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Abstract— A hovering vehicle interacting with objects and
surfaces must be robust to contact forces and torques transmit-
ted to the airframe, which produce coupled dynamics distinctly
different from those of free flight. These mechanics may be
modeled as elastic couplings between the aircraft and the
ground, represented by a 6-DOF spring in R3×SO(3). We show
that Proportional Derivative attitude and position controllers
that stabilize a rotorcraft in free flight will also stabilize the
aircraft during contact for a range of contact displacements
and stiffnesses. Simulation of the coupled aircraft dynamics
demonstrates stable and unstable modes of the system.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have effectively
demonstrated their ability to fly, maneuver and carry out
observation tasks in numerous roles. However, they remain
passive observers, limiting their interaction with the envi-
ronment to remote surveillance. The increasing ubiquity of
UAVs will be further supported by developing the means for
these robots to contact and engage with their surroundings
robustly. The ability to manipulate objects while hovering
will allow these vehicles to be used for infrastructure main-
tenance and other similar tasks in locations inaccessible to
terrestrial vehicles, such as the tops of power lines and radio
masts, rough terrain or water surfaces.

When an aircraft contacts a surface, forces are trans-
mitted to the airframe that may destabilize the vehicle if
not properly accounted for. Such perturbations arise both
when actively engaging and manipulating objects, as well
as during inadvertent collisions. Robustness to these forces
during flight is essential for aerial robots performing physical
tasks in complex real-world environments; the vehicle must
guarantee flight stability throughout all modes of operation.

Aircraft-object interactions have historically been in the
form of tethered flight and surface contact in landing, with
care taken to avoid pathological coupled modes, such as
dynamic rollover [1]. Work on UAV-object interaction has
followed these lines of inquiry.

The dynamics of an aircraft tethered to ground are impor-
tant for landing helicopters on ships. Much work has been
done to develop control laws for UAV rotorcraft operating
in this regime [2]–[4]. These analyses typically treat tether
forces as a constant bias load and present control designs that
reject it. However, this is not germane to object interactions
where forces are not constant and change dynamically.
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Fig. 1: Yale Aerial Manipulator platform with compliant ventral gripper.

Fig. 2: Aircraft Free Body Diagram.

In addition to ground contact, researchers at Università
di Bologna have explored the interaction of a ducted-fan
UAV with hard point-contacts flying against sloped and
vertical surfaces [5]. Gentili et al employ a state-machine
based mode switching controller that dynamically changes its
flight control law as the aircraft transitions from one distinct
contact configuration to another. This work was extended to
a quadrotor model with a similar control strategy [6].

Rather than treat interactions as constant bias or me-
chanically distinct configurations, our approach is to model
contact as serial compliance through an end-effector, probe
or other part of the aircraft [7]. This approach is related to the
authors’ current work utilizing a compliant gripper with both
angular and translational stiffness, to grasp and manipulate
target objects [8]. This framework also applies to cases such
as ground contact with landing gear, pushing objects with
landing skids or touching a wall with a rotor shroud.

Commercial off-the-shelf flight stabilizers employing Pro-
portional Derivative (PD) and Proportional Integral Deriva-
tive (PID) architectures are increasingly available for UAV
rotorcraft. Rather than employ custom designs tailored for
object interactions, it is desirable to use these standard
controllers to maintain stability during contact. Many com-
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mercial systems are not adjustable mid-flight and therefore
the same gains that regulate free flight would ideally continue
to stabilize the aircraft in contact. By finding compliance
limits that guarantee continued stability and designing the
contact mechanism appropriately, the controller’s free-air
flight performance can be retained without risk of destabiliza-
tion in contact. Such tuned stiffnesses ensure stability without
knowledge about the contact and are effective even during
uncertain contact configurations or unexpected collision.

Previously, we examined the dynamic stability of 3-DOF
planar helicopters with PID attitude control and rotor flap-
ping mechanics, connected to ground by a link with transla-
tional and angular springs [7]. These systems were shown
to remain stable within a maximum lateral and angular
stiffness ratio. This was demonstrated experimentally with
a helicopter equipped with a compliant gripper (see Fig. 1)
that hovered stably while gripping a block fixed to ground
[8]. The planar case, however, does not consider the more
complex interactions arising from cross-coupled motion or
contact points not aligned with the rotor axis.

