boundary both arbitrarily close to sinχ = 1 and also to sinχ =
−1. Such a trajectory must reverse its sense of rotation between two such events,
and that implies that there are no more caustics (or invariant curves) associated
with rotation around the whole billiard boundary. To prove this implication we
have to know that invariant curves are barriers in phase space, in the sense that a
trajectory starting above such a curve which spans the whole SOS, can never appear
below it. Given this, Mather’s theorem immediately implies that there can be no
invariant curves between sinχ = 1 and sinχ = −1. We will return to the notion of
KAM curves as barriers in the SOS when we take up the discussion of phase space
transport.
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Chapter 5

Effective map for planar convex
billiards

As long as the billiard is convex, there will be whispering gallery orbits near its
boundary, as we saw in the discussion of Lazutkin’s theorem. This suggests that
approximate results for the billiard motion can be derived, using as a small parameter
the proximity to the boundary. This corresponds to an expansion of the equations
of motion in the limit sinχ → 1, and it should be contrasted with a perturbation
theory in which the degree of deformation is the small parameter: the whispering
gallery limit can be taken for any convex billiard, independently of the deformation.

This will yield an approximate description of the billiard mapping from which
we can draw insights into the way Lazutkin’s caustics break up. We shall derive an
“effective map” for convex billiards, which exhibits a kick strength that depends
non-analytically on sinχ. The same sinχ dependence also appears in the adiabatic
invariant that was derived by Robnik and Berry59, and we will show the close con-
nection between both problems.

5.1 Non-analyticity of the kick strength

A non-analyticity of the mapping equations in sinχ should be expected for sinχ→ 1
because sinχ cannot be greater than one so that we are unable to expand around
this value. If we expand instead in cosχ around 0, then there is the possibility that
the non-analyticity is removed, in the same way that one can expand for example
the function f(s) =

√
1− s2 in powers of x :=

√
1− s2 around x = 0, but not in

s around s = 1. In this example, the function f(s) is clearly nonnegative, whereas
the substitution of variables yields f(x) = x which can be negative. This is only an
apparent contradiction, of course, because the substitution implies that x is never
negative for any s.

In the case of the billiard map, we will similarly perform an expansion in

cosχ =
√

1− sin2 χ, and obtain the final mapping function by re-substituting sinχ.
Our hypothesis is that the only non-analyticity of the problem is contained in this
substitution, so that expansions in cosχ can in fact be performed.

Hence we consider the mapping equation

cos χ̄ = F (s̄, cosχ). (5.1)

Here s̄ and cos χ̄ are the results of applying the map once to the point (s, cosχ).
It will become clear below that we should write s̄ as the argument of the function
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F because we intend to construct a generating function. For now it shall suffice to
remark that the mapping equations can in principle always be inverted to obtain
this form. We assume that F can be expanded at least to second order,

cos χ̄ ≈ f0(s̄) + f1(s̄) cosχ+ f2(s̄) cos2 χ+ . . . (5.2)

We can already draw some important conclusions without actually solving the ge-
ometry of the billiard motion. Firstly, we expect f0 ≡ 0 since a trajectory starting
with cosχ = 0 must end up with cos χ̄ = 0. The particle does not move at all in
this limit of momentum tangential to the (convex) boundary.

Transforming Eq. (5.2) to the variable sinχ, we obtain

sin2 χ̄ = 1− cos2 χ̄ ≈ 1− f 2
1 (s̄) + f 2

1 (s̄) sin2 χ− 2f1(s̄) f2(s̄) (1− sin2 χ)3/2 . . . (5.3)

Factoring out sin2 χ, taking the square root and using sinχ ≈ 1, we arrive at

sin χ̄ ≈ sinχ

[

f2
1 (s̄) +

1− f2
1 (s̄)

sin2 χ
− 2f1(s̄) f2(s̄)

(1− sin2 χ)3/2

sin2 χ

]1/2

(5.4)

≈ sinχ− f1(s̄) f2(s̄) (1− sin2 χ)3/2. (5.5)

This exhibits the universal non-analytic form of the kick strength,

(1− sin2 χ)3/2, (5.6)

which tells us the way in which the nonlinearity of the billiard map decreases as
sinχ = 1 is approached. Figure 5.1 shows how this general law compares with
numerical simulations of real billiard systems. As an important consequence of this

Figure 5.1: Kick strength in the momentum mapping equation, as a function of the initial sinχ at
eccentricity e = 0.56 in the quadrupole. The solid line is obtained from the true map by averaging
the squared kick amplitude over all final φ and taking the square root. The circles are a fit with
(1 − sin2 χ)3/2.

behavior, we will see later that the billiard map cannot be linearized around the
stationary curve at sinχ = 1. Linearization of the position mapping equation is
used in94 to bring the Kepler map (describing a periodically driven Kepler problem)
into the form of the Chirikov standard map. We therefore anticipate that the map
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to be derived here will not reduce to the standard map in a similar way. This
is reflected in the fact that the KAM transition in the standard map leaves as
the last unbroken torus the one with winding number equal to the golden mean,
γ = (1 +

√
5)/2, whereas in a convex billiard γ is not a valid winding number, and

there even remain unbroken tori long after the inverse golden-mean torus (w = 1/γ)
has been destroyed by the perturbation. As mentioned in the discussion of Lazutkin’s
theorem, the surviving invariant curves in the latter system are those whose winding
numbers approach zero, and this is to be expected since the curve with w = 0 is the
stationary curve sinχ = 1.

Note that Eq. (5.5) yields the conservation law sin χ̄ = sinχ if f2 ≡ 0,
independently of f1. On the other hand, Eq. (5.2) does not have the same property
for cosχ, unless f1 ≡ 1. To find the s̄-dependence of f1 and f2 in Eq. (5.5), we have
to resort to more detailed geometric considerations. These will in fact show that
f1 ≡ 1 while f2 is a measure of the deformation from circularity. This makes sense
because we expect the conservation of sinχ to hold only in the circle. Recall that
sinχ is the tangential component of the linear momentum, which in turn equals the
conserved angular momentum if the circle has unit radius. Before we embark on the
geometric derivation of f1 and f2, it is useful to sum up the principal result that
will be obtained. The billiard mapping can be described approximately by the two
implicit mapping equations

sin χ̄ = sinχ− 2κ1(s̄)

3κ2(s̄)
(1− sin2 χ)3/2, (5.7)

s = s̄− 2 arccos(sinχ) + 2 (1 − 1

κ(s̄)
) sinχ (1− sin2 χ)1/2. (5.8)

Here, κ is the curvature of the billiard as a function of arc length, and κ1 is its
derivative. Equation (5.7) shows explicitly that sinχ = 1 is a stationary curve of
the map, because arccos(sinχ) → 0 there.

5.2 Geometric derivation of the momentum mapping equation

We start with some exact geometric relations59, illustrated in Fig. 5.2. Let t(s′) be

s

s1

s2

L⊥{

s + ds

α

dL⊥

ψ(s)

θ1

θ2

s*

horizontal
Figure 5.2: A ray intersects the convex boundary at arc lengths s1 and s2.

the unit tangent vector at point s′ on the boundary and ψ(s′) the angle between
t(s′) and the horizontal. The curve t(s′) describes a unit circle as s′ goes around

60



the boundary. Therefore the angle between the tangent vectors in two points s and
s∗ is simply given by the arc length of t(s′) between s∗ and s,

∆ψ =

s
∫

s∗

∣

∣

∣

∣

dt

ds′

∣

∣

∣

∣

ds′. (5.9)

But the integrand is the curvature of the boundary, so that we can write

∆ψ =

s
∫

s∗

κ(s′) ds′. (5.10)

This relation holds even for non-convex shapes because it correctly subtracts seg-
ments where t rotates in the backward direction.

A second exact statement can be made if we consider now a straight line
trajectory intersecting the boundary at arc lengths s1 and s2. Let ψ∗ be its angle
with the horizontal. We can then ask what is the perpendicular distance L⊥ from
a boundary point s to the line defined by the trajectory. To derive an integral
expression for L⊥, determine the increment dL⊥ when we move from s to s+ds. As
shown in Fig. 5.2, one obtains a right angled triangle by drawing a parallel to the
trajectory through s. The hypothenuse is ds, and the angle opposite the side dL⊥
is α = ψ∗ − ψ(s). The perpendicular length is then obtained by integrating

dL⊥ = ds sinα, (5.11)

between s and some end point. The latter is now chosen to be s2, and for the former
we set s = s1. Since these are the intersections between the trajectory and the
boundary,

L⊥(s1) = L⊥(s2) = 0. (5.12)

The integral now yields the condition

0 = L⊥(s2) = L⊥(s1) +

s2
∫

s1

dL⊥ =

s2
∫

s1

sin (ψ∗ − ψ(s)) ds. (5.13)

There exists exactly one point s∗ along the boundary between s1 and s2 at which
the tangent is parallel to the trajectory. There, the tangent also is at an angle
ψ(s∗) = ψ∗ to the horizontal. This s∗ will now be our reference point in Eq. (5.10),
i.e.,

ψ(s) = ψ∗ +

s
∫

s∗

κ(s′) ds′. (5.14)

The relation we are trying to obtain is one between the angles of incidence
and the positions s1, s2. Consider the angles of incidence with respect to the tangent
directions first, denoted by θ1 and θ2. They can be combined with the tangent angles
ψ(s1,2) to give back the angle of the trajectory:

ψ∗ = ψ(s1) + θ1 = ψ(s2)− θ2. (5.15)

Adding these two equations yields an equation for the difference in the angle of
incidence,

θ2 − θ1 = ψ(s1) + ψ(s2)− 2ψ∗. (5.16)
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Here we can use Eq. (5.14) to obtain

θ2 − θ1 =

s1
∫

s∗

κ(s′) ds′ +

s2
∫

s∗

κ(s′) ds′. (5.17)

So far, all expressions are exact, and the only remaining step is to eliminate the
unknown s∗. To do this, one can apply Eq. (5.13), again using Eq. (5.14) to eliminate
ψ∗:

s2
∫

s1

sin





s
∫

s∗

κ(s′) ds′



 ds = 0. (5.18)

This fixes s∗ as a function of s1 and s2, but it cannot be solved explicitly for s∗ to
insert into Eq. (5.17). Therefore, we expand κ(s) to second order around s∗,

κ(s) = κ(s∗) + κ′(s∗) (s− s∗) + . . . ≡ κ0 + κ1 (s− s∗), (5.19)

which permits to calculate the integrals of the curvature. Then the sine function
can also be expanded. As our expansion parameter we choose

∆s = s2 − s1, (5.20)

and we write

s1 − s∗ = α∆s+ β∆s2 + . . . , (5.21)

s2 − s∗ = s1 − s∗ + ∆s = (α+ 1)∆s+ β∆s2 + . . . , (5.22)

Substituting the expansions into Eq. (5.18), we obtain

0 =

s2
∫

s1

sin[

s
∫

s∗

{

κ0 + κ1 (s′ − s∗)
}

ds′] ds

≈
s2
∫

s1

[

κ0 (s− s∗) +
1

2
κ1 (s− s∗)2

]

ds

=
1

2
κ0

[

(s2 − s∗)2 − (s1 − s∗)2
]

+
1

6
κ1

[

(s2 − s∗)3 − (s1 − s∗)3
]

=
1

2
κ0

[

(α+ 1)2 − α2
]

∆s2 +
1

2
κ0 [2 (α+ 1)β − 2αβ] +

+
1

6
κ1

[

(α+ 1)3 − α3
]

∆s3 +O(∆s4).

On the last line, we have ordered terms in ascending powers of ∆s. Each coefficient
has to vanish separately, leading to

α = −1

2
(5.23)

for the ∆s2 term, and

κ0 β +
1

6
κ1

1

4
= 0 (5.24)

⇒ β = − 1

24

κ1

κ0
(5.25)
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from the cubic terms. Therefore,

s1 − s∗ = −1

2
∆s− 1

24

κ1

κ0
∆s2, (5.26)

s2 − s∗ =
1

2
∆s− 1

24

κ1

κ0
∆s2. (5.27)

This can be used in Eq. (5.17), after we again used the expansion of the curvature:

θ2 − θ1 = κ0 (s1 − s∗) + κ0 (s2 − s∗) +
1

2
κ1 (s1 − s∗)2 +

1

2
κ1 (s2 − s∗)2

=
1

6
κ1 (∆s)2. (5.28)

This result was already obtained in Ref.59, but without any of the intermediate steps
after Eq. (5.19). It was important to convince ourselves that the coefficient 1/6 in
Eq. (5.28) is correct because it enters in our effective map, whereas this coefficient
drops out in the derivation of the adiabatic invariant curves which was the goal in
Ref.59. This will be seen later when we derive the adiabatic invariant curves from
the effective map.

To get the momentum mapping equation, a second equation is needed to
eliminate ∆s from Eq. (5.28). Therefore, we subtract the two Eqs. (5.15) to get

θ1 + θ2 = ψ(s2)− ψ(s1). (5.29)

After performing the same expansions as above, one arrives at

θ1 + θ2 = κ0 ∆s. (5.30)

Here, we only need the first order in ∆s because the expression is substituted into
Eq. (5.28) where ∆s appears squared already. Eliminating ∆s in this way, we get

6κ2
0

κ1
(θ2 − θ1) = θ2

1 + θ2
2 + 2θ1θ2 (5.31)

which is a quadratic equation for θ2:

θ2 = −θ1 +
3κ2

0

κ1
−
√

9κ4
0

κ2
1

− 12κ2
0

κ1
θ1. (5.32)

The minus sign for the square root is chosen to insure θ2 = 0 when θ1 = 0. Now
expand to second order in θ1:

θ2 ≈ −θ1 +
3κ2

0

κ1
− 3κ2

0

κ1

[

1− 2κ1

3κ2
0

θ1 −
2κ2

1

9κ4
0

θ2
1

]

(5.33)

= θ1 +
2κ1

3κ2
0

θ2
1. (5.34)

If one now uses θ1 ≈ cosχ and θ2 ≈ cos χ̄, this becomes identical to the desired
mapping equation, Eq. (5.2), with f1 ≡ 1 and f2 = 2κ1/(3κ

2
0). As a result, we have

from Eq. (5.5)

sin χ̄ = sinχ− 2κ1(s̄)

3κ2
0(s̄)

(1− sin2 χ)3/2. (5.35)
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We are allowed to use s̄ as the argument of κ, instead of s∗, because the difference is
proportional to ∆s, which would have led only to higher-order terms in Eqs. (5.28)
and (5.30).

It should be kept in mind that there was no assumption of small deformation
involved in the derivation of this equation, only the property of whispering gallery
orbits that they bounce close to the boundary. We shall later determine the con-
ditions for the validity of this assertion by determining what values of deformation
and sinχ are allowed so that trajectories do not break away from the boundary due
to chaos. In this way we also provide a criterion for the applicability of Robnik’s
and Berry’s adiabatic approximation. Such a criterion has been lacking so far.

An alternative way of writing the mapping equation for sinχ is to use
Eq. (5.34) but not the further approximation of Eq. (5.5). Then one obtains

sin χ̄ =

√

√

√

√1−
[
√

1− sin2 χ+
2κ1(s̄)

3κ2
0(s̄)

(1− sin2 χ)

]2

. (5.36)

This has the advantage that it can be solved explicitly for sinχ since it is a quadratic

equation in
√

1− sin2 χ. By contrast, Eq. (5.35) cannot be inverted analytically.
However, Eq. (5.36) will be less useful to us because its form is too complicated for
the explicit implementation of area preservation which we will discuss below. It was
noted e.g. in the treatment of the hydrogen atom in a microwave field94 that the
implicit nature of approximate maps is generally an unavoidable price to be paid for
area preservation.

5.3 The position mapping equation

With Eqs. (5.35) or Eq. (5.36), we only have one of the two equations that describe
the billiard mapping from bounce to bounce, namely that for the new momentum.
The second equation must relate the old and new positions s and s̄. We could try
to derive it using the same approximations as above, and this was in fact done by
Robnik and Berry59. Their result is

∆s ≈
2
√

1− sin2 χ

κ sinχ
, (5.37)

which has the unphysical property of diverging at low sinχ. This is not a problem
in the limit sinχ → 1 that underlies the expansion, and we could correct for it by
including higher-order terms, to obtain instead

∆s ≈
2 sinm χ

√

1− sin2 χ

κ
, (5.38)

which agrees with the previous expression to second order in cosχ for any choice
of the integer m. However, in choosing some m, we have to satisfy the additional
requirement that the map be area-preserving. If the map is to be useful as an
approximation to the full billiard SOS, area-preservation must hold not just to order
cos2 χ which is the accuracy of our derivation, but to all orders. Depending on the
value of m, modifications must then be made in the momentum mapping equation,
Eq. (5.35).

However, we already verified the sinχ-dependence of Eq. (5.35) in Fig. 5.1,
so that it should be a high priority to leave this equation unchanged. The ap-
proach taken here is to start from the momentum mapping equation already derived
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above, find a generating function that reproduces this equation according to theorem
3.3.1.1, and then directly read off the position map. In this way, area-preservation
is guaranteed and all corrections due to this are absorbed in the position map. We
argue that this is consistent at least with some of the physical questions we want to
answer with this map. Of interest is, e.g., the diffusion in the direction of decreasing
sinχ which provides the mechanism for resonance broadening in the deformed bil-
liards. The fast variable s is not of immediate interest, and one in fact can make a
“random phase approximation” by averaging over s to obtain the diffusion constant
in sinχ. It will have to be seen if the position map can in fact be trusted enough to
answer questions that do depend on the distribution of bounce positions.

Let us call the desired generating function F (s̄, p), where p stands for the
conjugate momentum,

p ≡ sinχ. (5.39)

If F is chosen such that the new momentum and old positions are obtained as partial
derivatives,

p̄ =
∂F

∂s̄

∣

∣

∣

∣

p
, s =

∂F

∂p

∣

∣

∣

∣

s̄

, (5.40)

then the map is area preserving because the Jacobian is unity. Using the momentum
mapping equation, Eq. (5.35), we can obtain the generating function by applying
the first of Eqs. (5.40) backwards, i.e. integrating over s̄. This leads to

F (s̄, p) = p s̄+
2

3κ(s̄)
(1− p2)3/2 + c(p), (5.41)

where c(p) is the integration constant which may still depend on p. Now we obtain
the desired equation for the positions from the second of Eqs. (5.40),

s = s̄+ c′(p)− 2p

κ(s̄)
(1− p2)1/2. (5.42)

The mapping equation for s that we obtained from area preservation differs from the
one obtained by Robnik and Berry not only in that p is absent in the denominator,
but also in the fact that we have an additional p-dependent constant of integration.
The additional c′(p) in our relation gives us the freedom to achieve better agreement
between effective map and the real billiard for lower p. First note that c′(p) must
vanish for p → 1 with some power (1 − p2)3l/2, where l is an integer, l ≥ 1. This
is required in order to be consistent with the geometrically derived Eq. (5.37) to
second order in cosχ.

The particular choice we make for c′ is brought on by the additional require-
ment – not implied by the approximations made so far – that the effective map
should reduce exactly to the correct map in the limit of the circular billiard. There,
the position equation is

s = s̄− 2 arcsin(cosχ). (5.43)

Comparing this with Eq. (5.42) in the limit κ0 ≡ 1,

s = s̄+ c′(p)− 2 sinχ (1− sin2 χ)1/2, (5.44)

the two equations agree if

c′(p) = 2 sinχ (1− sin2 χ)1/2 − 2 arccos(sinχ) (5.45)

= 2 cosχ (1− cos2 χ)1/2 − 2 arcsin(cosχ). (5.46)
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If this is expanded, one finds

c′(p) ≈ 2 cosχ+ cos3 χ− 2 cosχ− 1

3
cos3 χ+ . . . (5.47)

=
2

3
cos3 χ =

2

3
(1− p2)3/2. (5.48)

This is explicitly of higher than second order in cosχ, and therefore consistent with
our derivation. Inserting this into the mapping equation, we finally obtain the result
summarized in Eq. (5.7),

sin χ̄ = sinχ− 2κ1(s̄)

3κ2(s̄)
(1− sin2 χ)3/2, (5.49)

s = s̄− 2 arccos(sinχ) + 2 (1 − 1

κ(s̄)
) sinχ (1− sin2 χ)1/2. (5.50)

A remark is in order about how to iterate the effective map, given its im-
plicit nature. If we had to start with (s, sinχ), it would be necessary to invert the
complicated curvature expressions for the new position s̄. However, this is entirely
unnecessary if we simply reverse the meaning of old and new variables. That is, we
iterate the map backwards, which is allowed due to time reversal invariance. Then
one has to consider (s̄, sin χ̄) as given. Next, we solve Eq. (5.49) for sinχ. This
must still be done numerically, but the functional form of the curvature does not
enter the search algorithm. With the new sinχ thus obtained, we directly read off
the new s from Eq. (5.50) without the need for another root search.

As will be seen in the next chapter from the Poincaré sections for the real
billiards as compared to the effective map, the resonance structure is reproduced
quite well not just in the location along the sinχ axis, but also with respect to
island positions along the φ axis.
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Chapter 6

Phase space structure and
transport theory

6.1 Some model deformations

To establish some experience with the phenomenology of the chaotic transition in
billiards, it is instructive to discuss some specific shapes. These will subsequently
be used both in our classical and wave mechanical calculations. Only convex de-
formations of the circle are of interest to us, because that is the requirement for
the existence of whispering gallery orbits. To compare different shapes among each
other, a measure of the deformation is required. Since a convex billiard can be
parametrized in polar coordinates, see section 4.1, the most general representation
is

r(φ) =
1

2
a0 +

∞
∑

l=1

al cos lφ+
∞
∑

l=1

bl sin lφ. (6.1)

For billiards with a reflection axis, one can choose bl = 0 for all l. This is true for all
the cases we are dealing with. We can then refer to Eq. (6.1) as the two-dimensional
multipole decomposition.1The choice of origin is not unique. For example, Eq. (6.1)
describes a circle if all Fourier amplitudes except a0 vanish; but it is also possible
to have the same circle not centered at the origin, which would require nonzero
al (l > 0). The origin can be fixed by additional conditions. One natural choice
would be the center of mass. One could also require that the multipole expansion
have no dipole component l = 1. The resulting origins are not identical in general,
but they do agree if there are two or more reflection axes in the billiard: in this
case the intersection of the symmetry lines is the proper origin, and the lowest
possible multipole component is quadrupolar. If there is exactly one reflection axis,
we translate the origin along this line so as to eliminate any dipole component. This
makes a comparison with the higher symmetry shapes most meaningful. All the
deformations we consider leave the area constant to isolate the effect of shape alone.

1When the bl vanish, the Fourier expansion can also be regarded as an expansion
in Chebyshev polynomials Tl(cos φ). This means that the error made by truncating
is smaller than for any other expansion in orthogonal polynomials of cosφ.
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6.1.1 Quadrupole

The boundary is parametrized in polar coordinates by

r(φ) =
1

√

1 + ε2/2
(1 + ε cos 2φ). (6.2)

The area of this domain is π. All other deformations will have as their domi-
nant multipole component this term, and we can therefore use the strength of the
quadrupole part as a measure of the deformation that allows a comparison between
different shapes.

6.1.2 Robnik billiard

The quadratic Robnik billiard is defined by the conformal mapping of the unit circle,

w =
1√

1 + 2b2

(

z + bz2
)

(6.3)

where z = eiφ, (φ = −π . . . π), and b is real. It is possible to shift the origin so
that the polar coordinate representation Eq. (6.1) of this shape only has a dipole
component. This is why Eq. (6.3) will also be called the dipole billiard. To show
this equivalence, write Eq. (6.3) as

(

x
y

)

=
1√

1 + 2b2

(

cosφ+ b cos 2φ
sinφ+ b sin 2φ

)

(6.4)

=
1√

1 + 2b2

(

cosφ [1− b+ 2b cosφ]
sinφ [1 + 2b cosφ]

)

(6.5)

=

(

cosφ r(φ)− b√
1+2b2

sinφ r(φ)

)

, (6.6)

where we defined

r(φ) :=
1√

1 + 2b2
(1 + 2b cosφ) . (6.7)

This is the dipole form of the Robnik billiard, and the dipole parameter is ε = 2b
if we define it in analogy to Eq. (6.2). The shape is shifted along the x-axis by an
amount b√

1+2b2
.

However the polar origin we choose here yields a multipole expansion that
has no dipole component to lowest order in b. In cartesian coordinates, we rename
φ in Eq. (6.6) as θ to get

w =

(

wx

wy

)

=
1√

1 + 2b2

(

cos θ + b cos 2θ
sin θ + b sin 2θ

)

(6.8)

and define a translation through
(

x
y

)

:=

(

wx − b
wy

)

. (6.9)

The corresponding polar coordinates (r, φ) satisfy the relations

tanφ =
y

x
=

sin θ + b sin 2θ

cos θ + b cos 2θ − b
(6.10)

r =
1√

1 + 2b2

√

(cos θ + b cos 2θ − b)2 + (sin θ + b sin 2θ)2.
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Simplifying r, we arrive at

r =
1√

1 + 2b2

√

1 + 4b2 − 4b2 cos2 θ. (6.11)

To eliminate θ in favor of φ, use

x
√

1 + 2b2 = cos θ + b cos 2θ = cos θ + b(2 cos2 θ − 1) (6.12)

and solve this for cos θ under the assumption that b is small. The result to lowest
order is simply

cos θ ≈ x = r cosφ. (6.13)

Inserting this into Eq. (6.11), we can write to lowest order in b

r2 ≈ 1 + 2b2 − 4b2 cos2 φ (6.14)

which yields
r ≈ 1 + 2b2 − 4b2 cos2 φ = 1 + 2b2 cos 2φ. (6.15)

This is a pure quadrupole to leading order in b; all higher multipoles are at least of
order b3. Comparing this to Eq. (6.2), we can identify to leading order

ε = 2b2. (6.16)

This relation is useful because it allows us to parametrize both the Robnik and the
quadrupole billiard by ε, giving the strength of the quadrupolar deformation.

6.1.3 Ellipse

The usual polar coordinate representation of the ellipse is not useful here because
it assumes the origin to coincide with one of the focal points. To retain the full C2v

symmetry around the origin, we start from the implicit equation

x2

a2
+
y2

c2
= 1, (6.17)

which becomes in polar coordinates

r2 cos2 φ

a2
+
r2 sin2 φ

c2
= 1. (6.18)

Solving for r and imposing a = 1/c to keep the area constant and equal to π, we
obtain

r(φ) =
c

√

1 + (c4 − 1) cos2 φ
. (6.19)

To compare this to the quadrupole as we did for the Robnik billiard, we set c ≡ 1−ε
and expand in ε. The result is

r(φ) ≈ (1− ε) (1 + 2 cos2 φ) = 1 + ε cos 2φ (6.20)

Thus, ε as defined here can be identified with the quadrupole parameter. We can
also establish a relationship to the eccentricity,

e ≡
√
a2 − c2

a
=
√

1− c4 ≈ 2
√
ε. (6.21)
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Table 6.1: Conversion table for the parameters of various billiards.

