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ABSTRACT

Aerial vehicles are difficult to stabilize, especially when
acted upon by external forces. A hovering vehicle in contact with
objects and surfaces must maintain flight stability while subject
to forces imparted to the airframe through the point of contact.
These forces couple with the motion of the aircraft to produce
distinctly different dynamics from free flight. While external con-
tact is generally avoided, extending aerial robot functionality to
include contact with the environment during flight opens up new
and useful areas such as perching, object grasping and manip-
ulation. In this paper, we present a general elastic contact con-
straint model and analyze helicopter stability in the presence of
those contacts. As an example, we evaluate the stability of a
proof-of-concept helicopter system for manipulating objects us-
ing a compliant gripper that can be modeled as an elastic linkage
with angular reaction forces. An off-the-shelf PID flight con-
troller is used to stabilize the helicopter in free flight, as well as
during the aerial manipulation task. We show that the planar
dynamics of the object-helicopter system in vertical, horizontal
and pitch motion around equilibrium are shown to remain sta-
ble, within a range of contact stiffnesses, under unmodified PID
control.
NOMENCLATURE

an, bn, etc. Routh-Hurwitz array elements.
a Blade lift slope.
cRD Rotor damping constant.
C Flight controller transfer function.
d Center of gravity-linkage offset.
G Translational dynamics poles.
Fx, Fz Elastic linkage reaction forces.
FGE Ground effect force.

∗Address all correspondence to this author.

FRD Vertical rotor damping force.
g Acceleration due to gravity.
H,H ′ Open-loop plant pitch-input transfer functions.
Hcl Closed-loop plant pitch-input transfer functions.
h Rotor height above center of gravity.
I Helicopter pitch inertia.
k PID flight controller system gain.
kd PID flight controller derivative gain.
ki PID flight controller integral gain.
kGE Ground effect spring constant.
kx, k′x Linkage horizontal spring constants.
kz, k′z Linkage vertical spring constants.
kθ, k′

θ
Linkage pitch spring constants.

l Gripper finger rotor axis offset.
m, m0 Helicopter and object masses.
q1 Translational rotor flapping coefficient.
q2 Pitch rotor flapping coefficient.
R Rotor radius.
TFA, TGE Rotor thrust in free-air and ground effect.
u Rotor cyclic blade pitch control input.
x Helicopter longitudinal position.
z Helicopter height above hover equilibrium, z0.
β First harmonic longitudinal rotor flapping angle.
θ Helicopter pitch angle.
ρ Air density.
σ Rotor solidity ratio.
τ Elastic linkage torsional moment.
ω Rotor angular velocity.

INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are becoming increas-

ingly important in a variety of fields [1]. However, UAVs ‘look,
but don’t touch’, with minimal interaction with their environ-
ment, and significant effort has gone into preventing UAVs from
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Figure 1. AERIAL MANIPULATION TESTBED CARRYING A TUBE.

contacting objects around them. It is desirable to extend the
scope of UAV functionality to include contacting, picking-up and
manipulating objects. The flying ability of UAVs promises capa-
bilities not available to any wheeled or legged terrestrial robot:
rapid traversal of impassible terrain, movement around 3D envi-
ronments and an unlimited vertical workspace. Hovering UAVs
such as helicopters and quadrotors are especially appealing plat-
forms for object interaction: they can come to a stop over an
object in order to interact with it, whereas a fixed-wing aircraft
must maintain a minimum velocity.

During contact with the environment, stability of the air-
craft in flight must be guaranteed [2]. In this paper, we present
a general contact model and examine the dynamic stability of
planar helicopters with elastic constraints. Conventional exter-
nal loads applied to helicopters, such as tether loads and landing
gear oleo, apply unidirectional forces — either vertical compres-
sion or tension. However, generalized contact forces are applied
bi-directionally — these loading conditions create structurally
different dynamic behavior. Aircraft interacting with objects and
surfaces require novel frameworks for analyzing flight stability;
this model is applicable to extended cases of conventional air-
craft loading, as well as to new cases such as aircraft perching
and object grasping.

