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The Smooth Curvature Model: An Efficient
Representation of Euler–Bernoulli

Flexures as Robot Joints
Lael U. Odhner, Member, IEEE, and Aaron M. Dollar, Member, IEEE

Abstract—This paper presents a new method to produce compu-
tationally efficient models of robots that have planar elastic flexure
joints. An accurate, low-dimensional model of large deformation
bending is important to precisely describe the configuration of a
flexure-jointed manipulator. The new model is based on the as-
sumption that the curvature of a beam in bending is smooth and,
thus, can be approximated by low-order polynomials. This pro-
duces a description of flexure motion that can be used as a joint
model when expressed as a homogeneous transformation between
rigid links—essentially a “drop in” replacement for traditional
joint models such as screw coordinates and Denavit–Hartenberg
conventions. Derivatives of the joint kinematics such as Jacobians
and Hessians are accurate and easy to compute. We will show
that with only three parameters, this model faithfully reproduces
the elastic deformation of a flexure hinge predicted by the con-
tinuum model, even for large angles, without requiring numerical
integration or many finite elements. The model can also be used to
accurately compute the compliance and compressive buckling load
of the flexure, as predicted by the continuum model.

Index Terms—Beam bending, flexible, flexures, joints, robot.

I. INTRODUCTION

MANY robots use joints which consist of highly flexible
elastic members, which are referred to as flexures. These

features are commonly used to allow motion in monolithic struc-
tures via Euler–Bernoulli bending, and have been used as joints
in a number of different robotic mechanisms, including compli-
ant hands [1], [2], legged robots [3], and mesoscale flyers [4].
The benefits of flexure-based joints include having no sliding
parts (and therefore no friction or stick-slip effects), no backlash,
and the ability to compliantly deform in response to unplanned
collisions, making them ideal for robots that must operate in un-
structured environments [5]. Another major benefit of flexures
is the simplicity and potential lower cost compared with stan-
dard revolute joints, which require bearings for smooth, accurate
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Fig. 1. Comparison of traditional pin joints (left) and flexure joints (right).

motion. As robots become more common as commercial prod-
ucts, flexures are likely to be used with increasing frequency
due to their compatibility with inexpensive polymeric fabrica-
tion processes such as multishot injection molding [6] and shape
deposition manufacturing [7].

One drawback to flexures as robot joints is the complex me-
chanical behavior that they exhibit compared with pin joints or
prismatic joints. A typical open-chain manipulator can be repre-
sented by a vector of joint parameters, i.e., α1 , α2 , α3 . . . ∈ R

1 ,
as illustrated in Fig. 1. The Euclidean transformations between
each rigid link of the robot, i.e., G1 ,G2 ,G3 . . . ∈ SE(3), are
functions of these parameters. The partial derivatives of these
transformations form the kinematic Jacobians and Hessians used
for analysis and control. Flexure-jointed robots are difficult to
analyze in an analogous fashion because it is difficult to find a
low-dimensional set of parameters accurately describing beam
bending, a continuum process. A flexure joint model should
satisfy four functional requirements in order to provide both
accurate results and be computationally tractable for real-time,
closed-loop control.

1) Minimality: The geometric relationship between two links
G(α) should be described by a vector α ∈ R

N having di-
mensions no larger than the number of degrees of freedom
of a single link, i.e., three in the plane and six in space.

2) Energetic fidelity: Any internal energy U(α) which is as-
sociated with the joint configuration α must be accurately
predicted. The minimum energy configuration of the joint
should be accurately reproducible in the parameterized
representation.
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3) Jacobian fidelity: The first partial derivatives of the
joint kinematics G(α) and the internal energy U(α)
with respect to α should be accurate and easily
computed.

4) Hessian fidelity: The second partial derivatives G(α) and
U(α) with respect to α should also be accurate and easily
computed.

There are many extant parametric models of beam bending
that can be used to describe joints, but none that currently sat-
isfy all of the aforementioned conditions. One popular class of
flexure approximation is the family of pseudorigid body (PRB)
models [8]. A PRB model consists of a serial linkage of pin
joints and nonlinear springs, fit by regression to the elliptic in-
tegral solutions for Euler–Bernoulli beam bending. Because of
the quasi-empirical nature of these curve fits, PRB models are
only accurate for a limited range of motion and applied force.
For instance, the most accurate PRB flexure model, which was
reported by Su in 2009, is incapable of predicting the behavior
of a flexure loaded in compression [9].

Another approach with a long history of use within the
robotics community is to relate the shape of the flexure, as
embodied by the local evolution of the flexure’s backbone coor-
dinates, to its elastic and kinetic energy [10], [11]. These contin-
uum descriptions are powerful, but the challenge lies in finding
an approximate parameterization of the continuum mechanics
that is low dimensional yet accurate. A high-order discretization,
such as Bayo’s finite element models, obtains accurate results
at the cost of using many generalized coordinates to describe
a single flexible member [12]. At the other extreme, low-order
models, such as constant-curvature segments, are useful for fast
computation of difficult inverse kinematics [13], [14]. However,
because these models have fewer degrees of freedom than a real
flexure, they will not capture finer-grained phenomena such as
the elastic forces on a joint or the stiffness of a flexure near
buckling.

