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Abstract— This paper presents a new and comprehensive method 
of modeling robots having highly flexible members such as 
flexure joints. An accurate model of large deformation bending is 
important for precisely describing the configuration of the 
flexible member. Additionally, the accuracy of the Jacobian and 
Hessian of the forward kinematics are critically important at 
large angles for predicting the deformation and the stiffness of 
the joint under load. The model introduced here is based on the 
assumption that the curvature of a beam in bending is smooth, 
and thus can be approximated by low-order, orthogonal 
polynomials. This produces a parameterized description of 
flexure motion that can be used as a joint model when expressed 
in Denavit-Hartenberg form, as a transformation from one rigid 
link to the next in a serial manipulator. We will show that with 
only three parameters, this model faithfully reproduces the 
elastic deformation of a flexure hinge predicted by the continuum 
model, even for large angles, without requiring numerical 
integration or many finite elements. It can also be used to 
compute the compressive buckling load of the flexure as 
predicted by the continuum model. 

I. INTRODUCTION 

Highly flexible members have been frequently considered 
in the context of robotic hardware. A number of studies into the 
behavior of flexible link robots have been conducted, often for 
the purposes of controlling for undesirable dynamic effects 
related to working with long, thin links (e.g. [1-3]). A smaller 
number of efforts have dealt with the beneficial aspects of 
highly flexible links, such as providing a large number of 
degrees of freedom for manipulation tasks [4] or low stiffness 
for grasping and assembly purposes [5]. A related application is 
the use of highly flexible members as joints between rigid 
links, typically referred to as flexures. The contrast between 
these two applications is shown in Fig. 1. These features are 
commonly used to allow motion in monolithic structures, and 
have been used as joints in a number of different robotic 
mechanisms, particularly in compliant hands [6-8]. The 
benefits of flexure-based joints include having no sliding parts 
(and therefore no friction or stick-slip effects), no backlash, and 
are able to compliantly deform in response to unplanned 
collisions, making them ideal for robots that must operate in 
unstructured environments [9]. 

Another major benefit of flexures is the simplicity and 
potential lower cost compared to standard revolute joints, 
which require bearings for smooth, accurate motion. As 
robotics become more common as commercial products, 

flexures are likely to be used with increasing frequency due to 
their compatibility with inexpensive polymeric fabrication 
processes such as multi-shot injection molding [10] and shape 
deposition manufacturing [11]. 

One drawback to flexure-based robot mechanisms is the 
complex mechanical behavior that they exhibit compared to pin 
joints. A pin joint has one degree of freedom, whereas the 
elastic deformation of a beam in bending has infinitely many 
degrees of freedom. Moreover, a flexure hinge in a robot often 
bends to angles up to 90 degrees or more, so classical small-
deflection beam bending models are inapplicable. As a result, 
there is no canonical parametric model for planar flexure 
hinges suitable for robot analysis. This paper presents a model 
that can fill this role. In order to apply the rich set of tools 
available for serial manipulator design, control, and analysis, 
one must have a model of elastic behavior that is accurate and 
computationally simple. The design specification for a good 
flexure model can be broken into three functional requirements: 

1. It should be possible to compute both the shape of the robot 
and the elastic energy associated with deformation as a 
function of a small set of generalized coordinates, as one might 
describe a jointed mechanism using the internal joint angles. 

2. It should be possible to compute the force in generalized 
coordinates resulting from a force on the robot at any point 
using the Jacobian of that point’s coordinates, as well as the 
local equilibrium position resulting from such a force. 

3. It should be possible to compute the stiffness in generalized 
coordinates resulting from a force on the robot at a point by the 
Hessian of that point’s coordinates, as well as any buckling 
modes the robot has (configurations/loads having zero stiffness 
in some direction). 