In this paper we extend this structure to 6-DOF, for PD
control of both attitude and position, and consider arbitrary
end-effector positions. In section II we translate the full
planar dynamic model to motion in all axes, simplify this
model for control analysis, and present a 6-DOF end-effector
compliance model in R3×SO(3). In section III we describe
attitude and position controllers employing time-scale sep-
aration that stabilize the aircraft in free-air. These control
laws are used in section IV to derive bounds within which
the aircraft will remain stable during contact. Simulations of
stable and unstable configurations are presented in section
V. Section VI discusses the implications of aircraft stability
for aerial manipulation. Section VII concludes the paper.

II. DYNAMIC MODEL

The fundamental dynamics of small-scale helicopters are
well established [4], [9]–[11]. These models typically include
the mechanics of a rotating and translating rigid body,
driven by a pair of rotors that produce torques and forces
at some offset from the center of mass. We will adapt a
similar 6-DOF model and make appropriate simplifications
to facilitate control analysis.

A. Free-Air Dynamic Model

The inertial reference frame is denoted by I= {ex, ey, ez},
where ez is in the direction of gravity, and ξ = (x, y, z) is
the origin of the body fixed frame A ={e1, e2, e3} where e1
is aligned with the front of the craft (see Fig. 2). The frame
A is related to I by the rotation matrix R : A → I. Vector v
is the translational velocity of frame A in I and Ω is angular
velocity of frame A expressed in A.

The system dynamic equations are:

ξ̇ = v (1)
mv̇ = −Ω×mv +mgez +RTM +RTT (2)
Ṙ = RΩ× (3)

JΩ̇ = −Ω×JΩ + TM×h + TT×l + τMe3 + τT e2(4)

where m and J are the mass and rotational inertia of the
aircraft, g is acceleration due to gravity, TM , τM , TT and
τT are the thrust and drag torque vectors produced by the
main rotor and tail rotor respectively, and h and l are their
displacements from the center of mass. Here × is the skew-
symmetric matrix operator.

Thrust vectors are computed as functions of rotor tilt
angles. The planar model extended this description to in-
clude the effects of blade flapping for a zero-hinge offset
‘teetering’ rotor. These arise from aerodynamic-centripetal
force imbalance due to body translation and rotation in the
air (cf. [12]). The definition used in the planar case can be
extended to 6-DOF by including the lateral components of
flapping and abstracting the distortion of the rotor tip plane
to include arbitrary velocities1:

TM = −αMu4
(
I + [−u2 u1 0]′×

−(Q1v×e3)× − (Q2Ω)×

)
e3 (5)

TT = −αTu3e2 (6)

where I is the 3×3 identity matrix, and αM and αT are thrust
scaling of the rotors with blade angle of attack. The control
inputs ui are the absolute rotor blade pitch angle controls: u1
and u2 are the lateral and longitudinal rotor cyclic pitch, and
u3 and u4 are the tail rotor and main rotor collective pitch.
Matrices Q1 and Q2 are constant translation and rotation
flapping parameters of the rotor, respectively:

Q1 = q1(e1 e2 0) (7)
Q2 = q2(e1 e2 0) + 1

ω0
(ee2 e1 0) (8)

where q1 and q2 are the same rotor translation and rotation
parameters used in the planar model [7] and ω0 is the angular
velocity of the rotor.

B. Analytical Model

The model given above is directly solvable in the planar
case, but difficult to analyze in 6-DOF. We apply simplifi-
cations to the model that yield an easier system to analyze,
but which retains its essential behavior. The complete model
is used for the simulations in section V.

Around equilibrium flight conditions the set-point rotor
control angles will induce torques and forces that exactly
cancel the constant forces on the airframe (e.g. tail-rotor
thrust moment balances main rotor drag torque). System
control inputs can be regarded as the sum of the equilibrium
values, plus a variation around these points: ui = u0i + δui.
We can cancel these steady-state contributions and only
consider the effect of the variational inputs.

Dimensional analysis applied to the planar case indicates
that under closed loop control around equilibrium the in-
fluence of flapping mechanics on system stability is small.
Mahony et al note that the body forces due to rigid body
motion, −Ω×mv, and the lateral forces induced by δu1

1This generalizes the model given in [11], which represented rotor
flapping as a transformation between body velocity and locally observed
rotor wind velocity
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and δu2 are small and can be ignored [9]. These forces are
omitted from the analysis, but are included in the simulation.
The stabilizing effects of rotor inflow damping and ground
effect cannot be assumed and are excluded.