Ellipse Quadrupole Dipole

Ellipse e e = 2
√
ε e =

√
8 b

Quadrupole ε = e2/4 ε ε = 2 b2

Dipole b = e/
√

8 b =
√

ε/2 b

6.2 Poincaré sections of the model billiards

For reference in later chapters, we append to this section a small gallery of Poincaré
sections at selected values of the deformation. We have chosen to characterize the
deformations by the strength of the quadrupolar component (in a frame where any
dipole moment has been shifted out). To make this physically more meaningful, we
give the eccentricity of an ellipse whose quadrupolar component has the same value
as that of the given shape. To convert from e to the parameters native to the other
billiards, one can use table 6.1. One observation that we will be able to explain
below is the larger amount of chaos that seems to prevail in the dipole as compared
to the quadrupole at the same eccentricity. For example, at e = 0.5 there is clearly
more chaos in the dipole than in the quadrupole. This behavior can be understood
in terms of the effective map.

Figure 6.1: Poincaré sections for the quadrupole billiard. Chaos is seen to spread beginning from
the low-sinχ region where the stable and unstable two-bounce diametral orbits dominate the phase
portrait. The next largest islands belong to the four-bounce orbit, and they survive to large defor-
mation. The whispering gallery orbits near sinχ = 1 are largely unaffected by the deformation.
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Figure 6.2: Poincaré sections for the dipole, showing strong influence of the three-bounce orbit.
Surviving WG orbits and their break-up at large e are shown on an expanded scale.

Figure 6.3: Poincaré sections for the ellipse billiard.
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6.3 Local nonlinearity and its relation to Lazutkin’s theorem

Figure 6.4: Poincaré sections for the effective map of the quadrupole. As in the real system, the
four-bounce orbit produces the strongest island structure after the two-bounce orbit. The SOS for
e = 0.3 is compared to the e = 0.4 SOS in Fig. 6.1, see text.

Figure 6.5: Poincaré sections for the effective map of the dipole. The three-bounce orbit creates
larger islands here than the four-bounce orbit.

The various shapes introduced above can be used to generate the correspond-
ing effective map, Eqs. (5.49) and (5.50). To that end, we use the polar coordinate
parametrizations of the billiards to calculate the curvature,

κ(φ) =
r2(φ) + 2 ṙ2(φ)− r(φ) r̈(φ)

(r2(φ) + ṙ2)3/2
. (6.22)

In Fig. 6.4, the resulting Poincaré sections are shown for the quadrupole billiard, and
similarly for the dipole in Fig. 6.5. The island structure is seen to be reproduced in
great detail, for both shapes, and in particular the characteristic differences between
the real surfaces of sections are mirrored correctly. Comparing to the real SOS, we
note however, that with increasing deformation the absolute value of e in the effective
map does not coincide with the true eccentricity. The SOS obtained in the effective
map for e = 0.3 looks more like the true billiard SOS at e = 0.4. Also, one notes that
the effective map produces a skewed SOS, breaking the symmetry between positive
and negative sinχ. This is due to the fact that the effective map does not preserve
time reversal invariance to all orders in the deformation.
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Now we want to use the effective map to make more quantitative statements
about the chaotic transition as well as the phase space transport. Assume that the
billiard shape is

r(φ) =
1

√

1 + ε2/2
(1 + ε cosmφ), (6.23)

which is normalized for any integer m so that the area is π. The normalization
factor can be dropped if we want to perform an expansion in ε. In accordance with
the periodicity of the boundary, it is useful to take the position variable to be mφ
instead of φ, yielding for the derivatives

ṙ(mφ) ≈ −ε sinmφ, (6.24)

r̈(mφ) ≈ −ε cosmφ, (6.25)

κ(mφ) ≈ 1 + ε cosmφ, (6.26)

κ̇(mφ) ≈ −ε sinmφ. (6.27)

We also make a local approximation49 , assuming p = p0 = constant in the kick
strength. This is justified because p does not vary strongly in each iteration of the
map at small deformation or for p → 1, as is evident from Eq. (5.49). With this
approximation, the effective map becomes

p̄ = p+
2

3
ε (1− p2

0)
3/2 sinmφ, (6.28)

mφ = mφ̄− 2m arccos(p) (6.29)

which is still area-preserving. Now we wish to make progress in the direction of
reducing this to the form of the Chirikov standard map. The first equation is already
of this form, compare Eq. (4.38). One still has to linearize the second equation with
respect to p94, dropping the constant term in the Taylor expansion as an inessential
phase offset. However, at p0 = 1 the linear approximation diverges, and it will
be poor for p0 close to the whispering gallery region. This problem was already
anticipated when we discussed the non-analytical kick-strength in the effective map.

Therefore we specialize to the limit of small ε, such that the local approxi-
mation, p ≈ p0, remains valid at lower p, where the linearization is more accurate.
Small ε was also assumed in the derivation of Eq. (6.28). The linear expansion of
Eq. (6.29) yields (dropping the constant terms)

p̄ = p+
2

3
ε (1− p2

0)
3/2 sinmφ, (6.30)

mφ = m̄φ+ 2m
1

√

1− p2
0

p, (6.31)

which can be used in the Chirikov criterion, Eq. (4.39). We simply have to bring
this into the standard form by using as our new momentum variable

P = 2m
1

√

1− p2
0

p, (6.32)

so that Eq. (6.30) becomes

P̄ = P +K sinmφ, K ≡ 4

3
εm (1− p2

0). (6.33)
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Here, K is the local nonlinearity of the effective billiard map. It is not only a function
of deformation ε, but also of the characteristic momentum p0 of the trajectories under
consideration. We will discuss the limits of its validity shortly, but the result will
be that at least the qualitative content is correct: As we go to higher p0 at fixed
deformation, chaos will decrease. This is the physical picture of Lazutkin’s theorem
which was already discussed.

The Chirikov criterion, Eq. (4.39), for the onset of chaos is K ≈ 1, which
means

ε ≈ 3

4

1

m (1− p2
0)
. (6.34)

This result becomes obviously wrong for p0 → 1, because the billiards become non-
convex at finite ε, and at that point we know that the last KAM curves should
vanish. In the opposite extreme, p0 = 0, one might hope to gain some information
from this formula. The prediction then is that chaos sets in near p0 = 0 for εd ≈
3/4 in the dipole and εq ≈ 3/8 in the quadrupole billiard. Clearly, one has to
expect that at these perturbations the linear expansion in ε is no longer accurate.
However, we can compare these numbers with the actual billiard maps, and the
tendency is reproduced correctly. Converting all deformation parameters to the
Robnik parameter b as defined in Eq. (6.7) for the dipole and Eq. (6.16) for the
quadrupole, we get

ed =
√

2 εd = 1.06, eq =
√

εq/2 = 1.22. (6.35)

This means that one needs a smaller quadrupolar admixture in the Robnik (dipole)
billiard than in the pure quadrupole billiard to create the same amount of chaos near
p0 = 0. This is a nontrivial statement, and one could have expected the opposite
since the radius changes more rapidly with angle in the quadrupole. It is seen to be
qualitatively correct by comparing the quadrupole and the dipole in the gallery of
Poincaré sections above, even though the numerical values for e are very different
from the ones predicted. In fact, both ed and eq are much too high. The quality
of the linearization of arccos p0 decreases because the p-interval in which it is valid
shrinks as p0 → 1. But the interval over which p varies shrinks in this limit, too.
Therefore, the non-analyticity at p0 = 1 may not cause any problems if the allowed
variation ∆p is sufficiently small. From the adiabatic curve, Eq. (6.53), in the
whispering-gallery limit K →∞, one finds that the amplitude ∆p goes like η/K 2/3,
where η = O(ε) is much smaller than one, given by the amplitude of the curvature.
But K is related to the typical p around which the adiabatic curve oscillates by

K = (1− p2
0)
−3/2. (6.36)

Therefore, we get
∆p ∼ η (1− p2

0) = η (1− p0) (1 + p0). (6.37)

Due to the smallness of η, this is smaller than the distance from p0 to the non-
analyticity (1− p0). Therefore, a standard map description is not inconsistent with
the effective map, even in the whispering-gallery limit. The fact remains, however,
that Eq. (6.34) is incorrect in this regime. The failure lies in the fact that we have
to go to such high ε to see chaos near p = 1, that the expansion of the curvature
to first order in ε is insufficient. But higher-order terms can have either a sinmφ
or cosmφ dependence, and their superposition will produce deviations from the
sinusoidal standard map, which in turn means that the Chirikov criterium cannot
be applied without modifications.
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We conclude that Eq. (6.34) describes the physics qualitatively, but we did
not succeed in reducing the billiard map to the standard map without losing infor-
mation about the billiard shape that would be essential for quantitative predictions.
Nonetheless, the picture of Lazutkin’s invariant curves as arising from the vanishing
of the local nonlinearity near p → 1 has been confirmed. Although further inves-
tigation is needed to try and reduce the billiard maps to other known maps, the
above discussion seems to indicate that the billiard map is to be considered as an
independent class of mappings in its own right.

In recent work by Borgonovi et al.49, an approximate map for the stadium
billiard was derived which also does not reduce to the standard map, but is similar
to the saw-tooth map95. They use the true polar coordinates instead of Birkhoff
coordinates, and their momentum mapping equation displays a non-analyticity of the
form

√
1− L2 instead of the 3/2 power we obtained. Their position map is identical

to Eq. (6.31), with m = 1, after making the local approximation in momentum. The
important difference between the stadium billiard and our systems is that the former
has boundary segments where κ ≡ 0, so that Lazutkin’s invariant curves do not exist
(even though there are orbits that rotate in one direction along the boundary for
very long times).

6.4 Diffusion in the SOS

In the context of Mather’s theorem, cf. section 4.10, it was noted that unbroken
KAM curves corresponding to whispering gallery modes with a caustic constitute
barriers in phase space. To understand this, we have to return to the continuous-time
Hamiltonian flow from which the map originated. If we fix the energy, the motion
takes place in a three-dimensional submanifold of the four-dimensional phase space.
A KAM curve in the SOS, assumed for the sake of argument to be given by some
function p(s), is the projection of the two-dimensional surface of a torus that is
embedded in the energy shell. The caustic results from the projection of the same
torus onto the coordinate plane. The trajectory corresponding to a point (s, p1) with
p1 > p(s) cannot have touched the caustic since its last reflection because its angle of
incidence is larger than for the trajectory belonging to the caustic. In other words,
the trajectory giving rise to (s, p1) was inside the torus when it went through its
radial turning point. Then it must remain inside the torus at all times, because to
leave, it would have to cross the surface of the torus. The latter is impossible because
we know that KAM curves are invariant curves, and this property translates to the
KAM torus. Hence, a phase space trajectory that is on the torus at some point in
time will be there at all times in the future and the past. It is interesting to note
that this argument is restricted to two degrees of freedom, because KAM tori do not
partition a four- or higher-dimensional energy shell into an inside and an outside.
Therefore, KAM curves in the SOS of systems with three degrees of freedom or more
can in fact be crossed. This process may however be very slow or even be absent for
certain initial conditions, and is called Arnol’d diffusion82. We have studied a 3D
system in which this process may be occuring, namely the cylindrical billiard with
a tilted cap, but more work is needed for a satisfactory understanding, so this work
will not be expounded in this thesis.

As long as no phase space barriers of the type just discussed are encountered,
a trajectory in the chaotic part of the SOS executes a stochastic motion during
which it will in time come arbitrarily close to every point of the SOS belonging to
the chaotic domain, and it will do so infinitely many times82. This ergodicity on the
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energy shell is a long-time property, in the sense that a large number of iterations
are needed before a trajectory has indeed explored all the available regions of the
SOS. We can see this from the form of the effective map,

p̄ = p− 2κ̇(φ̄)

3κ2(φ̄)
(1− p2)3/2, (6.38)

φ = φ̄− 2 arccos(p) + 2 (1 − 1

κ(φ̄)
) p (1− p2)1/2. (6.39)

Even if a trajectory does not move on an invariant curve, it is still not possible for
p̄ to differ widely from p, especially when p is large, simply due to the fact that the
kick strength depends on p, and the kicks are not only small (for large p) but also
of either positive or negative sign due to the oscillation in curvature. Therefore, a
large number of iterations is needed to see a change in p that is large compared to
the kick strength.

The angle φ also advances slowly for whispering-gallery orbits, but it is
taken modulo 2π and thus can cover the whole interval [−π, π] evenly before p has
departed much from its original value. This qualitative behavior is the motivation
for a random phase approximation aimed at providing information only about the
evolution of the slow variable p. The phases φ are assumed to become uncorrelated
to their initial values after times long enough to produce a significant change in p.
We calculate the phase average of (∆p)2 by choosing an ensemble of initial conditions
(φ0, p0) with fixed p0 and evenly distributed φ0, and defining after n iterations

〈(∆p(n))2〉 ≡ 1

2π

2π
∫

0

(∆p(n))2 dφ0. (6.40)

The sequence of points leading from (φ0, p0) to (φn, pn) is determined by the equa-
tions of motion, and we have

∆p(n) = −
n
∑

i=0

2κ̇(φ̄i)

3κ2(φ̄i)
(1− p2

i )
3/2. (6.41)

Inserting this into the previous equation, yields

〈(∆p(n))2〉 =
4

9

n
∑

i=0

n
∑

j=0

〈

κ̇(φ̄i)

κ2(φ̄i)

κ̇(φ̄j)

κ2(φ̄j)
(1− p2

i )
3/2 (1− p2

j)
3/2

〉

. (6.42)

Now φj is uncorrelated to φi except in an interval |i − j| � n, so that we can
approximate the expectation value above by

〈

κ̇(φ̄i)

κ2(φ̄i)

κ̇(φ̄j)

κ2(φ̄j)
(1− p2

i )
3/2 (1− p2

j)
3/2

〉

≈ δi,j
1

2π

2π
∫

0

[

κ̇(φ̄i)

κ2(φ̄i)
(1− p2

i )
3/2

]2

dφ0

= δi,j
1

2π

2π
∫

0

[

κ̇(φ)

κ2(φ)
(1− p2

0)
3/2
]2

dφ. (6.43)
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With this, we obtain a diffusive growth in the variance of p,

〈(∆p(n))2〉 =







4

9

1

2π
(1− p2

0)
3

2π
∫

0

[

κ̇(φ)

κ2(φ)

]2

dφ







n (6.44)

≡ D(p0)n. (6.45)

The diffusion constant D(p0) in the billiard map depends on p0, which is not the
case in other maps like the standard map81 or the Fermi accellerator82. Specifically,
we observe that D increases with decreasing p0, so that the diffusion will be biased

toward smaller momenta. This behavior is central to our investigation of resonance
lifetimes later on.

6.5 Adiabatic invariants from the effective map

Important corrections to this diffusive behavior arise due to the presence of phase
space structure, but before these effects are introduced, we can use the slow diffusion
in the momentum direction to derive the adiabatic invariant curves of Robnik and
Berry59.

Assume we are interested in the evolution of a billiard trajectory near p0 on
a time scale large compared to the phase randomization time but small compared
to the diffusion time, i.e. we are considering n such that 〈(∆p(n))2〉 → 0. On this
intermediate time scale, a trajectory comes close to any value of φ in the interval
[−π, π], but the possible values of p at two neighboring angles φ and φ + dφ will
still be infinitesimally close. In other words, the orbit traces out a smooth curve
p(φ) in the SOS, and we can to a first approximation act as if dp/dφ exists. The
existence of a one-dimensional curve to which orbits are confined means that the
motion is approximately on a torus in phase space. This is synonymous with the
existence of an almost-conserved quantity (in addition to the energy) which provides
the constraint needed to force the trajectory onto a two-dimensional submanifold
of the three-dimensional energy shell. The invariant turns out not to be p itself,
but the typical value p̃ around which p(φ) oscillates. Since we have to require the
diffusion time in p to be much longer than the time scale on which we follow an
orbit, we shall call p̃ an adiabatic invariant.

We shall derive the adiabatic constraint equation connecting p̃ to p and φ
by making use of the effective map, Eqs. (6.38) and (6.39). One can write the two
mapping equations as

∆φ ≡ φ̄− φ =
2p(1− p2)1/2

κ
− c′(p), (6.46)

∆p ≡ p̄− p = −2κ1(1− p2)3/2

3κ2
(6.47)

Our goal is to derive an equation of the form

p = p(φ, p̃), (6.48)

with p̃ as a parameter. The idea is to find this function for the limiting case p̃→ 1
(i.e., the whispering-gallery limit), and then generalize by substituting arbitrary
values of p̃ into the function thus obtained. Therefore, we first take ∆s→ 0, which
implies from the ∆φ- equation that cosχ→ 0. In this limit, c′(p) can be neglected
compared to the first term because c′ ∝ cos3 χ. As cosχ → 0, Eq. (6.47) implies
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∆p → 0. But this means that we can expect a finite value for ∆p/∆s, i.e. the
derivative dp/ds exists. The above difference equations can then be converted to a
differential equation by dividing the two lines above,

dp

dφ
= −κ1 (1− p2)

3κp
. (6.49)

This can be solved by separation of variables because we can write

y

1− p2
dp = −κ1

3κ
dφ. (6.50)

Since κ1 = κ′ is just the derivative at φ in this limit, we can integrate to obtain

K̃
1

2
ln(1− p2) =

1

3
lnκ (6.51)

⇒ K =
κ

(1− p2)3/2
(6.52)

⇒ p =

√

1−
[

κ(φ)

K

]2/3

. (6.53)

The integration constant K is therefore a conserved quantity for the map in the
limit ∆s→ 0, and it could serve as our adiabatic invariant. To endow the invariant
with the desired physical meaning, we define

p̃ ≡
√

1− 1

K2/3
, (6.54)

so that the adiabatic invariant curves become

p =
√

1− (1− p̃2)κ(φ)2/3. (6.55)

This is the constraint function, and p is seen to oscillate around p̃ because κ oscillates
around the value for a circle of equal area, κ0 = 1. We can now insert the whole
allowed range of invariants, 0 ≤ p̃ ≤ 1 from Eq. (6.54). Of course, this course
of action is no longer a controlled approximation because terms of higher order in
cosχ may become important in the constraint equation. However, there exists one
additional limit that we can take to check the validity of the adiabatic curve for
small p̃ (away from the whispering gallery region): it consists in making the shape
purely elliptical, i.e. integrable.

As has been noted in Ref.59, Eq. (6.55) becomes exact for the whole phase
space in the ellipse billiard where there is no chaos. This is by no means obvious
from our derivation (nor from theirs), and we can only comment that the derivation
of Eq. (6.51) ignores the existence of resonance zones of the effective map, and such
regions are in fact absent in the ellipse. This remarkable identity for the ellipse
of arbitrary deformation means that the functional form of the adiabatic curves is
given by our result even at small p. This is a strong indication that other billiard
shapes should be described reasonably well, too.

However, the question arises why the effective map can exhibit chaos at all,
given the fact that it was derived as an approximation to second order in cosχ, while
the differential equation Eq. (6.49) is exact to the same order and invariably provides
a constant of integration. It is the separation of diffusion and phase randomization
time scales that breaks down with increasing local nonlinearity. Thus, if φ and
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φ + dφ are close, the corresponding values of p can retain a finite difference due to
the diffusion that already took place while the phase angle wrapped around a few
times to come back to φ + dφ. Then, the trajectory no longer describes a smooth
curve in the SOS, and the differential equation leading to the adiabatic invariant
curves is inapplicable.

Without attempting any quantitative predictions, we can show that the adi-
abatic invariant curves become exact in the whispering gallery limit because the
separation of scales becomes infinitely large. This is a physicist’s way of proving
Lazutkin’s theorem. Define the (discrete) diffusion time in p, τp to be the number
of iterations it takes to diffuse across the whole allowed p-interval, and the phase
randomization time τφ as the number of reflections necessary before φ has wrapped
once around the boundary. Then from Eq. (6.44),

τp ∝
1

(1− p2)3
, (6.56)

and from Eq. (6.46),

τφ ∝
1

p
√

1− p2
. (6.57)

The proportionality constants are functions of the deformation alone. As the whispering-
gallery limit is approached, τp diverges much faster than τφ, so that the existence
of invariant curves can be inferred. In the limit p → 0, τφ does not diverge but
saturates because of the term c′(p) which was neglected in the position mapping
equation. It can then be of the same order of magnitude as τp (depending on the
deformation).

To show that the effective map, unlike the ellipse, is indeed described only
approximately by the adiabatic invariant curves, it suffices to start a single trajectory
on the invariant curve and demonstrate that one (backward) iteration of the map
will cause it to depart from this curve. Note that the adiabatic curve has minima
at the points of highest curvature. In the quadrupole, these are at φ = 0 and φ = π.
A trajectory that ends up at φ = 0 with ∆p = 0, must have originated from φ = π,
i.e. ∆φ = π, if it stayed on the same invariant curve. This is true irrespective of the
value of p at the minimum. But the position map, Eq. (6.46), then reads

π =
2p(1− p2)1/2

κ
− c′(p) (6.58)

for all p, where κ is the value of the curvature maximum. In our choice of c′(p),
there was no curvature dependence, so that the equation cannot hold in general.
Hence we arrived at a contradiction by assuming that starting and end points of the
trajectory are on an invariant curve.

The above discussion leads to the following description of the diffusion pro-
cess in phase space: On time scales where diffusion can be neglected, p is not actually
constant, but oscillates around p̃ according to the adiabatic invariant curve. This
means that the diffusion process in p is in fact roughly a sequence of steps during
which the trajectory tends to follow an adiabatic curve around p̃ for an intermediate
time interval, where p̃ decreases on average as time progresses. An important con-
clusion is that the probability of finding the trajectory at momentum p0 depends on
φ. The reason is that the given p0 will be reached earliest by a trajectory moving
along an adiabatic curve p(φ) whose minimum value is just p0. But the minimum is
reached at only a certain number of points φ0, namely those at which the curvature
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is a maximum, cf. Eq. (6.55). At the time when this adiabatic curve is reached, p0

can occur only near the φ0.

To reconcile this φ-dependence in the distribution of p with the fact that
we made a random phase approximation for φ, we have to introduce a more refined
understanding of the diffusion in which it is the adiabatic invariant p̃, not p, which
evolves according to the diffusion law, Eq. (6.44). The anisotropy of the p distribu-
tion in φ will be of great importance in understanding the directional emission of
asymmetric resonant cavities.

6.6 Transport in the presence of phase space structure

In the study of optical cavities, it has also turned out to be crucial to understand
how deviations from the above diffusion model occur due to the presence of phase
space structure. We give here a brief overview of the modifications to transport
properties that can arise in a generic KAM system.

6.6.1 Cantori

In a convex billiard, chaotic regions always coexist with KAM curves, and the tran-
sition between these domains exhibits island chains of high order (large denominator
in the winding number), corresponding to the rational approximates to noble KAM
curves. A special structure arises just after a KAM curve (with irrational winding
number) has disintegrated due to the overlap with the resonances of the rational ap-
proximates. The resulting invariant set no longer forms a continuous curve p(φ), but
a Cantor set, which is appropriately called a cantorus. This means that the KAM
torus acquires holes at arbitrarily fine scales, such that any point in the invariant
set is arbitrarily close to other points in the cantorus, but at the same time is itself
a boundary point of the set76,81,96.

Cantori of noble winding number form partial barriers to phase space diffu-
sion in the momentum direction, which is intuitively clear considering that a trajec-
tory has to circumnavigate the dense island structure of the rational approximates.
Of course transport only becomes measurable if the deformation is sufficient to go
beyond the rigorous Cantor set stage to a set with slightly larger voids. The aggre-
gation of minuscule gaps to larger gaps with increasing deformation is a consequence
of the fact that the smallest gaps are produced by overlap with the separatrices of
the smallest islands, which in turn are the first to disappear when the nonlinearity
increases. The smallest islands are generally the first to vanish, because they corre-
spond to fixed points with less stability. What remains are chains of slightly larger
islands whose separatrix regions spread toward the cantorus and thus create larger
gaps in the latter. Transport across this partial barrier was reduced by MacKay et

al. to the action of turnstiles formed in the gaps, and a scaling approach was used by
them and independently by Bensimon and Kadanoff97 to derive a power-law depen-
dence of the crossing time on the chaos parameter.96,97. Renormalization is needed
because of the self-similar structure consisting of island chains around islands in
other island chains81. The effect of the self-similar structure in the SOS is that the
diffusion in the vicinity of island chains is not of the simple type derived above,
but instead behaves anomalously in close analogy to a Lévy flight: since islands
are themselves surrounded by remnants of cantori, a trajectory can get captured
inside such a secondary cantorus for long times, during which it may wander into
the vicinity of an even smaller island by which it may get captured in the same way,
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leading to the possibility of extremely long dwell times. The result of these theories
is that the time needed to cross the cantorus region depends on the chaos parameter
through a power law,

T ∝ (K −Kc)
α, (6.59)

where α ≈ 2.55 . . . 3.026, where the lower value was found in numerical studies by
Chirikov,98 and the highest value is due to Bensimon and Kadanoff (also a numerical
result). MacKay et al. find α ≈ 3.012.

6.6.2 Stable and unstable manifolds as barriers

Transport in phase space is also obstructed by intersecting stable and unstable man-
ifolds, and this is in fact a generalization of the turnstile concept applied in the study
of cantori51. The idea is that, just like a cantorus or a KAM curve, unstable and
stable manifolds are also invariant curves, however not necessarily of the Poincaré
mapping M itself, but rather of higher iterates M q. If q is small, then these curves
may act very much like true barriers. The consequence of q > 1 is simply that there
is a chain of q hyperbolic fixed points, each of which radiates stable and unstable
manifolds that intersect. From one iteration to the next, one then jumps between
these different manifolds, returning to the original manifold with M q. Due to the
intersections, there will be heteroclinic tangles, which are the reason why the bar-
rier action is not complete: one can say that the barrier itself is so foliated and its
loops reach into large regions of phase space, that a decomposition into smoothly
connected domains separated by the barrier is meaningless. However, the hetero-
clinic tangles are concentrated mostly near the fixed points, and thus there can be
portions of the stable and unstable manifolds in between the hyperbolic points that
are largely free of intersections. This is seen in the sketch of Fig. 4.4, and one can
define a boundary line separating an “inside” from an “outside” by connecting the
two fixed points through the shortest path along either the stable or the unstable
manifold. The loops are then either inside or outside this line, and one has to be
inside a loop to get mapped across the boundary. This is the reason why fixed points
with low q create better barriers: The fixed points are in general farther apart, and
the space inbetween is less occupied by the loops of the tangle (which forms near
the fixed points).

The boundary defined above becomes the separatrix in the ellipse billiard,
because in that case the stable manifold of one fixed point smoothly becomes the
unstable manifold of the next. This means that there are no tangles and hence no
loops that could propel a trajectory across the boundary. The loops are analogous
to what MacKay et al. call turnstiles, and it is the area of the loops that determines
the time needed to cross these turnstiles51,81.

The effect of intersecting manifolds on the phase space diffusion is thus sim-
ilar to that of cantori, in that transport can slow down significantly. However, there
is no threshold behavior or power law associated with these barriers because they
exist in the separatrix regions between hyperbolic fixed points, which are locally the
first regions to become chaotic and thus will be sandwiched by KAM curves upon
their inception. They become dominant as transport barriers only after the last
cantori in the neighborhood have disappeared, even though they already exist prior
to that point.

