
  

  

Abstract— Sheet hinges, thin flexures that are rigid in the 

plane but which can bend freely, are common in stamped and 

lithographically manufactured devices. The behavior of these 

machine elements as joints in a robot is difficult to model 

because they are two-dimensional continuum elastic bodies that 

admit three-dimensional motion and twisting. This paper 

presents a parametric modeling technique that can be used to 

accurately predict elastic behavior of sheet hinges in three 

dimensions. Parameterized backbone curves can be used to 

represent ruled surface bending in a fashion that implicitly 

accounts for some of the complex boundary conditions imposed 

on typical sheet hinges. Approximate methods of integrating 

the non-commutative equations defining the sheet hinge 

backbone curves will be discussed, demonstrating acceptable 

trade-offs between accuracy and representational simplicity in 

overall model performance. 

 

I. INTRODUCTION 

LASTIC hinges made out of thin bending sheets are 

simple, effective joint mechanisms for robots, 

particularly those manufactured by layered or lithographic 

processes, or made out of folded sheets of material. The 

geometric simplicity of sheet hinges makes them extremely 

scalable, so that robots on the macro-scale [1], meso-scale 

[2, 3], or macro-scale [4, 5] can obtain repeatable, low-

backlash motion with little or no friction. 

One challenge facing the designers of robots having 

elastic members of any kind is the need for a low-

dimensional representation of robot configuration. Most 

classical modeling and control techniques assume that the 

configuration of a robot can be entirely described by its 

joints via a vector of joint angles or displacements, and that 

the Jacobians and Hessians used to analyze the kinetostatics 

and dynamics of the robot are easy to compute from the joint 

configuration vector. In contrast, continuum bodies such as 

sheets can deform in a wide variety of ways, including 

coupled translation and rotation, or bending about multiple 

axes, as shown in Fig. 1. In order to reap the benefits of 

classical analytical techniques for robots, a joint model is 

needed that can, with a small set of parameters per joint, 

reproduce the range of motions caused by elastic 

deformation.  Additionally, the energy associated with any 

deformation must be modeled, in order to accurately predict 

elastic forces and deflection of the joint under load.  

If only planar motion is considered, a sheet hinge can be 
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passably approximated by the large-deformation Euler-

Bernoulli equation, and many approximations of this and 

other derivative beam models have been made for describing 

flexure hinges. The method of finite elements has been 

proposed as a means of generating a parametric 

configuration for flexible robots [6], although the models 

produced in this manner often have many parameters and 

become computationally intensive to solve. The Pseudo-

Rigid Body technique, fitting a linkage with nonlinear 

springs to the flexure behavior by regression, can also 

produce parameterized models of beam bending that 

characterize the behavior of elastic bodies for a limited range 

of motion [7, 8]. The authors recently published a more 

general-purpose model, called the Smooth Curvature Model, 

which accurately predicts large-deformation in-plane beam 

bending under arbitrarily oriented end loads using only three 

parameters [9].  

Predicting the true three-dimensional behavior of bending 

sheets is more difficult. Unlike the better-understood case of 

slender rods [10], bending sheets do not locally yield in 

torsion to produce three-dimensional deformation. Instead, 

three-dimensional deformation is produced as a result of 

varying rotations in the plane of the sheet hinge. In this 

paper, we will derive a new, low-dimensional parametric 

model of sheet bending based on the elastic mechanics of 

developable strips [11]. The principal curvature along the 

centerline of the sheet hinge, and the angle at which the 

sheet is bent locally will be represented as superpositions of 

polynomial modes, under the assumption that the backbone 

curve of a bending sheet will be smooth at equilibrium. The 

coefficients of the polynomial terms can be used as a 

coordinate basis for describing the sheet’s continuum 

configuration, and can also be used to compute Jacobians 

and Hessians of robot kinematics in terms of these 

coordinates. 
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Fig. 1.  Sheet of elastic material are often used as a joints between two 

rigid bodies. However, the possible motions of sheet hinges are more 

complex than those of a standard revolute joint. 
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We will proceed in the following order: First, the basic 

mechanics of bending in a developable sheet or strip will be 

reviewed, along with a discussion of the physical constraints 

imposed on a typical sheet hinge. Parameterizations of these 

mechanics using polynomial mode shapes will be discussed, 

followed by an overview of problems surrounding numerical 

integration. The accuracy of solutions obtained by these 

smooth curvature models will be discussed by examining the 

a posteriori prediction of elastic forces in a sheet for any 

equilibrium configuration. 