A logical compromise between simplicity and accuracy is
to parameterize bending flexures as a basis of superimposed
deformational modes. This technique has been applied to small-
deformation flexible links [15], [16]. The model presented in this
paper, i.e., the Smooth Curvature model, is a modal approxima-
tion of Euler–Bernoulli bending accurate to large deformations
(up to 90◦), and is consequently capable of accurately repre-
senting bending hinges over their entire range of motion. We
show that three parameters (consistent with the three degrees
of freedom of the planar beam tip) can accurately capture the
flexure performance to within 1% of the exact model, but more
parameters can be added to further increase the performance of
the model. In contrast with previous joint models, it is fully ca-
pable of representing the balance of forces on a flexure joint to a
high degree of accuracy through the Jacobian of the joint trans-
formation, and the stiffness properties of the joint through the
Hessian of the joint transformation. This paper is an expansion
of previous, shorter papers [17], [18] providing a comprehen-
sive introduction to the Smooth Curvature model, as well as new
examples, new analysis of the computational cost, and more in-
depth treatment of higher order behaviors, such as constrained
buckling modes.

This paper is structured around the four functional require-
ments that are outlined previously for parametric joint models.
Section II introduces the general problem of parametric approx-
imations to the Euler–Bernoulli equation and demonstrates that
the Smooth Curvature model can approximate elastica curves,
using a minimal set of parameters, to a high degree of ener-
getic accuracy. Section III then shows that conventional Jaco-
bian analysis can be used to accurately find the equilibrium
configuration of a flexure-jointed robot under a variety of load-
ing conditions. Section IV demonstrates the accuracy of the
Smooth Curvature model in predicting the stiffness of flexures
of arbitrary initial curvature. Additionally, the predicted buck-
ling loads will be shown to be accurate under a wide variety of
endpoint constraints.

II. LOW-DIMENSIONAL BEAM MODELS

A. Introduction

This section provides an overview of how rigorous, phys-
ical parametric models of bending beams can be constructed
from the variational form of the Euler–Bernoulli equation. The
Smooth Curvature model is introduced as a low-dimensional
alternative to more conventional finite element models. The
procedure to compute the kinematics and energetics of each
joint is shown to be straightforward, and the accuracy of the
Smooth Curvature model is compared with those of constant
curvature and finite element models by examining the ability of
the Smooth Curvature model to approximate the curve of least
energy having fixed endpoints and end orientations.

B. Bending Beams as Joints

Generalizing from the definition given in Section I, we can
think of a joint as a function mapping a joint coordinate α ∈ R

N

onto a transformation matrix G(α) ∈ SE(3), representing the
geometric relationship between two links. This definition is im-
plicit in any number of widely accepted rigid body modeling
notations. For example, Denavit–Hartenberg conventions [19]
and screw coordinates [20] are both mappings from R

N onto
SE(3) used to parametrically describe links and joints. The con-
figuration vector q of an open-chain, M-link robot is the vector
that contains all joint parameters:

q =

⎡
⎢⎢⎢⎣

α1

α2

...

αM

⎤
⎥⎥⎥⎦ . (1)

To produce equations of motion in the joint variable space, any
internal energy which is associated with a joint’s motion, such
as elastic energy, should be expressible as a scalar function, i.e.,
U(α). Gravitational and kinetic energy associated with each
link can be expressed in terms of the Jacobian of G1 . . .GM with
respect to q. From these, dynamic equations can be assembled
in a variety of ways, such as Port–Hamiltonian networks [11],
or direct derivation of Newtonian equations of motion by the
method of virtual work. Independent of the method chosen,
however, it is important that the basis of joint parameters α
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Fig. 2. Terminology used to describe the Euler–Bernoulli equation. The forces
and moments at the root of the beam (left) are specified as initial conditions, and
the reaction moments at the other end are calculated based on the beam profile.

enables the efficient and accurate computation of G, U, and
their partial derivatives. We will now show how a model of the
form just described can be obtained for a bending beam, and
how the choice of parameterization affects the ease with which
a flexure’s shape can be computed.

C. Modeling Large-Deformation Euler–Bernoulli Bending

We will consider the simplest model of a flexure hinge: the
Euler–Bernoulli beam, a thin rod or sheet whose deformation
is primarily in bending, rather than tension or shear. The large-
deformation Bernoulli model makes the constitutive assumption
that the equilibrium rate of rotation along the midline or neutral
axis of the beam ω(s) must be equal to the local bending moment
divided by the beam stiffness EI:

ω(s) = ω0(s) +
M0 + Pyx(s) − Pxy(s)

EI
. (2)

Here, M0 is the moment at the root of the beam, (Px , Py ) is
the force at the root of the beam, and ω0(s) is the unforced
curvature of the beam, as depicted in Fig. 2. The angle of the
tangent vector φ(s) and the Cartesian profile (x(s), y(s)) form a
coupled system of ordinary differential equations defined by the
local geometry of the neutral axis curve:

d

ds
φ(s) = ω0(s) +

M0 + Pyx(s) − Pxy(s)
EI

d

ds

[
x(s)

y(s)

]
=

[
cos(φ(s))

sin(φ(s))

]
. (3)

Direct methods to solve the Euler–Bernoulli equations typically
result in solutions that are based on elliptic integrals [21]. Rather
than attempting to shoehorn the parameters that are involved
with these integrals into some kind of coordinate basis, the
variational form of the Euler–Bernoulli equations can be used,
considering the energy of some arbitrary beam curvature ω(s)
and the initial curvature ω0(s):

U =
∫ L

0

EI
2

(ω(s) − ω0(s))2ds. (4)

The variational form is powerful because it enables discrete
approximations of the continuum problem by substituting the
arbitrary configuration ω(s) with a family of functions ω̂(α, s),
depending on some parameter vector α ∈ R