To demonstrate in what way heteroclinic tangles appear in a billiard system,
we show a concrete example in Fig. 6.6 for the quadrupole shape.
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Figure 6.6: Poincaré sections of the quadrupole, showing 10 iterates of a cloud of trajectories
launched close to each unstable fixed point of winding number 4. Both directions of time are
plotted to obtain the stable and unstable manifolds. Some stable trajectories are also plotted to
illustrate the phase space topology. Compare to the schematic in Fig. 4.4.
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The location of the unstable four-bounce orbit in the SOS can be calculated
easily at any deformation because symmetry implies that it always corresponds to
a rectangle inscribed into the quadrupole. The latter means that sinχ = sin(45◦) =
1/
√

2 ≈ 0.7 at all four reflections, independently of the deformation. This orbit is
thus located in a region of phase space that has to be traversed by trajectories that
are diffusing chaotically to an escape window corresponding to realistic indices of
refraction (n = 1.4 . . . 2). At e = 0.632, we see that the turnstiles made up of the
interweaving lobes are small in area and concentrated near the fixed points, thus
forcing trajectories to spend long times in the separatrix region before they enter the
vicinity of the islands from above and then eventually leave it toward the bottom.
The transport is more efficient at e = 0.8 where the four-bounce islands have in fact
disintegrated already. What is most notable at large deformations is the pronounced
funneling of downward-moving orbits along the V-shaped intersection of manifolds
around φ = 0 and φ = π. Clearly this implies that the motion is not random even at
this large eccentricity, at least for 10 iterations, and that downward diffusion occurs
in certain well-defined preferred directions along the φ axis.

6.6.3 Stable islands

The last remark also holds for islands of stability, which cause perhaps the most
obvious breakdown of the diffusion from one adiabatic invariant curve to the next.
The reason is that trajectories cannot stray from the chaotic domain into an island
or vice versa, since each island is the intersection with the SOS of a phase space
torus that has a noncommunicating inside and outside, as we argued previously for
the KAM curves. This is why a chaotically diffusing orbit must avoid the islands.
However, the adiabatic curves do not reproduce any island structure except that
corresponding to the bouncing-ball orbit (see the ellipse), so that these approximate
curves p(φ) can intersect the islands of the actual SOS and thus fail to describe the
true motion in that case.

Stable islands are surrounded by intersecting manifolds from the accompa-
nying hyperbolic points, cf. the above subsection. However, these may not be the
dominant factor governing the phase space flow, since the islands are also surrounded
by a transition region which contains cantori and smaller island chains. Trajectories
may be captured by these satellite structures and rotate around the main island for
long times before finding a way out. If the main islands form a chain of order q,
then the rotation around one member is seen by plotting only every q-th intersection
with the SOS, because the intermediate points lie near the other islands.

We will see later how islands acting as transport barriers can have a direct
influence on the emission directionality of dielectric resonators.
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Chapter 7

Semiclassical quantization

7.1 Einstein-Brillouin-Keller quantization on fuzzy caustics

At this point it is useful to recall our goal of describing resonant states with ray
optics. The connection between a given resonance and the ray picture is made
using a semiclassical approximation. The approach is described in this chapter
for closed systems, and the necessary modifications in open cavities are discussed
later in section 10.1. The aim is to obtain an expression for the eigenenergies or
wavenumbers in terms of classical paths, applicable to the strongly deformed billiard
where WG orbits can diffuse classically instead of moving on exact invariant curves.

Figure 7.1: Top: Trajectory following the adiabatic curve (solid line) for 200 reflections (left),
and corresponding real-space trajectory (right), exhibiting a “fuzzy” caustic. The deformation is
quadrupolar. Bottom: same trajectory followed for 2000 bounces.

The billiard systems of interest to us are generically in the KAM regime,
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which means that there is an appreciable portion of phase space for which the clas-
sical motion is on invariant tori. The general problem of semiclassically quantizing
a mixed phase space is as yet unsolved, and a status report on this still evolving
subject can be found in Ref.51. What is comparatively well- understood are the
limiting cases of fully integrable and fully chaotic dynamics. The semiclassical the-
ory of the former is based on the WKB approximation as reviewed by Berry and
Mount100. For chaotic systems, the theory of periodic orbits, based on Gutzwiller’s
trace formula for the density of states, has been the key approach to a semiclassical
quantization38. The benefits of trace formulas, and their shortcomings in particular
for the treatment of WG modes, are discussed later in appendix B.

We propose an alternative approach that makes use of the slow classical dif-
fusion in sinχ. The description of chaotic trajectories by adiabatic curves, discussed
above, is used to apply the Einstein-Brillouin-Keller quantization procedure. This
use of the adiabatic curves is novel, and its value lies in the fact that it replaces an
infinite sum over periodic orbits by only two action integrals appearing in a system of
two simultaneous equations. The unknowns determined from this system are k (the
wavenumber of the bound state) and p̃ (the parameter characterizing the adiabatic
curve).

Most underlying proofs will be omitted in this chapter, and we instead try
to illuminate the subject from an intuitive angle. A more detailed account of the
method and some relevant derivations relying on theorems from classical mechanics
can be found in appendix A.

The Einstein-Brillouin-Keller quantization scheme is based on the existence
of caustics for all (non-periodic) trajectories, i.e. the absence of chaos (see appendix
A). We can use it provided the adiabatic curves are a good description of the ray
dynamics for intermediate times, because then the motion is on “almost” invariant
curves as discussed above. In real space, the latter implies that the trajectory
forms “fuzzy” caustics. This is illustrated in Fig. 7.1, where we also show the
disintegration of the fuzzy caustics after long times. The existence of caustics is
used in the quantization procedure to guarantee that one can write the semiclassical
wavefunction in the WKB approximation with two and only two terms99:

ψ(r) = A1(r) e
ik S1(r) +A2(r) e

ik S2(r), (7.1)

where Ai are amplitudes and Si are the phases, also called eikonals in optics. The
classical rays propagate perpendicular to the phase fronts. In classical mechanics, a
particle moves with constant momentum p = h̄ k along the direction ∇Si. Therefore,
h̄ k Si is just the action function of Eq. (3.70), satisfying h̄ k∇Si = p. By definition,
∇Si is then a unit vector along a ray direction.

We need the two terms above because there are exactly two possible ray
directions through every point r between the caustic and the boundary, assuming
one only admits counterclockwise propagation around the billiard, see Fig. 7.2. The
situation is illustrated for the simple case of the circle, where the caustic is also a
circle.

The two possible trajectories can be labeled by their direction: one goes
through r on the way from the caustic to the boundary (abbreviated as CB), the
other (BC) vice versa. Only the corresponding parts of the straight line trajectory
between B and C have been drawn. If we now select for all r either the BC or the
CB ray, this effectively defines a field on the annulus, as shown in Fig. 7.3. As is
clear from inspection of the figures, these fields are irrotational between C and B,
even though they certainly display a vorticity which however circulates around the
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Figure 7.2: Two possible counterclockwise trajectories through an arbitrary point in the annulus
between caustic (C) and boundary (B). They are uniquely determined by the requirement of
tangency to the caustic.

caustic itself, not around a point inside the annulus defined by B and C. Therefore,
the ray fields can in fact be written as the gradient of a scalar function. The two
corresponding functions are just the eikonals S1 and S2. This discussion makes it
clear that one needs both wavefronts S1 and S2 to describe a complete ray segment
between two successive reflections, since each Si is associated only with the BC or
CB portions, respectively. The switching between S1 and S2 occurs at the boundary
or at the caustic, and one can derive relations between the two eikonals on these
lines. For example, S1 and S2 have to differ exactly by π at B if one imposes
Dirichlet boundary conditions, and there is a jump by π/2 at C. Since ∇Si is a unit
vector along the BC or CB ray direction, the phase advance along any ray path is

k∆S = k

∮

Γ

∇Si(r) dr− α− µ
π

2
. (7.2)

where i in Si is 1 or 2 depending on which type of ray segment is being followed
during different parts of the contour Γ. The constants α and µ take into account the
phase offsets due to each switching between S1 and S2. The Maslov index µ counts
the number times C crosses a caustic, and α is the boundary phase shift. The
particular values these constants take on are discussed in appendix A. These two
phase shifts subtract from the phase advance accounted for by the action integral,
provided that the corresponding integration loop runs in the direction of increasing
phase (S) before and after the crossings with caustic and boundary. Otherwise, the
phase shifts enter with the opposite sign.

The value of the integral above is path-independent for each segment using a
single Si, simply because the CB and BC rays form a gradient field on the annulus
between B and C. One can in particular consider closed contours Γ, which however
include switching between the Si, or encircle the caustic fully. In either of these cases,
the integrals are not zero as they would be otherwise. To be closed, these integrations
must start and end with the same eikonal, say S2. The nonvanishing phase advance
upon return to the starting point then implies that S2 (and likewise S1) is multi-
valued, in the same way that the value of the complex square root z1/2 depends on
how many times one winds around the origin. Recalling the interpretation of h̄ k Si

as the action function of classical mechanics, we observe that any closed loop Γ in
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Figure 7.3: The two fields defined by the CB and BC rays, respectively. Superimposed are the
wavefronts S1 and S2 to which the families of rays are perpendicular.

Eq. (7.2) will yield precisely one of the action variables, Eq. (3.50), up to the factor
h̄.

7.2 Quantization conditions

The quantization conditions now follow from the requirement that the wavefunction
ψ be single-valued, i.e. the phase advance along any closed loop must be an integer
multiple of 2π so that it drops out in Eq. (7.1). In terms of the classical actions,
this leads to

Jν/h̄ = 2π nν + αν + µν
π

2
. (7.3)

Here, nν are the (integer) quantum numbers. This is the central semiclassical formula
to be used in our work, and it is also called EBK quantization after Einstein, Brillouin
and Keller. It was Einstein103 who proposed in 1917 how one could generalize the
well-known Bohr-Sommerfeld quantization to include integrable systems where a
complete separation of variables is not achieved. Brillouin104 derived quantization
conditions that also apply to nonseparable systems but are incorrect in that they
do not contain the Maslov indices. Keller105 gave the final form of this “torus
quantization”.

In generic convex deformations of the circle, this procedure is hard to im-
plement even if one has realized the existence of “fuzzy” caustics. The reason is
that one still does not in general know the eikonals Si, nor their gradients. Our
solution to this problem is to employ a particular choice of integration contours Γ
for which the integrand is known. Unlike previous work99, the integrals then require
no knowledge whatsoever of the real-space shape of the caustic.

This is possible because we possess the explicit form of the adiabatic curves
in the Poincaré section, see Eq. (2.1), reproduced here for convenience:

p =
√

1− (1− p̃2)κ(φ)2/3, (7.4)

which is of use provided that one can neglect the effects of island structure. This
is the basic idea behind our approach to a semiclassical quantization of the whis-
pering gallery orbits. We rely on the existence of a slowly diffusing classical action
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parametrizing an approximate torus in phase space and an approximate caustic in
real space, in analogy to the ellipse billiard, where Eq. (7.4) is exact, cf. Eq. (3.136).

Noting that

∇Si · dr = ± sinχds, (7.5)

where ds is an arc length element along the curve Γ and χ the angle between ∇S
and the normal to Γ, we can replace sinχ in the integrand by the adiabatic formula
for all parts of Γ that coincide with (or are infinitesimally close to ) the boundary.
Then sinχ is identical to the sinχ of the Poincaré section. The first contour thus
chosen is the boundary itself.

The second path is depicted for the circle in Fig. 7.4. The loop is drawn

Figure 7.4: The second integration path, depicted for simplicity in the case of the circle. The same
topology can be employed in deformed cavities.

as the thicker line. Along the ray, we first have to use S2 to get from B to C, cf.
Fig. 7.3. The corresponding wave fronts are drawn dashed. Following the ray from
C back to B, we use S1 whose wavefronts are drawn solid. Along the boundary,
we return to the starting point by moving in a clockwise sense with respect to the
caustic. At some point one also has to switch back from S1 to S1 to complete the
loop. Where on B this happens is immaterial, as long as one takes into account that
clockwise motion is by definition the direction of decreasing phase, yielding a minus
sign for this part of the integration. There is a phase jump due to the encounter
with C where S2 connects to S1, and a second one due to the switching from S1 to
S2 at B. The ray segment is fixed by the value of the adiabatic curve sinχ(φ) at
the point of intersection with the boundary, which has been chosen in the figure to
be at φ = 0. Therefore the only unknowns in the problem are the wavenumber k in
front of the phase integrals, and the parameter p̃ of the adiabatic curve that is to
be used in the integrand and for the determination of the ray segment.

We do not have to do any work at this point to write out the resulting
quantization conditions, because the two integrals have already been considered in
section 3.8.3 where we treated the ellipse. Using p̃ as a parameter (instead of K),
Eqs. (3.138) and (3.140) read

Jφ =
√

2mE

2π
∫

0

dφ
√

r2 + ṙ2
√

1− (1− p̃2)κ(φ)2/3, (7.6)
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Jr =
√

2mE






L(p̃)−

φ1(p̃)
∫

φ0

dφ
√

r2 + ṙ2
√

1− (1− p̃2)κ(φ)2/3






(7.7)

We only have to add the Maslov and boundary phase shifts in accordance with the
above description of the contours. The caustic and boundary are crossed once each
for Jr, and not at all for Jφ. Therefore, we arrive at

Jφ = 2π h̄m, (7.8)

Jr = 2π h̄ (n+
3

4
). (7.9)

From this system of equations, one unknown can be eliminated immediately if one
divides Eq. (7.9) by Eq. (7.8), with the result

m






L(p̃)−

φ1(K)
∫

φ0

dφ
√

r2 + ṙ2
√

1− (1− p̃2)κ(φ)2/3







=

(

n+
3

4

)

2π
∫

0

dφ
√

r2 + ṙ2
√

1− (1− p̃2)κ(φ)2/3. (7.10)

For any given integers n and m, this equation can be solved for p̃, using a numerical
root finding routine. This provides us with the quantization of the adiabatic invari-
ant, p̃m,n. The quantized energy levels are then obtained by substituting p̃m,n into
Eq. (7.8), which yields

km,n =
√

2mE/h̄ =
2πm

2π
∫

0
dφ
√
r2 + ṙ2

√

1− (1− p̃2
m,n)κ(φ)2/3

. (7.11)

In the special case of the circle, the adiabatic curves are simple sinχ = p̃,
and κ ≡ r ≡ 1 (if R = 1), so that we obtain from Eq. (7.11) the semiclassically exact

expression for the angle of incidence,

sinχ =
m

km,nR
, (7.12)

if km,n is the semiclassically quantized wavenumber. The integers m, n reduce to
the angular momentum and radial quantum numbers in the circle. To get the
quantized wavenumber, one needs to solve Eq. (7.10) first. We defer this calculation
to appendix A.2.

We can also easily verify that for the deformed case, the EBK approach
produces the correct result in the whispering-gallery limit, p̃m,n → 1. Since the
curvature is finite, the result is

km,n =
2πm

2π
∫

0
dφ
√
r2 + ṙ2

=
2πm

L0
, (7.13)

where L0 is the circumference of the boundary, in agreement with the result of
Keller and Rubinow quoted in Eq. (A.18), neglecting the correction term. It should
be mentioned that this relation implies a red shift with increasing circumference at

89



constant m. This situation is encountered in all the deformations we consider, since
they are designed to maintain a constant area and hence increase L0.

The important point of this quantization based on the adiabatic curves is that
the solution of Eq. (7.10) automatically yields the parameter p̃ of the adiabatic curve
that corresponds to the quantized state (m, n). This curve then can serve as the
desired initial condition for an ensemble of classical rays whose long-time diffusion
toward lower sinχ eventually causes classical escape and hence deterioration of the
resonance lifetime. In this way we are able to make quantitative predictions for
the resonance lifetime at strong deformation where classical escape is the dominant
decay mechanism.

In order to take corrections due to tunneling and above-barrier reflection
into account, we again have to find a way of connecting these wave phenomena with
classical quantities that can be included in a ray simulation. This will be done in
chapters 8 and 10.

7.3 Reliabilty considerations

The quality of this approximate semiclassical quantization depends on how well
the adiabatic invariant curves describe the motion. We will return to this question
when we present the results of this approach, but at this point it is worth mentioning
that a similar situation arises in the context of the quantization of hyperbolically
unstable periodic orbits114 in the discussion of scarred wavefunctions in strongly
chaotic systems. In spite of a positive Lyapunov exponent in their neighborhood,
these orbits are found to produce an imprint (“scar”)42 on the wavefunctions, both
at low and high energies in the spectrum. This can be explained if one accepts
the notion of “adiabatic instability”115, which is a weaker criterion than Lyapunov
instability. It means that trajectories stay close to a hyperbolic periodic orbit for
at least one real-time period, and this has been shown116 to be sufficient for an
approximate semiclassical quantization.

In our case, the whispering-gallery orbits are not periodic in general, but
the above remarks are encouraging as to the potential value of the adiabatic quan-
tization. One can draw additional support for this hope from the work of Bohigas
et al.117 which aims at a statistical classification of the spectra of mixed systems.
There, it is found that partial barriers to classical phase space transport, as discussed
previously, can cause the quantum Hamiltonian to be almost block-diagonal with
the separate blocks being semiclassically quantized on subregions of the chaotic do-
main that are only weakly connected classically. The mixing of the blocks increases
both with the classical transport and with decreasing h̄. The latter means that far
from the classical h̄→ 0 limit, the effect of classical diffusion will be less significant
for the quantization of the system.
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Chapter 8

The wave equation for
symmetric resonators

Up to now we have treated the classical and semiclassical analysis of nonintegrable
closed systems, in particular billiards with hard wall boundaries. This has been
necessary to lay the groundwork for the investigations that gave rise to the title of
this thesis. Before we can turn to the problem of nonintegrable open resonators, we
shall derive some necessary results concerning the integrable open cavity of circular
shape.

We have in mind an application of concepts from nonlinear dynamics to the
study of dielectric optical resonators, and it turns out that it is helpful to introduce
terminology known from quantum mechanics (such as tunneling) in discussing the
optical systems. At first sight it may seem trivial to do this, in view of the fact
that electromagnetic waves have been used extensively to simulate closed quantum
systems at microwave frequencies118–121. However, the analogy between quantum
mechanics and the scalar wave equation of optics is not complete if one has to deal
with finite potentials or refractive indices, respectively, that are not constant in
space. A homogenous dielectric in air is of this type, and it corresponds to an at-
tractive potential well of finite depth, but only with some caveats to be discussed
later. It must also be kept in mind that one has to take the polarization of elec-
tromagnetic waves into account. Fortunately, polarizations can be chosen such that
they are preserved (not mixed) by the geometry to be discussed now.

8.1 Electromagnetic waves in the circular cylinder

We consider an insulating circular cylinder of refractive index n > 1 surrounded by
vacuum, i.e., in polar coordinates

n(r) =

{

n (r < R)
1 (r > R)

. (8.1)

This is a problem that is treated in textbooks, e.g. Refs.122,123, but it will be
necessary for us to expand significantly on the treatment of resonances found there.
The interpretation we shall give is closely related to the work by Johnson concerning
resonances in spherical dielectrics124, which have been of greater applied interest
than cylinders and were therefore studied more extensively. Since in this thesis
solutions of the wave equation for deformed spheres were not attempted, we do not
reproduce all the known results for spherical dielectrics but instead fill the existing
gaps for the cylindrical case, in preparation for the full wave solutions of deformed
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cylinders which will be presented later. We will also need the results for the circular
cylinder as an ingredient in the ray dynamics simulations that are introduced later
to understand resonance widths in deformed cavities.

8.1.1 Metastable well in the effective potential

Let us first see how one arrives at an effective potential with a centrifugal barrier
from Maxwell’s equations. Assuming all fields to have the time dependence e−iωt,
Maxwell’s equations become

∇×E = −1

c

∂H

∂t
= ikH (8.2)

∇×H =
1

c

∂D

∂t
= −ikn2E, (8.3)

where the wave number is given by k = ω/c. Combining these equations, we get the
wave equations

∇×∇×E = (nk)2E, (8.4)

∇×∇×H = (nk)2H. (8.5)

Since charge density can only appear at the surface of the dielectric, we have∇·E = 0
in each domain of constant n. 1 In these regions, Eq. (8.4) therefore becomes

−∇2E = (nk)2E. (8.6)

Following Johnson124, we can rewrite this in a form similar to the Schrödinger equa-
tion,

−∇2E + k2(1− n2)E = k2E (8.7)

This suggests that regions with n > 1 correspond to an attractive potential, except
that the potential is itself multiplied by the eigenvalue k2.

Let us now discuss how such a purely attractive potential can give rise to
resonances that are so long-lived that they can be the building blocks of lasers and
other important devices. When classical particles scatter off a short-ranged, purely
attractive potential in two dimensions, their motion is accelerated as they approach
the target, and they slow back down to their initial velocity as they escape to infinity.
For particles launched inside the potential well, truly bound states exist even if the
energy is everywhere larger than the scattering potential, simply due to conservation
laws that exist in two (or three) dimensions, such as angular momentum conserva-
tion. In wave mechanics, these states acquire a finite lifetime, but they still create
extremely sharp resonances because their decay is classically forbidden and proceeds
via tunneling. In one dimension, one finds oscillations in the transmission coefficient
of an attractive well due to above-barrier resonances, but the corresponding lifetime
is short.

We illustrate the effect of rotational symmetry for the wave equation, Eq.
(8.7), by performing a separation of variables in polar coordinates. The radial equa-
tion then reads

−
[

d2

dr2
+

1

r

d

dr

]

E(r) + Veff (r)E(r) = k2 E(r), (8.8)

1If E is parallel to the z axis, then the divergence vanishes even at the interface because E is
not a function of z. This is the case we focus on.
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Figure 8.1: Effective potential picture for whispering gallery resonances; kmin = m/(nR) and
kmax = m/R.

where the effective potential is

Veff (r) = k2
(

1− n2(r)
)

+
m2

r2
. (8.9)

Here, an additional centrifugal potential term has appeared as a consequence of
angular momentum conservation. The resulting sum of the attractive well due to
the dielectric and the repulsive angular momentum barrier is shown in Fig. 8.1. The
effective potential is seen to form a metastable well. This interpretation requires
some additional thought, however, because of the fact that the kinetic energy term
in the radial equation, Eq. (8.8) involves a first derivative so that it is not in the
form of a one-dimensional Schrödinger equation. This can be corrected by using the
substitution ξ := ln(kr) to obtain the normal form 2

d2

dξ2
E(ξ) + q2(ξ)E(ξ) = 0 (8.10)

with an “effective wavenumber”

q(ξ) :=
√

n2 e2ξ −m2. (8.11)

Now one can see that the field will be oscillatory whenever q2(ξ) > 0, and show
decaying behavior otherwise. In the original variable r, one has

q2(r) = (nkr)2 −m2 = r2
(

k2 − Veff (r)
)

, (8.12)

so that oscillatory, “classically allowed”, solutions exist whenever k2 exceeds the ef-
fective potential. This justifies the interpretation of Veff as defining a well separated
from the propagating solutions outside by a tunnel barrier. The depth of the well is

k2
min ≡ Veff (r = R−) = k2

min

(

1− n2
)

+
m2

R2
(8.13)

⇒ k2
min =

m2

(nR)2
, (8.14)

2Alternatively, one could decompose E = ψ/
√
r and obtain a Schrödinger-like equation for ψ

(similar to the textbook approach for the Hydrogen problem), but this introduces an additional
term in the effective potential, tantamount to replacing m2 by m2 − 1/4, which however makes
no difference in the large-m limit. The method chosen here is more convenient for our illustrative
purposes, and the resulting variables are closely related to the elliptical coordinates at large radius,
which in turn are useful in the deformed case.
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and the height of the barrier top is

kmax =
m

R
. (8.15)

Consequently, we expect narrow resonances for wavevectors satisfying

m/(nR) < k < m/R, (8.16)

because that places the metastable level below the top of the barrier, so that decay
can only occur by tunneling. States at the lowest possible k for a given m will be
concentrated most strongly near the interface r = R. Note that the tunnel barrier
gets higher with increasing angular momentum m, which is a first indication that the
whispering gallery modes propagating close to the dielectric interface have especially
long lifetimes. If the refractive index is changed, the barrier top remains the same,
but the well grows deeper, so that the lowest allowed k will give rise to a narrower
resonance. It will be shown later that the metastable states satisfying Eq. (8.16) are
discrete in the sense that their spacing in k is larger than their decay width through
the barrier. This brings with it useful similarities to truly bound states that one
would obtain by making the barrier impenetrable.

8.1.2 Boundary conditions

Our considerations so far have not addressed the boundary conditions at the interface
between dielectric and vacuum (or air), which in optics depend on the polarization
of E. The above arguments for the existence of narrow resonances are, however,
independent of the matching conditions because we rely only on the fact that a
tunnel barrier is formed where the field has to decay. For this reason, we choose
the polarization such that the matching conditions are simplest. This is achieved
by requiring E to be parallel to the cylinder axis ẑ, with the propagation direction
perpendicular to the cylinder. One denotes this as TM polarization because the
magnetic field is transverse to the cylinder axis. For a dielectric insulator without
any current flows, H must be continuous everywhere3. From Eq.(8.2), one has in
polar coordinates for the azimuthal component of the magnetic field

Hφ = − i

k
[∇×Eẑ]φ =

i

k

∂E

∂r
. (8.17)

The tangential components of E are also continuous at the interface, which for TM
polarization applies to E itself. Therefore, both E and ∂E/∂r must be continuous
at the interface. This shows that TM polarization leads to the same matching
conditions for E as in quantum mechanics. TE polarization (H along ẑ) does not
result in this familiar requirement, and we are going to use only TM polarization in
what follows.

8.1.3 Comparison to quantum mechanics

Having arrived at the common quantum mechanical matching conditions, we still
have not achieved full equivalence between optics and quantum mechanics. The
reason is of course that Veff depends on k. For the time-independent Schrödinger
equation with a constant attractive potential

V (r) =

{−V0 (r < R)
0 (r > R)

(8.18)

3We neglect any variation in the magnetic permeability
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we obtain, similarly to the above treatment, the quantum mechanical effective po-
tential in the radial equation,

Vqm(r) = V (r) +
h̄2m2

2Mr2
, (8.19)

where M is the mass. The metastable well formed here is similar to that in Fig. 8.1,
except that the depth of the well remains fixed as we change the energy of the
particle. In the optics case, the well actually gets deeper if we raise k. We will
return to this effect later as an explanation for the Fresnel reflection formula.

The upper limit on k =
√

2mE/h̄ for the existence of long- lived resonant
states is again k = m/R, as in the optical counterpart.

8.1.4 Total internal reflection

We can attach a well-known physical interpretation to the condition k < m/R for
narrow resonances, by making use of the exact semiclassical relation Eq. (7.12),
which is also valid in the open system, except that k is now the discrete resonance
wavevector of the light outside the cavity, corresponding to nk inside. Therefore,
the relation for the angle of incidence is

sinχ =
m

nkR
. (8.20)

Inserting this into Eq. (8.16), m is eliminated in favour of sinχ to yield

1 > sinχ > 1/n. (8.21)

The first inequality is trivial, but the second (corresponding to the barrier top con-
dition) is precisely the relation a ray has to satisfy if it is to undergo total internal
reflection. When sinχ = 1/n, there appears a refracted ray in the optically thin
medium on the outside, tangent to the interface. Total internal reflection would
imply that the below-barrier resonant states are in fact stable, not metastable. The
reason they do escape is that the surface has a finite curvature, while total internal
reflection requires a plane interface. The realization that total internal reflection is
the classical reason behind the long lifetimes of modes in the symmetric dielectric
cavity is going to be one of the key elements in our treatment of asymmetric cavities.