Importantly, these approximations impart a strict hierar-
chal structure to the dynamics, with no feed-forward me-
chanics. Consequently, inputs δui act only to induce torques;
we combine these system inputs into a single control vector
Γ = [δu2 δu1 δu3]′. The simplified dynamics we will use
for analysis are of the standard form:

ξ̇ = v (9)
mv̇ = mgez − TRe3 (10)
Ṙ = RΩ× (11)

JΩ̇ = −Ω×JΩ + Γ (12)

where T = mg + αMδu4.

C. Contact Model
Consider a UAV equipped with an end-effector mounted

some displacement d from its center of mass. When the end-
effector comes into contact with an object or surface, the
dynamics of the closed-loop system will change. We repre-
sent contact and interaction with objects by an elastic multi-
dimensional coupling; this coupling transmits forces from the
aircraft to the object and vice versa. While we are particularly
interested in the case where the end-effector has a firm grasp
and produces stiffness in all axes, these models may also be
adapted for unidirectional surface contact constraints.

The planar model approximated a compliant gripper as
a combination of lateral, vertical and angular springs of
varying stiffness. Similarly, we consider a multi-dimensional
spring that can apply both angular and translational forces.

Josip Lonc̆arić posits that there is no natural positive
definite metric on the group of body displacements in SE(3)
[13], making realization of a truly generalized elastic element
for 6-DOF motion intractable. However, the space R3 ×
SO(3) is diffeomorphic to SE(3) and such metrics do exist
in SO(3) and R3. Thus we consider a pair of springs: one
3-DOF translational spring and one 3-DOF rotational spring
that act on the body to produce a force and torque (see
Fig. 3).

Fξ = −Kξ(Rd− d + ξ) (13)
τR = −KR log(R) (14)

where Kξ and KR are translational and rotational spring
stiffness matrices, and log(R) is the so(3) mapping of the
matrix logarithm of R:

log(R) = θω (15)

where θ and ω are the angle-axis pair of the exponential
representation of the body attitude [14]:

θ = arccos

(
trace(R)− 1

2

)
(16)

ω =
1

2 sin(θ)

R32 −R23

R13 −R31

R21 −R12

 (17)

Fig. 3: Contact Spring Configuration.

Fig. 4: Flight Control Architecture.

When ξ = 0 and R = I , the end-effector is touching the
object with zero force and torque.

As the end-effector compliance is offset from the aircraft
center of mass by d, the forces and torques are coupled. The
translational spring force depends on displacement of the end
effector, a function of R. The force induces a moment about
the center of mass:

τ ξ = Kξ(Rd− d + ξ)×d (18)

Similarly, the rotational spring torque induces forces on the
body:

FR = KRd× log(R) (19)

III. CLOSED-LOOP FREE-AIR STABILITY

Aircraft flight controllers are designed to stabilize the ve-
hicle in free-air. Attitude stability is most crucial as rotorcraft
require near-level pose to remain in the air, but translational
stability is also important. A common architecture uses a
cascaded loop structure in which attitude is stabilized first,
and then position. We consider a flight controller employing
PD control to stabilize each loop (see Fig. 4).

We make the key assumption that the two sets of dynamics
are time-scale separated. Small-scale helicopters typically
have pitch and roll dynamics that are an order of magnitude
faster than their translational dynamics [7], [10]. For systems
with high attitude control authority and low position-control
bandwidth, this is a reasonable expectation. In general, how-
ever, the interaction between pitch and translation oscillatory
modes is non-trivial and to be avoided.