Rigid Links
Pin Joints

Flexible Links
Pin Joints

Rigid Links
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Figure 1.  A comparison between traditional rigid robot manipulators (left), 
flexible link robots (center), and flexure-joint robots, in which flexible links 

act as hinges (right). 
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 Many models of flexible robot components meet some, but 
not all of these requirements. One common approach is to 
model flexure elements as having constant curvature [12]. 
Flexures have also been approximated as a single pin joint 
halfway between the ends of the flexure [13]. Both of these 
models capture the relative rotation between rigid bodies on the 
manipulator, making them useful for inverse kinematic 
computation and form closure grasp analysis. However, 
because these models have fewer degrees of freedom than a 
real flexure, they are too rigid and under-predict the 
deformation of a loaded flexure. Another family of models, 
called pseudo-rigid body models, consists of one or several 
joints placed to approximate the flexure’s center of rotation, 
connected in parallel with nonlinear springs fit by regression to 
the exact force-deflection profile [14]. These models can be 
used to find flexure deflection under load, but they are 
unsuitable for manipulator analysis because the linkage 
geometries used to approximate the beam bending change 
based on the direction of applied force, and thus are not purely 
kinematic descriptions of flexure behavior. Another approach is 
based on assuming some set of superimposed deformational 
modes [15]. This technique has been applied to flexible links 
(e.g. [16]) and continuum manipulators [17]. Modal models for 
flexures have been proposed based on analytically calculated 
small-deformation solutions, as well as finite element solutions 
[18,19]. However, modal models are specific to the behavior 
they are designed to model, and none of the currently available 
models in the robotics literature accurately capture large-
deformation flexure behavior. 

The flexure model introduced in this paper is a modal 
model which approximates the curvature of a flexure using an 
orthogonal polynomial basis. The polynomial coefficients 
define the relative position and orientation of two bodies 
connected by the flexure, as well as the elastic energy stored in 
the flexure itself. This model meets all three of the functional 
requirements introduced above, while avoiding the need to use 
numerical integration or to break the beam into many finite 
elements. It predicts not only the deflection of a flexure under 
load, but also second-order kinematic effects such as buckling 
and the change in flexure stiffness resulting from compressive 
or tensile loads. These second-order effects are particularly 
useful in the study of grasping and manipulation, where grasp 
stability may depend on the elastic stability of the manipulator 
itself [20].  

The remainder of this paper is divided into three sections. 
Section II is an overview of the flexure model, describing how 
the parameters define the shape and the energy function of a 
flexure hinge. Section III examines the shape of the flexure 
when an arbitrary load and moment is applied at one end. The 
results are compared to exact large deformation beam 
solutions.  Additional results are shown comparing the smooth 
curvature model to finite element models of a sample 
mechanism. Section IV demonstrates the second-order 
kinematic accuracy of the model by comparing classical 
continuum buckling models to the discrete buckling predicted 
by the proposed parameterized model. 

II. THE SMOOTH CURVATURE MODEL 

A. Motivation 

In 1694, Jacob Bernoulli proposed (and solved) the problem 
of finding the shape of a pre-bent cantilevered beam of length L 
that would bend into a straight line when loaded with an 
arbitrarily large force P at the tip [21]. Today the curve is 
known as the clothoid or Euler spiral. The curvature κ(s) of the 
clothoid curve varies linearly with the arc length s from the 
base of the cantilever, 
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Here E is the elastic modulus and I is the constant planar 
moment of the beam area. The clothoid is also a passable 
approximate solution the more useful problem of finding the 
deformed shape of an initially  straight beam loaded at one end 
with a large load. This can be seen by examining the nonlinear 
deformation of a cantilevered beam, as shown in Fig. 2. For a 
small end load (left), the bending moment will be almost 
exactly proportional to the distance from the tip of the flexure, 
as expected. A large end load (right) will produce a non-linear 
deformation profile, but the moment, plotted as a function of 
arc length, is still roughly linear. The curvature is directly 
proportional to bending moment in the beam, τ(s), 
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For some range of large loads, then, the curvature of a beam 
can be approximated as some constant plus a linear function of 
arc length. Horn discussed this approximation in the context of 
spline curves [22]. The accuracy of this model could be further 
improved by noting that while the curvature may not be exactly 
linear, it is certainly smooth, and so might be described with a 
basis of n orthogonal polynomials, G0(s)…Gn-1(s). The 
curvature is expressed as a weighted sum of the bases, 
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The coefficients, q0…qn-1, used as a generalized coordinate 
vector q for describing the deformation of the flexure, are 
central to the proposed flexure model. Two particular cases  
will be considered here, corresponding to the models with 2 

 

Figure 2.  A comparison of the moment profile in small- and large-
deflection cantilevered beam bending. 



and 3 parameters, whose basis functions are Legendre 
polynomials, translated and scaled to be orthogonal on [0, L], 
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Models of this type, which we will call smooth curvature 
models, can be used to predict the shape of the flexure in 
bending, as well as the elastic bending energy. These 
derivations follow in the next two sections. 