Of specific interest is the possibility of manipulating objects
while hovering, without the need to land. This minimizes the
time and energy needed to perform a manipulation task and per-
mits the robot to acquire objects from terrain not suitable for
landing, such as at the tops of power lines, radio masts or on
the surface of water. The contact constraints imposed by this
task are challenging, and may serve to destabilize the craft if not
properly understood and accounted for. In addition to present-
ing a general contact model and stability analysis, we examine
the specific case of grasping external objects from a helicopter
platform with a compliant gripper mounted ventrally under the
airframe.

Aerial Manipulation
The difficulties of aerial manipulation are numerous. The

vehicle must maintain hover position of the helicopter over the
target object accurately enough for capture with an end effector

Figure 2. COMPLIANT GRIPPER MODULE.

such as a gripper or hook, and reject disturbances and biases from
aerodynamic effects. Earlier efforts to overcome the imprecision
of hovering vehicles have relied heavily on structuring of the tar-
get object to simplify the task, for example using magnets [3, 4]
and hoops [5]. However, this greatly limits the variety of objects
the robot can grasp.

The approach taken in this work is to use a compliant un-
deractuated manipulator, based on the SDM Hand [6], mounted
ventrally between the skids of a 4.3 kg, 1.5 m rotor, T-Rex 600
ESP radio control helicopter (Fig. 1). The gripper consists of
four fingers with two elastic joints each, actuated by a parallel
tendon mechanism that balances loads across each digit; it has a
grasp span of 115 mm (Fig. 2). The helicopter is stabilized with
a Helicommand flight controller, directed by a human pilot. The
aircraft and gripper can carry loads above 1 kg.

The special characteristics of the hand design — open-loop
adaptive grasping, wide finger span, insensitivity to positional
error [6] — closely match the challenges associated with the
UAV manipulation task, allowing for a very simple, light-weight
mechanism, without the need for imposed structural constraints
on the load. To acquire an object, the helicopter approaches the
target, descends vertically to hover over the target and then closes
its gripper. Once a solid grasp is achieved, the helicopter ascends
with the object.

Flight Stability and External Contact
Contacting and grasping objects while flying raises ques-

tions of continued aircraft flight stability [2]. When a robot he-
licopter with an elastic gripper has hold of an object, but has not
yet applied enough thrust to ascend with it, contact forces will be
transmitted through the gripper to the airframe. It is possible that
these added dynamics will not be correctly compensated-for by
the flight controller and thus destabilize the helicopter, leading
to a crash. Throughout all modes of operation, the vehicle must
guarantee flight stability to remain in the air.

Automatic flight controllers for small-scale helicopters are
now commercially available. Use of off-the-shelf avionics is
beneficial as it keep costs and overhead down and reduces de-
velopment time. However, these flight controllers may not be



adaptable to deal with the additional forces transmitted through
the compliant gripper. It is desirable to show that a standard
control architecture, in this case Proportional Integral Derivative
(PID) control, will remain stable during external contact for a
given gripper and helicopter configuration.

A compliant gripper may be approximated as a linkage (con-
ceptualized as a compressible tether) connecting the immovable
object and the helicopter. Research into tethered unmanned he-
licopter stability has been conducted since the 1960s. An early
paper describes two fundamental flight modes of tethered heli-
copters [7]: stability of attitude due to the low connection point
of the tether, and pure instability in position, the so-called ‘pen-
dulum’ mode. These dynamics have been exploited to produce a
stable unmanned rotor platform that flew at the end of its tether
in a local equilibrium where the tether tension, weight and rotor
thrust were balanced by automatic control [8]. More recently,
efforts have focussed on autonomous landing of helicopters on
ships in rough weather using a tether winch [9, 10]. All of these
papers consider the helicopter to be flying far from the tether
point, where the line tension and direction is approximately con-
stant.

In this case, where the elastic link is short, the aircraft will
be operating exclusively around the equilibrium directly above
the tether point, in low-velocity flight. The applied load can-
not be treated as a constant either in magnitude or direction, nor
always in tension, and consequently the mechanics are quite dis-
tinct from previous models. A different analytical approach must
be taken which specifically includes the unique dynamics load-
ings transmitted to the airframe through the gripper.