We apply the analysis by Bullo and Murray for stabilizing
a rigid body on SO(3) and R3 with PD control [14]. They
prove stability for second-order systems of this type by
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Fig. 5: SO(3) Geodesic Displacement Torque.

constructing Lyapunov energy functions for the angular and
translational motion and showing that the derivatives of these
functions are negative definite. The attitude dynamics of (12)
are exponentially stabilized at R = I by a controller of the
form:

Γ = −f(R,Ω)−KRp log(R)−KRdω (20)

where f ∈ so(3) is the “internal drift” arising from system
coriolis forces [JΩ,Ω] and KRp and KRd are symmetric
positive-definite gain matrices, provided:

λmin(KRp) >
||Ω(0)||2

π2 − ||R(0)||2SO(3)

(21)

where λmin is the smallest eigenvalue of KRp, Ω(0) and
R(0) are the initial velocity conditions, and ||R||SO(3) =

〈log(R), log(R)〉 1
2 is the ad-invariant metric on SO(3) that

gives the arc distance between R and I .
In the case where the proportional gain is KRp = kRpI ,

the properties of the skew-symmetric operator and passivity
of the coriolis forces allows the controller to be reduced
to pure PD form, and the stable system posed in the same
structure as (12):

JΩ̇ = −Ω×JΩ− kRp log(R)−KRdΩ (22)

The KRp log(R) term is a torque proportional to the min-
imum geodesic distance between the inertial basis frame
and the rotated body coordinate frame — conceptualized as
the torque generated by such reference frames with springs
attached at each basis vector (see Fig. 5).

If time-scale separation between the attitude and trans-
lation dynamics is asserted, translational mechanics can
be treated independently from rotation. Position control is
implemented by a trajectory of R and δu4 that produces
desired horizontal and vertical forces. It is straightforward
to see that a PD control function will stabilize position:

mv̇ = −Kξpξ −Kξdv (23)

where Kξp and Kξd are the positive-definite gains of nor-
malized control function:

Uξ = − 1

mg
(Kξpξ +Kξdv) (24)

The required R trajectory to generate this control can be
determined by constructing the matrix Rd:

Rd =
(
Rd1 Rd2 Rd3

)
(25)

where:

Rd3 =

 −ey · Uξ
ex · Uξ

(1− U′ξPUξ)
1
2

 (26)

using orthogonal projection matrix P = (e1 e2 0), such that
||Rd3|| = 1. Choose Rd1 such that ||Rd1|| = 1 and Rd1 ·ey = 0 to
set zero yaw, and Rd2 = Rd3×Rd1 such that the SO(3) group
structure of Rd is maintained. This structure is resolvable
provided ||UξPU′ξ|| < 1.

Correspondingly:

δu4 = α−1M mg(ez · Uξ − ez +Rd33) (27)

applies the required ez force component.

IV. STABILITY DURING CONTACT

When the end-effector engages with an object the forces
applied by the compliant linkage are added to the dynamic
model. It is necessary to find the bounds on contact stiffness
that maintain stability in coupled flight. In this section we
show that the addition of compliance within specified bounds
does not destabilize the vehicle.

The velocity dynamics with elastic forces are:

mv̇ = −Kξpξ −Kξdv−Kξ(Rd− d + ξ)

+KRd× log(R) (28)
JΩ̇ = −Ω×JΩ− kRp log(R)−KRdΩ

−KR log(R)−Kξ(Rd)×d +Kξd×ξ (29)

We will analyze the dynamics under contact mechanics
as if they behave in a strictly time-scale separated fashion.
High-gain attitude control designs, where the action of the
control inputs can dominate any cross-coupled forces, make
time-scale separation a feasible assumption. In such condi-
tions, further simplifications can be made: rotational contri-
butions in the lateral dynamics are ignored and translational
contributions in rotational dynamics are treated as constant.

A. Rotation

Rotational stability in these conditions requires that (21)
remains satisfied for the system without translational dis-
turbance forces and that constant disturbance induced by
translational spring force is rejected.

The proportional rotation stiffness and control action are
posed in the form of the logarithmic angle-axis displacement
of the system. However, the moment induced by the lateral
spring force by end-effector rotation is not represented in
this way. The (Rd)×d force-lever structure does not support
a moment in the direction of d, and so cannot be exactly
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Fig. 6: Translational Spring Rotational Approximation.

expressed as a logarithmic gain. That said, free rotational
motion in the d direction is known to be stable without the
contributions of spring forces (ie. in free air). We consider,
therefore, a more stringent scenario in which rotation in d
is augmented with an additional torsional spring to produce
a combined rotational stiffness in the form Kξ||d||2 log(R)
(see Fig. 6). The positive-definite gain matrices of the
proportional torques can then be directly summed.