B. Flexure Shape 

Joints in a serial robot manipulator are often represented in 
Denavit-Hartenberg notation, that is, as a geometric 
transformation between the pairs of rigid links connected by 
each joint. The analogous transformation for a pin joint is a 
rotation about the joint axis. In the case of a flexure, this 
transformation corresponds to the translation and rotation from 
one end of the flexure to the other, as shown in Fig. 3 [12]. 
This could be written as a matrix, for instance, 
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The three quantities characterizing this transformation are the 
flexure tip displacement (xtip, ytip), and the relative angle from 
the base of the flexure to the tip of the flexure, φtip. They can be 
written as functions of the polynomial coefficient vector, q. 
The angular profile, φ(s, q), is the integral of the curvature, 
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At the end of the flexure (s=L), the tip angle is equivalent to q0 
irrespective of the model order. This is a happy side effect of 
using orthogonal polynomials, as all the higher, non-constant 
terms must integrate to zero: 
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The tip position of the flexure can be found by integrating the 
cosine and sine of the angular profile, 
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These expressions are transcendental. The second order 
solution can be solved in terms of Fresnel integrals by 

completing the square and using trigonometric addition 
identities, but it contains discontinuities, and is not practically 
useful. Further, this strategy does not generalize to the 3 
parameter model. Instead, an interpolating approximation was 
used, so that (11) and (12) can be analytically approximated 
within some reliable error bounds. In this paper, Chebyshev 
interpolation [23] was used to approximate the sine and cosine 
functions as polynomials. There is a trade-off between the 
domain of interpolation and the computational cost, so 
maximum flexure rotation was limited to be less than 108°. 
Alternatively, a technique such as Gaussian quadrature could 
be used, which is essentially equivalent to interpolating the 
entire integrand as a polynomial. 

C. Elastic Energy 

Having found the shape of the hinge as a function of q, we 
now turn to finding an expression for the elastic energy in the 
flexure. The energy stored in an Euler-Bernoulli beam is 
proportional to the integral of the squared curvature [15]: 

∫=
L

dsqs
EI

qU
0

2),(
2

)( κ  (13) 

If the 2 parameter curvature is used, U(q) evaluates to a 
weighted sum of the squared parameters.  
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Because the polynomial basis is orthogonal, there are no cross-
terms in this expression. The expression for energy given 3 
parameters differs only in the addition of a single term.   
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D. Summary 

The smooth curvature model for flexure hinges has been 
introduced, based on the observation that the curvature of a 
flexure can be approximated using a low-dimensional basis of 
orthogonal polynomials. The position and orientation of the 
flexure tip can be found relative to its base using only a few 
model parameters, and these can be used to represent the 
flexure as a joint in Denavit-Hartenberg form. The elastic 
energy stored in the bent beam is a weighted sum of the 
squared flexure parameters.  

Proximal 
Coordinate

Frame

Distal 
Coordinate

Frame
 

Figure 3.  A Denavit-Hartenberg kinematic model of a flexure consists of a 
transformation mapping the coordinate frame at the proximal side of the joint 

to the coordinate frame at the distal side of the joint. 



The remaining sections will demonstrate that this model 
can be used to satisfy the two other requirements for a flexure 
joint model, that is, that the model accurately predicts the 
equilibrium position of the flexure when an arbitrary force and 
moment are applied, and that the model accurately predicts 
variable stiffness effects and buckling due to compressive 
loads. 