Roadmap
In this paper we present a general force model and dy-

namic stability analysis of a planar helicopter with elastic con-
tact constraints. We examine the specific case of grasping exter-
nal objects from a helicopter platform with a compliant gripper
mounted ventrally under the airframe. A 3-DOF helicopter flight
model, including vertical rotor motion damping and ground ef-
fect, is presented, along with a PID controller that stabilizes the
pitch dynamics in flight.

The combined helicopter-linkage system is analyzed for sta-
bility using a bogie suspension approximation of the SDM hand
grasping a fixed object. The bogie suspension is simplified to a
single pin-jointed prismatic link with torsional springs fitted at
each end. The Routh-Hurwitz criterion is used to show that that
the vertical motion of the system is always stable, and that the
coupled pitch-longitudinal motion is conditionally stable for a
subset of linkage stiffness configurations.

Finally, we assess the parameters of the proof-of-concept he-
licopter UAV fitted with the compliant gripper, and conclude that
it will be stable during hovering object capture.

HELICOPTER FLIGHT MODEL
Much work has been done to control autonomous rotorcraft

flight attitude, and the dynamics of helicopters in hover are well

Figure 3. HELICOPTER DYNAMIC MODEL WITH ELASTIC LINKAGE.

understood [3, 11, 12]. Due to the largely decoupled lateral and
longitudinal dynamics of helicopters around hover, a simple, lin-
ear, planar model is useful for analyzing the stability of both the
free-air and constrained systems. In this paper, longitudinal dy-
namics are considered, but the analysis is equally applicable to
lateral flight near hover.

The rigid-body dynamics of the linearized planar helicopter
in hover are1:

mẍ = −mgβ−mgθ−mgu+Fx (1)
mz̈ = −FRD−FGE +Fz (2)
Iθ̈ = mghβ+mghu+ τ (3)

where m is the mass of the helicopter, I is the pitch rotational
inertia of the helicopter, g is acceleration due to gravity, x, z and
θ are the longitudinal, vertical and angular position of the center
of mass, h is the rotor height above the center of mass, β is the
first harmonic longitudinal rotor flapping angle, u is the cyclic
pitch control input, FRD is rotor inflow damping, FGE is effective
ground effect force, and Fx, Fz and τ are the longitudinal force,
vertical force and pitch moment applied by the linkage.

We will consider a helicopter with a rotor that is free to ‘flap’
(or pivot) at the center like a see-saw. In horizontal motion, the
on-coming wind causes an imbalance in lift between the blades
on either side of the rotor disc. This causes the rotor plane to
pitch upward, changing the angle of attack of each blade until a
new equilibrium is reached.

The angled rotor directs some of its thrust aft, slowing the
helicopter and producing a pitching moment. Flapping dynam-
ics are a crucial part of helicopter stability analysis, even at low
speeds. The rotor pitch response is extremely fast, and so it can
be represented analytically, without need for additional states.

At low speeds, the flapping angle, β, produced by a zero
flapping hinge-offset rotor head is an approximately linear com-
bination of the longitudinal translation and pitch velocities:

1Rotor thrust is taken as constant, exactly canceling helicopter weight, and so
is not included in the vertical dynamics.



β = q1ẋ−q2θ̇ (4)

where q1 and q2 are constant parameters of the rotor [12].
In free air, rotor wake disperses beneath the helicopter and

attenuates some distance downstream. However, when close to
the ground (within approximately one rotor-diameter distance),
the wake of the rotor is contained by the surface underneath it,
creating a cushion of air referred to as ‘ground effect’. This cush-
ioning increases the lift generated by the rotor and is experienced
by the pilot as a repulsive force resisting the helicopter’s descent.