It is easy to verify that the eigenvalues of the combined
gain must be larger than or equal to those of kRpI alone.
Therefore, the addition of proportional elastic rotational
forces will not violate (21) and destabilize the aircraft at I .
However, rotational spring forces work to return the rotation
of the body to I; to reach Rd to apply the translational control
action, the proportional angular control will be resisted by
the passive rotational elasticity. The proportional control term
must dominate, such that eigenvalues of the total effective
proportional stiffness matrix KRΣ = kRpI −KR −Kξ||d||2
also satisfies (21) for some range of ||R(0)|| and ||Ω(0)||.

Given the constant disturbance moment induced by the
translational spring force, the system will not reach equilib-
rium around R = Rd. The equilibrium point for this system
will instead occur where the combined proportional torques
balance the bias torque:

0 = −KRΣ
log(R)−Kξd×ξ (30)

The steady-state orientation of the system can be directly
computed through the rotation matrix exponential map:

RB = exp{−K−1RΣ
Kξd×ξ} (31)

where the mapping exp : so(3)→ SO(3) is:

R = I + sin(θ)ω× + (1− cos(θ))ω×
2 (32)

Within the bound |θ| < π, the elastic rotation function
is convex — given an equilibrium within this limit, the
derivative of the associated energy function will be nega-
tive definite. Consequently, the biased system will remain
bounded around the equilibrium.

B. Translation

The translational velocity dynamics with added compli-
ance given in (28) can be rewritten to group constant, propor-
tional and rotation force components. As with the rotational
case, force from angular stiffness coupling needs to be recast
as a force in the inertial frame. The exponential rotation
structure is approximated by d×θω = ||d||−1(d−Rd), such
that:

mv̇ = (mgez +Kξd +KR||d||−1d)−Kξξ

−R(T e3 +Kξd +KR||d||−1d) (33)

The contributions of the combined translational compliance,
KξΣ = Kξ + KR||d||−1, are applied equally to the gravity
force and the rotor thrust force. This has the effect of a
positive scaling and rotation applied to the two forces; the
system remains stable if the off-axis contributions are less
than the effective control action:

||ez×KξΣd||
ez · (mgez +KξΣd)

<
1√
2

(34)

that is, where the angle between the desired control action
and the applied control action is less than 45◦.

C. Coupled Stability

From IV-A and IV-B, each second-order subsystem of
the dynamics remains locally stable under added stiffness.
However, the offset bias in rotation due to ξ couples into
translational dynamics by producing non-zero lateral forces.

When aircraft orientation is approximately I and the bias
in rotation is small, the exponential map can be approximated
by its first order elements R = I + (θω)×. The bias
orientation becomes:

RB = I + (−K−1RΣ
Kξd×ξ)× (35)

The translational velocity dynamics of (33) can then be
written independent of rotation. Canceling constant terms,
and combining mgez and mgRe3 to implement position
control:

mv̇ = −Kξpξ −Kξdv−Kξξ

−(K−1RΣ
Kξd×ξ)×(mge3 +KξΣd) (36)

Straightforward manipulation puts this in the form of a
proportional system:

mv̇ = −[Kξp +Kξ − (mge3 +KξΣd)×(K−1RΣ
Kξd×)]ξ

−Kξdv (37)

This system will be stable around equilibrium if the eigenval-
ues of the proportional coefficient are positive. For isotropic
stiffness and control gains in the form K = kI , these are:

λ =

(kRΣ
−mgd3 − kξΣd′d)(kξp + kξ)/kRΣ

(kRΣ −mgd3 − kξΣd′d)(kξp + kξ)/kRΣ

kξ

 (38)

For expected small lateral stiffness and end-effector displace-
ments, the stability condition is approximately kRΣ > mgd3.
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TABLE I: Standard Yale Aerial Manipulator Parameters.

Aircraft Parameters
g 9.81 ms−2 Jxx 0.08 kgm2

m 3.3 kg Jyy 0.19 kgm2

h [0 0 − 0.2]′ m Jzz 0.19 kgm2

q1 0.0039 w0 96 rads−1

q2 0.0266
Control Parameters

kRp 1.80 kξp 2
kRd 1.57 kξd 3

Standard Gripper Position and Approximate Isotropic Stiffnesses
d [0 0 0.2]′ m
kR 2.85 Nm/rad kξ 26.6 N/m

V. SIMULATION

Stability bounds (38) and (34) were tested by simulating a
variety of end-effector stiffness and position configurations.
Base aircraft, control and stiffness parameters used are those
of the Yale Aerial Manipulator and its gripper (see Table
I). Each simulation starts with R(0) = I , Ω(0) = 0, ξ =
[0 0 −0.5]′ m and initial velocity v = [0.5 0 0]′ ms−1.