8.2 Quasibound states

We can answer all questions about the elastic scattering of light by a dielectric
cylinder if we know the scattering states,

E(r) =

{

Am Jm(nkr) (r < R)

H
(2)
m (kr) + SmH

(1)
m (kr) (r > R)

, (8.22)

for all m. These are solutions to the radial equation, Eq. (8.8), with the refractive
index given by Eq. (8.1), provided that we determine the coefficients such that they
satisfy the matching conditions for E and its derivative, E ′,

Am Jm(nkR) = H(2)
m (kR) + SmH(1)

m (kR)

Am nJ ′m(nkR) = H(2)′
m (kR) + SmH(1)′

m (kR). (8.23)

This can be solved for the scattering amplitude Sm as a function of the size parameter
x ≡ kR. In terms of quantum mechanical scattering theory, Sm is an element
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Figure 8.2: Intensity scattered off a circular cylinder at 50◦ with respect to the direction of the
incoming wave, which is assumed to be plane and TM polarized.

of the S-matrix which for the rotationally invariant scatterer is diagonal in the
basis of angular momentum states m. Using these solutions, one can for example
calculate the scattering properties for an incident plane wave, because the latter
can be decomposed into a combination of Bessel functions, thus prescribing the
coefficients with which to superimpose the scattering states (8.22). In this way,
one can obtain a plot like the one shown in Fig. 8.2. The resonances are of the
Breit-Wigner or Fano shape as long as they are sufficiently isolated, and it is then
a simple matter to extract their widths. What can immediately be observed is that
there appear to be two distinct classes of resonances, namely broad ones and very
narrow ones. The latter will be seen to be precisely the whispering-gallery modes
confined by total internal reflection.

Resonances are directly connected with quasibound states or poles of the
S-matrix. To determine the position and width of a resonance without recourse to
fits of the scattering line shapes, one can determine real and imaginary part of the
pole position in the complex k plane. This is done by recalling that a pole of the
S-matrix corresponds to the possibility of having an outgoing wave in the absence
of an incoming wave. Therefore we have to find the complex k at which there exists
a nontrivial solution to the homogenous part of the linear system (8.23), which is
tantamount to searching for the zeroes of the determinant

D =

∣

∣

∣

∣

∣

Jm(nkR) −H(1)
m (kR)

nJ ′m(nkR) −H(1)′
m (kR)

∣

∣

∣

∣

∣

. (8.24)

This leads to

−Jm(nkR)H(1)′
m (kR) + nJ ′m(nkR)H(1)

m (kR) = 0. (8.25)

Using the recursion relations for the Bessel functions to eliminate the derivatives,
we arrive at the resonance condition

n

[

m

nkR
Jm(nkR)− Jm+1(nkR)

]

H(1)
m (kR) (8.26)

= Jm(nkR)

[

m

kR
H(1)

m (kR)−H
(1)
m+1(kR)

]

⇒ nJm+1(nkR)H(1)
m (kR) = Jm(nkR)H

(1)
m+1(kR). (8.27)
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Figure 8.3: Resonance positions in the circle of refractive index n = 2 with TM polarization for
the lowest 44 angular momentum numbers m. Each dot corresponds to one resonance, and the
solid line kR = m represents the dividing line between broad and narrow resonances, with narrow
widths expected below it according to both the barrier picture and the total internal reflection
interpretation. The horizontal dashed lines enclose a kR interval in which we count a total of 9
resonances below the critical line. Compare this observation with the scattered intensity in Fig. 8.2.
The three narrowest resonances there correspond to the three lowest-kR points at m = 17, 18, 19.
The closer the points are to the critical line, the broader the resonances get.

This can then be solved numerically to find the real and imaginary parts of kR at
which a metastable state occurs. The results for the real parts are summarized in
Fig. 8.3. Clearly, the discreteness of the points in this grid suggests that the resonant
states can be characterized by two quantum numbers as in the closed circle. One
is m, the other is the analog of the radial quantum number, and in the same way
should count the number of radial nodes in the effective potential well.

Approximate analytical results can be obtained when the Bessel functions
can be replaced by their asymptotic expansions. Here, one can make different ap-
proximations depending on whether k is below the barrier top of the effective po-
tential or not. We now discuss the cases that arise, in order to make connections
to important physical interpretations such as Fresnel reflection and semiclassical
formulas for positions and widths of resonances.

8.3 Above-barrier resonances

According to Eq. (8.16), only broad resonances are possible in angular momentum
channel m if kR > m. If kR is far above this threshold, we can use the large-
argument expansion in Eq. (8.27) to obtain

n cos

(

nkR− π

2
m− 3π

4

)

exp i

(

kR− π

2
m− π

4

)

(8.28)

= cos

(

nkR− π

2
m− π

4

)

exp i

(

kR− π

2
m− 3π

4

)

. (8.29)

Noting that cos(α− π/2) = sinα, the transcendental equation simplifies to

tan

(

nkR− π

2
m− π

4

)

=
1

n
e−iπ/2 = − i

n
. (8.30)

97



This can be solved immediately for nkR, yielding

nkR =
π

2
m+

π

4
+
i

2

[

ln
1− 1/n

1 + 1/n
− i2πl

]

. (8.31)

Thus the real and imaginary parts, kR = x+ iy, are

x =
π

n

[

m

2
+ l +

1

4

]

(8.32)

y =
1

2n
ln

1− 1/n

1 + 1/n
. (8.33)

It is interesting to note that the expansion for the real part of these broad resonances
coincides with the semiclassical spectrum of a closed billiard with von-Neumann
boundary conditions, cf. Eq. (A.20). The radial quantum number l runs from
0 . . .∞, because negative l would label a lower-m state. This shows explicitly what
was already noted in the context of Fig. 8.3, namely that the resonant states can be
characterized by discrete quantum numbers analogous to the closed system.

The resonance width y is independent of the size parameter x. For large
enough refractive index n, we can expand the logarithm on the last line to find

y = − 1

n2
. (8.34)

This result is quite puzzling if one compares it with quantum-mechanical above-
barrier reflection: Should the decay rate not increase indefinitely as kR is increased
? That is, after all, what happens in quantum mechanics, because reflection becomes
negligible when the energy is much larger than the barrier height. However in the
optical system, inspection of Eq. (8.9) reveals that the effective potential jump at
the barrier actually grows when kR is increased: the barrier top remains fixed, but
the bottom of the well decreases, and this leads to a k-independent above-barrier
reflection.

The fact that y is determined solely by the index of refraction jump at
the surface suggests a simple interpretation in terms of Fresnel’s formula for the
reflectivity of a dielectric interface: For normal incidence at a plane interface, the
reflection probability is (independently of polarization)

p0 =

∣

∣

∣

∣

Ereflected

Eincident

∣

∣

∣

∣

2

=
(1− n)2

(1 + n)2
. (8.35)

The limit kR � m we are interested in means that the length over which the
amplitude varies along the interface satisfies

2πR

m
� 2π

k
= λ. (8.36)

On the scale of the wavelength λ, both 2πR/m and R are very large so that the
wave can be considered to be a plane wave normally incident on a flat interface. This
agrees with the definition of sinχ = m/nkR which yields χ → 0 in this limit. A
ray bouncing along a diameter of the circular cross section travels for a time 2Rn/c
between reflections. After ν bounces and a corresponding time of t = 2Rnν/c, the
probability for still remaining in the cavity is

P (t) = pν
0 = exp(ν ln p0) (8.37)

= exp(tc ln p0/2nR) = e−2t/τ (8.38)
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with the decay rate
2

τ
= −c ln p0

2nR
. (8.39)

The factor of two stems from the fact that P (t) describes the field intensity, which
is proportional to E2, while we want τ to be the decay time of E itself. Inserting
the expression for p0, we find

1

τ
= − c

2nR
ln

1− 1/n

1 + 1/n
. (8.40)

But the decay rate is related to the imaginary part of kR by

y = −R

cτ
=

1

2n
ln

1− 1/n

1 + 1/n
, (8.41)

which precisely reproduces Eq. (8.33).

8.4 Below-barrier resonances

When kR < m, the quasibound states decay only by tunneling through the effective
potential barrier. It is not possible to apply Fresnel’s formulas in this case because
the interface no longer looks plane to the incident wave. Since sinχ exceeds the
critical angle, we would expect total internal reflection for a plane interface, with
no possibility for tunneling escape. Thus, the nonvanishing curvature is crucial for
determining the finite resonance lifetime. In contrast to the broad above-barrier
resonances, we now expect a strong k dependence of y.

To obtain an approximate expression for y, we return to Eq. (8.27) and
expand it to first order in y. This will be justified if the resulting resonances are
narrow. One obtains

iy
[

nJm−1(nx)H
(1)′
m (x) + n2J ′m−1(nx)H

(1)
m (x) (8.42)

−Jm(nx)H
(1)′
m−1(x)− nJ ′m(nx)H(1)

m (x)
]

= Jm(nx)H
(1)
m−1(x)− nJm−1(nx)H

(1)
m (x). (8.43)

Here we use the recursion relations for the derivatives in such a way as to obtain
only orders m and m− 1. The factor multiplying iy then becomes (leaving out the
arguments and superscripts)

nJm−1

(

Hm−1 −
m

x
Hm

)

+ n2
(

m− 1

x
Jm−1 − Jm

)

H(1)
m

−Jm

(

m− 1

x
Hm−1 −Hm

)

− n

(

Jm−1 −
m

x
Jm

)

H(1)
m (x)

=
1

x
(JmHm−1 − nJm−1Hm) + (1− n2)HmJm. (8.44)

This leads to

iy =

[

1

x
+ (1− n2)

HmJm

JmHm−1 − nJm−1Hm

]−1

=

[

1

x
+ (1− n2)

1

Hm−1/Hm − nJm−1/Jm

]−1

. (8.45)
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Now x is not arbitrary, but instead fixed by the resonance condition. For Eq. (8.45),
this condition means that x must be chosen so as to make the righthand side purely
imaginary to linear order in y (since y on the lefthand side is real). However we
do not use this condition to determine x because there is a more accurate way that
does not require an expansion in y. Instead, we proceed to simplify the approximate
expression for y as a function of x and m provided by Eq. (8.45). The ratio of Hankel
functions is

Hm−1

Hm
=
Jm−1 + iYm−1

Jm + iJm
=
Jm−1Jm + Ym−1Ym

J2
m + Y 2

m

+ i
JmYm−1 − Jm−1Ym

J2
m + Y 2

m

. (8.46)

Using this, we can rewrite Eq. (8.45) as

iy =
1

a+ 1
c+id

(8.47)

where we defined

a ≡ 1

x
(8.48)

c ≡ 1

1− n2

[

Jm−1Jm + Ym−1Ym

J2
m + Y 2

m

− n
Jm−1

Jm

]

(8.49)

d ≡ 1

1− n2

JmYm−1 − Jm−1Ym

J2
m + Y 2

m

. (8.50)

We can show immediately that d → 0 when y → 0 by decomposing Eq. (8.47) into
real and imaginary parts:

iy =
ac2 + c+ ad2

(ac+ 1)2 + a2d2
+ i

d

(ac+ 1)2 + a2d2
. (8.51)

The imaginary part has to vanish when y → 0. To linear order in y Eq. (8.47) is in
fact equivalent to

iy = id = i
1

1− n2

Jm(x)Ym−1(x)− Jm−1(x)Ym(x)

J2
m(x) + Y 2

m(x)
. (8.52)

To prove this, compare the imaginary parts of the last two equations to get the
identity

d =
d

(ac+ 1)2 + a2d2
⇒ ac2 + 2c+ ad2 = 0. (8.53)

Using this, the real part of Eq. (8.51) simply becomes equal to −c, which through
Eq. (8.53) can be expressed in terms of d as

−c = −1

a

[
√

1− a2d2 − 1
]

(8.54)

≈ −x
[

1− d2

2x2
− 1

]

(8.55)

=
d2

2x
. (8.56)

This means that the real part is of second order in y if we set y = d, and hence Eq.
(8.52) is correct to linear order in y.
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Equation (8.52) is valid for small y (y � 1) and arbitrary angular momentum
m. We now letm become very large at constantm/x > 1 (the inequality follows from
the requirement of below- barrier resonance). If moreover (m − 1)/x > 1 one can
employ the asymptotic Debye expansion (also called approximation by tangents125)
for the Bessel functions:

Jm

(

m
x

m

)

≈ 1√
2πm tanhα

exp [m(tanhα− α)] , (8.57)

Ym

(

m
x

m

)

≈ −2√
2πm tanhα

exp [−m(tanhα− α)] ,

tanhα ≡
√

1− x2

m2
. (8.58)

These functions enter with indices m and m− 1. The value of

tanhα′ ≡
√

1− x2

(m− 1)2
(8.59)

is very close to tanhα, and the difference can be neglected in the prefactors which
then cancel in Eq. (8.52), yielding

y =
2

n2 − 1

1

exp[2m(tanhα− α)] + 4 exp[−2m(tanhα− α)]

× {exp[(m− 1)(tanhα′ − α′)] exp[−m(tanhα− α)]

− exp[m(tanhα− α)] exp[−(m− 1)(tanhα′ − α′)]
}

(8.60)

In the numerator, it would be incorrect to replace α′ by α if the resulting error is
of order 1/m, because of the additional factor m in the exponentials. We perform
a Taylor expansion of tanhα′ in the small parameter ξ ≡ ∆m/m where in our case
∆m will be set to −1 in the end. The result is

tanhα′ ≈ tanhα+ ∆m
x2

m3 tanhα
. (8.61)

Similarly, one obtains

α′ ≈ α+
∆m

m tanhα
, (8.62)

which leads to

(m+ ∆m) (tanhα′ − α′)

≈ (m+ ∆m)

[

tanhα− α+
∆m

tanhα

(

x2

m3
− 1

m

)]

≈ (m+ ∆m) (tanhα− α) +
∆m

tanhα

(

x2

m2
− 1

)

= m tanhα− (m+ ∆m)α

= m (tanhα− α) + α. (8.63)

Here we have used the definition of tanhα to cancel the term ∆m tanhα. With these
approximations Eq. (8.60) becomes

y = − 4

n2 − 1

sinhα

exp [2m(tanhα− α)] + 4 exp [−2m(tanhα− α)]
(8.64)
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The range of tanhα is 0 . . . 1. But the resonance width predicted by Eq. (8.64)
vanishes for x = m, whereas we expect the width to increase monotonously as x
approaches m from below. The reason for this failure is that the expansion Eq.
(8.57) is invalid when tanhα → 0 because the prefactor diverges. Therefore we
should also take the limit tanhα → 1. Since m/x < n, this requires taking the
refractive index to be large. In the numerator, the second term then dominates the
first one since

α =
1

2
ln

1 +
√

1− x2/m2

1−
√

1− x2/m2
(8.65)

diverges for x � m. In the denominator of Eq. (8.64), the first term (coming from
J2

m) becomes negligible for large m. Keeping only the dominant terms, the result is

y = − 1

n2 − 1

1

2
exp [−(2m− 1)α] exp[2m tanhα]. (8.66)

In the case of broad resonances, we were able to give a derivation of y in terms of
Fresnel’s formula for the reflection probability p0 at each bounce of the ray. We can
now ask what the form of p0 has to be in order to reproduce the correct y for sub-
barrier resonances. I.e. we are looking for the reflection probability from a curved
interface that allows evanescent escape. The distance traversed by a ray between
reflections is now 2nR cosχ, and we obtain in analogy to Eq. (8.39)

2

τ
= − c ln p0

2nR cosχ
. (8.67)

Substituting τ by the width y, the reflection probability becomes

p0 = exp(−4n|y| cosχ) ≈ 1− 4n|y| cosχ, (8.68)

i.e. the tunneling probability is 4n|y| cosχ. This rule will find an application in our
discussion of deformed cavities.

8.5 Resonance widths from WKB approximation

The previous expansion of the exact resonance condition for small y in the case of
sub-barrier resonances yields the same exponential factor as would be obtained from
the WKB approximation. We note this here because the condition for the validity
of WKB is not strictly satisfied. The latter follows from the close proximity of all
three classical turning points of the effective potential126, and we will thus be unable
to determine the prefactor of y except by methods like the one used above. The
proximity of the turning points is precisely the reason why we could not use the
large-argument approximation for the Bessel functions in Eq. (8.52). We start from
Eq. (8.10) and look for the exponentially decaying solution in the forbidden region
outside the disk, where

q(ξ) =
√

e2ξ −m2 (8.69)

is imaginary. The interval where this happens is ln(kR) < ξ < lnm. Thus, the
decay factor for the intensity will be e−2J where

J :=

lnm
∫

ln kR

dξ
√

m2 − e2ξ (8.70)

= m ln
m+

√
m2 − k2R2

kR
−
√

m2 − k2R2. (8.71)
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Now in the first term we use

ln





m

kR



1 +

√

1− k2R2

m2







 (8.72)

= ln
1 +

√

1− k2R2

m2

√

1−
(

1− k2R2

m2

)

(8.73)

=
1

2
ln

(

1 +
√

1− k2R2

m2

)2

(

1−
√

1− k2R2

m2

) (

1 +
√

1− k2R2

m2

) (8.74)

=
1

2
ln

1 +
√

1− k2R2

m2

1−
√

1− k2R2

m2

(8.75)

= arctanh

√

1− k2R2

m2
(8.76)

= α (8.77)

with the definition of Eq. (8.58). This leads to

J = m(α− tanhα), (8.78)

in agreement with Eq. (8.66), and in disagreement with the J quoted in17 which is
independent of m and kR/m. This dependence is crucial in explaining the influence
of tunneling in the deformed billiard.

8.6 Global accuracy of the approximations

Having considered the limits kR � m (above-barrier) and y � 1 (below-barrier),
it remains to be tested how the two results, Eqs. (8.33) and (8.52), are connected
in the transition region where kR ≈ m. To this end we return to Eq. (8.52), which
read

y =
1

1− n2

Jm(x)Ym−1(x)− Jm−1(x)Ym(x)

J2
m(x) + Y 2

m(x)
. (8.79)

The condition for its validity is simply y � 1 which is in fact satisfied even for
above-barrier resonances provided n is large enough.

One might expect that there exists a semiclassical approximation to this
equation with fixed ratio x/m > 1, using the asymptotic forms125

Jm

(

m
x

m

)

≈
√

2

πm tanβ
cos

[

m (tanβ − β)− π

4

]

, (8.80)

Ym

(

m
x

m

)

≈
√

2

πm tanβ
sin

[

m (tanβ − β)− π

4

]

,

tanβ ≡
√

x2

m2
− 1. (8.81)

Already one sees that the denominator of Eq. (8.79) is unity in this approximation.
Again we can neglect the difference between m and m− 1 in the prefactors but not
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Figure 8.4: The open circles indicate exact resonance widths calculated from Eq. (8.27), for selected
resonances whose real parts fall into the interval 44 < kR < 45 at refractive index n = 2. To
illustrate the significance of the total internal reflection condition sinχ > 1/n, the widths are
plotted as a function of sinχ = m/(nkR). The exponential falloff due to tunneling is seen to start
for sinχ above the critical value sinχc = 1/2. The solid line is Eq. (8.88).

in the argument of sin and cos, where we need the Taylor expansions in ξ = ∆m/m.
One obtains

tanβ′ ≈ tan β −∆m
x2

m3 tan β
, (8.82)

β′ ≈ β − ∆m

m tanβ
, (8.83)

⇒ (m− 1) (tan β ′ − β′) ≈ m (tan β − β) + β. (8.84)

With the abbreviation
A ≡ m (tan β − β)− π

4
(8.85)

Eq. (8.52) now becomes

y =
1

1− n2
[cosA sin(A+ β)− sinA cos(A+ β)]

=
1

1− n2
sinβ. (8.86)

As in the case of below-barrier resonances, we encounter a difficulty when x =
m, which implies β = 0 and thus vanishing decay rate. This is again due to the
breakdown of the semiclassical approximation as seen from the diverging prefactors
in Eq. (8.80). When x� m, Eq. (8.86) predicts y = 1/(1−n2) which differs slightly
from Eq. (8.33). Both formulas show the physically expected divergence of the width
at n = 1, and they become identical in the limit n → ∞, cf. Eq. (8.34). Whereas
Eq. (8.33) only involved one approximation, namely the semiclassical expansion of
the Bessel functions, we obtained Eq. (8.86) by taking the semiclassical limit of Eq.
(8.79) which itself resulted from a Taylor expansion in y.

We take this as a justification for adjusting the result of the Taylor expansion,
Eq. (8.79) in such a way that the above semiclassical approximation leads to full
agreement with Eq. (8.33) in the limit x � m. Since the condition for the Taylor
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expansion was y � 1 which in turn requires n� 1, we are allowed to leading order
in 1/n to replace the prefactor 1/(1 − n2) in Eq. (8.79) by

1

2n
ln

1− 1/n

1 + 1/n
. (8.87)

This solves the problem, because Eq. (8.79) then automatically connects to Eq.
(8.33). The formula we are therefore going to use across the whole range from
x� m to x� m is

y =
1

2n
ln

[

1− 1/n

1 + 1/n

]

Jm(x)Ym−1(x)− Jm−1(x)Ym(x)

J2
m(x) + Y 2

m(x)
. (8.88)

The comparison between this expression and the exact resonance widths is shown
in Fig. 8.4. This expression will be most useful to us after it is substituted into Eq.
(8.68) for the reflection probability per collision, and after the quantum number m
is eliminated in terms of sinχ and kR as done in Fig. 8.4. The resulting quantity

p0(sinχ, kR) (8.89)

is plotted for different values of kR as a function of sinχ in Fig. 8.5. It is instructive
to compare the results with the Fresnel formula for reflection from a plane interface

Figure 8.5: Reflection probability p0 at each collision with a circular interface versus the sine of
the angle of incidence, assuming n = 2. The heavy lines correspond to kR = 45 (solid), kR = 27
(dashed) and kR = 12 (dashed-dotted). For comparison, the Fresnel formula for a plane interface
is plotted as the thin solid line. The vertical dotted line denotes sinχc = 1/n, above which one
classically expects total internal reflection.

with electric field perpendicular to the plane of incidence. The major effect of
the finite curvature in the circle is seen to consist in a nonvanishing transmission
probability above the critical angle for total internal reflection. It is also important
to note that even at the relatively low wavenumbers plotted here, p0 settles into an
almost k- independent shape for sinχ < 1/n. In the tunnleing regime, sinχ > 1/n,
the k-dependence is not seen in the figure but nonetheless is very strong on an
exponentially small scale. This is of course the reason why the tunneling widths
which differ by many orders of magnitude are correctly reproduced.
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Chapter 9

Wave equation for asymmetric
resonant cavities (ARCs)

We have been able to derive analytical formulas for the resonance widths of circular
dielectric cylinders because angular momentum conservation allowed us to separate
the wave equation into azimuthal and radial parts. In other words, the effective
potential picture is valid only because m is a good quantum number in the circle.
In the scattering state and the quasibound state for a deformed cavity, we then
have to take into account admixtures of different m′, and their number grows with
deformation.

In this and the following chapters we present two different ways in which to
attack this problem: exact numerical calculations, and simulations based on a ray
optics model. The two approaches are complementary in that the former provides an
accuracy check for the latter, while the classical model is currently the only existing
route to a theory of ARCs with explanatory and predictive power. The results of
our numerical calculations will acquire physical meaning in the light of the classical
model.

Historically, this thesis made its first progress toward an understanding of
ARCs entirely based on classical considerations. However, the connection between
ray optics and wave solutions requires a semiclassical approximation, the validity of
which can be tested independently of other predictions of the model, by referring to
the exact wave solutions. It therefore seems appropriate at this point to describe
the numerical calculations first, followed by the discussion of the ray optics model,
which then can profit from immediate comparison to the exact results.

9.1 Wave solutions for deformed cylinders

To calculate the effect of shape perturbations on the resonance width, one could
start with a perturbation approach when the deformation is small6. However, we are
interested in distortions that are not necessarily in this regime, so an exact solution
of the scattering problem is required. The approach chosen here is a wavefunction
matching technique. Here we discuss its justification and implementation, using the
notation Ψ instead of E for the field in order to avoid confusion with the energy
that appears in our classical models.

It may be worth remarking that the wave function matching technique has
not been used widely because of formal divergences that can occur near the scatterer,
as will be explained below. Had the author been aware of these difficulties before
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embarking on the actual calculations, it is likely that a different method would have
been tried first. The alternative methods that are in widespread use are mostly
based on boundary integral representations of the fields. They are, however, inferior
to our wave function matching technique in practice because they require finding
a larger number of unknowns that grows with deformation. The resulting matrix
equations are larger than for our method at the same high deformation. This may
be one reason why no extensive calculations had been performed previously for the
large convex deformations we are interested in. The other reason is, of course, that
there was no theory that predicted what systematic behavior to expect from ARCs.

Our goal is to solve Eq. (8.6) for a convex domain D bounded in polar
coordinates by R(φ), with an index of refraction n > 1 inside. In analogy to quantum
scattering theory, we define the S-matrix in the angular momentum basis by looking
for solutions of the wave equation with the asymptotic form

Ψ(r, φ) := eimφH(2)(kr) +
∞
∑

l=−∞
Slm eilφH

(1)
l (kr). (9.1)

The first term is an incoming partial wave of azimuthal order m, and the second
term represents the outgoing wave. This is the generalization of Eq. (8.22) to the
case of broken rotational symmetry.

The numerical method consists in solving matrix equations for the expansion
coefficients Slm. In boundary-integral calculations and methods derived from it, the
accuracy of the solution is increased by increasing the number of equations and of
unknown coefficients. In our method, we can improve accuracy by adding more
equations but not more unknowns (of course this implies the matrices will become
rectangular). The boundary integral methods127 (a variant of which is the T-matrix
method123) rely on the equivalence principle128, replacing the scatterer by a set of
induced surface polarization currents that result in zero field inside the scatterer.129

The vanishing internal field is a sum of the incident wave and the field generated at
the surface, and this allows one to determine the surface currents. From these, the
scattered field can then be derived. The integrations over the surface that are needed
here do not appear in the wavefunction matching technique, because the latter does
not make use of the equivalence principle. The starting point of our method is the
assumption that Eq. (9.1) describes the field everywhere outside the scatterer, not
just in the asymptotic region.

9.1.1 Rayleigh Hypothesis

The question of whether or not the scattered wave expansion Eq. (9.1) in terms of
Hankel functions is convergent in the near field, too, cannot always be answered
a priori130. The Rayleigh hypothesis is precisely this assumption, that Eq. (9.1)
describes the wave in the entire exterior of the scatterer. We adopt this as a work-
ing hypothesis in the numerical calculation and check its validity a posteriori by
inspection of the solution.

An immediate consequence of the Rayleigh hypothesis is that there are no
evanescent channels of the type found in waveguides, since all Hankel functions
become oscillatory at infinity.

The potential stumbling block that makes a general proof of the hypoth-
esis impossible can be illustrated in the ellipse where exact solutions in terms of
series of Mathieu functions are possible. The scattered field must have singularities
somewhere in space because it would otherwise have to be identically zero, being
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a solution of an elliptical differential equation. These singularities are located at
the foci of the ellipse. If we want to expand the scattered wave in Hankel function
centered in the middle of the ellipse, convergence can be guaranteed only outside
the smallest circle that includes the foci. Its radius is just the distance of the foci
from the origin, ρ =

√
a2 − c2. If ρ exceeds the short semiaxis c, then part of the

exterior lies inside the circle where convergence of the series cannot be guaranteed.
In this region we cannot be sure that the true scattered wave may be represented
as a convergent series of Hankel functions (i.e. a series in which successive terms
decrease sufficiently fast).

In the case of the ellipse, we see that the Rayleigh hypothesis is surely valid
if
√
a2 − c2 < c, corresponding to an eccentricity e =

√
a2 − c2/a < 1/

√
2 or a

quadrupole parameter ε < 1/8. Typical deformations of interest to us will be smaller
than this limit.