N . The initial cur-

Fig. 3. Two-link planar manipulator will have at most six degrees of freedom
associated with the inertia of the links.

vature ω0(s) is parameterized by a vector κ in a fashion identical
to the configuration so that ω0(s) = ω̂(κ, s). The energy of the
flexure is then a function of α:

U(α) =
∫ L

0

EI

2
(ω̂(α, s) − ω̂(κ, s))2ds. (5)

The parameterized, variational form of (3) becomes a decou-
pled system which can be integrated directly by first solving for
φ and then for x and y:

d

ds
φ(α, s) = ω̂(α, s)

d

ds

[
x(α, s)

y(α, s)

]
=

[
cos(φ(α, s))

sin(φ(α, s))

]
. (6)

At s = L, the tip angle φtip and the tip position (xtip , ytip )
define the transformation which is associated with this joint:

G :=

⎡
⎢⎢⎢⎣

cos(φtip) − sin(φtip) 0 xtip

sin(φtip) cos(φtip) 0 xtip

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ . (7)

Equations (5)–(7) form the core of many possible parametric
joint models that are based on Euler–Bernoulli bending. The
overall procedure—using a discrete basis of assumed deforma-
tions to produce a kinematic and energetic approximation of
a continuum system—is at the heart of many approximation
techniques, including the finite element method. Unlike generic
finite element modeling problems, minimizing the number of pa-
rameters that are used to describe a robot joint is of paramount
importance, not only due to the curse of dimensionality, as dis-
cussed by Chirikjian [22]. Flexure joints are much smaller and
lighter than the rigid links they connect. Take, for example,
the planar system in Fig. 3, consisting of two rigid bodies. A
naı̈ve finite element approach might treat a flexure as a chain
of many tiny links [12], [21] or constant curvature arcs [10].
However, the inertia of the system will be dominated by the
six inertial degrees of freedom of the rigid bodies. The general-
ized inertia matrix, when constructed for the high-dimensional
finite element representation, will be ill-conditioned or singular.
Physically, this corresponds to the fact that a joint model hav-
ing more parameters than the number of degrees of freedom per
link will capture not only the dynamic modes that are associated
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with motion of the rigid links but the internal vibrational modes
of the flexures as well, which may be on time scales that are
orders of magnitude faster than the dynamics of interest.

D. Choosing a Basis

To find a low-dimensional basis that sufficiently describes a
flexure hinge, a priori knowledge about the equilibrium config-
urations of Euler–Bernoulli beams must be leveraged in order to
find a better, special-purpose basis for joint modeling. Solutions
to the large-angle Euler–Bernoulli equation, which are called
elastica curves, are smooth—so prototypically smooth, in fact,
that bending beams were historically used as drafting tools to
reproduce smooth lines on engineering drawings, and serve as
the inspiration for modern equivalents in CAD software [23]. It
is safe to assume that the curvature profile of a beam in equilib-
rium will be more efficiently represented by a basis of smooth
modal functions, rather than nonsmooth piecewise functions.
This idea has been raised in the context of computer graphics,
for example, by Horn, who examined the use of clothoid curves
as approximations to the computation of natural splines [10],
and more recently by Levien [24], in the context of typography.
However, these ideas have not yet been applied in the context
of robot joints. The Smooth Curvature model approximates the
curvature of a bending beam using Legendre polynomials and
translated so that they are orthogonal under convolution on the
interval from s = 0 to s = L:

ω̂(�q, s) =
α1

L
+

α2

L

(
2s

L
− 1

)
+

α3

L

(
6s2

L2 − 6s

L
+ 1

)
.

(8)
The coefficients α = [α1 α2 α3]T serve as the generalized

coordinates that describe the flexure configuration. A third-order
approximation was chosen to stay within the budget of three
planar rigid-body degrees of freedom.

The energy function under this Smooth Curvature basis can
be integrated analytically from (5). As a happy side effect of this
particular orthogonal basis, the bending energy can be written
as a sum of squares in terms of (α − κ):

U(�q) =
EI
2L

(
(α1 − κ1)2 +

(α2 − κ2)2

3
+

(α3 − κ3)2

5

)
.

(9)
Recall that the tip angle φtip and the tip position (xtip , ytip )

are needed to define G(α). The tip angle can be analytically
integrated, and the choice of basis simplifies the result

φ(α, s) = α1
s

L
+ α2

(
s2

L2 − s

L

)
+ α3

(
2s3

L3 − 3s2

L2 +
s

L

)

(10)

φtip(α) = φ(α, L) = α1 . (11)

Because φ(α, s) is a cubic polynomial, the definite integrals
from (5) defining the tip position are transcendental functions:

xtip(α) =
∫ L

0
cos(φ(α, s))ds (12)

ytip(α) =
∫ L

0
sin(φ(α, s))ds. (13)

Fortunately, the same smoothness assumptions that motivated
the Legendre polynomial basis imply that the integrands in (12)
and (13) are smooth functions; therefore, a low-order quadrature
integration method such as Gauss–Legendre quadrature should
be fast and accurate [25]. The end-to-end tip displacement of
the flexure is, therefore, approximately a weighted sum of the
integrands from (12) and (13), using partition weights Δk and
sampled points sk :

xtip(α) = L
N∑

k=1

Δk cos(φ(α, sk )) (14)

ytip(α) = L
N∑

k=1

Δk sin(φ(α, sk )). (15)

The weights and partition points that are used for the Gauss–
Legendre quadrature can be found in Appendix A. Five partition
points were found to compute the integral with sufficient accu-
racy; only ten trigonometric function evaluations are needed to
compute the link-to-link transformation matrix for the flexure.
Consequently, the burden of computing G(α) is fairly low.