We present six archtypical simulations; the standard con-
figuration and five gripper and stiffness variations thereof:

1) The standard configuration.2

2) Standard placement, no rotational gripper stiffness.
3) Standard stiffness, gripper 0.2 m above the CoG.
4) Standard stiffness, gripper 1 m below the CoG.
5) Standard stiffness, gripper 1 m ahead of the CoG.
6) Standard stiffness, gripper 1 m right of the CoG.

Time evolution plots of simulated aircraft position and roll-
pitch-yaw angles are given in figures 8–13; the ground end
of the contact spring is fixed.

As expected from previous experiments with the Yale
Aerial Manipulator, simulation 1 shows the aircraft is stable
in gripping contact. However, simulation 2 indicates that the
same system with no rotation stiffness)will slowly topple,
crashing into the ground at t = 5.88 s; this is homologous
to dynamic rollover behavior. In contrast, when the gripper
is placed at the same distance above the center of gravity,
the system oscillates unstably (terminating at t = 4.25 s).
As the contact point is set far from the CoG system stability
diminishes: in simulation 4, rotational stiffness is insufficient
to stabilize the aircraft, crashing at t = 3.61 s. Notably,
simulations 5 and 6 are not pathological. In simulation 5,
the aircraft is excited along the line of the contact probe,
producing no cross-coupled disturbance except for small
coupling due to flapping, and the system oscillates with
stable decay. Simulation 6 shows the aircraft pivot and
yaw about its contact point; as the disturbance trajectory
is orthogonal to gravity the otherwise unstable motion is
arrested by yaw control.

VI. DISCUSSION

Section IV provides insight into the operation and design
of aerial manipulators. Here we discuss how aircraft stability
considerations can be utilized in the design of aircraft-end-
effector systems and highlight assumptions and limitations
of the analysis.

2Gripper placement and stiffness parameters as per Table I

Fig. 7: Possible Contact Configurations: a. d3 > 0, b. d3 ≈ 0, c. d3 < 0.

A. Assumptions, Implications and Limitations

While the dynamic model given in section II and used
in the simulations is comprehensive, the analysis is by no
means a complete exploration of the problem. It considers
only the most common flight condition of level flight, and
many assumptions are made:
• Time-scale separation of dynamical subsystems
• Approximately level flight
• High-gain attitude control, low-gain position control
• Pure rotor torques (zero lateral rotor force contribution)
• Spring force contact approximations.
• No environment compliance, slipping or chattering
The key observation is that aggressive proportional attitude

gain is paramount for highly robust stable contact. Rotational
end-effector compliance augments the proportional attitude
control without influencing free-air performance and so this
stiffness should be made large. However, inadvertent con-
tacts are likely to be essentially point contacts, and so a
conservative design will rely only on flight control gain.

We identify three major classes of aerial manipulator
by the vertical offset of the end-effector d3: contact point
substantially below the CoG, substantially above the CoG
(e.g. connected through the rotor mast or through the body
of a quadrotor), or approximately level with the CoG (see
Fig. 7). Given an aircraft and flight-controller with fixed
parameters, d3 should be minimized so as to reduce the mag-
nitude of torques being transmitted to the attitude dynamics.
Free-air stability of laden helicopters with dynamics loads
also benefits from small displacements from the CoG [8].
However, this understanding assumes the rotational dynamics
of the aircraft in contact reach equilibrium much faster than
translational dynamics. Although the planar analysis also
showed improved stability performance with shorter end-
effector link lengths [7], a resulting increase in coupled-
system natural frequency could be deleterious to stability of
non-timescale separated systems.