III.  DEFLECTION UNDER LOAD 

A. Jacobian Analysis of the Forces on a Robot 

Accurate descriptions of the force exerted on a robot and 
the resulting deflection are central to many problems in the 
control and analysis of robot manipulators. The net generalized 
force F on a manipulator experiencing a force fp at some point 
p is given by the Jacobian of that point’s coordinates, and the 
gradient of the potential energy function U(q), 
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The generalized force balance equation is only realistic if the 
generalized coordinates faithfully represent all of the motions 
that the robot is capable of making. For a flexure hinge, it is 
important that the motion of flexure tip, as described in the 
previous section, is accurate, so that the forces and moments 
transmitted from one link to the next result in a physically 
realistic deformation of the flexure hinges.  

This section considers two tests for benchmarking the 
ability of the smooth curvature flexure model to predict 
deformation under load. The first test compares the exact 
deflection of a cantilevered flexure (using numerically 
computed elastica curves [24]) to the tip position predicted by 
the smooth curvature model. The second test computes the 
deflection of a two-link finger from a tendon-driven elastic 
gripper developed by the authors. The two flexure hinges in the 
finger are modeled with finite element flexure models, and with 
the 3 parameter smooth curvature model, showing that the two 
models agree despite the vastly reduced parameter space of the 
smooth curvature model. 

B. Tip Deflection of a Loaded Flexure 

A straightforward method of examining the accuracy of a 
flexible beam is to clamp one end and examine the deflection 
of the other end when subject to an arbitrary moment M and 
force P exerted at an angle θ, as shown in Fig. 4. To ensure 
proper scaling of the results, a non-dimensional form of the 
beam bending equations should be used, based on these 
substitutions:  
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The dimensionless beam bending equations are equivalent to 
modeling a beam as having length 1, and an elastic modulus 
and cross-sectional moment equal to 1.The only parameter that 
is unaffected by this scaling is the beam’s angular profile, φ(s). 
Results will be computed for the case when the tip angle, φtip, is 
equal to 90°, a prototypical test case in the study of large-

deformation beam bending1. The equilibrium configurations 
were compared to the exact solution obtained by numerically 
integrating the large-deformation Euler-Bernoulli equation, 



















 −

=


















))~(sin(

))~(cos(

)~(~
)))~(sin()sin())~(cos()(cos(

~

)~(~
)~(~
)~(

)~(~

~

s

s

s

ssP

sy

sx

s

s

sd

d

ϕ
ϕ

τ
ϕθϕθ

ϕ
τ

 (18) 

This is a restatement of (2), (7), (11) and (12) in differential 
form, after applying the substitutions from (17). This equation 
was solved using a Runge-Kutta solver. The tip moment M, 
force angle θ, and tip angle φtip, were specified, and the integral 
from the tip of the flexure to the based was computed. The tip 
force, P, was found using a bisection search such that the 
boundary conditions at both ends of the flexure were 
simultaneously satisfied.  

Each force-moment combination (P, θ, M) that was 
computed for the exact beam equation was applied to the tip of 
the smooth curvature flexure model, using the generalized 
force balance from (16). The Jacobian of the tip coordinates 
xtip, ytip and φtip  was derived from (10), (11) and (12), 
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As in (11) and (12), Chebyshev interpolation was used to 
produce analytical approximations of (20) and (21). The 
derivatives of the energy function are much simpler, and can be 
found from (15),  

                                                           
1 This is a generalization of the rectangular elastica problem posed by 
Bernoulli, the problem of finding the shape of a cantilevered beam bent at a 
right angle by a force at the tip [26].  

 

Figure 4.  A flexure, loaded at the end by a force and a moment. This figure 
shows the direction of load, θ. 
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The force balance, computed from (19)-(22), was set to zero to 
form a system of nonlinear equations, which was solved 
numerically in Matlab. Three force-moment combinations were 
used to compare the two models. These combinations, labeled 
A, B, and C, are shown in Fig. 5. In case A, a pure bending 
moment was applied, sufficient to bend the flexure to an angle 
of 90°. Case B was a pure force of a magnitude sufficient to 
bend the flexure to 90°. Case C was the most complex load, 
consisting of a moment equal and opposite to the moment 
applied in combination 1, counteracted by a force so that the 
flexure tip angle remained at 90°. 