The ratio of thrust in ground effect, TGE , to thrust in free air,
TFA, is [13]:

TGE

TFA
=

16z2

16z2−R2 (5)

The increase in thrust close to ground is treated as force ap-
plied as a function of distance away from the trimmed equilib-
rium hover altitude, z0 (taken as z = 0). This can be treated like
a spring force FGE = kGEz, where:

kGE =

[
32z0

R2−16z2
0
+

512z3
0

(R2−16z2
0)

2

]
(6)

Vertical motion of a rotor through its own induced flow
changes the local flow angle of attack at blades, which alters the
amount of lift produced. This change in thrust is in the opposing
direction of motion, producing vertical damping. The damping
force produced is FRD = cRDż [12], where:

cRD =
[a

4
σ

ωR

]
ρπR2(ωR)2 (7)

Flight Control and Free-Air Stability
Helicopter pitch and longitudinal motion are strongly in-

terdependent, but vertical motion is effectively decoupled from
these around hover. Solving the longitudinal translation-pitch
equations together produces a single-input-single-output transfer
function between the cyclic control input and the pitch angle in
free flight:

H =
mghG−m2g2hq1

Is2G+mghq2Gs−m2g2hq1(q2s−1)
(8)

where G = ms+mgq1.
Helicopter flight dynamics are intrinsically unstable and re-

quire feedback control from onboard sensors for autonomous
hover. Commercial flight controllers using PID are now read-
ily available for small-scale helicopters. These systems are af-
fordable and straight-forward to use but lack the flexibility of
tailor-made avionics. They cannot easily be adapted to dynamics
distinctly different from expected helicopter behavior.

The transfer function for a PID controller has the form:

C = k
(

1+
ki

s
+ kds

)
(9)

where k is the control gain, and ki and kd are the integral and
differential control parameters.

The stability of the controlled system can be assessed by ex-
amining the characteristic polynomial of the closed loop transfer
function, Hcl :

Hcl =
CH

1+CH
(10)

The polynomial is the sum of the products of the numerators (n)
and denominators (d) of C and H:

CnHn +CdHd (11)

Substituting (8) and (9), this becomes:

s3 +

(
mgh

I
(q2 + kkd)+q1g

)
s2 + k

mgh
I

s+
mgh

I
(kki +q1)

(12)
As the controlled helicopter is stable in free air, this polynomial
is known to be stable and its coefficients satisfy the the Routh-
Hurwitz criterion. The criterion states that for a dynamical sys-
tem to be stable, its characteristic polynomial must have all pos-
itive coefficients, and that leading entries in the Routh-Hurwitz
array derived from those coefficients must be positive. In the
case of a third order polynomial [14]:

s3 +a1s2 +a2s+a3 (13)

the lead elements of the array are given by:

b1 = (a1a2−a3)/a1 (14)
c1 = a3 (15)

Given (12) and (14) it can be shown that for free-air stability:

−Iq1g− Ikki + Iq1gk+mghk(q2 + kkd)> 0 (16)

which is later used in factorizing polynomial elements for the
tethered case.

CONTACT MODEL
In the specific application of grasping from a helicopter, the

elastic linkage being investigated is a compliant gripper mecha-
nism. The gripper consists of four fingers, each with two links
and two elastic flexures at the proximal and distal joints, with
stiffnesses k1 and k2 respectively. In the planar case, the gripper
is treated as two axis-symmetric non-slip contact points repre-
senting opposing pairs of fingers (see Fig. 4)2. The rotor thrust
balances the weight of the helicopter; it cannot lift the grasped
object and so the object is considered rigidly fixed to the ground.

Each finger can be modeled as a prismatic spring with an
torsional spring at the proximal joint, where the equivalent spring
stiffnesses, kr and kθ, are given by:

2The lateral view of the gripper is shown here for clarity — the same model
can be used for both lateral and longitudinal motion of the gripper, where k1 is
the out-of-plane stiffness of the proximal flexural element.



Figure 4. BOGIE SUSPENSION GRIPPER MODEL.

Figure 5. BOGIE SUSPENSION SINGLE LINK APPROXIMATION.

kθ = k1 (17)

kz =
k1 +2k2

3
(18)

where kθ is the torsional spring stiffness and kz is the prismatic
spring stiffness, assuming that the proximal and distal links are
of equal length.