II. THE MECHANICS OF BENDING SHEETS 

A joint, in the abstract sense, is a way of describing the 

relationship between two rigid bodies via a homogeneous 

transformation matrix, �����, as a function of some joint 

parameter or parameters, ��. Additionally, any energy 

associated with the motion of the joint, such as elastic 

energy, must be described by some function, �����, to ensure 

that elastic forces are accurately represented. In this section, 

constitutive expressions will be found for � and � in terms 

of the continuum configuration of a bending sheet hinge. 

Because bending sheets are developable surfaces, the shape 

of the joint and the energy associated with joint motion can 

be written as functions of the magnitude and orientation of 

the principal curvature along the sheet’s backbone, a 

parametric space curve running down the center of the 

hinge. Some of the physical intuition behind the structure of � and � will be discussed. After the underlying constitutive 

behavior of bending sheets or strips is understood, focus will 

turn to the problem of producing an approximate parametric 

model of joint motion. 

A. The Kinematics of Sheet Bending 

A sheet of material that is too stiff to deform in the plane 

but capable of bending is often referred to as a ruled or 

developable surface. The internal constraints imposed by 

such shapes force the bending curvature of the surface to be 

simple – that is, it is possible to draw straight lines of zero 

curvature through any point on the surface that lies 

completely along the surface, resulting in the local area 

being equivalent to a section of a cone. A side effect of this 

constraint is that the deformation of a whole sheet can be 

described by the bending occurring on a single backbone 

drawn across the sheet, as shown in Fig. 2. Such a curve, 

running end-to-end between two links of a robot, can be 

parameterized in terms of its arc length, � � 	0, �. The local 

coordinate frame of this backbone curve forms a rotation 

matrix, �, whose local axes are depicted in Fig. 2, with � 

tangent to the backbone and � perpendicular to the backbone 

but along the sheet. Again, there is assumed to be no 

extension or shearing in the plane, only bending of 

magnitude ���� about a principal axis of rotation at some 

angle,  ����, as shown in Fig. 3. The change in � as a 

function of � is given by the well-known relationship: 

���� � �������� (1) 

The matrix ���� is the skew-symmetric form of the rotation 

rate vector, 

���� � ���� � 0 � cos ���� 0cos ���� 0 � sin ����0 sin ���� 0 � (2) 

The evolution of the backbone position, ��, is also defined in 

terms of the local coordinate axes as described by ����, 

����� � ���� �100! � ����"���� (3) 

The body frame velocity, "����, corresponds to moving at a 

constant rate down the backbone curve. Put together, (1) and 

(3) describe the shape of the backbone curve as a linear, 

time-varying (LTV) differential equation in #$�3�,  

��� &���� �����0��� 1 ' � &���� �����0��� 1 ' &���� "����0��� 0 ' (4) 

Because the backbone curve runs between the edges of the 

sheet connecting two robot links, solving (4) on 	0, � can be 

used to calculate the kinematic relationship, �, between the 

links. Thus, the same continuum configuration describing 

the shape of the whole sheet (���� and ����) also describes 

the joint kinematics. It bears mentioning here that although � and "� are exponential coordinates describing the local 

behavior of the backbone curve, they cannot be used as they 

 
Fig. 3.  Local evolution of the backbone curve at a point � is defined 

by an instantaneous rotation of magnitude ���� along an axis at an 

angle ���� to the � axis in body coordinates. 

 
Fig. 2.  The backbone curve of a flexible strip is the curve running 

along the center line of the strip from one end to the other. The end-

to-end transformation along the curve can be represented with a 

homogeneous transformation matrix, �. 

1421



  

are in typical screw-based joint models [12]. The LTV 

system in (4) is non-commutative, so matrix exponentiation 

cannot be used to solve for �. More general methods of 

solution will be discussed in further sections. 