The prediction errors from the smooth curvature models 
were computed for values of θ ranging from 20 degrees to 105 
degrees (as in Fig. 4). The lower bound of 20 degrees was 
chosen because the magnitude of the load required to bend a 
beam to 90° in case B has a vertical asymptote at θ=0. Thus, 
the behavior of the flexure becomes increasingly unrealistic in 
this case. The upper bound of 105 degrees was chosen because 
the elastica curves generated with the Runge-Kutta solver could 
not predict buckled configurations, and as the force on the 
flexure tip becomes increasingly compressive (i.e. θ > 90°), 
good reference comparisons could not be made. Instead, 
compressive loads were compared to finite element models in 
the following subsection. 

The positional error of the flexure tip was found, that is, the 
norm of the vector from the predicted flexure tip to the tip of 
the numerically computed elastica curve. This is plotted in non-
dimensional form, meaning that the error is given as a fraction 
of the flexure length. The angular error is also shown. The 
errors for the 2 parameter model are shown in Fig. 6, and the 
errors for the 3 parameter model are shown in Fig. 7. These 
plots show a number of significant results. First, the errors in 
case A (pure moment loading) were very small for both the 2 
and 3 parameter smooth curvature models. The exact shape one 
would expect for a beam having a constant bending moment is 
an arc, a shape that can be exactly reproduced with both 
models. Thus, the error is correspondingly small. The errors 
observed in loading cases B and C indicate that the 3 parameter 
model is significantly more accurate, especially when the 
flexure is loaded by an opposed force and moment. Most 
importantly, in every case, the 3 parameter smooth curvature 
model was within a positional accuracy of 1 percent of the 
beam length, and an angular accuracy bound of 1°. 

C. Finite Element Comparisons 

One purpose of the smooth curvature model of particular 
interest to the authors is to enable efficient analysis of 
manipulators having multiple flexure joints. In previous work, 
the authors have developed robot hands incorporating 
polymeric elastic flexure joints [8,9]. These hands are made up 
of 2-link, tendon-driven fingers, represented in Fig. 8A. In 
order to evaluate the usefulness of the smooth curvature model 
for multi-link manipulators, a finite element model was 
constructed using an object-oriented Matlab library created by 

 

Figure 5.  The three loading cases used to test the smooth curvature model. 

 

Figure 6.  Prediction errors for the 2 parameter smooth curvature model. 
Cases A, B, and C correspond to the cases in Fig. 5. 

 

Figure 7.  Prediction errors for the 3 parameter smooth curvature model. 
Cases A, B, and C correspond to the cases in Fig. 5. 



the authors [25]. This model represents each flexure in a 
fashion similar to the finite element model proposed in [1], 
consisting of 16 small rotational links. The transformation 
representing each joint in Denavit-Hartenberg form was the 
composition of the many resulting rotations and translations 
making up each finite element.  

A model of the finger was also constructed using our 3 
parameter smooth curvature flexures. This model uses the joint 
transformation from (6) and the energy function from (15) to 
describe the joint behavior in terms of three generalized 
coordinates per joint, for a total of 6. The finite element model, 
by comparison, had a total of 32 generalized coordinates. Both 
models were subjected to two different loading conditions: in 
the first condition, the finger was actuated with a single tendon 
connected to the distal link, as in Fig. 8B. The second 
condition, depicted in Fig. 8C, included the same tendon force 
and a horizontal force applied to the center of the pad on the 
distal link. In both cases, the generalized force balance was 
computed using (16), computing the kinematics of the tendon 
and the center of the distal pad using a composition of 
geometric joint and link transformations. 

The results of the test are shown in Fig. 8 and Table I, 
which describes the agreement between the smooth curvature 
and finite element models as to the position and orientation of 
the center of the distal link. The results show that the 
displacement of the distal link pad as calculated by the smooth 
curvature model is within 0.1% of the position predicted by the 
finite element model. The angular agreement is similarly within 
a tenth of a degree in both cases. Attempts at visual comparison 
between the FEM and smooth curvature models by overlaying 
the two were unsuccessful, because they were almost 
indistinguishable to the eye. 