Around equilibrium, the elastic forces and torques applied
due to x, z and θ motion are approximately decoupled. Thus, the
planar bogie suspension configuration can be approximated as a
single elastic linkage with tension springs at both pin joints (see
Fig. 5). The springs of the equivalent single linkage, k′z, k′

θ
and

kx, are computed by:

k′z = 2kz (19)

k′θ = 2kzl2 +2kθ (20)
kx = 2kθ (21)

where l is the distance between the tether point and the bogie pin
joint — corresponding to the proximal joint of the gripper.

This model is valid for the case where the helicopter thrust
exactly equals its own weight; lateral stiffness induced by verti-
cal thrust is zero in this case. However, as the helicopter begins
to apply thrust to ascend, the vertical force applied to the end of
the linkage will induce a lateral kinematic stiffness in addition to

the elastic stiffness of the linkage:

Fx =−
(

kx +
δT
d

)
x (22)

where δT is the additional applied thrust, up to the weight of the
carried object m0g. The combined stiffness term is denoted as k′x.
For large carried masses, this stiffness can be greater than that of
the linkage.

When the thrust applied exceeds the combined weight of the
helicopter, the object leaves the ground and the craft transitions
to suspended load behavior, the mechanics of which have been
explored in detail elsewhere [15,16]. This linkage model can also
be extended to other related constraint scenarios such as motion
of flexible landing skids on landing or adapted to novel cases
such as compliant connections to objects suspended by swarms
of UAVs.

VERTICAL STABILITY
Motion in the Z direction is independent of longitudinal and

pitch motion, and is not directly regulated by the flight con-
troller. Consequently, it must be intrinsically stable to reject dis-
turbances.

Using the standard linear spring-displacement model, the
equation of motion of the system in vertical motion becomes:

mz̈ =−cRDż− (kGE + k′z)z (23)

The Laplace transform yields the characteristic polynomial:

s2 +
cRD

m
s+

kGE + k′z
m

(24)

The coefficients of this characteristic polynomial are always pos-
itive. The Routh-Hurwitz criterion provides the following condi-
tion for stability:

kGE + k′z
m

> 0 (25)

As these terms are physical parameters greater than zero, this
condition is always true and the system is stable in z.

PITCH-TRANSLATION STABILITY
The horizontal dynamics of the system can be analyzed in

the same way as the vertical dynamics. Note that the longitudinal
translation of the system is coupled back into the pitch dynam-
ics through the moment produced around linkage offset d. The
dynamic equation of the tethered plant is:

H ′ =
mghG−mgq1(mghs−dk′x)

IGs2 +mghq2Gs−mgq1(mghs−dk′x)(q2s−1)+Gk′
θ

(26)
where

G = ms2 +mgq1s+ k′x (27)

gives the poles of the translational dynamics.



Using the control law given in (9), the characteristic equa-
tion of the closed-loop system is the fifth-order polynomial:

s5 +a1s4 +a2s3 +a3s2 +a4s+a5 (28)

where

a1 = (Iq1mg+m2gh(q2 + kkd))/(Im) (29)
a2 = (km2gh+mk′θ + Ik′x)/(Im) (30)
a3 = mg(kkd(h+q1d)k′x +mhkki

+q1(k′θ +q2dk′x +mgh)+q2hk′x)/(Im) (31)
a4 = k′x(k

′
θ +mg(kh+ kq1d−q1d))/(Im) (32)

a5 = k′xkkimg(h+q1d)/(Im) (33)

Not all of these coefficients are unconditionally positive: a4
is only guaranteed positive for all k′

θ
and k′xwhen k(h+ q1d) >

q1d. Note that the translational rotor flapping coefficient, q1, —
a fixed parameter of the helicopter — is a small value and this
inequality will be satisfied for conventional systems.

The Routh-Hurwitz array analysis for this equation is more
involved, owing to the system being fifth-order with three pa-
rameters: effective stiffnesses k′

θ
and k′x, and the gripper distance

below the center of gravity, d. As the flight controller is consid-
ered fixed, suitable bounds must be found on these parameters
to guarantee stability. However, as d is a physical parameter of
the helicopter and is not easily changed, it may be considered as
effectively fixed (assuming a4 > 0 is satisfied) and therefore only
variation in linkage stiffness will be considered.