Moreover, it has been pointed out131,132 that even if the Hankel series repre-
sentation diverges formally (i.e. the Raighleigh hypothesis is violated), it is possible
to numerically achieve any desired accuracy in the wave function matching approach.
The reason for this is that although the infinite series in Eq. (9.1) may diverge at
some points along the boundary, in practice one always truncates the sum after some
number N of terms. The divergence of the infinite series is due to the fact that the
coefficients of the large-l Hankel functions do not decrease fast enough to outpace

the growth in H
(1)
l (kr) for r on the boundary. For the truncated matrix equation,

however, the coefficients adjust themselves such that the ones close to l = N are
smaller than the true coefficients. Still the squared deviation between true scattered
field and truncated expansion, integrated over the boundary, approaches zero as N is
increased. So for any N , the large-order coefficients are smaller than the true values,
but the field approaches the true field. This is because partial waves with extremely
large l are unphysical, i.e. cannot be significant in the far field. Their coefficients
hence are practically zero, but the near-field displays an extreme sensitivity to their
precise value, which in the truncated solution is kept at bay with no harm to the
accuracy of the wave function. The algorithm used here in fact penalizes the use of
too large a value of N by producing a more inaccurate wavefunction due to the nu-
merically diverging Hankel functions of high order. Therefore, there is an optimum
choice of N , large enough to include all physically relevant l and small enough not
to cause numerical precision problems.

9.1.2 Wavefunction Matching

For the inside ofD, we again expand the exact scattering state in angular momentum
eigenfunctions eilφ, but this time only Bessel functions of the first kind can occur
because all others diverge at the origin (the singularity of the Hankel functions at
r = 0 does not affect the outside solution). We thus write

ΨD =
∞
∑

l=−∞
Alm eilφ Jl(nkr). (9.2)

The continuity condition for E now has to be applied for all φ ∈ [−π, π] :

eimφH(2)
m (kR(φ)) +

∞
∑

l=−∞
Slm eilφH

(1)
l (kR(φ))

=
∞
∑

l=−∞
Alm eilφ Jl (nkR(φ)) . (9.3)
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The second condition is that ∂Ψ/∂r be continuous, cf. Eq. (8.17). Equating the
r-derivatives inside and outside, we obtain for all φ

eimφ
[

mH(2)
m (kR(φ)) − kR(φ)H

(2)
m+1(kR(φ))

]

(9.4)

=
∞
∑

l=−∞
eilφ

{

−Slm

[

l H
(1)
l (kR(φ))− kR(φ)H

(1)
l+1 (kR(φ))

]

+Alm [l Jl (nkR(φ))− nkR(φ) Jl+1 (nkR(φ))]
}

.

Here we used the same relations for the derivatives of the Bessel functions as in Eq.
(8.27), and multiplied through by R(φ).

The terms in the above equations containing the unknowns can be written
in matrix form as M (ν)x if we define a vector x through

x2l := Alm, x2l+1 := Slm, (l ∈ Z), (9.5)

and a matrix M with φ as a continuous row index: For Eq. (9.3) we write

M
(1)
2l (φ) := eilφ Jl (nkR(φ)) ,

M
(1)
2l+1(φ) := −eilφH

(1)
l (kR(φ)) , (9.6)

and for Eq. (9.4)

M
(2)
2l (φ) := eilφ [l Jl (nkR(φ))− nkR(φ) Jl+1 (nkR(φ))] ,

M
(2)
2l+1(φ) := −eilφ

[

l H
(1)
l (kR(φ)) + kR(φ)H

(1)
l+1 (kR(φ))

]

. (9.7)

The terms in the matching equations resulting from the incoming wave of angular
momentum m can be collected into the 2-vector defined by

b(1)(φ) := eimφH(2)
m (kR(φ)) (9.8)

b(2)(φ) := eimφ
[

mH(2)
m (kR(φ)) − kR(φ)H

(2)
m+1(kR(φ))

]

. (9.9)

We thus can write symbolically

M(φ)x = b(φ), (9.10)

which has to be satisfied for any φ. To solve the simultaneous equations, we need
to transform to a discrete row index and then truncate the matrices.

9.1.3 Solving the matching equations

Equations (9.3) and (9.4) have been summed up in matrix form in Eq. (9.10). To
find the scattering state for a given incoming m and wavenumber k, we find it is
sufficient to take into account only slightly more than

mmax ≈ nkR (9.11)

angular momenta. The reason can be understood if we use the definition of the
classical angle of incidence inside the billiard,

sinχ =
m

nkR
, (9.12)
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in the condition m ≤ nkR. The result is simply sinχ ≤ 1, which means that higher
angular momenta give rise to rays that are no longer allowed inside the cavity. These
angular momenta belong to rays that classically miss the scatterer. These partial
waves will consequently be of less importance in the formation of resonant states,
which is what we are looking for.

Having thus fixed the number of unknown coefficients A and S that are
needed to specify the solution with sufficient accuracy, we need at least equally many
independent equations to determine them. One approach would be to perform an
expansion of all functions of the continuous index φ in some complete set of functions
that are periodic in the interval [−φ, φ]. For each term in such a Fourier series, the
matching conditions then have to be satisfied separately. This was tried, but found
to be less efficient and no more accurate than the more direct way of discretizing
φ itself. That is, we simply impose the matching equations at a discrete set of
φq, where q enumerates at least mmax points along the boundary. If there are no
symmetries in the problem, we can choose

φq = (q − 1)
2π

Nφ
, q = 1 . . . Nφ, (9.13)

Here, it was not assumed that Nφ = mmax, because we find it useful to impose more
equations than there are unknowns, thus overdetermining the system of equations.
In this way it can be insured that if the spatial discretization should by coincidence
leave us with (numerically) linearly dependent equations at some φq and φr, there
will be enough equations left to determine all the coefficients. If the assumption
about mmax is correct, then a solution should exist with the same number of physi-
cally relevant unknowns, all higher-order partial waves being set to zero, no matter
how many times overdetermined the system is. The solution that is thus found is
then sure to be independent of the choice of φq.

The algorithm employed to solve the overdetermined system is due to Pen-
rose, and goes by the name “pseudoinverse”, or singular-value decomposition133,134.
It provides the solution vector x which minimizes the error |M x− b|.

9.1.4 Quasibound states at complex k

The advantage of using the S matrix formalism, i.e. calculating scattering states
like Eq. (9.1) is that S is a unitary matrix, which provides us with a sum rule
independent of the matching equations. The a and b coefficients used conventionally
in the literature122 do not obey this additional relation. The accuracy of the wave
function technique has been tested in this way by sweeping out an interval of (real)
incident wavenumbers and verifying that unitarity is preserved while the scattering
phases go through resonant behavior. However, for the subsequent analysis, it is
necessary to calculate directly the quasibound states at complex k, as was done in
the circle. The equations that have to be solved in this case are obtained from Eqns.
(9.3) and (9.4) by leaving out the incident waves. This results in a homogenous
matrix equation, M x = 0, with the same definitions as previously. The outside field
coefficients are now no longer the S-matrix elements, and they carry only one index
instead of two, because m in Slm labeled the incident partial wave which is absent
here. In the matching equations, we should therefore replace Slm by Sl and Alm by
Al everywhere, to avoid confusion with the scattering state coefficients.

The fundamental difference to the real k scattering states is that a solution
to the homogenous problem does not exist for all values of k, just as in the circle.
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Therefore, we have to perform a search for the resonant k in the complex plane.
The resonance condition is that the matrix M become singular. This means we
could look for the zeros of det(M), which is however not the best way to approach
the solution. The reason is first that our M should preferrably be rectangular,
as explained above. Secondly, we would like to determine the quasibound state
wavefunctions simultaneously with k. Furthermore, det(M) has zeros resulting from
all possible angular momenta, whereas we often know in advance which m will be
important in the resonant state we are looking for. Therefore, it would be efficient
to use this information and deal with a quantity that is more momentum-selective
than the determinant.

To achieve this, we assume that angular momentum m is the dominant
contribution in the quasibound state to be determined. Then we set its outside field
coefficient equal to unity,

Sm = 1, (9.14)

in Eqns. (9.3) and (9.4) and bring the corresponding terms to the righthand side of
the matrix equation, leaving one fewer unknown on the lefthand side. The result is
an inhomogenous equation

M ′ x′ = c, (9.15)

where M ′ is obtained from M by deleting the column 2m+1, and c is the negative of
just this column. The vector x′ is likewise obtained from x by dropping the element
2m+ 1.

The resulting inhomogenous, overdetermined system is again subjected to
singular-value decomposition, and in contrast to the scattering states there will in
general be no solution. We find the complex resonant k by minimizing the output
|M ′ x′ − c| of the singular-value decomposition. When it is equal to zero, the in-
homogenous system of equations has a solution, and a quasibound state has been
found in which m is a strong partial wave.

9.1.5 Symmetry considerations

The size of the problem can be reduced by taking into account possible symmetries
of the domain D. In the presence of an incoming wave, this is not possible in
general unless the incident direction coincides with a symmetry line. However the
quasibound states can be chosen to exhibit all the spatial symmetries of the billiard.
The quadratic Robnik billiard posesses reflection symmetry about the x axis. The
symmetrized wave functions should therefore have even or odd parity under the
operation φ → −φ. This is achieved simply if we replace eilφ by cos(lφ) (even)
or sin(lφ) (odd) in the equations defining the matrix M . Then the sums over the
angular momenta contain only l ≥ 0.

A further simplification arises in the quadrupole and ellipse which have as an
additional symmetry the reflection at the y-axis, φ→ π−φ. Thus the solutions can
be chosen to be even or odd under this operation, too 1. This is realized by restricting
the sums over l to run only over even or odd numbers, since cos l(π−φ) = (−1)l cos lφ
and sin l(π − φ) = −(−1)l sin lφ. The definition of M (ν) can thus be simplified by

writing M
(ν)
l , M

(ν)
l+1 instead of M

(ν)
2l , M

(ν)
2l+1 on the lefthand sides, where now l is

either even or odd.

1The full symmetry group is the direct product of the two reflection groups,
yielding C2v
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The spatial discretization points in either case have to be chosen only from
the part of the boundary that is irreducible under the respective symmetry oper-
ations which were taken into account in the definition of the matrix equation as
above. For example, we choose

φq = (q − 1)
π

Nφ
, q = 1 . . . Nφ, (9.16)

for the dipole billiard and

φq = (q − 1)
π

2Nφ
, q = 1 . . . Nφ, (9.17)

for the quadrupole or ellipse.

Time reversal invariance implies that if Ψ is a solution of the scattering
problem, then so is its complex conjugate. In the present case this provides no
further reduction in the matrix sizes since both the unknown coefficients x and the
matrix M are complex.

9.1.6 Incrementing the deformation from the circle

Despite the above simplifications, a minimization in the complex plane can still
be a tedious problem. Therefore, we make use of one more piece of information,
namely the known resonance positions in the circle. Using this k as a starting
value for the search, we can find the new k at a sufficiently small deformation such
that the resonance has not wandered far. This process can then be iterated by
incrementing the deformation in small steps and using the previously determined
k as the starting point of each new search. In this way, we have the advantage of
following a resonance from zero deformation to some large asymmetry, thus knowing
at all times what quantum numbers this state was characterized by in the circle.
Initially, the dominant angular momentum m needed in the above procedure is then
equal to the quantum number in the circle. However, as we follow the state to larger
deformation, we keep checking the newly found solutions to see when a different m ′

becomes dominant in the wavefunction. This m′ is then used instead of m as the
inhomogenous term in the next iteration.

This procedure of following a resonance with deformation may seem to be
severely threatened by the occurence of avoided crossings, where states come close
in k, and due to their interaction change their path abruptly. However, this was not
found to be the case for the whispering gallery resonances of interest here, because
the quasibound states that do cross in real part of k are usually so far separated
in imaginary part that the short-lived one has to be considered part of a broad
background and hence has no effect on the narrower resonance.

One disadvantage of the method, however, is that we do not retain a global
picture of how other resonances in the neighborhood evolve. If, e.g., we follow all
the resonances of the circle in the interval of Fig. 8.2 to some high deformation, we
could not draw a plot of the resonances in that same k interval because some states
may have wandered out of it and others (which we did not keep track of) could have
entered it. For the purposes of our study, it was precisely the goal to follow the
evolution of a given resonance with deformation, so that the method described here
is suitable.

To give an impression of the reliability of the numerical algorithm and to
point to the difficulties that had to be overcome in obtaining our data, Fig. 9.1 shows
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Figure 9.1: Wavenumber of an eigenstate in the closed quadratic Robnik billiard as a function of
deformation. The symbols are obtained from an exact diagonalization, the solid line results from
the wavefunction matching approach.

an application of an analogous technique to the problem of the closed Robnik billiard,
for which solutions are available. The wavefunction matching in this case consists of
the requirement that the field vanish identically on the boundary, so that there are no
scattered field coefficients to be determined. The eigenstates are furthermore located
at real k, so that only a minimization on the real axis is necessary. Our results are
seen to be identical with the data obtained by Bruus135,136 using a diagonalization
technique. Note, however, that an avoided crossing occurs on a scale not resolved
in the diagonalization data, after which point the wavefunction matching algorithm
follows the state that clearly does not retain the character of the WG mode. This
is technically exactly the expected behavior, because the algorithm has managed to
track the k position of the state through the avoided crossing. However, physically
we would like to keep following the state with WG character, and thus one would
have to jump across the gap between the anticrossing levels. In the open billiards
we are going to consider next, close encounters of quasibound state positions in
the complex k plane are comparatively rare, but due to the fact that the minimum
search is in two dimensions and not in one (as for the closed system), it becomes
harder to insure that the correct resonance is followed through such events.

9.2 Emission directionality of quasibound states

Whereas up to now the quasibound state was introduced only as a convenient tool for
extracting resonance widths and positions that could otherwise be determined from
Breit-Wigner fits for the scattered intensity, we want to examine now what physical
significance it has in its own right. This question was also studied by Young and
co-workers6, who give further references. The quasibound state can be thought of
as the limiting case of a wave packet launched in the cavity and decaying to infinity.
This is the appropriate description for an emission process such as lasing, where the
light waves are generated in the cavity, rather than being sent in from infinity and
then elastically scattered.

If the resonant state is at the complex frequency ω − iγ ≡ c(k − iκ), then
the corresponding solution of the time dependent wave equation decays at a rate γ
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Figure 9.2: False color representation of the squared electric field in the TM mode for the m =
68, kR = 45.15 resonance of the quadrupole-deformed cylinder at eccentricity e = 0.66. The
intensity is higher for redder colors, and vanishes in the dark blue regions. High intensity regions
in the near-field occur just outside the surface at the highest curvature points φ = 0, π, and high
emission intensity lines (green) emanate from these points in the tangent directions. The high
intensity inside the cavity reflects the quasibound nature of the state, which is seen to be still
WG-like with no intensity in the center.

since it has the form ψ(r, t) = ψ(r) e−iωt e−γt where γ > 0. But as a function of r,
the outgoing waves in fact exhibit exponential growth because

H(1)
m (x) ≈

√

2

πx
ei(x−mπ/2−π/4) (9.18)

for large values of x = (k − iκ)r. The physical reason for this growth with eκr is a
retardation effect: the field at r � R has propagated away from the cavity where
it originated a time ∆t ≈ r/c in the past – but at that earlier time the field at the
cavity was larger by a factor e−γ∆t. This is equivalent to eκr.

As can be seen from Eq. (9.18), all the Hankel functions in the outgoing wave

depend on r through the same factor
√

2
πx e

i(k−iκ)r in the far-field (r � R). Pulling
out this common dependence, the field of the quasibound state factorizes into radial
and angular functions,

ψ(r) =

√

2

πx
ei(k−iκ)r E(φ). (9.19)

This means that the directionality at large distances becomes independent of r, being
contained solely in E(φ). We will then choose r in this far-field region and plot the
square of the electric field (which is proportional to the intensity) as a function of φ
to obtain the wave directionality.

Figure 9.2 shows an example of a full quasibound state wavefunction. It
will be the purpose of chapter 11.3 to explain the strongly anisotropic intensity
distribution observed here. Also note that the above-mentioned exponential growth
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does not show up in this figure. This is clear from Eq. (9.19), which tells us that due
to the prefactor the wavefunction will in fact fall off up to a distance r = 1/(2κ), and
only beyond this r begin to grow. Since κR < 1/10 as will be seen later, the figure
captures only the spatial decay. This emission process differs from elastic scattering
which requires an incoming wave to excite the resonance. The directionality pattern
in a scattering experiment will depend on the form of the incident wave both because
of interference with the outgoing wave, and because the incident wave may couple
preferentially to different senses of circulation of the rays. These effects are absent
in emission, so a unique directionality profile will be observed that depends only on
the quasibound state itself and should be approximately described by our ray optics
model if kR is sufficiently large.
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Chapter 10

Ray-optic model for resonances

This is the central chapter of the thesis, because it lays the groundwork for our
understanding of the wave results. Our goal is a theory of the intrinsic properties of
individual quasibound whispering-gallery modes in the deformed dielectric cylinder.
These are, as listed in the introduction, the shift in the real part of k, the change in
the decay width, and the anisotropic emission that develops in the deformed cavity.

The latter two are properties that obviously cannot even be studied in closed
systems, whereas the frequency shift is a quantity that we already addressed when
discussing the semiclassical quantization of convex closed billiards using the adia-
batic invariant curves, cf. Eq. (7.13).

10.1 Semiclassical quantization for the resonance position

10.1.1 Applicability of EBK quantization

Let us therefore begin by asking whether we can use the same type of EBK quanti-
zation to predict the resonance positions in the open billiard. A necessary condition
is surely that the adiabatic curve should be followed for at least one period in φ,
which means the decay time of the resonance should be long enough for a ray to
make this round trip. If y = Im(kR), then the path length traversed before escaping
is L = 1/|ny|, which has to be larger than the circumference of the billiard. An ap-
proximate condition that has to be satisfied if the resonance is to be semiclassically
akin to a bound state is thus

2π R < L ⇒ |y| < 1

2πn
. (10.1)

In the circle, we know from Eq. (8.34) that above-barrier resonances have a width

|y| ≈ 1

n2
, (10.2)

which for common indices of refraction, n ≤ 6, is not sufficient to justify a clas-
sification as a quasi-bound state in the above sense. Therefore, it is necessary to
restrict our attention to below-barrier resonances, i.e. whispering-gallery modes, to
make headway with a semiclassical analysis similar to that for bound states. Since
these orbits are confined by total internal reflection, their classical motion is identi-
cal to that of the closed system. In the semiclassical quantization, we can thus use
the adiabatic curve and the resulting expression in Eq. (7.11). The only difference
is that the boundary conditions are neither of Dirichlet nor von- Neumann type.
Therefore, one has to reinstate the more general boundary phase shift α ∈ [0, π],
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(not to be confused with α from Eq. (8.57)) which leads to a replacement of the
3/4 term in the radial quantization condition by a number between 1/4 and 3/4.
We know that α = 0 for above-barrier resonances, see Eq. (8.32). For a general
WG resonance, α can be fixed by requiring the position x at zero deformation to
be equal to the semiclassical result. We then leave α constant as the deformation is
introduced. This essentially means that α is a parameter in the semiclassics for the
deformed case, determined uniquely by the results for the circle.
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Figure 10.1: Shift in real part of kR, denoted here by ∆kR, versus deformation for a resonance with
kR = 28.6, m = 46 (in the circle), under an elliptical deformation. The refractive index is n = 2.
The green curve shows the semiclassical result.

The assumption that α is unchanged with deformation, and moreover that
a single α describes the phase shifts for reflection at all points on the interface even
in the deformed case, has to be tested. Figure 10.1 shows that excellent agreement
between semiclassics and exact resonance position are obtained in the ellipse, after
α is chosen to make the curves coincide at ε = 0. The plot is obtained by fixing
the radial and “angular momentum” quantum numbers to be those of the resonance
in the circle, and then solving Eqs. (7.10) and (7.11) for the deformed shape with
curvature κ(φ).
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This example represents an open system, but the internal dynamics of the
ellipse is integrable. Recall that the ellipse with a finite wall is in fact nonintegrable;
however, the constant of motion is only violated when a classical trajectory leaves
the billiard. This does not occur for the whispering-gallery trajectories which are
confined by total internal reflection. Therefore, the adiabatic invariant curves are
an exact description of the WG dynamics here.
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Figure 10.2: Shift in real part of kR, denoted here by ∆kR, versus deformation for three resonances
of the quadrupole with refractive index n = 2. The wavenumbers and angular momentum quantum
numbers at e = 0 are kR = 12.1, m = 20 (blue), kR = 27.5, m = 44 (light green) and kR =
44.6, m = 71 (red). The dots of the same color represent the corresponding semiclassical shift. The
relative errors ∆(kR)/kR are 0.002, 0.004 and 0.005 with increasing m.

Having seen that the openness of the system does not invalidate the semiclas-
sical treatment of WG modes, we now apply the same procedure to the quadrupole
billiard. In Fig. 10.2, three WG resonances are followed with deformation. First
note the universal red shift of the resonance positions for all the resonances, which
is reproduced by the semiclassical approximation. All three resonances correspond
roughly to the same classical trajectories in the circle, because the semiclasical quan-
tization yields almost the same value of p̃ ≈ 0.8 [i.e. the same adiabatic curve, cf.
Eq. (7.10)] for all of them. However, the shift in position, ∆kR is larger when m is
larger. This tendency is correctly reflected in the semiclassical results, and one can
immediately explain it using Eq. (7.13). The deformation is introduced at constant
area, which necessarily increases the circumference L0 of the billiard. In order for
the same number of integer wavelengths to fit into L0 as in the circle, the wavelength
must increase, causing the red shift.
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10.1.2 Dynamical localization

The overall accuracy of the semiclassical approximation is better than the figure
suggests. It has to be kept in mind that we are only plotting the shifts in position,
which make up only a fraction of the total kR, especially at high kR. The relative
error in kR is smaller than 1% for all states, even at the largest deformation. Ad-
justing α to agree with the resonance position in the circle is not responsible for
this accuracy, considering that according to Eq. (7.3) a change in α has less of an
effect on the radial action than a change in the radial quantum number, so that kR
changes only by a fraction no matter what α is chosen. Having pointed out this
overall agreement, we now turn to a brief discussion of the observed discrepancies.

The agreement between semiclassics and exact results is best for smaller kR.
This is surprising at first sight because it runs counter to the expectation that the
semiclassical limit should be approached as the wavelength decreases. If we want to
resolve this contradiction, it must be concluded that deviations of the whispering
gallery trajectories from the adiabatic invariant curves become more important at
high kR. After all, the adiabatic curves are only followed approximately, and for
a finite number of reflections, while their validity is a prerequisite for the EBK
quantization.

We interpret this as an indication for the existence of dynamical localization
in the billiard, at least at high eccentricity where the WG trajectories no longer
move on invariant curves. Of course, the deviation between semiclassics and exact
results already develops at lower deformations, and the agreement should in this
regime be improved if the exact invariant curves were used in the EBK formulas
rather than the adiabatic invariant curves. However, once chaos has spread to the
region around sinχ ≈ 0.8, the adiabatic invariant curves are the best approximation
we have left. The localization interpretation then addresses not the question why
the agreement is so bad at high kR (which is related to the classical question of how
good the adiabatic curves work), but why the agreement is so good at low kR.

To appreciate the concept of dynamical localization137 , recall subsection 7.3,
where it was noted that the effect of classical diffusion on the quantization decreases
with increasing h̄ and increases with the classical diffusion constant. Now D should
be similar for all states considered, because they correspond to the same p̃; but in the
eikonal formulation, we identified h̄ = 1/k, so we conclude that diffusion will play a
lesser role at large k, in agreement with Fig. 10.2. We are referring to a diffusion in
sinχ, away from the original adiabatic curve. Via the relation sinχ = m/(nkR) for
the circle, this is equivalent to the admixture of some range of m to the quantum
wave function ψ. Localization is the phenomenon that not all m corresponding to
chaotic intervals of sinχ contribute equally to ψ, i.e. that the m-distribution of the
state is peaked at some m̄ and vanishes for m outside some interval around m̄. This
effect shows up in the angular momentum basis for our billiard problem, but also
manifests itself in the real space wavefunction, which for localized whispering-gallery
modes display the remnant of a caustic, even if the corresponding classical rays are
already allowed to explore the center of the billiard after diffusing in phase space for
a sufficiently long time.

Localization is not observed in all chaotic maps, a counterexample being the
kicked top137. However, one might expect localization to occur in convex billiards
because of the slow diffusion in momentum. The kicked top lacks precisely this
separation of a slow and a fast variable. This subject deserves further study, and
we have not investigated it in detail during this thesis. Therefore, we now return to
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Figure 10.3: The starting condition for the ray escape simulation is given by the adiabatic invariant
curve p̃m,q. If tunneling and above-barrier (Fresnel) reflection are neglected, the classical escape
condition is that the trajectory cross the line sinχc = 1/n. This defines a billiard with an escape
window in phase space that must be reached by classical time evolution. This window is smeared
out when the above wave effects are included.

the phenomena that are (unlike the localization problem) unique to open systems.

10.2 Quasibound states and ray dynamics

As a by-product of the semiclassical quantization, whose good relative accuracy was
noted in the remarks accompanying Fig. 10.2, we also obtain information about the
classical trajectories associated with the resonance under consideration. This is a
result of Eqs. (7.10) and (7.11), where we first have to determine p̃m,n and then the
quantized wavenumber. Denoting the analog of the radial quantum number by q
to avoid confusion with the refractive index, p̃m,q specifies the adiabatic invariant
curve, Eq. (7.4), along which the trajectories move for sufficiently long time to give
rise to the resonant state.

Deviations from the adiabatic curve were neglected in determining the real
parts of kR, but clearly one cannot neglect them in solving the problem posed at
the beginning of this chapter: determining the resonance widths in the deformed
system.

In the circle, we know that WG resonances are narrow due to the low tun-
neling escape rate. The basic idea that opens the connection to nonlinear dynamics
is that at sufficiently large deformations, a new and competing escape mechanism
becomes dominant, replacing tunneling as the process limiting the decay. The reso-
nance lifetime at high deformation is limited by classical ray escape. It occurs when
a ray starting on the adiabatic curve belonging to a WG mode diffuses downward
in sinχ until the condition for total internal reflection,

sinχ >
1

n
, (10.3)

is violated. The real-space picture of this process was illustrated in Fig. 1.2, and
the location of starting and escape conditions in the Poincaré section is shown in
Fig. 10.3. As an implication of this argument, it is precisely the deviation of the
trajectory from the adiabatic curve due to phase-space diffusion that determines the
resonance lifetimes at high deformations. This does not constitute a contradiction
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to the validity of the semiclassical quantization provided the escape times due to
classical diffusion are still long enough to permit the adiabatic curve to yield an
accurate semiclassical quantization. As a minimal criterion, this calls for at least
one revolution around the boundary along the adiabatic curve. This is the condition
that led us to include only WG modes in our discussion in the first place, cf. Eq.
(10.1).