D. Summary 

For both a single flexure hinge and a two-joint manipulator, 
the smooth curvature model has been shown to accurately 
predict the deformation of a manipulator under a wide range of 
forces and moments. This is interesting and new because most 
methods of accurately solving large-deflection beam bending 
problems involve numerical integration, or the breaking down 
of a beam into many finite elements. Because the smooth 
curvature model achieves a useful degree of accuracy with only 
three parameters per joint, calculation of dynamics and statics 
for control or motion planning is a much simpler process.  

IV. STIFFNESS AND BUCKLING 

A. Stiffness of a Loaded Elastic Structure 

One major difference between the well-studied problem of 
flexible-link manipulators and the newer field of flexure-
jointed manipulators is the relatively increased importance of 
buckling in flexure joints. The flexure joints shown in Fig. 9 
show a typical tendon/flexure actuation scheme. The tendon 
exerts a force in tension, which is balanced by a compressive 
force in the flexure, unless a parallel load path exists. This 
compressive force is quite large, and can easily approach the 
Euler buckling load of a thin flexure (the load at which the 
lateral stiffness of the flexure is zero). Unlike structural 
columns, buckling does not represent a necessarily undesirable 
effect. The fact that the flexure is buckled just means that its 
rotational stiffness is very low. Most pin joints, for example, 
have zero rotational stiffness and this is not an impediment to 
their use in robots. However, this change in stiffness as a 
function of load is critically important in some robotic tasks. 
For example, a change in joint stiffness will affect computed 
torque control models. Additionally some tasks such as 
grasping and manipulation rely on the elastic stability of the 

A. Flexure-based robot finger

B. Tendon force C. Tendon force + pad force

A. Flexure-based robot finger

B. Tendon force C. Tendon force + pad force
 

Figure 8.  A comparison between FEM and smooth curvature (SC) models:  
A. The FEM model, no tendon force vs 10 N tendon force.  

B. SC model (i) vs FEM (ii), 10 N tendon force.  
C. SC model (iii) vs. FEM (iv), 10 N force + 0.5 N force on distal link. 

Smooth Curvature Model Finite Element Model

Tendon

Smooth Curvature Model Finite Element Model

Tendon

        

Figure 9.  A single tendon-driven joint, modeled using the smooth curvature 
model (left) and finite rotational elements (right). 

 

TABLE I.  FEM VS. SMOOTH CURVATURE FINGER MODEL RESULTS 

Case Pad x Pad y Pad angle 

FEM, Tendon Force (i) -0.0048 0.1012 147.6553 

SC, Tendon Force (ii) -0.0047 0.1012 147.5760 

FEM, Tendon + Pad Force (iii) 0.0615 0.1046 103.0476 

SC, Tendon + Pad Force (iv) 0.0615 0.1046 103.0168 



whole system; a buckling mode could be harmless, or it could 
correspond to configuration in which a grasped object twists 
out of its gripped position [20]. As a result of all these 
concerns, it is important that a flexure model provide a 
reasonable model of elastic buckling. 

This section briefly describes the ability of the smooth 
curvature model to predict elastic buckling in a flexure using 
the Hessian of the flexure kinematics. As a proxy case for 
comparing the continuum behavior of a flexure to the smooth 
curvature model, the smooth curvature model will be used to 
predict buckling in compression by finding the smallest 
compressive load for which the generalized stiffness matrix is 
singular. This result can be compared to Euler’s buckling load 
formula. The 2 and 3 parameter models produce successively 
better approximations of buckling. 

B. Continuum vs. Discrete Buckling 

A continuum structure is said to buckle when it has zero (or 
negative) stiffness in some direction, so that a small 
perturbation to the structure’s shape is met by a destabilizing 
force, rather than a restoring force. The compressive load Pcrit 
at which a clamped-free beam should buckle is given by 
Euler’s well-known formula [26]: 
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The concept analogous to elastic buckling in a generalized 
coordinate model has to do with the generalized stiffness 
matrix obtained by taking the gradient of the generalized force 
balance from (16) with respect to q, 
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Stiffness is a function of the Hessian of the coordinates where 
force is applied, and of the Hessian of the energy, U(q). When 
this stiffness matrix has an eigenvalue that is zero or negative, 
it buckles. In other words, there will exist some eigenvector δq, 
which, when applied to the robot as a perturbation, will 
produce a destabilizing force. This could also be thought of as a 
test for the convexity of the total energy in the robot. 