The Routh-Hurwitz array elements for a fifth-order polyno-
mial are given by:

b1 = (a1a2−a3)/a1 (34)
b2 = (a1a4−a5)/a1 (35)
c1 = (b1a3−a1b2)/b1 (36)
c2 = a5 (37)
d1 = (c1b2−b1c2)/c1 (38)
e1 = a5 (39)

The four leading entries of the array, b1, c1, d1 and e1, must
all be positive for the system to be stable. With the exception of
c2 and e1, the equations for the array elements are long and these
are given in the appendix.

To understand what regions of stability exist, the value of
each entry may be plotted as a function of k′

θ
and k′x (see Fig. 6–

8). The vertical scale of the plots are truncated to between 0 and
1000; shading represents magnitude (height) for clarity.

The system is stable where all three entries are greater than
zero. These bounds appear as discontinuities in Fig. 7 and 8.
These may be plotted a single superimposed graph showing the
region of stable parameters (see Fig. 9).

Figure 6. ROUTH-HURWITZ ELEMENT b1.

Figure 7. ROUTH-HURWITZ ELEMENT c1.

Figure 8. ROUTH-HURWITZ ELEMENT d1.

Figure 9. STABILITY BOUNDS FOR LINKAGE STIFFNESSES.



Explicit bounds may be found by analyzing the equations for
c1 and d1. Factorization of these entries is lengthy, but yields the
following set of constraints for stability, given arbitrarily large
values of k′

θ
and k′x:

0 < mk′θ− Ik′x (40)
0 < mk′θki− Ik′xq1d (41)
0 < mk′θh− Ik′x(h+q1d)) (42)
0 < m2gh2− Ik′xq1d (43)

The first two inequalities are derived from c1, but are also
required for d1. The third and fourth are from d1. The first three
are constraints on the ratio of k′

θ
and k′x. The fourth is a constraint

on the absolute magnitude of k′x. Of these, (42) is the most re-
strictive slope, although there is a region of stability under the
intercept at k′

θ
= 0. This margin can be calculated explicitly by

determining d1 = 0 for k′x = 0, which has the solution:

k′x0 =
gm2h2

I(h+q1d)
(44)

Intuitively, the stable and unstable regimes can be under-
stood at extrema as either a helicopter pinned to a rigid fixture
but free to rotate (k′

θ
= 0,k′x = ∞), or a helicopter fixed level but

free to translate (k′
θ
= ∞,k′x = 0) — analogous to an inverted pen-

dulum.

Proof-Of-Concept System Parameters And Stability
The stability of the proof-of-concept system previously de-

scribed can be determined using the helicopter, controller and
gripper parameters given in Table 1. By applying (16) it can be
readily verified that the PID parameters specified stabilize the
helicopter in free flight.

Computing the tethered stability conditions, it is seen that
the gripper offset requirement, k(h+q1d)> q1d, is satisfied, but
the equivalent stiffnesses k′

θ
and k′x produced by the proximal

and distal joints, k1 and k2, and kinematic stiffness lifting full
object mass, m0, do not satisfy the strict slope requirement of
(42) for guaranteed stability. It is therefore necessary to compute
the intercept at k′

θ
= 0 to ascertain if the parameters are in the

stable region. Using (44) and (42), the stability bound intercept
is 132.6 Nmrad−1, and the slope is 26.5/1, placing the system
well within stable operating conditions.

This provides good confidence that the helicopter-gripper
system can be hovered in a grasping configuration without in-
ducing instability. Although the experimental system has yet to
be tested in this mode, trial results are expected shortly.

CONCLUSION
By combining a simple planar model of a helicopter UAV in

hover under PID control with a suspended bogie linkage repre-
sentation of a compliant gripper, a dynamic model of an aerial

Table 1. AIRCRAFT, CONTROL AND GRIPPER PARAMETERS.