After this general statement of the program, we now elaborate on the attempt
to make these ideas quantitative. In the circular dielectric, we defined a reflection
probability per collision, Eq. (8.68), which can be expressed as a function of kR
and sinχ using sinχ = m/(nkR), cf. Fig. 8.5. This is very valuable because it
contains none of the quantum numbers of the circle explicitly. Having replaced
angular momentum m by sinχ, we can generalize the escape law of the circle to the
non-circular case. Our assumption is that at every collision with the boundary, the
ray is reflected with a probability p0(sinχ, kR) and escapes with likelihood 1− p0.
By definition, this reproduces the correct results in the circle. In the deformed
cavity, we want to apply the same rule, with sinχ given by the momentary angle of
incidence since χ is no longer a conserved quantity. In other words, we model the
ray in the deformed dielectric as experiencing the interface locally like a circle at
each collision.

This straightforward generalization of arguments from the circle allows us
to define the decay time as an average over an ensemble of trajectories on the
adiabatic curve p̃m,q, of the time t needed by each orbit to escape. For each orbit,
the escape time t can be obtained from a Monte-Carlo simulation, following the
classical trajectory and producing at each collision with the boundary a random
number between 0 and 1; if the latter is larger than p0, escape occurs. The path
length L of the ray up to this event is related to the escape time by L = c t/n, and
the decay time is

τ =

〈

nL

c

〉

, (10.4)

where the average over different trajectories on the adiabatic curve (denoted by the
angular brackets) is necessary because sinχ is a function of position φ along this
curve, so the starting conditions are inequivalent. We call this the pseudoclassical

model for the decay time.
The model thus defined suffers from the approximation that coherence of any

kind is not taken into account. This includes the possibility of coherence between
successive tunneling events, because the simulation is purely sequential. It also
includes the fact that the internal evolution of sinχ (or m) does not necessarily
follow the classical dynamics, e.g. as a consequence of dynamical localization. The
only wave effect that is contained in the simulation is direct tunneling through
the instantaneous effective potential barrier as derived from the angle of incidence.
This is why we call the model pseudoclassical. Another approximatyion is that
we take kR in the expression for p0 to be a constant, thus neglecting both the
shift in k and the variation in radius of curvature between collisions; however these
two points could be corrected in future work without making any changes to our
basic physical understanding, and their quantitative importance is likely to be small
because neither quantity varies strongly.
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Chapter 11

Comparison of ray model and
exact solutions

11.1 Universal widths at large deformation, localization correction

With these caveats, we proceed to the results of our model simulation and exam-
ine their relation to the data obtained from numerical solution of the quasi-bound
state problem138. Without the need for actual simulations, our model already pre-
dicts that resonances whose semiclassical quantization yields approximately the same
value of p̃ should have roughly the same width at large deformation, with an accu-
racy that increases with kR. Besides the red shift of the real parts, this is the second
property of the ARC that is universal. The reason for this prediction is that the
reflection probability per collision, p0(sinχ, kR) becomes wavelength-independent
for sufficiently large kR when sinχ < 1/n, as shown in Fig. 8.5. Then the escape
is determined only by the refractive index and the classical ray dynamics, provided
classical ray diffusion is faster than the tunneling decay rate.

Figure 11.1 shows the exact resonance widths for three resonances whose
widths at zero deformation differ by many orders of magnitude. As we increase ε,
the widths go through a roughly exponential increase until at large deformation they
all coalesce to nearly the same decay rate within less than a factor 10. As shown in
the inset, the agreement between the pseudoclassical model and the exact width for
the resonance with sinχ = 0.8 and m = 20 is excellent at high deformations. This
confirms our expectation of the universal resonance widths in at large asymmetry.
The slight differences in width in the region ε > 0.11 also deserve comment. Note
that the order of the widths versus Re(kR) there is reversed compared to ε = 0,
i.e. the resonance with the highest frequency, which had the smallest width in the
circle, displays the largest width at high deformation. This can again be understood
as evidence for dynamical localization, because it indicates that classical diffusion,
which for all three resonances starts from almost the same adiabatic invariant curve,
is more effective at shortening the lifetime for larger kR, i.e. smaller effective h̄.

The case for localization is made again in the inset to Fig. 11.1, where we
redraw one of the resonances with p̃ ≈ 0.8 with its pseudoclassical companion, and
compare it to a resonance that is semiclassically located near p̃ ≈ 0.9. For the latter
state, the psudoclassical model overestimates the width by an order of magnitude.
This could be explained by a stronger effect of dynamical localization on this state.
Indeed, we know from our discussion of the billiards mapping that the diffusion
constant decreases as sinχ → 1, and therefore states are expected to become more
localized in this limit.
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Figure 11.1: Logarithmic plot of imaginary part of resonance positions vs. deformation for
quadrupole with refractive index n = 2. The quadrupole deformation parameter ε is used here
instead of eccentricity to expand the region ε > 0.8. The red, green and blue lines correspond
to the same resonances whose real parts are displayed in Fig. 10.2. The vertical dashed lines de-
limit the ε-interval where the whispering-gallery trajectories around sinχ ≈ 0.8 cease to move on
invariant curves and classical diffusion to the critical sinχc = 1/n begins. The black solid line is
the escape rate, 1/(n〈L〉), as obtained from the pseudoclassical model for the m = 20 state (blue
line). In the inset, the blue and black lines have the same meaning as in the main figure, while the
purple line shows the wave result for kR = 33.2, m = 60, and the brown line is the corresponding
pseudoclassical result.

11.2 Chaos-assisted tunneling

The pseudoclassical model agrees well with the exact result for ε > 0.11, but fails
badly in the transition region between the circle and the strongly deformed cavity
(the black and blue lines should agree but clearly do not). In this regime, the
WG orbits are still supported by unbroken KAM curves while at the same time
chaotic regions exist at lower sinχ. According to our model, the ray has an escape
probability at each reflection, given by the below-barrier behavior of p0(sinχ, kR)
since the KAM curves are bounded from below in sinχ. This direct escape attempt
is, however, not the most efficient channel. An alternative process is for the ray
to tunnel in phase space to a slightly lower sinχ lying in the chaotic domain, from
which point on it can then classically diffuse to the escape window in the SOS,
sinχc = 1/n. This classically forbidden jump from a KAM curve into the chaotic sea
has been called chaos-assisted tunneling in the study of enhanced tunnel splittings
in a closed billiard system known as the annular billiard51,139,140.

Before we explain the idea of chaos-assisted tunneling, it should be mentioned
that the first studies of quantum tunneling in KAM phase spaces were performed on
driven (i.e. time-dependent) systems142,143. Geisel et al.143 consider the standard
map and its quantum equivalent. A particle is launched with an action J0 located in
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a chaotic layer bounded from below and from above by two KAM tori. Its probability
to be found outside this bounded layer is supressed exponentially with the distance
J − J0 in action, due to the fact that classically the crossing of the bounding KAM
tori is forbidden.

11.2.1 The annular billiard

The annular billiard is a conservative system in which the effects of chaos-assisted
tunneling can be studied with great efficiency. This system consists of two non-
concentric circles acting as hard walls, with the ray motion taking place in the
annular region between them. The annular billiard has a reflection symmetry and
its eigenstates are thus classified as either even or odd, and both symmetry types
are degenerate in the concentric billiard. This degeneracy is lifted when the inner
circle is shifted off-center, even for states that semiclassically correspond to p̃ large
enough such that the classical trajectories never touch the inner obstacle. This
splitting is a tunneling effect and can be understood in real space by noting that
the whispering-gallery orbits in the pure circle have wavefunctions that penetrate
into the classically forbidden region of the angular momentum barrier, Veff (r). If
we now combine solutions with eimφ and e−imφ angular dependence to form either
symmetric or antisymmetric wavefunctions under reflection at the billiard axis, then
the antisymmetric ones will vanish on the reflection axis while the symmetric ones are
maximal there. The inner circle has its point of closest approach to the boundary on
the reflection axis, so that the symmetric eigenfunctions of the unperturbed circle
have more overlap with the obstacle than the antisymmetric solutions. However,
the splitting is found to be much larger than expected from this “direct” tunneling
argument when there are chaotic regions in phase space. It was argued in Ref.51

and confirmed analytically in Ref.140 that the most important alternative processes
involve transitions not directly from m to −m, but first to the nearest edge of the
chaotic sea followed by classical diffusion to the opposite edge near −m, and then
another tunneling process to the regular orbit at −m.

11.2.2 Chaos-assisted tunneling in open systems

In our system, the escape rates of the wave solutions are much larger than expected
from the direct process, and chaos-assisted tunneling is the likely explanation. Ana-
lytical progress in the deformed billiards is more difficult than in the annular billiard,
so that a first closer investigation of the effect of chaos-assisted tunneling on reso-
nance widths in open systems has been undertaken by Hackenbroich and the present
author56 using the more tractable annular billiard, but with a penetrable outer wall.
Enhancement of resonance widths by several orders of magnitudes was found when-
ever coupling to the levels quantized in the chaotic sea was possible. The escape
can therefore be modeled as a two-step process with tuneling from the regular WG
region to the chaotic sea, followed by classical diffusion in the chaotic component
until escape occurs. The additional permeable outer coating in this case causes the
chaotic states to be well-isolated from each other while their widths are nonetheless
much larger than those of the regular states. The final escape is again a tunneling
step through the outer barrier, rather than simply the violation of total internal
reflection.

In the deformed billiards we are considering in this thesis, the chaotic states
form broad, strongly overlapping resonances in the absence of the above coating, so
that the two-step escape process now is no longer limited by the availability of a

124



chaotic state that comes sufficiently close in energy to the regular state with which
we start out. Instead, chaotic resonances have spectral weight at all energies in the
neighborhood of the regular state, and the limiting factor is now the size of the
coupling matrix elements. The shortest tunneling distance in phase space from the
regular state to the edge of the chaotic domain should then dominate the escape.

Figure 11.2: Logarithmic plot of the imaginary part (γR) of the resonance position kR as a function
of deformation for the resonance kR = 12.1, m = 20 at refractive index n = 2 in the ellipse (circles),
quadrupole (stars) and dipole (crosses). The arrows indicate the classical threshold deformation for
the onset of diffusion from starting to escape condition, in the dipole (D) and quadrupole (Q).

As a further indication that chaos-assisted tunneling occurs in open billiards,
we show in Fig. 11.2 the resonance widths of the resonance kR = 12.1, m = 20,
followed as a function of deformation but for different shapes displaying different
degrees of chaos. The width in the ellipse, where the internal dynamics is integrable,
are significantly smaller at the same eccentricity than that in the quadrupole. The
latter in turn is less chaotic than the dipole billiard at equal e, and accordingly we
find the largest width for the dipolar deformation.

11.2.3 Tunneling without chaos in the ellipse

The width graph for the resonance in the ellipse is seen to be qualitatively similar
to those of the chaotic billiards, despite the fact that the closed ellipse is an inte-
grable system. In particular, a crossover from nearly constant width at small e to
exponential broadening at large e occurs around the same “quantum” threshold eq

deformation (which is significantly smaller than the threshold for classical escape).
Our pseudoclassical model cannot explain this behavior, because nothing dramatic
happens to the invariant curves of the ellipse at eq. We would expect the escape
rate to be dominated by the tunneling escape from the points where the quantized
invariant curve has its minima, and these minima do not suddenly change their
dependence on e. Qualitatively, all resonance widths seem to follow a law of the
form

γ = γ0 [1 + expα (e− eq)] , (11.1)

with different slopes α, whereas the WKB tunneling rate from the minima of the
invariant curves should yield a “threshold-less” expression of the form

γ = γ0 exp(βe) (11.2)
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for small e. At present, it is not clear if a perturbation expansion at higher orders
in e in conjunction with the WKB tunneling rate is able to yield an expression
displaying the observed threshold behavior.

One clue to an understanding of this threshold behavior, which does appear
to be less sharply defined here than in the KAM billiards, might be the observation
that tunneling between tori is in fact possible in the open ellipse since the separability
of the wave equation is possible for Dirichlet boundary conditions but not for a
partially transparent boundary as is considered here. Whereas the eigenfunctions
of the ellipse with Dirichlet boundary conditions are simultaneous eigenfunctions of
the operator describing the product of the two focal angular momenta, L12, this is
not true for the quasibound states of the open system. The quasibound states of the
ellipse thus contain admixtures of different eigenfunctions of L12, or in other words
spread over some range of classical tori. This is in contrast to the circle, where L0

(and hence L12) is a good quantum number for the open as well as the closed system.
The first (constant) term in Eq. (11.1) can be attributed to the direct tun-

neling contained in our pseudoclassical model, and it should in fact have a small e
dependence given by Eq. (11.2) with a small β. The second term in Eq. (11.1), on
the other hand, can then be associated with cascades of tunneling processes between
adjacent tori, for which the matrix element may be larger than for the direct process
but which individually do not cover a large distance in phase space. At e = eq the
number of participating tori is large enough to yield an escape channel that can
compete with the direct process. This description is only a speculative scenario and
needs to be quantified. However, it is intriguing to note the similarity between this
picture and that of the quantum decay from a metastable well in the presence of
dissipation141. There, one arrives at an escape law similar to Eq. (11.1) with e being
replaced by the temperature, and the exponential being due to activated escape that
competes with the quantum decay (γ0).

All these considerations illustrate that chaos-assisted tunneling is harder to
treat in the deformed billiard, because of the strong effect of the deformation on the
regular states and their coupling among each other. This has to be subtracted in
some way to isolate the genuine contribution due to chaotic diffusion. We leave the
discussion of this interesting topic, because the work is still in progress.

To summarize, the resonance widths in the strongly deformed convex billiard
show the predicted wavelength-independent coalescence to a value only determined
by the refractive index and the semiclassical adiabatic curve, p̃, defining the starting
condition for diffusion in the SOS. Corrections due to localization are observed at
large deformations where the WG trajectories are already chaotic, and the impor-
tance of chaos-assisted tunneling is seen at intermediate deformations where chaos
exists but has not reached p̃.
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Figure 11.3: Classical escape directionality starting from p̃ ≈ 0.85 and e = 0.58. The broad solid
histogram is predicted by the simple ergodic model, the dotted line results from the modified ergodic
model (see text). The heavy line is obtained from the invariant curve model. The full ray simulation
leads to the most sharply peaked distribution (solid line).

11.3 Emission directionality

As mentioned in the introduction, one of the questions of greatest interest in device
applications of asymmetric resonant cavities is how to couple the emitted light into
some other component, like an optical fiber. We have therefore used the ray-optic
model to make predictions about the emission directionality of ARCs144,10,58. The
central feature that will be seen to cause directional emission is the fact that even
chaotic trajectories do not move randomly when observed for short times. Short
times come into play because to determine the escape position and orientation of a
trajectory, one only needs to retrace its most recent history before the escape. We
will arrive at this conclusion using two different classical models.

11.3.1 Ergodic model

As a first step to understanding the escape directionality distribution we formulate
a simple model which should correctly represent the short-time ray dynamics near
the critical angle. Significant contributions to this approach have been made by
Atilla Mekis146. Since motion in the chaotic region is ergodic (on that region) this
suggests that as a starting point we can assume that the rays in the ensemble starting
near the adiabatic curve p̃mq will after some time fill the chaotic region above sinχc

approximately uniformly. To test this notion we see if the observed directionality can
be reproduced by starting with a homogeneous distribution of starting conditions
above sinχc and iterating the map one step (allow each ray to collide once more with
the boundary). The probability density P (φ) for escape in an interval dφ will then
just be proportional to the area of the SOS mapped in one step from above to below
sinχc and into the interval dφ. We call this set of assumptions the ergodic model for
directionality. In order to recover the full symmetry of the billiard shape, we have
to repeat this with an ensemble below − sinχc (i.e. reversed starting momenta) and
add the outcomes. The resulting approximation for the distribution P (φ) is shown
in Fig. 11.3, and compared to the result of a simulation where an ensemble of rays
is started near sinχ = 0.85 with homogenous distribution in φ, and their escape
directions are recorded. For compatibility of the models, we for the moment leave
out the contributions of tunneling and Fresnel reflection in the full simulation.
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Figure 11.4: Illustration of the areas A and Ā which end up below or come from above sinχc,
respectively, in one mapping step.

Although the ergodic approximation overlaps well with the peaks in the true
escape probability density, the P (φ) it predicts is clearly much broader than the ex-
act ray-tracing distribution. Since the ergodic model includes the short-time effects
of the varying curvature around the boundary, this indicates that the directionality
of escape from ARCs is not simply obtained from a knowledge of curvature. Ob-
viously the assumption of a uniform distribution of rays filling phase-space above
sinχc has missed some essential part of the physics. What has been missed is that
even in the chaotic component there is a definite flow pattern in phase-space for
short times. Due to this flow pattern, many initial conditions (above sinχc) which
lead to escape in the ergodic model can only be reached if the previous reflection oc-
curred with sinχ < sinχc, implying that the ray would already have escaped before
getting to the assumed starting point in phase space. One can begin to take this
into account within an extended ergodic model by assuming zero occupation prob-
ability for initial conditions above sinχc which upon one-step iteration backwards
are below sinχc (and uniform probability for all other initial conditions). Fig. 11.3
shows that this extension of the ergodic model significantly improves the predicted
P (φ) as compared to the true distribution.

The advantage of the ergodic model is that only one or (in the extended
version) two mapping steps need be considered. For the simple version it is then
possible to express P (φ) in terms of the one-step map, or in possibly the effective
map derived in chapter 5. If we abbreviate p ≡ sinχ, the map can be described
by the two functions φ̄(φ, p), p̄(φ, p), giving the new position and momentum as a
function of the old variables. The map is area-preserving, i.e. the Jacobian of the
transformation (φ, p) → (φ̄, p̄) is unity. One can alternatively specify the map by
considering the old momentum and the new position as given so that the dependent
variables are φ(φ̄, p) and p̄(φ̄, p). The differential probability of obtaining φ′ after
one mapping step applied to a homogenous starting distribution with p > pc is

P1(φ
′) =

1

|A|

∫

A

dφ dp δ(φ′ − φ̄(φ, p)), (11.3)

where A is only the region above pc that gets mapped below pc , |A| is its area, and
φ̄ is the new position after one reflection. The image of A under the map, Ā, has the
same area |Ā| = |A| due to area preservation. These regions are shown in Fig. 11.4.
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We make a transformation of variables in the integral from φ, p to φ̄, p̄,
yielding

P1(φ
′) =

1

|Ā|

∫

Ā

dφ̄ dp̄ δ(φ′ − φ̄) (11.4)

≡ 1

|Ā|

max[ p̄(φ′)]
∫

min[ p̄(φ′)]

dp̄ (11.5)

=
1

|Ā|
(

max[ p̄(φ′)]−min[ p̄(φ′)]
)

. (11.6)

Here, min[ p̄(φ′)] denotes the smallest p̄ within Ā at the final angle φ̄ = φ′, anal-
ogously max[ p̄(φ′)]. The boundary of Ā is formed by the two curves (φ̄, pc) and
(φ̄, p̄(φ̄, pc)). In our case, p̄(φ̄, pc) is a unique function of φ̄, and as a result max[p̄(φ′)] =
pc, min[ p̄(φ′)] = p̄(φ′, pc). We therefore have the simple result that

P1(φ
′) =

{

1
|Ā| (pc − p̄(φ′, pc)) for pc > p̄(φ′, pc)

0 otherwise.
(11.7)

The distribution in Fig. 11.3 is obtained by forming the symmetrized function
P (φ′) = [P1(φ

′) + P1(−φ′)]/2 .
For the extended ergodic model, we need the function p(φ, p̄). Then the lobes

of (φ, p(φ, pc)) above pc delimit the region A. To decide whether a given (φ, p) ∈ A
would have come from the region p < pc in the previous reflection, we simply invert
the momentum p and ask whether the forward mapping yields a new momentum p̄
smaller in magnitude than pc. This is true for a region B bounded above pc by the
curve (φ,−p(φ,−pc)). The modified starting domain for the ergodic model is then
A′ = A \ B.

The ergodic model predicts anisotropic intensity in the nearfield, but not in
the far-field. Since the ergodic models yield a final distribution of escaping trajec-
tories that scatters widely in sinχ (see Ā in Fig. 11.4), any near-field directionality
will be washed out in the far field after refraction is taken into account. On the other
hand, we see in Fig. 9.2 that this is not the case. To provide an explanation for this
persistence of directionality in the far field, we must be able to argue that in fact
only sinχ ≈ sinχc occurs upon escape, thus causing the same degree of refraction
for all escaping rays.

11.3.2 Diffusion between adiabatic curves

The solution to this problem is the slowness of diffusion in the direction of p = sinχ,
as discussed in section 6.5, As explained there, the trajectory approximately follows
an adiabatic curve p̃ for intermediate times but eventually diffuses to smaller p̃.
The first chance for classical escape (neglecting tunneling) therefore presents itself
when the diffusion has reached the tangent adiabatic curve p̃c which just touches the
the critical line for total internal reflection in the SOS, sinχc = 1/n. This is the
situation depicted in Fig. 10.3 for the case n = 2 on which we focus for the moment.

The points of tangency are invariably the points of highest curvature of the
billiard. This follows from Eq. (6.55) for the adiabatic curve, which has its minima at
the points of maximum κ(φ). This is intuitively understandable, because it is to be
expected that the highest radiation losses occur at the most sharply curved regions
of the surface. In the ray picture, the high-curvature points are where the trajectory
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Figure 11.5: Far-field intensity distribution for the quadrupole (a,b) and the ellipse (c) at eccentricity
e = 0.6, for a resonance with m = 68. The wave results are shown as solid lines, the pseudoclassical
predictions as shaded histograms. The refractive index is n = 2 in (a), n = 1.54 in (b,c). The
resonance positions are (a) kR = 45.2, (b) kR = 48.1, (c) kR = 48.0. The shapes of ellipse and
quadrupole are shown in the insets.

has the highest likelihood of impinging with a small enough angle for escape, because
it has to “turn the sharpest corner” there. We will see below, however, that this
intuitive picture does not always hold.

The ray model allows us to predict furthermore that even the far- field emis-
sion pattern will be highly directional. The process of diffusion in p is slow, so
that rays explore the adiabatic curves evenly (in φ) before moving further down in
p̃. Therefore, a trajectory that has reached p̃c will flow close to this tangent curve
until it reaches the minima where escape then occurs. Consequently, escaping rays
will predominantly have sinχ near 1/n. The escape itself to a good approximation
follows Snell’s law,

sinχout = n sinχ, (11.8)

where χout is the angle of the refracted ray with respect to the outward normal. This
follows from the good agreement between Fresnel’s formula and p0 shown in Fig. 8.5.
Inserting here sinχ ≈ 1/n, we conclude that those rays that leave the cavity do so
almost tangent to the surface at the high curvature points.

For the quadrupole, the high-curvature points are at φ = 0 and φ = π,
so that we expect the far-field emission to be highly peaked at φ = ±π/2. This
is confirmed in Fig. 11.5(a). The classical directionality histograms are obtained
from the pseudoclassical model, starting an ensemble of rays on the semiclassically
quantized adiabatic curve p̃mq, and recording the direction in which it escapes, using
the probability function p0(sinχ, kR). This simulation therefore also contains the
contribution of tunneling and above-barrier reflection, i.e. a ray can escape before
reaching the tangent adiabatic curve and likewise need not escape the first time
it crosses below sinχc. These wave effects, clearly did not invalidate the classical
prediction just given. To appreciate the smoothing effect that tunneling and Fresnel
reflection have, we plot a purely classical histogram for the same resonance in Fig.
11.6(a). These were obtained by taking p0 to be a unit step function that is zero

130



Figure 11.6: Far-field intensity distribution for the quadrupole at the same parameters as in Fig.
11.5(a,b). The histograms here show the result of a simulation neglecting above- barrier reflection
and tunneling.

below sinχ = 1/n.

11.3.3 Dynamical eclipsing

An interesting effect occurs when there is island structure right at the points of
maximum κ, intersecting the critical line for escape. This situation can be brought
about in the quadrupole by changing the refractive index to n = 1.54, as shown in
Fig. 10.3. The tangent adiabatic curve, which is also drawn in the figure, clearly
does not describe the trajectories in this region of the SOS because the islands are
transport barriers. Phase space diffusion must bypass them, and as mentioned in
subsection 6.6.3 this occurs in the form of a rotation around the islands. As a result,
escape now mainly occurs at those φ where a trajectory rotating around an island
first crosses sinχc, i.e. on either side of the two islands intersecting the critical line
(both sides of the island contribute because we have to take both rotation senses into
account, corresponding to time- reversed pairs of orbits). In the near-field emission
pattern, one should therefore observe a suppression of the intensity right at the
high-curvature points. Since escape still follows Snell’s law, and escaping rays still
emanate roughly tangent to the surface, this suppression will propagate into the far
field. This is confirmed in Fig. 11.5(b), where we now see four equally spaced peaks
instead of two. We call this effect dynamical eclipsing, and it is an unambigous
fingerprint of the underlying classical phase space structure in the wave solution.
This is noteworthy because the value of kR = 48.1 used here is by no means deep
in the semiclassical regime.

To further emphasize the sensitivity of the wave equation to the classical
phase space structure, we show in Fig. 11.5(c) the directionality of the identical
resonance (same quantum numbers) as in (b), for the same index of refraction and
same eccentricity, the only difference being that we now choose an elliptical defor-
mation. As can be seen in the insets, the shapes of quadrupole and ellipse are barely
distinguishable, but the dynamical eclipsing is nonetheless absent in (c). This con-
forms to the classical prediction because there is no island structure in the ellipse
at sinχ ≈ 0.65 as its dynamics is integrable.

The pseudoclassical model allows us to produce a directionality histogram for
the ellipse, despite the fact that escape can only occur by tunneling since trajectories
move on invariant curves that do not intersect the critical line. The result is seen
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to agree well with the wave solution, even though we could make no purely classical
prediction for the ellipse in the absence of diffusion. The reason for the intensity
distribution in the ellipse is that the tunneling escape occurs mainly from the minima
of its invariant curves, because that is where the tunnel reflectivity p0 is smallest.
An escaping ray will again emanate tangentially to the interface, because any other
sinχout would require the incident sinχ to have been below 1/n. Agreement for the
dynamical eclipsing is slightly better in the pseudoclassical model than in the purely
classical simulation, cf. Fig. 11.6(b).

11.3.4 Universal directionality

In the previous two subsections we have seen remarkable agreement with the ray
simulations that is found without exception for all classically escaping WG modes we
studied. This shows that the pseudoclassical, and even the classical, model is a good
theory for the emission directionality, unaffected by the various approximations that
appear to have such a strong effect on the width calculations.

The classical model implies that only the phase space flow near the critical
line is of importance for the emission directionality, because the trajectory loses the
memory of its starting position during the chaotic diffusion preceding the escape.
In the absence of dynamical eclipsing, all that counts is that the tangent adiabatic
curve be reached eventually, and the directionality is then prescribed. The same
can be said for the flow around the islands if dynamical eclipsing occurs. As a
consequence, the emission directionality is expected to be the same for all resonances
whose semiclassical quantization involves adiabatic curves p̃mq which are far enough
above the critical line for escape, or in other words

p̃mq > p̃c. (11.9)

This is shown in Fig. 11.7 for n = 2 where the tangent adiabatic curve is valid and
escape thus should occur at the high-curvature points, and in Fig. 11.8 for n = 1.54
where we expect dynamical eclipsing.