B. The Energy of a Bending Strip 

We now turn from discussion of the sheet hinge’s shape to 

the elastic energy stored in any deformed configuration. The 

bending energy of a sheet or strip is locally defined by the 

curvature about both axes in the plane, �� and ��: 

� � (�$12�1 � *�� + + ���
� , ��

���-�

�

	

�

 (5) 

The limits of integration correspond to the length of the 

strip, �, and the strip of the strip, .. Because of the 

geometric constraints on the curvature of a developable 

surface (it cannot have compound curvature), the curvature 

at any point on the strip can be defined in terms of the local 

curvature along the backbone curve [11]. The expression for 

energy is a path integral from � � 0 to �, and it is often 

written in terms of �� and �� along the backbone. By 

making the substitutions �� � ���� cos ���� and �� ����� sin ����, it will be written as before in terms of the 

principal curvature and bending axis angle, 

� � .(�$12�1 � *�� + �����#�/��� 	

�

 (6) 

/ � .2 cos� ���� ����  (7) 

#�/� � log�1 , /� � log�1 � /�2/  
(8) 

The dimensionless group / and the shape factor #�/� have 

been separated out of (6) because they capture several salient 

features of the bending energy of the strip. The first feature 

of note about the shape factor, plotted in Fig. 4, is that it will 

go to infinity as / approaches either 1 or -1. This divergence 

can be explained by ascribing some real meaning to /. A 

way of visualizing the local deformation of a sheet is to see a 

thin slice of the sheet as lying tangent to a cone, at an angle ���� from the backbone curve and a distance � from the 

vertex of the cone, as illustrated in Fig. 5. The law of sines 

can be used to find � by considering the triangle shown in 

Fig. 4 for a small displacement Δ� along the backbone,  

�
sin 342 � ����5 � Δ�

sin 6���� Δ�7  (9) 

It is possible to solve for � by taking the limit of (9) as Δ� 

approaches 0, 

� � lim

���

Δ� cos ����
sin 6���� Δ�7 � cos ��������  (10) 

The local energy of the strip at �  is equal to the energy of 

the infinitesimal cone over the section tangent to backbone 

curve. At the vertex of the cone, the local bending energy 

becomes infinitely large, because the cone’s radius of 

curvature goes to 0. Therefore, such a “vertex point” cannot 

exist on the edge or interior of the sheet. When a vertex 

exists at a distance ./2 from the backbone, the distance to 

the vertex is: 

� cos ���� � cos� �������� � .2  (11) 

Comparing (11) to (7), it is clear that there is a physical basis 

for asserting that / will always lie between -1 and 1, namely, 

that the boundaries of a sheet can never be bent more tightly 

than a conical point. 

C. An Important Degenerate Case 

Another important property of the shape factor relates to 

the case when � (and hence /) are zero over the entire length 

of the strip. In this degenerate class of configurations, all 

bending will occur in the �: plane, and consequently (6) 

should reduce to the energy functional of a thin bending 

beam. This will be the case if the shape factor #�0� � 1,  

������ � .(�$12�1 � *�� + ������� 	

�

 (12) 

Unfortunately, #�/� is singular at / � 0, because the 

numerator and denominator of the fraction in (8) both go to 

Fig. 4.  The shape factor used to compute the energy of a bending 

strip is defined between -1 and 1, and is equal  to 1 in the center, 

reducing the strip bending equation to the beam bending equation. 

 

 
Fig. 5. The law of sines can be used to find the distance � from the 

backbone of the flexure to the point where two bending rules 

intersect, forming an angular section of a cone.   
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zero. The limit of the expression can be shown by 

L’Hospital’s rule to be 1. This kind of discontinuity, 

occurring in a common degenerate case, is problematic for 

numerical computation. One workaround is to approximate #�/� with a function that does not have a discontinuity at 0. 

This was accomplished by fitting a polynomial to #�/�  

using the Remez algorithm [13] on the interval between -0.1 

and 0.1, 

#;�/� � <#�/�, 0.1 > |/| > 11 , 0.3353482/�, |/| C 0.1 D (13) 

The residual error of (13) is within 2.53 E 10�� at all points, 

and can be made as small as desired by changing the interval 

of the approximated function. 

D. In Summary 

So far, this section has defined a model that describes the 

configuration and elastic energy of a sheet hinge in terms of 

the principal curvature ���� and the bending axis angle ����. The only assumption made thus far about these 

configuration functions is the differentiability of ����, which 

is needed in order to compute bending energy. In the 

upcoming section, these two arbitrary functions will be 

approximated with families of parametric functions, so that 

the configuration of the flexure can be discretized into a 

more convenient form. 