E. Improvements in Model Order

One implication of the variational Euler–Bernoulli equation
is that the energy of bending from (4) will be minimized by the
equilibrium configuration of the flexure ω∗(s) for any fixed set
of flexure boundary conditions [10]. Consequently, any param-
eterized configuration ω̂(α∗, s) will have a bending energy that
is equal to or greater than the bending energy of the true flexure
configuration having the same fixed endpoints. The deviation of
the approximate solution from the true solution can be captured
by the ratio of the two energies, written here as the error function
η:

η =
U(α∗)

U ∗ − 1. (16)

Here, U∗ is the minimum energy that corresponds to the ac-
tual equilibrium configuration ω∗(s), and U(α∗) is the energy
that corresponds to the approximated equilibrium configura-
tion α∗. This error function is nonnegative and zero only when
ω̂(α∗, s) = ω∗(s). It is a natural choice of standard to compare
different approximations.

To demonstrate the power of choosing the correct basis func-
tions for representing flexure curvature, the Smooth Curvature
model was compared with a finite element model which was
made up of constant curvature segments, performing the task to
find minimum energy curves between two points in the plane.
The goal was to find the model order of the finite element model
having comparable energetic accuracy. The fixed boundary con-
ditions that are chosen for comparison are shown in Fig. 4. The
value of U∗ was computed by explicitly solving the Euler–
Bernoulli equation, iteratively shooting to satisfy the boundary
conditions.

Because the Smooth Curvature model uses only three parame-
ters, no actual minimization process was needed to find the flex-
ure configuration satisfying the three boundary conditions of the
flexure. Instead, (11), (14), and (15) were solved numerically:
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Fig. 4. Comparison of the minimum-energy curves connecting two points,
assuming a basis of constant curvature finite elements (top) and the smooth
curvature basis (bottom). Twenty-two finite elements are needed to achieve the
energetic accuracy of three Legendre polynomials.

a process made simpler by the fact that (11) independently con-
strains the value of α1 to φtip . The tip position was solved for
xtip and ytip in terms of α2 and α3 alone. The finite element
model was solved as a constrained energy minimization problem
using MATLAB.

The energy error of the Smooth Curvature solution was found
to be 0.0016. To match this error, the number of elements that are
used in the finite element model was iteratively increased until
the value of η for its solution was below the Smooth Curvature
model’s solution. This required 22 elements and yielded an error
of η = 0.0013.

F. Discussion

The approximated equilibrium profiles are shown in Fig. 5,
and lend some insight as to why the Smooth Curvature model
requires many fewer parameters to represent the equilibrium
curvature of a flexure. First, the plot graphically illustrates that
constant curvature finite elements produce, in effect, a zero-
order hold approximation to the true curvature function. This
description will not be sparse—there is no reason a priori to
assume that the curvature anywhere is more likely to be zero,
and thus, no way to directly reduce the amount of information
needed to reproduce the curvature. In addition, a zero-order
hold approximation is canonically nonsmooth. It will introduce
high-frequency errors that are mitigated only by the fact that the
curvature is successively integrated to produce the flexure pro-
file. In contrast, the quadratic polynomial approximation does
a much better job of representing the equilibrium curvature, as
it is smooth in all its derivatives, and is also sparse in the sense
that high-order terms can be reasonably expected to matter less
in describing the overall shape of the flexure.

G. Summary

In this section, we have shown that the Smooth Curvature
model is a low-order alternative to conventional finite element
models of Euler–Bernoulli bending members. The three varia-
tional parameters that are used to represent the internal config-
uration of the flexure joint can be used as joint parameters in a
robot model, and the cost to compute the bending energy and
forward kinematics of the model is realistic. In the next sections,
we will see that the higher order behaviors of this model, that
is, phenomena dependent on first and second derivatives of the

Fig. 5. Smooth Curvature model is a sparse approximating basis for the equi-
librium shapes of a bending beam, meaning that few nonzero terms are needed
to reproduce most of the beam’s shape. In contrast, the piecewise constant cur-
vature model does not provide a sparse representation; thus, many more terms
are needed.

kinematics, are also accurate. Thus, notions such as the Jacobian
or Hessian of a point with respect to the joint variables can be
cleanly transferred from more traditional joints to flexure joints.

III. JACOBIAN ANALYSIS OF FLEXURE JOINTS

A. Introduction

In addition to computing the pose of a robot from its joint
parameters, it is also important that a joint model accurately
represents the force and instantaneous motion of a robot from
the generalized velocities of the joint parameters q̇. The dual
space of generalized forces τ should describe all the conditions
for the equilibrium of the robot. For example, if a force f at some
point w is applied to the robot, then the deformed configuration
of the system can be found using the Jacobian of that point’s
coordinates and the gradient of the summed internal energy of
the robot V:

τ = −∇qV + J T
w f = 0. (17)

The generalized force balance equation is only realistic if the
energy gradient and kinematic Jacobian faithfully represent all
of the motions that the robot is capable of making. It is also
important that these quantities are easy to compute; therefore, a
force balance of the kind shown in (17) can be integrated into
algorithms for analysis, estimation, and control. This section
demonstrates the ability of the Smooth Curvature model to pre-
dict deformation under load, both in terms of the positional and
angular errors, entirely within the framework of joint parameters
as generalized coordinates.