Notably, equation (38) implies that the system should be
inherently stable for some negative values of d3; however,
(34) permits only a small range of these. The full simulation
shows that coupling effects that are benign and ignored in
the positive configuration are pathological when the contact
point is above the center of mass. In particular, horizontal
rotor forces, position control and pitch-translation coupling
in the spring destabilize the system, and higher attitude gain
serves to exacerbate the effect. Given the rotor-over-body
construction of most helicopters, d3 is likely to be positive
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or only slightly negative, as an end-effector cannot easily
penetrate the disc of the rotor.

Lateral offset of the end-effector tends to induce slow
yaw divergence, but as yaw control can be very high-gain
in helicopters3 lateral offset is not considered pathological.

Further work is needed to reduce the number of assump-
tions made about aircraft configuration and flight behavior.
In particular, understanding of coupled modes that arise
from rotation-translation interactions is needed for ensuring
complete system stability and to highlight stable above-CoG
contact configurations.

B. Object and Surface Manipulation

A natural extension of the R3 translational compliance
model is that forces imparted to an object are proportional
to the commanded displacement of the aircraft from ξ = 0.
End-effector position d is the endpoint of a six-joint manip-
ulator chain — by commanding small translations about the
contact point, a flying vehicle can apply translational forces
to an object in the environment.

In the case of single-sided contact conditions, such as
a probe being pressed against a surface, this model re-
mains valid provided a positive normal contact force is
applied. In addition to proper grasping, the ability to apply
unidirectional forces through surface contact can be used
in applications such sliding or rolling objects too heavy
for a small helicopter to lift directly, pressing buttons in
human environments, and object retrieval with non-actuated
manipulators such as hooks.

Pressing point-contacts, such as in accidental collision,
cannot easily support a pure moment at the contact, requiring
the flight stabilizer to provide sufficient rotational stiffness.
The stability conditions of (21) and (34) do not depend
upon any minimum value of Kξ. Thus, transition from
stable frictional contact to sliding contact or non-contact
conditions will not compromise flight stability. The reverse
is not necessarily true, as fast contact or impact velocities
may violate the dynamics time-scale separation requirement.
Contact issues such as stiction, unstable chattering and
environment compliance are beyond the scope of this work,
but may pose further challenges in ensuring the stability of
aircraft.

VII. CONCLUSION

This paper is a preliminary effort at understanding the
problem of a PD-stabilized helicopter manipulating objects,
focusing on the most important configuration of compliant
contact at low velocities in level hover. This work expanded

3Quadrotors, which have limited yaw control authority, are expected to
be especially susceptible to lateral offset instability, however.

the previously presented planar aircraft dynamic model to
a comprehensive 6-DOF model, including rotor flapping
mechanics and 3-DOF elastic contact models for rotation and
translation; this model was reduced to a simplified model for
analysis. We described a PD control structure for rotation
and position control, making the assumption of time-scale
separation. We demonstrated that around level hover, the
analytical model will be stable for a range of given flight con-
trol parameters, end-effector stiffnesses and displacements.
Simulation of the full dynamic model confirms the stability
transitions predicted by the analytical model.

The key insight for aerial manipulation is that for under-
slung end-effector contacts, high proportional attitude gain is
essential for robust object interaction. Contact configurations
substantially above the aircraft CoG produce pathological
behavior, but lateral offsets do not significantly affect the
stability of the system. Further work is required to validate
the simulation with experiments and further the analysis for
stability of coupled dynamic modes.
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Fig. 8: Simulation 1 — Standard gripper configuration.
d = [0 0 0.2]′ m , kξ = 26.6 Nm−1, kR = 2.85 Nmrad−1

Fig. 9: Simulation 2 — Zero rotational stiffness.
d = [0 0 0.2]′ m , kξ = 26.6 Nm−1, kR = 0 Nmrad−1

Fig. 10: Simulation 3 — Inverted contact point.
d = [0 0 − 0.2]′ m , kξ = 26.6 Nm−1, kR = 2.85 Nmrad−1

Fig. 11: Simulation 4 — Extended vertical contact probe.
d = [0 0 1]′ m , kξ = 26.6 Nm−1, kR = 2.85 Nmrad−1

Fig. 12: Simulation 5 — Extended longitudinal contact probe.
d = [1 0 0]′ m , kξ = 26.6 Nm−1, kR = 2.85 Nmrad−1

Fig. 13: Simulation 6 — Extended lateral contact probe.
d = [0 1 0]′ m , kξ = 26.6 Nm−1, kR = 2.85 Nmrad−1
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