Aircraft Parameters

g 9.81 ms−2 ρ 1.184 kgm−3

m 4.3 kg I 0.1909 kgm2

ω 96 rads−1 R 0.74 m

h 0.1 m a 5.5 rad−1

q1 0.0039 q2 0.0266

Control Parameters

k 0.2 kd 2

ki 1

Gripper Parameters

k1 2×0.08 Nmrad−1 kθ 0.16 Nmrad−1

k2 2×0.4 Nmrad−1 k′
θ

0.3207 Nmrad−1

kx 0.32 Nmrad−1 kz 0.5867 Nm−1

k′x 5.32 Nmrad−1 k′z 1.1733 Nm−1

l 0.025 m d 0.2 m

m0 1.0 kg

manipulation system during object capture was developed. Us-
ing the Routh-Hurwitz criterion, a set of bounds on the gripper
stiffness parameters was found to test the stability of a helicopter-
linkage system. By applying these constraints to the known pa-
rameters of the aircraft, gripper and controller, it was shown that
this particular configuration is well within the stable region of
the constraints.

Future Work
Further analytical work will look more closely at the full

non-linear, 6-DOF system and derive equivalent limits for sys-
tem stability. Additions to the model will be made to consider
the effect of pitching on lateral stiffness, and on the influence of
stiffness induced by increased vertical thrust.

Once the conditions for guaranteed flight stability in full 3D
flight are understood, the UAV will be used to attempt grasping
an object while in hover. This will require modifications to the
helicopter landing gear to raise the skids during flight and prevent
unwanted ground contact.
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Appendix: Routh-Hurwitz Array Elements
The Routh-Hurwitz array is used in determining the stability

of a characteristic polynomial [14]. It is computed from the poly-
nomial coefficients (an) and the determinant of preceding entries
in the matrix. The entries of the Routh-Hurwitz array for (28)
are given below. The elements have been factorized so that it can

be seen by inspection how the conditions presented in (40)–(43)
arise. The following substitutions are made for clarity:

p1 = −Iq1g− Ikki + Iq1gk+mghk(q2 + kkd)> 0 (45)
p2 = (I− (q2 + kkd)dm) (46)

b1 = (p1hm2 + k′xq1I2 +(q2 + kkd)m(mhk′
θ
− Ik′xq1d))

(Im(q2hm+ Iq1 +hkkdm))
(47)

b2 =
(Iq1 +mghq1 p2 +m(h+q1d)p1 +(q2 + kkd)hmk′

θ
)k′x

mI(q2hm+ Iq1 +hkkdm)
(48)

c1 =[mq1 p1 +m3h2(kki +gq1)p1 +mhq1kkik′xI2

+(q2 + kkd)
2hq1k′xdm(mk′θ− Ik′x)

+(q2 + kkd)
2q1k′xdm(m2gh2− Ik′xq1d)

+(q2 + kkd)m2hkki(hmk′θ− Ik′xq1d)

+(q2 + kkd)hq1(mk′θ− Ik′x)
2

+(q2 + kkd)q1(mk′θ− Ik′x)(m
2gh2− Ik′xq1d)]

/(p1hm2 + Iq1k′xI+(q2 + kkd)m(mhk′θ− Ik′xq1d)) (49)

c2 =
kkigmk′x(h+q1d)

Im
(50)

d1 =

k′x(Iq1 +hm(q2 + kkd)k′θ
+m(h+q1d)p1 +gmhq1 p2)[mq1(hmk′θ
−Ik′x(h+q1d))p1 +m3h2(kki +q1g)p1 + Imhq1kkik′x p2

+(q2 + kkd)m2h2k(mk′θki− Ik′xgq1)

+(q2 + kkd)hq1(mk′θ− Ik′x)
2

+(q2 + kkd)h2q1m2Ik′xkg

+(q2 + kkd)
2hq1mk′xd(mk′θ− Ik′x)

+(q2 + kkd)q1(mk′θ− Ik′x)(gm2h2− Iq1k′xd)

+(q2 + kkd)
2q1k′xdm(gm2h2− Iq1k′xd)]

/[mI((q2 + kkd)hm2k′θ + p1hm2 + Iq1k′x p2)

∗(q2hm+ Iq1 +hkkdm)]

−
(p1hm2 +(q2 + kkd)hm2k′

θ
+ Iq1k′x p2)kkigk′x(h+q1d)

I2m(q2hm+ Iq1 +hkkdm)

(51)

e1 = kkigmk′x(h+q1d)
Im

(52)