B. Partial Derivatives of the Smooth Curvature Model

The partial derivatives of the energy U(α) and the link-to-
link transformation matrix G(α) under the smooth curvature
parameterization previously introduced are straightforward to
obtain. The partial derivatives of U(α) from (9) can be written
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Fig. 6. Description of the parameterized end load applied to the flexure in
each test case.

as a linear, spring-like matrix:

∇αU =
EI
L

⎛
⎝

1 0 0
0 1/3 0
0 0 1/5

⎞
⎠

⎡
⎣

α1
α2
α3

⎤
⎦ . (18)

The partial derivatives of G(α) can be found by taking the
partial derivatives of the flexure backbone coordinates from
(6), and then integrating using the Gauss–Legendre quadrature.
Because partial differentiation with respect to αi and integration
over s on a fixed interval are commutative operations, this is
equivalent to taking the partial derivatives of (11), (14), and
(15):

∂φtip

∂αi
=

{
1, i = 1
0, i �= 1 (19)

∂xtip

∂αi
= −L

N∑
k=1

(
Δk

∂φ(sk )
∂αi

)
sin(φ(α, sk )) (20)

∂ytip

∂αi
= L

N∑
k=1

(
Δk

∂φ(sk )
∂αi

)
cos(φ(α, sk )). (21)

Many of the mathematical operations that are needed to compute
these partial derivatives, including all of the ten trigonometric
function evaluations, can be recycled from (14) and (15). The
partial derivatives of φ at each partition point are independent of
α; Appendix A includes an example program to calculate these
values.

C. Verifying the Accuracy of Jacobian Analysis

The accuracy of (19)–(21) can be ascertained by considering a
simple, dimensionless test case, such as the one shown in Fig. 6.
A clamped beam is loaded at the free end with an arbitrary
moment M and force P exerted at an angle θ so that Px =
−P sin θ and Py = P cos θ. Using the Jacobian of the flexure
transformation, the end load can be projected onto generalized
coordinates:

τ = ∇αU −∇α (φtipM) −∇α (xtipPx) −∇α (ytipPy ).
(22)

Fig. 7. Three loading cases considered for this study. (A) pure moment,
(B) pure force, and (C) pure force opposed by a moment.

When set equal to zero, this system of nonlinear equations
can be solved to find the deformed joint configuration. To find
the prediction error of the Smooth Curvature model, the Euler–
Bernoulli equations from (3) were solved as a boundary value
problem by shooting, that is, iteratively varying the moment at
the root of the beam until the boundary conditions at both ends
of the beam are satisfied. The dimensionless form of the beam
bending equations was used so that the flexure stiffness EI and
the flexure length L were normalized to 1. Rather than perform-
ing an exhaustive search over the space of loading conditions
for the flexure, an extreme case, in which the deformed tip angle
φtip is equal to 90◦, was chosen for comparison. This is a gener-
alization of the rectangular elastica problem posed by Bernoulli,
the problem of finding the shape of a cantilevered beam bent
at a right angle by a perpendicular force at the tip [26]. Three
force–moment combinations were chosen to compare the two
models. The test loading conditions, which are labeled A, B,
and C, are shown in Fig. 7. In case A, a pure bending moment
was applied, sufficient to bend the flexure to an angle of 90◦. In
case B, a pure force of a magnitude sufficient to bend the flexure
to 90◦ was applied. Case C consisted of a moment equal and
opposite to the moment applied in combination 1, counteracted
by a force so that the flexure tip angle remained at 90◦.

The positional error of the flexure tip was found as the norm
of the vector from the predicted flexure tip to the tip of the
numerically computed elastica curve. This is plotted in nondi-
mensional form, meaning that the error is given as a fraction of
the flexure length (see Fig. 8) with the angular error. These plots
show a number of significant results. First, the errors in case
A (pure moment loading) were very small. The exact shape
one would expect for a beam having a constant bending mo-
ment is a constant curvature arc, a shape that can be exactly
reproduced with the Smooth Curvature model if q2 = q3 = 0.
Thus, the error is correspondingly small. The errors observed in
loading cases B and C indicate that the three-parameter Smooth
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Fig. 8. Positional errors (top) and angular errors (bottom) of the three test
cases.

Curvature model is accurate even when the flexure is loaded
by an opposed force and moment. Most importantly, in every
case, the results from the Smooth Curvature model were within
a positional accuracy of 1% of the beam length, and an angular
accuracy of 1◦.

D. Example: A Tendon-Driven Flexure Joint

The value in having a parametric joint model is to move be-
yond the simple force–displacement model of flexure behavior.
Ideally, the Jacobian formulation can be used in abstract to an-
alyze the behavior of a whole mechanism. A practical problem
typically occurring in tendon-driven flexure mechanisms such
as the SDM Hand [1] is to predict the rotation of a single link as
a function of tendon force, as illustrated in Fig. 9. This would
be useful in order to determine the size of actuator required
to drive a joint or to predict the link position and orientation
with only a measure of tendon tension. As always, each point
on the robot can be represented as a tree-like composition of
rigid body transformations, shown as arrows in the figure. The
tendon, which is stretched across the joint, is defined relative to
the endpoints of the flexure by constant transformations T1 and
T2 . The joint transformation G is defined by the 3×1 configu-
ration vector α. This problem can be solved in a manner similar
to the aforesaid elastica examples. First, an expression for the
energy in the system is needed, assuming that the tension force f
is constant. The work done on the tendon is equal to the tendon
force multiplied by the length of the tendon, |Δx|:

[
R(α) Δx(α)

0 1

]
= T−1

1 G(α)T2 . (23)

The net energy is the sum of external tendon work and internal
elastic energy:

E(α) =
EI
2L

(
α2

1 +
α2

2

3
+

α2
3

5

)
− f |Δx(α)|. (24)

Fig. 9. Deformation of a tendon-driven flexure joint is illustrated previously.
The tree of homogeneous transformations along the manipulator defines the
length of the tendon and can be used to compute the equilibrium configuration
for any tendon load.