III. PARAMETERIZING THE SHEET HINGE MODEL 

So far, the model just introduced describes the 

configuration of a sheet hinge in terms of two arbitrary 

functions, ���� and ����. What is really desired, however, is 

a parameterized description of the joint: some set of 

coordinates, ��, that provides a good-enough approximation 

of the physically obtainable flexure configurations. These 

coordinates can be used as joint variables, in the same sense 

as the angle of a revolute joint or the displacement of a 

prismatic joint. In this section, we will examine polynomials 

as a basis for describing hinge shape, motivated by the 

general observation that bending members loaded at the ends 

are smooth curves. 

A. Representing Principal Curvature 

The configuration of a sheet hinge deforming only in the 

plane is a function of the curvature, ����, and modeling this 

case is equivalent to modeling an Euler-Bernoulli beam as a 

hinge. The authors have previously argued that in this planar 

case, a smooth approximation of curvature, such as a linear 

superposition of Legendre polynomials, will provide the 

most accurate and efficient parameterization of joint in this 

case [9]. Extending this notion to the more general problem 

of three-dimensional motion, the same approximation will 

be used for the principal curvature of a bending sheet, 

���, ��� � ��� , ��� 32�� � 15 , ��� F6���� � 6�� , 1H (14) 

The configuration variables �� … �� are coefficients of 

Legendre polynomials, scaled to be orthogonal under 

convolution on the interval from 0 to �. This model 

accurately predicts tip deflection within 1% for bending in 

the plane at angles up to ± 90º [9]. 

B. Parameterizing Bending Angle 

Like the curvature of a bending sheet, the angle of the 

bending axis will also be a smooth function, because the 

limited domain of / as shown in Fig. 4 imposes a constraint 

on the derivative of ����, 

J����J > 2 cos� ����. > 2. (15) 

Furthermore, the overall magnitude of ���� is dominated by 

strong boundary conditions at both ends. At the ends of the 

joint, the axis of bending in the sheet must be parallel to the 

edge of the much stiffer link. Because the axes of bending 

cannot intersect on the sheet, the sheet tends to form a 

frustum near the ends, so that the bending axes seem to pivot 

about one corner of the sheet, as illustrated in Fig. 6. This 

translates to an absolute constraint on the magnitude ����, 

|����| > tan��
2�.  (16) 

In a sheet having a relatively low aspect ratio, i.e. � > ., 

these two constraints will dominate the overall shape of the 

angular profile, so that the behavior of the whole angular 

profile can be predicted by two smooth modes 

corresponding to the angular constraints at each end. As with 

the curvature modes in (14), two polynomials will be used to 

represent these behaviors, mode that is symmetric about the 

center of the sheet, and one anti-symmetric mode, 

���, ��� � ��

�� 61 � ��7 , ��

�� 61 � ��7 32�� � 15 (17) 

These modes have been constrained to implicitly account for 

the boundary conditions, ��0� � ���� � 0. 
C. Discussion 

The five parameters �� … �� approximately describe the 

shape and energy of a bending sheet over the typical regime 

of behaviors expected from bending sheets, based on 

reasonable assumptions about the range of motion and 

 
Fig. 6. The bending axis is constrained at the end of a strip by the fact 

that bending axes cannot intersect on the strip surface. 
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aspect ratios of flexures typically encountered. While the use 

of only two modes for ���� seems low, it reflects the reality 

that most sheet hinges are designed to be short and wide, to 

minimize any twisting motion. In the upcoming section, this 

model will be used to derive Jacobians and Hessians of the 

joint motion with respect to this basis. 

IV. COMPUTING JOINT ENERGY AND TRANSFORMATIONS 

The primary computational problem associated with a joint 

model is in finding an efficient algorithm mapping some 

joint configuration, ��, onto the joint’s homogeneous 

transformation, �����, and the joint energy, �����. Because 

the sheet hinge model presented here involves three-

dimensional rotations and translations, finding fast methods 

of integrating the kinematic equations is more difficult than 

in the case of planar bending hinges. However, due to the 

smoothness of the configuration functions ���� and ����, 

inexpensive numerical integration techniques such as low-

order fixed-step Runge-Kutta integration [13] will provide 

bounded-error approximations of the joint kinematics. 