We will derive the generalized stiffness matrix for the 
smooth curvature model, when the flexure is loaded in the -x 
direction with a force, P. Thus, the contact point p from (24) 
above is the scalar xtip, as described in (8). The Hessian 
elements can be calculated from the Jacobian of xtip in (20), 
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When the flexure is straight, q0=q1=q2=0. In this configuration, 
(25) can be simplified, because the sine term disappears and the 
cosine term approaches one, 
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These are polynomials, which can be evaluated to compute the 
Hessian of xtip with respect to the generalized coordinates. For 
the 2 parameter model, the Hessian is a 2 by 2 matrix, 
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The stiffness due to potential energy can be found by taking the 
Hessian of the energy function derived in (14), 
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The coordinate Hessian and the energy Hessian can be 
substituted back into (24), 
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The buckling load of the 2 parameter model, P2, is the value of 
P for which the determinant of K  is zero, indicating that the 
matrix has an eigenvalue equal to zero, 
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The smallest root of this polynomial is the most physically 
meaningful, as it represents the load at which the unconstrained 
flexure will buckle, 
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This is only 0.75% larger than the true value reported by the 
continuum model in (23). This exercise can be repeated for the 
three parameter model, to find the predicted buckling load, P3, 
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The resulting buckling load prediction is within 0.02% of the 
value predicted by Euler’s beam buckling formula, 

2.4677...
2
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  (33) 

C. Discussion 

The results of this brief study indicate that the smooth 
curvature model has no difficulty predicting the nonlinear 
stiffness of a straightened flexure hinge as a function of load. A 
more general argument, too long to be presented here, would 
also cover the stiffness of a constrained flexure, such as one 
which is effectively pinned or clamped at the end. The 3 
parameter model can successfully describe these cases, if the 



constraints on the flexure tip are made as parametric 
substitutions.  

The small deflection case was presented here because the 
solution is widely known and understood. For large deflection 
cases, a more thorough demonstration of agreement between 
the stiffness equation from (24) and the continuum beam model 
could be obtained by using the calculus of variations to 
numerically find the endpoint stiffness of the elastica curves 
from Section III. Both of the predictions of constrained 
buckling and the large deformation stiffness comparisons will 
be forthcoming in a separate paper. 

V. CONCLUSIONS 

A. In Summary 

In this paper, we have presented a model for flexible links 
that is accurate for large deformations, so that it can be used for 
the special case of flexible links as flexure hinges. These 
models are compatible with all of the standard tools used for 
manipulator analysis, because they are in a form where the 
shape of the joint and the elastic energy of the joint can be 
entirely described by a set of generalized coordinates. We have 
demonstrated that a flexure can be described to a high level of 
accuracy using only three parameters – arguably the minimum 
number of parameters capable of describing a flexure with 
three independent end conditions, xtip, ytip and φtip. This model 
is useful for “zeroth” order descriptions (shape and energy), 
first order descriptions (local deformation and force), and for 
second order descriptions (buckling configurations and 
stiffness) of mechanical behavior of flexible members 
undergoing large deformations under loads.  

B. Future Directions 

This model can be developed further by fully characterizing 
the stiffness under load for large deformations. It would also be 
interesting to further explore the smooth curvature flexure 
model in the context of flexible links under buckling loads. 
Any flexible link manipulator whose members might buckle 
may benefit from a more accurate parametric bending model. 
For example, a parallel manipulator might have large internal 
forces leading to link buckling. The simplicity and accuracy of 
the smooth curvature model in predicting buckling make this a 
natural avenue of inquiry. 

Finally, it is worth noting that although models of planar 
beam bending are quite useful, many flexures admit a great 
deal of out-of-plane motion. This behavior can be characterized 
by a modal model similar to the one presented here. The 
authors are pursuing these, with the eventual goal of producing 
models for elastic joints having arbitrary geometries. 
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