Fig. 10. Predicted joint rotation as a function of tendon force.

The configuration minimizing this energy function will be
the equilibrium configuration for the finger. Suppose that a steel
flexure that is 0.2 mm thick, 10 mm wide, and L = 15 mm long
is used, with a tendon connected at 5-mm offsets from each end
of the flexure. The bending stiffness of the thin flexure is given
by these dimensions, the elastic modulus of steel (200 GPa),
and Poisson’s ratio (0.29):

EI =
2 × 1011

1 − 0.292

0.01 × 0.00023

12

= 1.46 × 10−3 Nm
rad

. (25)

The transformations between the ends of the flexure and the
tendons are both given by the homogeneous transformation ma-
trix

T1 = T2 =

⎡
⎢⎣

1 0 0 0
0 1 0 0.005
0 0 1 0
0 0 0 1

⎤
⎥⎦ . (26)

Differentiating (24) with respect to the joint parameters, gener-
alized force balance equations were solved numerically to obtain
the equilibrium configuration of the joint as tendon force was
increased. The relationship between tendon force and angular
rotation is plotted in Fig. 10, predicting approximately 28 N as
the tendon tension required to rotate the joint to a right angle.

E. Summary

For a dimensionless flexure hinge, the Jacobian of the
Smooth Curvature model captures conditions for equilibrium
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of a flexure-based robot and accurately reproduces the robot’s
shape as a function of arbitrary applied loads. This is important
because of the abstraction it affords. Because no special-purpose
solver is needed to account for joint elasticity, it would be pos-
sible to model the deformation under load of a robot having a
mixture of pin joints and flexure joints. Other properties that
depend on the Jacobians of a robot’s shape with respect to joint
variables, such as the generalized inertia matrix, should be sim-
ilarly accurate and computationally inexpensive.

IV. STIFFNESS AND BUCKLING

A. Introduction

Although much of the literature surrounding flexure joints
centers on predicting deflection under load, second-order ef-
fects, such as stiffness and buckling, are critical to the accurate
modeling and control of a robot. For example, it is well known
that the stiffness of a manipulator can play a significant role
in grasp stability [27], [28]. Buckling is also a major concern
introduced by the use of bending beam elements as joints. The
Smooth Curvature model treats stiffness and buckling in the
conventional framework of a joint parameter stiffness matrix
and produces accurate results despite the relatively constrained
space of flexure configurations used by the model.

As in the previous sections, we will proceed by introducing
the basic mechanics of second-order effects in flexure joints, and
follow this with a comparison between the continuum mechanics
of Euler–Bernoulli bending and the results of the smooth curva-
ture model. Two modeling tasks will be demonstrated. First, we
will compare the Euler–Bernoulli model’s prediction of flexure
compliance under a small tip load with the results obtained via
Jacobian and Hessian analysis of the smooth curvature model.
The algebraic result that is obtained for the Smooth Curvature
model is considered in the context of compliance programming.
Second, we will show that the determinant of a flexure’s stiff-
ness matrix can be used to predict the Euler buckling loads of
a flexure under a wide variety of end constraints. Most impor-
tantly, both of these tasks can be accomplished in the framework
of the generalized stiffness matrix, with no need for ad hoc aug-
mentation of the basic rigid body modeling framework.

B. Generalized Stiffness

The generalized stiffness matrix K of a holonomically con-
strained manipulator can be thought of as the Hessian of the
energy associated with a manipulator’s joint coordinates. For
example, consider the simple manipulator shown in Fig. 11,
having generalized coordinates q, elastic energy V, and a force
f exerted at w. The generalized stiffness is the summed Hessian
of both the internal and external work:

Kij (q) =
∂2V

∂qi∂qj
+

∑
k

∂2wk

∂qi∂qj
fk . (27)

From this, one can see that the second derivatives of both
the internal energy and the link kinematics are needed to pre-
dict generalized stiffness. For the smooth curvature model, the
problem of finding second partial derivatives of energetic and

Fig. 11. Both elastic elements and external forces affect the generalized stiff-
ness matrix of a robot, resulting in complex behaviors such as buckling.

kinematic expressions is relatively straightforward. The second
partial derivatives of energy form a constant diagonal matrix, as
if a set of springs were attached to each parameter:

∇∇αU =
EI
L

⎡
⎣

1 0 0
0 0/3 0
0 0 1/5

⎤
⎦ . (28)

The Hessians of the kinematic equations can be derived di-
rectly from (16)–(18) and simplify drastically because the sec-
ond derivatives of φ(α, s) with respect to any joint parameter
are zero:

∂2φtip

∂αi∂αj
= 0 (29)

∂2xtip

∂αi∂αj
= −L

N∑
k=1

(
Δk

∂φ(sk )
∂αi

∂φ(sk )
∂αj

)
cos(φ(sk )) (30)