The fact that the emission directionality is determined solely by the shape
and the refractive index should work in favour of an experimental verification of our
results. While dynamical eclipsing has not yet been observed, an experiment was re-
cently conducted which confirms the emission from the high curvature points58. This
was done by creating a cylindrical stream of ethanol containing a lasing dye, which
had an oval cross section due to the rectangular orifice at which it was produced.
The far-field intensity was found to be peaked, with two maxima in agreement with
our discussion above. An observation of importance for device fabrication is that
the directionality is also largely independent of deformation beyond some transition
region. This is illustrated in Fig. 11.9, showing essentially the same intensity dis-
tribution above e = 0.3. At e = 0.3, only tunneling escape is possible. As in the
ellipse, we still have escape predominantly from the minima of the invariant curve
on which the ray moves. The conclusion is that this configuration allows us to tune
the resonance width over a large interval of practically exponential dependence on
e, while the directionality stays unaffected. In particular, the directionality in the
tunneling regime is correctly predicted by the pseudoclassical model.

In the case n = 1.54, dynamical eclipsing only occurs after the islands re-
sponsible for it have grown to sufficient size. Before that point, the emission looks
similar to that of the billiard with n = 2. As shown in Fig. 11.10, the four-peak
structure has fully developed at e = 0.45, again well before chaotic diffusion becomes
possible.
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Figure 11.7: Emission directionality in the far-field of the quadrupole at eccentricity e = 0.65 for 5
different resonances with various kR and sinχ (numbers given for the circle). The refractive index
is n = 2.
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Figure 11.8: Far-field directionality for 5 different resonances of the quadrupole at eccentricity
e = 0.65 and refractive index n = 1.54, displaying the peak splitting due to dynamical eclipsing.
Note that the resonance with sinχ = 0.76 starts on an adiabatic curve very close to the islands
intersecting the critical line sinχc = 0.65. Therefore tunneling into the island or direct tunnel
escape could explain the incomplete suppression at φ = ±π.
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Figure 11.9: Far-field directionality in the quadrupole with increasing eccentricity e at n = 2 for
the resonance with m = 45, kR = 27.8 also appearing in Fig. 11.7.
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Figure 11.10: Far-field directionality in the quadrupole with increasing eccentricity e at n = 1.54
for the same resonance as in Fig. 11.5.
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11.4 Directional lasing emission from dye jets

The classically predicted universal emission directionality hes been verified exper-
imentally by observing lasing dye jets, as will be described later. An important
property of the experimetal setup is the fact that many different modes take part
in the laser action. We therefore have to ask which resonances will make a domi-
nant contribution to the observed laser output under such multimode conditions. In
particular, it has to be clarified if the classically escaping orbits which we studied
will be relevant in the laser, given the fact that for convex cross sections there are
always much longer-lived resonances corresponding to Lazutkin’s caustics.

If the latter (regular) orbits were the dominant ones for lasing, dynamical
eclipsing would not be observable because the lasing emission from states on in-
variant curves is always along tangents projecting outward from the high-curvature
points, as we just demonstrated. Although a thorough analysis is still missing,
we can give a qualitative argument that tells us which modes should become most
important when the lasing condition is satisfied for more than one mode.

11.4.1 Multimode lasing

Lasing requires a gain medium and a cavity. The gain medium provides amplification
of a light wave traveling in the cavity, depending on the pump power P supplied
to it. When P exceeds the lasing threshold Pt, the gain exceeds the losses due to
absorption, leakage from the cavity etc. Consider a given cavity mode with a loss
rate 1/τ and a number N of photons in it. In the limit of a clean resonator, τ is just
the resonance lifetime discussed above. To maintain a steady-state laser action, the
escape of photons from the cavity must be compensated precisely by the stimulated
emission into the same mode. The latter is proportional to the numberNi of inverted
atoms (or molecules) that interact with the mode, and to the intensity of the existing
field. Therefore, we can write the stationarity condition as

0 =
dN

dt
= BNiN − N

τ
(11.10)

where B is the Einstein coefficient for induced emission. After canceling N we are
left with

Ni =
1

B τ
(11.11)

which is independent of the pump power. The requirement of steady state therefore
implies that the inversion Ni is clamped to a constant value as soon as P exceeds Pt.

For the cavities of interest here, one has to assume that many modes have
spatial overlap with the gain medium, although their respective τ may vary widely.
After the first mode starts to lase, we could stop increasing P and would thus
obtain a single-mode laser. If P grows further, the original mode continues to lase
with the same Ni as at threshold (P = Pt), but other modes may also satisfy the
lasing condition that their modal loss be made up for by their modal gain. This is
possible if the spatial overlap of the original mode and the new mode is incomplete,
so that one has nodes where the other has antinodes. Since the interaction with the
gain medium is suppressed in the neighborhood of field nodes, two such modes can
interact with different atoms. The result is that the second mode can indeed lase,
producing its own collection of inverted atoms N ′

i . Let the threshold for this second
mode be P ′

t . Its loss is larger than that of the first mode τ ′ < τ , corresponding to
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P ′
t > Pt. The interesting observation here is that according to Eq. (11.11) we have

N ′
i > Ni. (11.12)

If we add the fact that the amount of pump energy converted into lasing emission
grows with the inversion, this leads to the statement that the lowest-τ lasing mode

carries the largest emission energy. The same can be said in the presence of more
than two lasing modes.

The lasing spectra obtained from liquid spheres and jets containing a dye145,58

do indeed show multimode operation. While the longest-lived regular WG states
are always among the lasing modes, one can now see how the emission directionality
should be dominated by those states whose lifetime is long enough to meet the lasing
condition but shortened due to classical escape.

It is then only a matter of achieving the required refractive index before
dynamical eclipsing should be seen experimentally. In the absence of a suitable
liquid for this purpose, a more immediate goal of an initial experiment is to test the
universality of the emission directionality. This test has been performed successfully.

11.4.2 Observations on lasing jets

The experiment consists of a liquid dye jet that is optically pumped to induce lasing.
Details of the setup are provided in Ref.58. The refractive index of this liquid is
approximately n ≈ 1.3, which yields an escape condition above the phase space
region where dynamical eclipsing occurs. A deformed cross section of this lasing
dielectric column is achieved by forcing the liquid through a narrow rectangular
opening of dimensions 1000µm × 25µm. The cross section oscillates as the liquid
falls, with the long axis either parallel or perpendicular to the slit that creates
the distortion. This deformation furthermore decays with the distance from the
orifice until the cross section is nearly circular 2 cm downstream, and in fact the
multipole component with the longest decay time should be the quadrupolar one.
We expect far-field peaks at ±90◦ from the long axis of the instantaneous cross
section. This directionality would be washed out if different WG resonances had
different directionality.

The lasing jet is imaged by two detectors with observation directions at right
angles to each other, cf. Fig. 11.11. While one detector shows bright emission from
the sides of the jet, the other image is dark, and vice versa. Moreover, the transition
between brightness and darkness along the vertical direction is very sharp. The
short intervals along the jet where no emission is seen in either direction correspond
to circular cross section. One thus concludes that the directionality is present even
for small deformations. This is the expected behavior, cf. the previous section.
The fact that pronounced minima and maxima exists in the emission characteristic
at right angles to each other is a consequence of the universal directionality of all
lasing modes in this case. In a control experiment on a jet of circular cross section,
produced by a circular orifice of radius 75µm, the emission is seen to be equally
bright in both detectors, as shown in Fig. 11.11.

To conclude this chapter, we note that the directionality can be predicted
by inspection of the Poincaré section alone, without performing the pseudoclassical
or even the classical simulations. This is because the anisotropy of emission follows
from the local structure of the SOS near sinχc, unlike the resonance width which
depends on the whole diffusive path taken by a trajectory starting from the semiclas-
sical adiabatic curve. To produce a SOS, it generally suffices to follow a relatively
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Figure 11.11: Total lasing intensity images of vertically flowing jets of Rhodamine B dye in ethanol.
The jet with deformed cross section (left) is observed perpendicular and parallel to the slit from
which the liquid originates, giving rise to the two intensity traces. On the righthand side is shown
the same observation for a liquid column of circular cross section.

small number of trajectories, say 20, for about 500 reflections. The more detailed
ray simulations require ensembles of 1000 trajectories which have to be followed for
a potentially very long time. The subject of emission directionality is therefore an
excellent example for the simplification that results when we can turn to an analysis
of the ray dynamics in the form of the SOS, rather than performing lengthy ray
tracing. Of course, even the pseudoclassical model is a far more efficient way of ex-
tracting information about widths and directionality (the latter with high accuracy)
than numerical solutions of the wave equation.
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Chapter 12

Thresholds and Intensity
Distribution in Lasing Droplets

In this chapter we apply the ray-optics model for ARCs to the description of the
WG modes of deformed liquid droplets and give an explanation for the observed
anisotropy of lasing emission from droplets, shown in Fig. 12.19,10.

12.1 Experimental configuration

In the experiment, a stream of ethanol droplets containing Rhodamine-B dye with
average radius≈ 30µm is created at the vibrating orifice of a Berglund-Liu generator8.
At the orifice the droplets are highly non-spherical and as they fall they undergo
damped oscillations between oblate and prolate configurations (Fig. 12.1) driven by
excess surface tension until they relax to highly spherical shape far downstream.
The period of the shape oscillations is of order 50µs, which is far longer than the
lifetime of the WG resonances of ≈ 10ns147. Thus we may treat the different phases
of the droplet oscillation as static examples of oblate, spherical or prolate micro-
cavity lasers and analyze the angular emission intensity in terms of the theory of
ARCs. Previously we have focused on cylindrical ARCs deformed perpendicular to
their axes; here we apply the ray-optics model to dielectric spheres deformed so as to
preserve azimuthal symmetry (the deformed droplets retain this symmetry as well
as reflection symmetry through the equator to a good approximation).

As seen in Fig. 12.1, laser emission is fairly isotropic in the sphere, but gets
suppressed near the poles of both the oblate and prolate droplets. Furthermore,
the oblate shape is brightest around the equator whereas the prolate shape of the
same deformation (ratio of long to short axes) emits most strongly from regions
around θ ≈ 30◦ − 45◦. These observations are stable over a range of prolate and
oblate shapes (exceeding a certain degree of deformation) and are independent of the
direction of the optical pumping. It is important to note that the three total-energy
images are normalized individually with white referring to the maximum emission,
which is of different magnitude in each shape.

12.2 The centrifugal billiard

12.2.1 Justification for a classical treatment

Since axial symmetry is preserved for the droplets, their instantaneous shape can
be specified in spherical coordinates by rb(θ), independent of azimuthal angle φ.
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Figure 12.1: Shadow graphs (left) and simultaneous total-energy images (right) of three lasing
droplets falling in air taken at different phases of oscillation: prolate (top), spherical (middle) and
oblate (bottom). Light regions in (b) indicate lasing.

The damping is weakest for the low multipole components of the oscillation, so we
include only the Legendre polynomials P0(cos θ), P2(cos θ), P4(cos θ) in an expansion
of the shape. Odd orders do not appear because of the approximate symmetry
rb(θ) = rb(−θ) noted above. The particular shapes we use to model this behavior
more realistically are

r(θ) = 1 + ε

(

cos2 θ +
3

2
cos4 θ

)

(12.1)

for prolate deformations; an oblate shape with the same axis ratio [equal to (5/2)ε]
is obtained by replacing cos θ with sin θ. For these shapes, we expect to find chaotic
ray dynamics, because only the closed ellipsoid is integrable. That chaos results
even for ellipsoidal shapes if the potential is not a hard wall, was observed by Brut
and Arvieu75, who also proposed a semiclassical treatment of such systems based on
an adiabatic switching procedure. It uses only the known semiclassics of the sphere,
which fixes the invariant curves associated with a quantum state; the deformation
is then introduced into the classical dynamics by starting trajectories on the above
invariant curve and changing the shape slowly on the scale of the time between
reflections. After this process, the trajectories move on new invariant (KAM) curves,
and the semiclassical energy shift can be obtained from the work done by the moving
walls during each reflection. It is not clear at present how well this method can be
extended into a regime of deformations where the relevant KAM curves break up
themselves. To test this, the analogous algorithm has been programmed by the
present author for the 2D convex billiard. Results of this method will however not
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be included here because of their preliminary nature. In the context of lasing from
droplets, we are in fact relieved of the requirement for a semiclassical quantization
method if it is justified to assume multimode lasing from quasibound states with
many possible quantum numbers, the only criterium being that their lifetimes exceed
the lasing threshold. In this way we shall argue that the directionality can be
understood by way of an average over all these states, which is then replaced by an
average over the classical phase space.

12.2.2 Classical ray dynamics

The ray dynamics analysis is facilitated by the axial symmetry of the droplets which
implies (in the language of particle trajectories) that the z component of angular
momentum, Lz, is conserved. At any given Lz and total energy E, the equations
of motion thus have only two degrees of freedom, just as in the deformed cylinder.
This becomes explicit in cylindrical coordinates ρ, φ, z where one has

E =
1

2
m (ρ̇2 + ż2) +

L2
z

2mρ2
. (12.2)

Let us look at the dynamics projected into the 2D (ρ, z) coordinate sys-
tem. Each specular reflection causes a discontinuous change in ρ̇ and ż; however
the angular velocity φ̇ remains unchanged because the normal to the surface of an
axisymmetric cavity is always perpendicular to the φ direction. Thus a 3D spec-
ular reflection simply reverses the normal component of the 2D projected velocity
(ρ̇, ż) and reflections are also specular in the projected coordinates. Reflections
occur whenever the trajectory ρ(z) intersects the boundary curve ρb(z). Between
reflections the particle motion is free, ż = const, and Eq. (12.2) can be integrated
to find ρ(t). It can be shown that ρ2(z) describes a parabola whose vertex is the
point of closest approach to the z-axis and whose intersections with the squared
boundary curve ρ2

b(z) are the collision points. The curved trajectories in the z-ρ-
plane between specular bounces [see the inset to Fig. 12.2(a)] are to be contrasted
with the straight paths in conventional 2D billiards where the centrifugal potential
L2

z/(2mρ
2) is absent. For this reason we call this new class of systems centrifugal

billiards.
To discuss the resulting dynamics we introduce dimensionless variables in

Eq. (12.2) by setting E = 1/2 and m = 1. Then one has

1 = ρ̇2 + ż2 +
L2

z

ρ2
(12.3)

where 0 ≤ Lz ≤ ρb(zmax) is the maximum distance from the z-axis is ρb(zmax). To
simplify notation we assume that the droplets have their widest transverse cross-
section in the equatorial plane, i.e. zmax = 0. Again the escape condition is simply
sinχ < sinχc, where sinχ is the angle of incidence with respect to the surface normal
n at the reflection point. This is not the same as the normal angle in the ρ−z-plane,
as can be seen by considering a trajectory reflecting entirely in the equatorial plane
at nonzero sinχ; its apparent angle of incidence in the ρ−z-plane will be zero. In our
units cosχ = n · v/|v| = nρρ̇+ nz ż since the total velocity is v =

√

2E/m = 1. The
angle in the ρ− z-plane is then given by cosχρz = cosχ/

√

ρ̇2 + ż2. It is convenient
in the plotting of Poincaré sections to use as variables the polar angle θ and the
3D sinχ at each reflection since in these coordinates the escape condition is still
satisfied along a horizontal straight line.
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Figure 12.2: Poincaré surfaces of section for prolate droplets with ε = 0.2 for Lz = 0.735 (a),
Lz = 0.6 (b), Lz = 0.45 (c) and Lz = 0 (d). The dash-dotted lines denote sinχc = 1/n = .735
corresponding to the experimental value of n = 1.36 for the refractive index of the droplets in
Fig. 12.1. Inset in (a) shows the droplet shape in the z - ρ plane and special (periodic) trajectories
for Lz = 0.735 (solid line) and Lz = 0.2 (dashed line).

At nonzero Lz certain regions of the SOS are forbidden due to the Lz angular
momentum barrier (e.g. a ray reaching the pole (θ = 0) must have Lz = 0). For
the allowed bounce coordinates θ, sinχ one finds the inequality sinχ ≥ Lz/ρb(z(θ)),
where z(θ) = rb(θ) sin θ; this relation delimits the empty spaces in the SOS’s of
Fig. 12.2(a-d) which were made for a prolate shape of fixed deformation (ε = 0.2)
and varying values of Lz. Before discussing ray escape in the deformed droplets
it is important to note that as we proceed from higher to lower Lz in Fig. 12.2(a-
d) in addition to the excluded regions of the SOS decreasing (because the angular
momentum barrier becomes weaker) the degree of chaos grows rapidly. There is
actually no visible chaos in Fig. 12.2(a) and a mostly chaotic SOS for Lz = 0
(Fig. 12.2(d)) for a droplet of fixed deformation. The reason for this is that high
Lz trajectories are confined near the equator and a cross-section of the droplet at
the equator is perfectly circular, i.e. high Lz orbits see an effective deformation
which is much weaker than polar orbits (Lz = 0) which travel in the most deformed
cross- section of the droplet. The effective deformation varies approximately as

εeff = ε
√

1− L2
z/ρ

2
b(0) and tends to zero at the maximum allowed value of Lz.

Thus as long as ε is large enough to induce classical Q-spoiling for the Lz = 0 orbits
of interest, by looking at different Lz values for a fixed deformation one can study
the classical Q- spoiling transition in a single ARC. We have illustrated this situation
in Fig. 12.2(a-d).

Note that there is an absolute minimum allowed sinχ ≡ sinχm which occurs
at the equator (θ = π/2) where ρb is maximal (i.e., sinχm = Lz/ρb(0)). This
implies that classical ray escape is entirely forbidden due to the angular momentum

143



barrier for values of Lz ≥ ρb(0) sinχc; such a case is shown in Fig. 12.2(a). As just
noted these high Lz modes are confined to orbits near the plane of the equator [see
also the inset to Fig. 12.2(a)]; since classical escape is forbidden for these modes
we always expect to find high-Q WG modes in the equatorial region of axially-
symmetric deformed microspheres. Since this follows simply from Lz conservation
it will be true in both the oblate and prolate shapes.

Proceeding now to lower Lz in Fig. 12.2(b) we see that the angular momen-
tum barrier has weakened enough that the allowed region of the SOS passes through
sinχc and rays with this value of Lz can escape. However as before WG modes will
be associated with rays starting at large sinχ ≈ 0.9 in this case. These rays are
unable to reach sinχc due to remaining KAM curves just as we saw earlier in our
discussion of dielectric cylinders. Therefore we expect high Q WG modes for this
value of Lz as well. This situation persists all the way to Lz = 0 for deformations
less than roughly 5% of the radius, so we expect little Q-spoiling and approximately
isotropic emission for smaller deformations than this.

However for the 50% deformation used in Fig. 12.2(a-d) reducing Lz a little
more causes the appearance of regions of chaos which extend from high sinχ across
sinχc allowing classical Q-spoiling of the WG modes. We expect all modes with
Lz less than this value to have their Q rapidly degraded. As the Q of these modes
decreases it will fall below the threshold Q-value to support lasing and these modes
will go dark. But these low Lz modes are the only ones which can emit from the
polar regions because of the angular momentum barrier for the high Lz modes.
Therefore our model explains naturally why the polar regions are dark while the
droplet still lases. The low Lz modes which could emit from the poles have too low
Q to lase and the high Q modes which support lasing are confined away from the
polar regions. This argument holds for both the oblate and prolate deformations in
agreement with observations.

We are left with the question of why the emission profiles are nonetheless
so different in prolate versus oblate shapes. To answer this question we must look
at where the stable islands which block chaotic escape occur for the two types of
deformations. The prolate shape corresponds to a stretching of the droplet in the
vertical direction and a compression in the equatorial plane. Because it is compressed
in the equatorial plane there exists a large stable island at θ = π/2 corresponding to
the two-bounce diametral orbit of the type we discussed in the 2D case in subsection
4.2. This island appears (distorted due to the Lz barrier) clearly in Fig. 12.2(c,d).
As discussed above in subsection 11.3.3, a stable island intersecting the critical line
will prevent the classical escape in the corresponding directions; thus in the case of
Fig. 12.2(c) escape is blocked over an interval in polar angle centered at the equator.

In the oblate droplet the situation is reversed. The polar diameter is com-
pressed and the equatorial diameter is stretched and the stable two-bounce orbit (if
it is still stable) would appear at θ = 0, π. But for most Lz the island around this
orbit is unreachable and it has little effect on the dynamics. In Fig. 12.3(a) and
(b) the SOS for the prolate and oblate shapes are compared at equal deformation
and equal ratio Lz/ρb(0). Indeed in the SOS for the oblate shape the regular island
centered on θ = π/2 and sinχm is absent because equatorial orbits with low sinχ
are now unstable. One sees no effect of the stable islands at θ = 0, π due to the
angular momentum barrier. There is still an island near the critical line at θ = 0
and sinχ = 0.6 for this particular Lz, but its origin (a three-bounce orbit in the
ρ−z plane) as well as its effect are quite different from the prolate shape. In fact, all
downward-diffusing trajectories first cross sinχc in the vicinity of this island because
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Figure 12.3: Prolate (a) and oblate (b) droplet SOS’s at ε = 0.2 and Lz/ρb(0) = 0.3. As in the
previous Figure, the dash-dotted lines indicate sinχc. The escape directionality is shown in (c) for
the prolate (filled histogram) and oblate (white) shape.

phase-space flow (see subsection 11.3.3) roughly follows a V-shaped curve connect-
ing the three islands located at sinχ = 0.825 (θ = ±0.5) and sinχ = 0.6 (θ = 0).
Hence escape is concentrated in the equatorial region. This remains true even if the
island actually intersects the critical line (as is the case for higher Lz), thus blocking
escape right at θ = 0 – in that case escape still occurs very close to the island.

12.3 The prolate-oblate difference

Our explanation for the differing intensity profiles is as follows. First, it is reasonable
to assume that all modes for which classical escape is completely forbidden will lase.
As Lz decreases and classical escape begins to occur there will exist modes which are
lower Q, but still high enough Q to lase. These modes will have highly directional
emission in the polar angle (they will of course emit uniformly in the azimuthal
angle). In the prolate case as Lz decreases the first regions of chaos which connect
the WG orbits to the critical line do so only in small intervals around θ = 30◦ and
θ = 150◦ (see Figs. 12.2(c) and 12.3(a)). These values of Lz will correspond to
the lower Q lasing modes just discussed and will thus emit in small bright bands
around these latitudes. In contrast, in the oblate droplets phase space flow curves
touch the critical line near the equator (see Fig. 12.3(b)) and the lower Q lasing
modes will emit around θ = 0. However the total lasing intensity will be due to
all the lasing modes and there will typically also be many high Lz modes of higher
Q which can emit at the equator through the same processes as in the undeformed
droplet. But unlike the undeformed case, these modes are competing with lower Q
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lasing modes corresponding to lower Lz which therefore have higher gain and capture
more of the pump energy. Since more of the pump energy goes into these highly
anisotropic modes whose emission pattern differs strongly between the prolate and
oblate shapes, these shapes show essentially the intensity profiles predicted by the
ray-optics model for the intermediate values of Lz corresponding to slow classical
escape and therefore low but above-threshold Q values.

To produce a numerical simulation of the cumulative directionality of all
the lasing modes with classical escape, we consider ensembles of starting conditions
homogenously distributed in φ as in section 10.2. If the average Q of an ensemble
starting at some sinχ0 is above the lasing threshold, we record the resulting escape
directionality; otherwise we discard that particular ray bundle. Repeating this for
uniformly spaced sinχ0 ∈ [sinχc, 1] and Lz/ρ(0) ∈ [0, 1], one obtains Fig. 12.3(c). It
can be seen that maximum emission occurs near the equator for the oblate shape,
and around 30◦ away from the poles in the prolate droplet. The emission peak of the
oblate droplet is split because of the island shown in Fig. 12.3(b), but this structure
is not seen in Fig. 12.1. Nevertheless, the ray theory is clearly able to account for
the overall location of the emission maxima seen experimentally. The discrepancies
in fine structure may be resolvable by modifying the parametrization in Eq. (12.1)
which we chose to model the shape. More experiments are required to check if the
above splitting does indeed occur in droplets at different oscillation stages.
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Chapter 13

Conclusion

With the study of asymmetric resonant cavities, a fruitful extension of ideas from
nonlinear dynamics and quantum chaos has been initiated, which holds immediate
promise for real applications. To show that resonances in nonintegrable systems show
the properties we predicted, exact numerical calculations were performed. Since
these calculations are, however, themselves idealizations, it is highly desirable to
test their validity in experiments.

The relative simplicity of our basic assumptions in the pseudoclassical model
may be viewed as a shortcoming from the point of view of theoretical rigor, but efforts
are under way to derive the results of the pseudoclassical model more rigorously.
Moreover, the insights and ideas gained with the present approach have accelerated
progress in the numerical work, as well in experimental activity. Since the latter
two have shown encouraging agreement with our predictions, it will indeed be worth
while to put the model on stronger foundations.

The main corrections to the pseudoclassical model are believed to be dynam-
ical localization and chaos-assisted tunneling, as explained. The evidence for both
effects is still rather indirect and comes solely from the numerical calculations. A
study of chaos-assisted tunneling in the open annular billiard is a promising avenue
for making analytical progress, due to the availability of an exact expression for the
quantum map connecting successive boundary reflections. This type of expression
has not been found for the general convex billiard, and it is likely that only approx-
imate results can be obtained. The great advantage in the annular billiard is that
both the inner and outer walls are perfect circles, so that in particular the value
of sinχ in the SOS (as defined for billiards above) is the exact classical analog of
angular momentum with respect to the origin of the outer circle. In the deformed
billiard, sinχ is the tangential component of momentum at the boundary, which
itself however changes orientation with respect to the radius vector to the billiard
origin.

The latter is also a problem that one faces when trying to quantize the ef-
fective map derived here. If this could be done, we would be able to make analytical
statements about the localization length in a general convex billiard. One possibil-
ity is to neglect the above problem and treat sinχ as angular momentum. Then
the effective map is still far more complex than the standard map, due to the im-
plicit nature of the momentum mapping equation and the p-dependent kick strength
appearing in it.

A very direct way of looking for localization is by using techniques based on
the Wigner or Husimi function. Much preliminary work in this respect has been
done by the author but was not included here due to its unfinished nature.
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The assumption that the internal dynamics of the open billiard follows that
of the closed system is not valid when applied to the low sinχ resonances which are
so short lived that they do not stay in the billiard long enough to follow an adiabatic
curve for one period. Therefore it will be of interest to compare wave functions and
Wigner functions of closed and open billiards to see how they differ in the admixture
of low angular momentum components.

In the context of chaos-assisted tunneling, one might expect not only en-
hanced widths of the levels still confined to KAM tori at intermediate deformations,
but in addition the enhanced tunnel splitting of symmetric and antisymmetric states.
These states exist in our convex billiards for the same reasons as in the annular bil-
liard, but there is preliminary evidence that their splitting is not enhanced while
their width is. This is likely due to the fact that chaotic diffusion from one edge of
the chaotic sea to the other, as required for the tunnel splitting, is preempted by
the ray escape that occurs rapidly after entering the lower-sinχ region of the SOS.
This escape-mediated depletion of the processes required for enhanced level splitting
deserves further study, as it further sets apart the quantum-chaology of the open
system from that of the closed one.

Although we have managed to make contact with the experiments on lasing
droplets on a qualitative basis, further investigation into the semiclassical theory for
asymmetric spheroids, as well as the laser theory for these multimode systems, are
required. Also, we have not performed any numerical calculations of the quasibound
states. The additional complication arising here is that one can no longer choose
the polarization such that it remains conserved, as soon as the shape becomes non-
spherical. This means that in principle the wave function matching calculations have
to include field components with two orthogonal polarizations with the associated
matching conditions, thus doubling the number of unknowns. This can be done,
but may not be necessary to capture the essential physics, which is still expected to
result from the competition between classical ray diffusion, direct and chaos-assisted
tunneling, and localization. These phenomena should be present in a similar way
in the scalar wave equation, as is the case for the cylinders discussed mainly in this
thesis.