A. Integrating Kinematics 

As shown in (4), computing the link-to-link transformation ����� reduces to the problem of solving an initial value 

problem for a LTV system on 	0, �, ��� ���, ��� � ���, ��� &���, ��� "����0��� 0 ' (18) 

If the deformation of a sheet is confined to the case where ���� � 0 everywhere (the Euler-Bernoulli bending case), 

then the problem is greatly simplified. In this case, the 

rotation of the hinge due to bending is planar and therefore 

commutative, so (1) can be solved explicitly for ���� via the 

matrix exponential solution for first order homogeneous 

LTV systems. The Cartesian profile of the beam in (3) can 

then be solved by a numerical definite integration algorithm, 

such as Gauss-Legendre quadrature. The authors have 

previously shown that the planar case is accurate even when 

very low-order integration techniques are used [9]. 

In three dimensions, nothing about (18) can be solved 

explicitly, because the rotations along the backbone curve do 

not form a commutative subgroup. The whole equation must 

be solved numerically, by a time-stepping ODE solver such 

as Runge-Kutta, rather than a quadrature method. However, 

because the profile of the backbone curve is smooth, a low-

order integrator with fairly large step sizes will suffice to 

accurately integrate the backbone profile. The authors used a 

second-order Runge-Kutta solver with a step size of � 20⁄  to 

compute �����. 

B. Jacobian and Hessian Computation 

To compute the Jacobian of some point on a robot with 

respect to the robot’s generalized coordinates, the partial 

derivatives of the joint transformation with respect to any 

parameter �� must be computed. The ODE describing this 

matrix, ������, can be derived from (18), and are written here 

in compact form: 

����� � �� N� "�0 0O , � N�� 00 0O (19) 

All derivatives of ������ are described by LTV systems of 

the same basic form as (18), having the same “A” matrix, 

and consequently the same state transition matrix for all 

values of P. As a result, much of the computation used to 

evaluate  ����� using a Runge-Kutta method can be reused to 

find ������. Computing the Hessian of any point requires 

knowing the second partial derivatives of �����, denoted �������. The ODE for the second partial derivatives, again 

derived from (18), also shares the same basic structure, ������ � ��� N� "�0 0O , �� &�� 00 0' , 

                      �� N�� 00 0O , � &��� 00 0' 

(20) 

Thus, computation of the second partial derivatives of ����� 

will reduce to solving the same underlying LTV system with 

different exogenous inputs, and can reuse much of the 

computation used for calculating ����� and ������. 

C. Integrating Energy 

Integrating the energy of a bending sheet numerically was 

performed with standard fixed-partition quadrature on the 

parameterized energy functional, 

����� � .(�$12�1 � *�� + ���, ����#Q/��, ���R�� 	

�

 (21) 

An integration step size of � 20⁄  was also found to be 

sufficient. While a fixed-partition method appears to work 

well, the possible divergence of #�/� is cause for concern. 

An adaptive step-size integrator may improve results if the 

joint is loaded tortuously, for example, with a large twisting 

moment. Because the energy is computed by integration on a 

fixed interval, the energy gradient (used by Castigliano’s 

theorem to evaluate elastic forces on the joint) can be 

computed by taking the partial derivative of the integrand in 

(21) with respect to the joint parameters.  

D. Summary 

The low-dimensional basis of parameters used to describe 

the configuration of a bending sheet hinge can be mapped 

onto the joint’s kinematic and energetic constitutive equation 

using fairly simple numerical integration methods. Due to 

the bounded and smooth nature of the sheet backbone 

curves, low-order integrators with large step sizes can be 

used. Most importantly, because the dimensionality of the 

parameter space is small, many of the adverse scaling issues 

often associated with modeling continuum systems using 

many finite elements will not be problematic under this 

smooth backbone model. Requiring some numerical 

integration is a small price to pay for avoiding the curse of 

dimensionality. 

V. IMPLEMENTATION AND VALIDATION 

The smooth backbone joint model was implemented by the 

authors in the Freeform Manipulator Analysis Toolbox, an 
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open-source, object-oriented Matlab library designed to 

flexibly prototype novel kinematic models of various kinds 

for manipulator analysis [14]. In order to examine the 

accuracy of the smooth backbone approach, deflection of a 

sheet hinge under load was computed for a range of off-axis 

loading conditions. Internal consistency of the model was 

evaluated by comparing the bending moment along the 

length of the hinge in two ways: first, by directly computing 

the moment arm at which the force was being exerted at any 

point � along the backbone curve, and second, by computing 

the internal elastic force resulting from the elastic 

deformation of the sheet. If the hinge shape is exactly at 

equilibrium, these two computations of torque should agree 

exactly. However, because the continuum model has been 

parameterized, some small errors will be seen. The 

magnitude of these errors and their implications for further 

model refinement will be discussed. 