∂2ytip

∂αi∂αj
= −L

N∑
k=1

(
Δk

∂φ(sk )
∂αi

∂φ(sk )
∂αj

)
sin(φ(sk )). (31)

The only difference between the computation of the forward
kinematics, the Jacobians, and the Hessians is the additional
partial derivatives of φ. Because these are functions of s alone,
they can be lumped into weighting coefficients computed a
priori for summation of the trigonometric terms common to
all three. Computation of stiffness for a single joint requires
only the same six trigonometric function evaluations made in
(14) and (15) as well as (17) and (18), making the burden of
computation fairly low. The stiffness matrix of a single flexure
can then be constructed from (28)–(31):

K = ∇∇αU − (∇∇αxtip)Px − (∇∇αytip)Py . (32)

Because the Hessian of the tip angle with respect to the gener-
alized coordinates is identically zero, moments on the tip will
not directly affect the generalized stiffness matrix.

C. Small-Force Stiffness Analysis

One problem that has been previously posed for flexure-
jointed, rigid-body robots is the prediction of tip compliance
for a flexure under small end loads, given some undeformed
flexure shape. This problem has appeared in the context of com-
pliance programming for flexure hinges [29], that is, choosing
some initial unloaded shape for a flexure joint to control its
end-to-end compliance, which can be written as a 3×3 matrix
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C:
⎡
⎢⎣

Δφ

Δx

Δy

⎤
⎥⎦ ≈ C

⎡
⎢⎣

M

−P sin θ

P cos θ

⎤
⎥⎦ . (33)

Here the tip load, which is assumed to be small in magnitude
relative to the Euler buckling load of the flexure, is defined
by M, P, and θ (see Fig. 6). In the continuum case, one might
find C from an initial curvature profile ω0(s) by expressing
the evolution of compliance along the beam as an ordinary
differential equation:

dC
ds

= AC + CAT + B (34)

A =

⎡
⎢⎣

0 0 0
− sin(φ(s)) 0 0
cos(φ(s)) 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣

1/EI 0 0
0 0 0
0 0 0

⎤
⎥⎦ .

The matrix A represents the growing moment arm of the
flexure; B represents the incremental rotational compliance of
the beam. The derivation of (34) is straightforward and has been
omitted for brevity. A more general treatment of compliance
in thin beams can be found in [29]. Rather than solving the
continuum problem, one could couch this problem in terms of
joint stiffness matrices. Using the Smooth Curvature model, the
equivalent problem is to find the end-to-end stiffness of a joint
having some unloaded configuration κ. When the tip loads are
small in comparison with the elastic term, ∇∇αU , the joint
stiffness matrix from (32) will be constant:

K = ∇∇αU =
EI
L

⎡
⎣

1 0 0
0 1/3 0
0 0 1/5

⎤
⎦ . (35)

The tip Jacobian J (κ) in the unloaded configuration can be
computed as in (16)–(19) to find tip stiffness from the general-
ized stiffness in the absence of external loads [30]:

Csc(κ) = J (κ)K−1J (κ)T . (36)

Thus, the problem of compliance programming with flexures
could be cast into the framework of choosing κ to determine C,
rather than solving an initial value problem from (34).

A comparison between the smooth curvature model and the
integral method of (34) was obtained by computing the tip com-
pliance of a dimensionless flexure whose initial constant curva-
ture ω0(s) varied from 0 to π, as depicted in Fig. 12. The in-
tegral method was solved using the second-order Runge–Kutta
integration with a fixed interval width of Δs = 0.0001. The re-
sulting compliance matrices were extremely close to the values
that are predicted by the Smooth Curvature model having the
corresponding value of κ, as shown in Fig. 13 The elementwise
infinity norm of the error (that is, the absolute magnitude of
the largest error element) is plotted as a function of the flexure
curvature. In all cases, the maximum error is 7.33 × 10−4 . To
give a sense of scale, the compliance matrix predicted by (34)

Fig. 12. Compliance ellipse of a beam varies based on the initial curvature
profile.

Fig. 13. Maximum elementwise error in the compliance ellipse of a flexure is
shown for flexures of varying constant curvature. The maximum elementwise
error occurs in the case of largest initial curvature and is still small compared
with the magnitude of the elements in the compliance matrix.

for the case when ω0(s) = π is equal to

C =

⎡
⎢⎣

1.0000 −0.3183 −0.2026
−0.3183 0.1520 0.0645
−0.2026 0.0645 0.0507

⎤
⎥⎦ . (37)

These brief results confirm that the Smooth Curvature model
is a viable method to predict the unloaded planar compliance
of flexure hinges and, by extension, that it is a possible sub-
stitute for more complex integral methods to solve compliance
programming and other similar design problems.

D. Large-Load Analysis and Euler Buckling

The external loads on a robot are frequently large enough to
result in nonnegligible changes in the stiffness of the robot’s
structure. For example, recall the example from Section III-
D, a single joint actuated by a tendon. The tendon exerts a
compression force on the flexure joint that will tend to make the
flexure buckle, i.e., exhibit zero lateral stiffness. The flexure’s
buckling load Pcrit is given by Euler’s formula:

Pcrit =
π2

4
EI
L2 = 2.4674

EI
L2 = 15.76N. (38)

In other words, the buckling load of the flexure hinge is right
in the middle of the tendon force range depicted in Fig 10.
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This does not to imply that the flexure is unstable; the flexure
deforms from its straightened configuration before the buckling
load is reached. However, it does indicate that the stiffness terms
due to tip loading are large enough to be nonnegligible. To
demonstrate the Smooth Curvature model’s ability to predict
large-load stiffness, we will examine the buckling load of flexure
hinges under a variety of end constraints. Buckling is a good
proxy case to understand a model’s ability to predict large-load
stiffness. It could be interpreted as the special case in which the
elastic stiffness of a structure is of the same magnitude as the
destabilizing effect due to an external load. It is also a case for
which gold standard analytical models exist.