There are also some interesting problems of classical mechanics that are
worth pursuing. Having achieved satisfactory correspondence between the effective
map and the real billiards, the former may find an application in determining the
escape directionality knowing only the curvature. This could be done in combination
with a refinement of the ergodic model, thus leading to analytical expressions that are
valid for the case of dynamical eclipsing, too. It was also found by the author that if
one plots the emission direction as a function of the precise starting value of φ on the
adiabatic curve, a fractal function with intermediate continuous intervals is obtained.
The continuous segments can be identified as being due to short escaping orbits that
undergo almost no diffusion before leaving the billiard. Since their number increases
with deformation, the said regular segments become larger and more numerous. It is
easy to show that this leads to increased fine structure in the classical directionality
histograms. This may be a feature that could be resolved in experiments at large
wavenumbers so far unaccessible to our numerics.

First steps were taken during this thesis to understand the properties of
nonintegrable open cavities that cannot be reduced to a two-dimensional problem.
The system that was studied within the ray-optics framework consists of a dielectric
cylinder of finite length with plane faces, one of which is tilted away from the normal
to the cylinder axis. This tilted cap is an example for a truly three-dimensional
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system undergoing a transion to chaos with tilt angle of the cap. It may provide a
suitable entry point into the study of such systems because of its strong similarities
to the problem of a charged particle in a quantum well subjected to a tilted magnetic
field148.

Overall, we have seen that the classical picture is able to make a number of
predictions about the positions, widths and emission patterns of WG modes in ARCs,
which are found to be in agreement with exact numerics as well as experiments. This
is of great value in that it establishes the concepts that seem to capture the essential
physics of these systems which are so difficult to treat from the wave point of view.
It is to be hoped that this work will stimulate further developments both in the
theory of semiclassics in mixed open systems and in microcavity optics.
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Appendix A

Einstein-Brillouin-Keller
quantization in closed systems

In this appendix, we give supplemental material concerning the relation between the
EBK method and classical mechanics.

A.1 WKB approximation for eigenstates on a torus

The general WKB ansatz for a quantum wavefunction is of the form

ψ(r) = A(r) eiS(r)/h̄, (A.1)

where we use S ≡ k S in this appendix for brevity. This can be inserted into the
time-independent Schrödinger equation,

− h̄2

2m
∇2ψ + V (r)ψ = E ψ. (A.2)

If one neglects all terms of order h̄ or higher, one obtains a classical equation which
does not contain h̄:

1

2m
(∇S(r))2 + V (r) = E. (A.3)

But this is just the (time-independent) Hamilton-Jacobi equation introduced earlier
in Eq. (3.76), with ∇S = p because of Eq. (3.70). The phase S thus has the meaning
of the classical action function and its gradient points in the direction of classical
propagation. If one collects the terms of first order in h̄, the resulting equation can
be written in the form

∇ ·
(

A2∇S/m)
)

= 0, (A.4)

which is the amplitude transport equation101. This terminology becomes clear if we
consider A2 as a density and use ∇S = p = mṙ. Then this equation means that the
probability density current is divergence free. A special solution of this equation is

A2(r) =

∣

∣

∣

∣

∣

det[
∂2S

∂r∂J
]

∣

∣

∣

∣

∣

, (A.5)

where J are the action variables specifying the phase space torus. The proof given by
Gutzwiller38 starts with a time dependent formulation of the action, called Hamil-
ton’s principal function, as opposed to Hamilton’s characteristic function which was
introduced earlier. We will give a more direct proof that does not make the detour
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δ l0

δ l

Figure A.1: A bundle of trajectories evolving in time.

via the principal function, but as in section 3.5.1 we will be restricted to two degrees
of freedom, since the present derivation was devised only to provide a foundation
for the applications in this thesis.

The first step is to rewrite Eq. (A.4) as

0 = ∇ ·
(

A2 ṙ)
)

(A.6)

= ẑ · ∇ ×Q, (A.7)

Q =







−A2 ẏ
A2 ẋ

0






. (A.8)

Here, ẑ is the unit vector perpendicular to the xy-plane. This curl expression is
now integrated using Stokes’ theorem. To define the integration domain, consider
two line elements δl0, δl intersecting a bundle of trajectories, as shown in Fig. A.1.
We keep δl0 fixed and assume that δl is its image under the time evolution. Stokes’
theorem then tells us that the line integral of Q along δl is the same as that along
δl0 (there is no contribution along the flow lines, because Q is perpendicular to ṙ).
The integrand of the line integral is

A2







−ẏ
ẋ
0






·
(

dx
dy

)

= A2 det[

(

ẋ dx
ẏ dy

)

] = A2 det (ṙ, dr) . (A.9)

In the last expression, we transform both column vectors to angle coordinates, using

(ṙ, dr) =

(

∂r

∂Φ

)

(

Φ̇, dΦ
)

. (A.10)

But the angle variables are just linear in time with frequencies ~ω. The fact that Φ is
only translated parallel to the frequency vector ~ω by the time evolution also means
that displacements dΦ remain constant. Therefore, we have

det[(ṙ, dr)] = det

(

∂r

∂Φ

)

det (~ω, dΦ) = const × det

(

∂r

∂Φ

)

. (A.11)

Now we shrink the length of δl0 and the time interval to zero, so that the constancy of
the line integral across δl implies the constancy of the integrand A.9 itself. Together
with Eq. (A.11), this leads to

A2 = const × det

(

∂Φ

∂r

)

. (A.12)

Using the definition of S as the generating function for the transformation between
r and Φ, Eq. (3.71), one finally arrives at the solution Eq. (A.5), where the absolute
value is taken to insure real A.
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One can understand the meaning of A2 in the following way: Assume we have
distributed trajectories with a constant areal density σ on the torus, in the sense
that using the angle variables, σ dΦ1 dΦ2 is the probability of finding trajectories in
the surface element dΦ1 dΦ2 on the 2D torus. Then the motion just induces linear
shifts in the coordinates Φi, and thus leaves the density constant, and in particular
divergence-free. But in the configuration space r, the density is obtained from the
projection of the distribution,

A2(r)dr = σ

∣

∣

∣

∣

det[
∂Φ

∂r
]

∣

∣

∣

∣

dr, (A.13)

which reduces to Eq. (A.5) as we just showed (if we set σ = 1). This interpretation
of A2 as the classical probability density of a democratic ensemble on the torus
means that A2 will diverge at the caustics, cf. the remark on caustics at the end of
subsection 3.7.1. Therefore, the WKB solutions break down near caustics.

The quantization conditions follow from the requirement that the WKB
wavefunction be single-valued while satisfying the boundary conditions. In the bil-
liard, one usually assumes Dirichlet boundary conditions, i.e. vanishing of the wave-
function at the hard walls. Other conditions will be admitted later, but it is clear
that we cannot satisfy them in general with the ansatz of Eq. (A.1). The solution
is to take a superposition of two (or more) terms of the WKB form, which can then
achieve the necessary cancellations at the boundary by interference. The question
is, how many such different terms are there at our disposal? From the discussion
of section 3.7.2, we recall that in the integrable case we are considering here, there
are two sheets of S for a convex planar billiard, corresponding to the two possible
directions of a trajectory through a given point that are not equivalent under time
reversal. Using the notation of that section, we can write the ansatz99

ψ(r) = ABC(r) ei SBC(r)/h̄ +ACB(r) ei SCB(r)/h̄. (A.14)

We know from the classical reflection law that

∇SBC · n = −∇SCB · n (A.15)

along the boundary, with n being the normal vector. Also, we must have SBC = SCB

at the boundary because the boundary condition must be satisfied for a whole set
of k which appears in the exponentials in ψ. These facts in conjunction with the
boundary condition fix the relationship between ABC and ACB at the boundary,
e.g. one has99 ABC = −ACB for Dirichlet and ABC = ACB for Neumann boundary
conditions (vanishing normal derivative). More genrally, we write for the phase shift

ACB = e−iαABC , α ∈ [0 . . . π]. (A.16)

At the caustics where the WKB ansatz becomes invalid, one has to derive
connection formulas between solutions belonging to different sheets of S. For general
multidimensional systems, this was done by Maslov102. The result is analogous to
the one-dimensional case, in that each crossing of a classical turning point in an
effective potential that can be locally expanded with a linear term gives rise to a
phase shift of −π/2. This is the shift of the outgoing wave relative to the incoming
one, corresponding to a retardation.

The phase shifts due to the caustics and to the boundary have to be taken
into account when we ask whether the wave function is single-valued. The meaning
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of single-valuedness has been explained for billiards in section 7.1. Eaach sheet of S,
i.e. SBC as well as SCB, is itself again multivalued, so that the value of SBC (e.g.)
at a given point can reflect the above phase advance or not. The possible values
of SBC at a point r are given by the phase changes around all possible paths that
can be patched together by following ray segments or moving along lines of constant
phase, and computing the change in S as the integral of its gradient,

∆S/h̄ =
1

h̄

∮

Γ

∇S(r) dr− α− µ
π

2
. (A.17)

The value of ∆S must be an integer multiple of 2π h̄ in order for each exponential in
Eq. (A.1) to remain single valued despite the multivaluedness of SBC and SCB . We
know that there are two fundamental inequivalent loops C1 and C2, and they thus
give rise to two quantization conditions for the actions, as written in Eq. (7.3).

Keller and Rubinow99 explicitly used this method to obtain semiclassical
expressions for both bouncing-ball and whispering-gallery orbits in the ellipse, ob-
taining good numerical agreement with exact calculations in both cases. The ap-
plicability of the EBK conditions to whispering-gallery orbits must be stressed here
because we rely on it later on. Moreover, as we are about to find out, the Berry-
Tabor formula (which is based on a periodic-orbit sum) fails for whispering gallery
modes. Keller and Rubinow employed further approximations beyond the WKB
ansatz to derive expressions for bouncing-ball and whispering-gallery orbits in the
general convex billiard. In the whispering-gallery case they find for the quantized
wave numbers with Dirichlet boundary conditions

k ≈ 2πm

LB
+

(

2πm

LB

)1/3 [

π

(

n+
3

4

)]2/3 1

LB

LB
∫

0

κ2/3(s) ds. (A.18)

Here, s is the arc length along the boundary of total length LB, and κ is the curva-
ture. The first term simply means that an eigenstate exists whenever the wavelength
2π/k fits into the circumference LB an integer number of times m. The second term
depends on the “radial” quantum number n. The formula becomes worse as n
increases, but this is only a consequence of approximations made to estimate the
actions on one hand, and further approximations to then solve the semiclassically
exact implicit relations determining k. We shall derive later an expression based on
the adiabatic curves which we leave in its implicit form and solve for k numerically.
This is also how Keller and Rubinow obtained good results for the ellipse. First, we
shall illustrate the method for a simple example which nonetheless exhibits all the
physics we are going to encounter later.

A.2 Semiclassical quantization in the circle

This is the simplest example studied by Keller and Rubinow. We have obtained
the actions in Eqs. (3.83) and (3.92). They are quantized for Dirichlet boundary
conditions according to

Jφ = 2π h̄m, (A.19)

Jr = 2π h̄

(

n+
3

4

)

. (A.20)

For von-Neumann boundary conditions, 3/4 is replaced by 1/4. Here m and n are
the angular momentum and radial quantum numbers, and the phase in the radial
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condition arises because the phase space contour in Fig. 3.2 (b) crosses the caustic
once and goes through one reflection; the angular momentum quantization has no
additional phases because the contour in Fig. 3.2 (a) remains on a single sheet of S.

Now we insert the quantization condition for Jφ into that for Jr and arrive
at

m

[
√

R2

r20
− 1 + arcsin

r0
R
− π

2

]

= π

(

n+
3

4

)

. (A.21)

In the limit that the radius r0 of the caustic becomes very small, r0 � R, we can
expand the square root and the arcsin, leading to

m

[

R

r0
− π

2

]

≈ π

(

n+
3

4

)

. (A.22)

Here, we use the definition of r0 in Eq. (3.82), and furthermore convert from the
energy E to the wavenumber k,

r0 =
pφ√
2mE

=
m

k
. (A.23)

Note that this is equivalent Eq. (7.12), with k is quantized according to Eq. (A.21).
Substitution of r0 into Eq. (A.22) leads to the approximation

kR ≈ π

(

n+
3

4
+
m

2

)

. (A.24)

In the whispering-gallery limit, we can make use of the fact that the turning point
r0 approaches R, and write

r0
R

= sinχ = 1− η. (A.25)

However, an expansion of the arcsin in this case is only possible in the non-analytic
form

arcsin(1− η) ≈ π

2
−
√

2η − η2 . . . (A.26)

This causes the analogue of Eq. (A.18) in the circle to be a bad approximation for
n > 0. Therefore, it is better to solve Eq. (A.21) numerically, which leads to good
results. This is the approach we will follow from now on.

It should be stressed that the system of equations (7.3) not only fixes k to
some quantized value, but also determines the other unknowns hidden in the action
variables. In our two-dimensional case, there is only one more unknown, namely
r0. It is the parameter that determines the classical actions, and since r0 = m/k
it becomes quantized itself. Clearly, we could use sinχ = r0/R as the classical
parameter, and the quantization will then provide sinχ as a function of the quantum
numbers. This connection between classical trajectories and a particular quantum
state is of crucial importance in the subsequent analysis of phase space diffusion and
its effects on resonance lifetimes.

A.3 Eikonal theory

For later applications we rewrite the WKB theory in the language of the optical
Helmholtz equation,

∇2ψ + k2 ε(r)ψ = 0, (A.27)
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where ε is the dielectric constant. This becomes analogous to the Schrödinger equa-
tion if we set ε ≡ 2m (E − V ) and k = 1/h̄. Consequently, the WKB ansatz is

ψ(r) = A(r) eik S(r), (A.28)

which implies that S now has the dimension of a length instead of an action. In this
form, the WKB ansatz is known as the eikonal approximation of geometric optics126,
and ∇S now points in the direction of the rays. The analogy to quantum mechanics
becomes a full equivalence only if we consider position- independent potentials V and
dielectric constants ε, respectively. We will return to this issue later. For the study
of billiards, we can restrict ourselves to precisely this special case. In particular, we
can set ε = 1 so that

(∇S)2 = 1, (A.29)

i.e., ∇S is a unit vector in the ray direction. The quantization condition now reads

k Ji = 2π + αi + µi
π

2
. (A.30)

Another way of stating the special conditions above is that in the plane hard-wall
billiard, the quantum mechanical problem does not have h̄ and energy E as inde-
pendent parameters. This is also called the scaling property106.
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Appendix B

Periodic-orbit theory for the
density of states

From the fact that the actions of an integrable system are quantized, one should not
conclude that the resulting tori parametrized by the Ji have rational winding num-
ber. To see this, note that we could vary the ratio Ji/Jj infinitesimally by changing
αi in the quantization condition, Eq. (7.3), thereby producing a small change in
the winding number, which would in general lead to irrational w, corresponding to
orbits that do not close on themselves. In the circle, this implies that it is incorrect
to quantize the system in the naive way, requiring a ray path to close on itself and
to have a length that is an integer multiple of a wavelength. For example, if we
assume a trajectory with winding number w = 1/3 can be quantized, the resulting
angle of incidence according to Eq. (3.107) is χ = π/6, which can be inserted into
Eq. (3.94), using

√

β

J2
φ

− 1 =

√

1

sin2 χ
− 1 =

√
3. (B.1)

Now we apply the quantization conditions, Eqs. (A.19) and (A.20), to obtain for the
radial quantum number the condition

n = π

(

3m

9− π
− 3

4

)

. (B.2)

The righthand side cannot be an integer due to the fact that π is not a divisor of
any integer.

Despite this remark, periodic orbits nonetheless do play an eminent role in
all semiclassical theories that calculate the density of states38,107–109.

This distinction between the EBK method for a single state and the density-
of-states approaches (that periodic orbits have no special meaning in the former
but are the only trajectories appearing in the latter) can be understood if we keep
in mind that the integers in the quantization conditions are not the same as the
integers characterizing a rational winding number. The relationship between the
two is established via the Poisson summation formula,137

∞
∑

M=−∞
e2πi Mx =

∞
∑

n=0

δ(x− n), (B.3)

which can easily be proved by writing the delta functions as a Fourier integral, per-
forming the n-summation under the integral to get a geometric series, and applying
the residue theorem to the latter.
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After we showed how this formula connects winding numbers and quantum
numbers, we will briefly explore the situation in chaotic systems where tori no longer
exist but the density of states can still be expressed in terms of sums over periodic
orbits.

B.1 Berry-Tabor formula for integrable systems

Formula B.3 is used in the density of states, which we can write with the Hamiltonian
as a function of the actions, H(J), as

ρ(E) =
∑

n

δ(E −H(h̄(n + β)). (B.4)

Here, we lumped all phases in the quantization conditions (Maslov and boundary)
into the vector β. This can also be written as an integral over the continuous action
variables (N is the number of degrees of freedom),

ρ(E) =

∫

dJ δ(E −H(J))
∑

{ni}
δN (J− 2π h̄(n + β). (B.5)

Now we use Eq. (B.3) to obtain

ρ(E) =
∑

M

e2πiM·βρM(E), (B.6)

where we defined

ρM(E) ≡
(

2π

h̄

)N ∫

dJ δ(E −H(J)) ei M·J/h̄. (B.7)

Since the conserved quantity H = E is a function of the N actions Ji, we could
equivalently parametrize the torus by only N − 1 of the Ji and use E as the N -th
variable. This set can be orthogonalized while preserving E as the N -th variable,
yielding a transformation of variables from J to a set ξ. Here, ξN = H, whereas the
other ξi do not appear in H. The Jacobian of this transformation is

det[
∂ξ

∂J
] = det

[

∂ξ1
∂J

,
∂ξ2
∂J

. . . ,
∂ξN
∂J

]

. (B.8)

From Hamilton’s equation, Eq. (3.73), the N -th column is just the vector of angular
frequencies

∂ξN
∂J

=
∂H

∂J
= ~ω. (B.9)

Pulling the magnitude of this vector out of the determinant, we are left with the
determinant of an orthogonal matrix which is unity. If we wish to apply this trans-
formation in the integral in Eq. (B.7), we need the inverse of the above Jacobian,
thus obtaining

ρM(E) =

(

2π

h̄

)N ∫

dξ
1

|~ω| δ(E − ξN ) ei M·J(ξ)/h̄ (B.10)

=

(

2π

h̄

)N ∫

dξ1 dξ2 . . . dξN−1
1

|~ω| e
iM·J(ξ)/h̄, (B.11)

where the ξN -integral has been performed with the effect of setting ξN = E. Since
we are considering the semiclassical limit in which h̄ can be considered small, it is

157



consistent with the previous expansion in powers of h̄ to evaluate the integral in Eq.
(B.11) in the stationary phase approximation. The contribution arises when the ξi

(i < N) are chosen so as to yield

M · ∂

∂ξi
J(ξ) = 0. (B.12)

The vectors ∂J/∂ξi (i < N) appear as rows in the inverse of the matrix in Eq.
(B.8), so they are all orthogonal to the N -th row of that matrix, which is ∂J/∂E.
We conclude from Eq. (B.12) that M must be parallel to ∂J/∂E. But that means
that any vector pointing in the direction of ∂J/∂E must have rationally related
components, because M is a vector of integers.

This holds in particular for the angular frequency vector, because it satisfies
the relation

0 =
∂H

∂ξi
=
∂H

∂J

∂J

∂ξi
= ~ω · ∂J

∂ξi
, (B.13)

for i < N , where the first equality arises from the fact H depends only on ξN . As a
consequence, the components of ~ω satisfy

ω1 : ω2 . . . : ωN = M1 : M2 . . . : MN . (B.14)

The stationary phase approximation has therefore selected precisely the tori with
rational winding numbers, i.e. those that support periodic orbits. This means that
the exponential in Eq. (B.11) can also be interpreted as the action along the periodic
orbit where loop i is rounded Mi times:

eiM·J(ξ)/h̄ ≡ ei S(M). (B.15)

To obtain the density of states, the stationary contributions must be summed to
obtain ρM(E), which is then inserted into Eq. (B.6). One arrives at the Berry-

Tabor formula,

ρ(E) = ρ0(E) + ρ̃(E), (B.16)

ρ̃ =
2

h(N+1)/2

∑

~µ>0

|~µ|(N−1)/2

|~ω(J)K(J)|
∞
∑

q=1

q(N−1)/2 cos

[

q S(~µ)

h
− γ(q, ~µ)

]

.

Here, we have decomposed the integer vectors

M = q ~µ, (B.17)

where the elements of ~µ are also integers that in addition have no common integer
factor. The case ~µ = 0 gives rise to ρ0, which is the weakly E-dependent mean level
density, semiclassically obtained by dividing the phase space volume of the energy
shell by hN . The remaining sum over ~µ contained in ρ̃ reproduces the discrete level
structure in the form of a superposition of oscillatory terms. S(~µ) is the action along
such a primitive periodic orbit, and q counts its repititions. K is the curvature of
the energy surface in action space at the point J(~µ), and γ contains the phase shifts
β and additional phases arising in the stationary phase approximation.

The first remark about this formula is that the ensuing periodic-orbit sum
can be very slowly convergent in reproducing the series of delta-function peaks com-
prising the semiclassical density of states109. The same information is obtained with
full semiclassical accuracy from the EBK method, however restricted to one level at
a time.

158



The slow convergence is understandable if we ask ourselves how the periodic
orbits manage to reproduce peaks at the correct energies even though these corre-
spond in general to irrational tori. The reason is the constructive interference of
periodic orbits with winding numbers closer and closer to the irrational one, which
approximate the EBK quantization conditions110. To achieve a sufficiently strong
weight at the EBK energy level, many of such “rational approximants” have to
be taken into account. But the better a rational orbit approximates an irrational
winding number, the longer it gets. This is the origin of the convergence difficulties.

This trace formula for the spectral density is still useful even if the periodic-
orbit sum is not carried to large accuracy, provided one has a physical reason for
disposing of trajectories whose length exceeds some limit, i.e. in microstructures
given by the phase coherence length. One should also note that ρ(E) is always used
in the sense of a distribution65, i.e. under an integral with some function A(E)
whose spectral average is to be determined. The number of periodic orbits required
then depends on the function A(E).

Equation (B.16) was rederived from a scattering approach in Ref.65 and
tested for the circular billiard. The comparison with the exact spectrum is best
done for the Fourier transform of ρ(k), where k =

√
2mE/h̄. This gives a length

spectrum ρ(l), and excellent agreement between the Berry-Tabor formula and the ex-
act result was obtained. A notable exception are the whispering gallery orbits, which
in the true length spectrum show up as peaks near integer multiples of the billiard
circumference. The problem arises in the stationary phase approximation for these
orbits, and we will encounter related difficulties later when the exact wavefunctions
of the circle are used directly as a starting point for asymptotic approximations. The
stationary phase approximation breaks down because the whispering-gallery orbits
are never far away from the caustic; but at the caustic, many trajectories come close
to being parallel to each other. Under such circumstances, the stationary points
(B.12) coalesce. One can interpret this to mean that the curvature of the energy
shell vanishes, K(J) = 0, and causes the stationary-phase result in Eq. (B.16) to
become undefined. Of course, the whispering-gallery modes are precisely the ones of
greatest interest in our optics applications, so periodic-orbit theory has little appeal
in this context.

We shall not dwell on this issue here for the simple reason that the EBK
quantization conditions do not fail for whispering gallery orbits, as evidenced by
the work of Keller and Rubinow described above. The WKB ansatz is also the
foundation of a very general theory of semiclassical quantization discussed, e.g., by
Shnirelman and Lazutkin61.

B.2 Gutzwiller trace formula for chaotic systems

Similar (or worse) convergence problems arise in the periodic-orbit sums for chaotic
systems. We will omit a detailed discussion of this subject because it is not used
in what follows; extensive treatments from various viewpoints can be found in
Refs.65,38,107,108. Gutzwiller’s trace formula for the density of states is

ρ(E) = ρ0(E) +
1

π h

∑

p

∞
∑

q=1

TpAq,p cos

[

q Sp

h
− γ(q, p)

]

, (B.18)

where the mean density ρ0 is a smooth function of energy, as in the Berry-Tabor
formula. The form is quite similar to Eq. (B.16) in that p labels the periodic orbits
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and q their repetitions, while Sp is the action (integrated along the periodic orbit)
and γ some phase shift as before. The power of h in the prefactor is different,
however, and so are the pre-exponential factors; Tp is the period and Aq,p the so-
called stability amplitude of the periodic orbits, which have to be isolated in this
formulation. For N = 2 degrees of freedom, an integrable system exhibits an h−3/2

prefactor in the density oscillations, while the contributions from periodic orbits in
the chaotic system go as h−1. The latter is a smaller correction due to the smallness
of Planck’s constant.

The Gutzwiller formula is still the most versatile method even for the deter-
mination of individual quantized states, because its applicability is not restricted to
a certain class of chaotic systems, as is our approach to be described shortly. The
way in which one can hope to extract single-level information from Eq. (B.18) with
only a finite number of periodic orbits is based on the following observation.

It is not necessary to reproduce the full density of states down to delta-
function accuracy if we are looking for the positions of eigenvalues. As for a scat-
tering resonance of the Breit-Wigner shape, where the exact resonance position can
simply be read off from the peak location, we expect to find the semiclassical eigen-
values from the broadened approximates to the delta function density by simply
noting the positions of the maxima. All we have to require then is that these broad-
ened maxima are isolated from each other. This is a (as yet unproven) conjecture
which was used in Refs.111–113. It is implemented by using the spectral staircase

function N(E), which counts the number of levels up to the given energy E. It is
the integral of the density of states, and it can therefore be approximated by taking
as the integrand Eq. (B.18) with only a finite number of periodic orbits up to some
classical period T ∗. If we call this approximate staircase function NT ∗(E), then it
will have smoothed steps of unit height centered around those energies En where
the broadened peaks in the density of states appear. The center point of the steps
corresponds to a step height of 1/2, so that we obtain the condition

NT ∗(En) = n+ 1/2, (B.19)

where n is an integer. Of course En depends on T ∗ but should approach the correct
semiclassical eigenvalue as this classical period is taken to infinity. The minimum
value of T ∗ necessary to guarantee isolated peaks in the approximate density of
states is given by the Heisenberg time TH .

This time can be obtained by requiring Eq. (B.18) to have oscillations in
energy on the scale of the mean level spacing ∆E = 1/ρ0, in order to produce peaks
that are separated from each other. Now the argument of the cosine in Eq. (B.18)
has an energy period given by

∆E =
2π h̄

∂S/∂E
. (B.20)

The derivative of the action appearing here can be calculated for an orbit of period
T as

∂S/∂E =
∂

∂E

∮

pdq =

∮

∂p

∂E
dq =

∮ [

∂H

∂p

]−1

dq (B.21)

=

∮

dt

dq
dq =

∮

dt = T. (B.22)

Equating the two expressions for ∆E, we then have for the classical period that is
needed

T ≡ TH = 2πh̄ ρ0(E) ∝ h(−N+1). (B.23)
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This Heisenberg time may not be prohibitively long if the effective h is sufficiently
large. In any case, the need to consider potentially large numbers of periodic orbits
leads to the question of whether an alternative approach yields useful results in a
simpler way, especially taking into account the fact that we are interested in a region
of phase space not far from the chaos border.
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