A. In-Plane Loading 

When a sheet hinge is loaded by a force that is symmetric 

about the center of the joint, the resulting planar deflection is 

captured quite accurately. Figure 7 shows a the large-

deformation equilibrium position of a beam  of unitary 

length and bending stiffness, subjected to a unitary force 

offset by half the length of the beam on a rigid body. The 

point of force application is indicated by the arrow. The two 

nearly coincident curves plotted in Fig. 8 show that the 

prediction of moment along the backbone from the 

kinematics of the solution, that is, S� � ������ � T�� E U�, 

agrees with the prediction of moment based on elastic 

forces, S� � $V���� to within 0.35% of the normalized 

unitary moment, or a moment of W�/$V for a beam with 

arbitrary length, loading force and stiffness. This means that 

despite considering only the modal balance of forces on the 

beam, the local balance of forces everywhere are more or 

less in equilibrium.  

B. Three-Dimensional Loading 

The same sheet, having an aspect ratio  . �⁄ � 2, was then 

loaded by a force offset from the centerline of the hinge by a 

distance X, as shown in Fig. 9, so that twisting as well as 

bending motion resulted. Because the axis of bending is 

skewed by the three-dimensional motion of the sheet, the 

moment arm was calculated by finding the normal distance 

from the line of applied force, the elastic moment was 

computed including the shape factor,  S� � $V����#�/�. The 

two predicted moment profiles are plotted in Fig. 10 for a 

lateral offset X � 2�, and the agreement between the two 

profiles is poorer than the planar case, especially at the two 

ends of the sheet. The peak absolute errors between the 

kinematic moment S� and the elastic moment S�  for a range 

of offsets are shown in Fig. 11, and in each case, the error 

peaks occurred at or near the ends of the sheet.  

C. Discussion 

Errors in moment profile are not positional errors, but they 

do give a sense of the fidelity of the smooth backbone model 

for sheet hinges. The results shown in Fig. 10 indicate that 

the mode shapes chosen here to model the axis of bending in 

 
Fig. 7. An approximate bending model can be validated by comparing 

the elastic reaction moment of the flexure based on its shape to the 

moment as calculated by the moment arm from the axis of bending to 

the line of applied force. 

 

 

 

Fig. 8. For the planar case of the smooth backbone sheet model, the 

agreement between the elastic moment prediction and the kinematic 

moment prediction is very close, within 0.35%. 

 

 
Fig. 9. A lateral offset 	 was applied to the end load, and the resulting 

deformation was calculated. 

 

 

Fig. 10. The prediction error for a maximum lateral offset of 2�. The 

error in the moment profile is mainly concentrated around the two 

ends of the hinge. 
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a flexible sheet produce on average accurate reaction forces 

over the length of the hinge, but tend to make the edges of 

the sheet a little stiffer or more compliant than they actually 

are. This is a likely consequence of the strong effects of the 

end conditions of the sheet on the overall shape. It is quite 

possible that a set of nonlinear mode shapes for angular 

profile taking into account factors such as the aspect ratio of 

the hinge could improve substantially on this result. Overall, 

the ability to represent both gross bending and twisting 

motion of the joint in response to an off-centered load is 

encouraging. Future work will focus on refining the mode 

shapes for bending profiles and comparisons of deflection 

accuracy to known good models of ruled surface bending. 

VI. CONCLUSION 

Creative mechanism selection has always been a driving 

force for innovation in robotics; this often means using 

mechanisms like sheet hinges whose behavior is difficult to 

capture in models that are convenient for robot design, 

analysis, and control. The model presented in this paper is 

one attempt at addressing this gap between mechanisms and 

models in a way that can hopefully be integrated into any 

rigid body modeling software tool. Low-dimensional models 

which present a clean interface to both the kinematics and 

the elastic energy of non-traditional joints will ultimately 

enable a wider array of robots to be considered as first-class 

citizens in the domain of robot modeling and control.  
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Fig. 11. The peak absolute moment prediction errors observed in a 

flexure hinge with an offset applied load. These errors were 

concentrated around the end of the sheet and  
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