The stiffness matrix of a straightened flexure loaded in com-
pression, from (32), would have one term corresponding to the
elastic energy in the flexure and one due to the Hessian of the
flexure tip’s x coordinate computed using (30):

K =
EI
L

⎡
⎢⎢⎢⎢⎣

1 0 0

0
1
3

0

0 0
1
5

⎤
⎥⎥⎥⎥⎦

+ LPcrit

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
3

1
12

1
60

1
12

− 1
30

0

1
60

0 − 1
210

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(39)

The numerical errors in the tip Hessian are extremely small
in the straightened configuration; therefore, the exact fractions
are shown; however, the numerical results shown were obtained
using the numerically computed Hessian. The load at which the
flexure buckles can be found by setting the determinant of (39)
is equal to zero:

∣∣∣∣∣∣∣∣∣∣∣∣∣

EI
L2Pcrit

− 1
3

1
12

1
60

1
12

EI
3L2Pcrit

− 1
30

0

1
60

0
EI

5L2Pcrit
− 1

210

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(40)

The smallest value of Pcrit satisfying this expression agrees
with Euler’s result from (38) to within 0.02%.

Pcrit = 2.4677
EI
L2 . (41)

Predicting higher order buckling modes is also important.
Manipulators frequently have parallel kinematic chains which
impose internal constraints. To examine these cases, several
well-known tip constraints were imposed on the Smooth Curva-
ture model which is depicted in Fig. 14. In order to approximate
the discrete buckling loads under tip constraints, the stiffness
matrix was constrained to consider only the admissible per-
turbations in parameter space. Thus, a clamped-guided beam,

Fig. 14. Buckling modes corresponding to the constrained flexure tip bound-
ary conditions for which buckling loads were predicted are shown.

which cannot rotate at the tip, must hold α1 fixed; therefore, the
constrained stiffness Kguided is approximately1

Kguided =
[

0 1 0
0 0 1

]
K

⎡
⎣

0 0
1 0
0 1

⎤
⎦ . (42)

Similarly, a clamped–clamped beam can neither rotate nor
translate at the tip, meaning that the parametric constraint on
motion is that α1 = α2 = 0. In this case, the constrained stiff-
ness is only the stiffness which is associated with motion of the
third parameter:

Kclamped = [ 0 0 1 ]K

⎡
⎣

0
0
1

⎤
⎦ . (43)

The constraints on a beam with clamped-pinned boundary
conditions can be derived by setting (13) equal to zero and then
applying the small-angle assumption. The resulting constraint
is that α2 = 3α1 :

Kpinned =
[

1 3 0
0 0 1

]
K

⎡
⎣

1 0
3 0
0 1

⎤
⎦ . (44)

Table I shows the buckling loads that are obtained by setting
the determinants of (42)–(44) equal to zero. The actual Euler
buckling loads, computed from [31], are shown for compari-
son. The Smooth Curvature model overpredicts buckling load
by an amount that increases as the constraints on joint motion
become more restrictive. This is to be expected; any parametric
model of an elastic body will degrade in performance as the
number of free parameters is reduced, because parameterization
implicitly disallows any motion not captured by one of the pa-
rameterized modes. If one had a single parameter corresponding

1This approximation of constrained stiffness does not take into account the
curvature of the tip constraints, if any. Nonetheless it is fairly accurate for
predicting buckling load.
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TABLE I
CONSTRAINED FLEXURE BUCKLING LOADS

to each buckling mode, then it would be possible to make zero-
error predictions. The first several buckling modes of a bending
beam are smooth, though, and consequently the Smooth Curva-
ture model still produces fairly accurate results under restrictive
constraints.

V. CONCLUSION

Nonconventional mechanisms need not be second-class citi-
zens in robotics. In this paper, we have shown that the behavior
of Euler–Bernoulli beams can be modeled in a manner that is
efficient and accurate over the range of motion typically seen
in a flexure joint. Unlike more general methods for elastic body
modeling, such as finite element models, the Smooth Curvature
model uses a minimal number of model parameters, thereby
avoiding problems with poorly conditioned Jacobians. Com-
putation of the joint kinematics is also fast, requiring only ten
trigonometric function evaluations that can be reused to compute
the joint Jacobian and Hessian. Furthermore, standard analyses
such as predicting deformation or stiffness under load can be
addressed in the familiar framework of kinematic Jacobians and
Hessians and generalized stiffness matrices. These highly de-
sirable features were obtained by avoiding ad hoc modeling
methods in favor of a principled approach rooted in variational
mechanics.

The model construction process employed in this paper could
be applied to any number of problems: beams having noncon-
stant cross section, beams in torsion, bending sheets, and more
abstract elastic shapes. The simplicity and elegance of the result
will depend on the smoothness of the real physical system, and
on the ease with which the local elastic deformation can be inte-
grated to find the joint elastic energy and end-to-end kinematic
transformation. Future work will focus on these very interesting
extensions to this model.

APPENDIX

This MATLAB script provides a reference implementation of
forward kinematics for the Smooth Curvature model.
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