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ABSTRACT 
Over the past four years, we have redesigned Harvard’s 

introductory mechanical engineering course to introduce the 
principles, practices, and pleasures of mechanical engineering 
in an accessible format. The main goals of the course are to 
provide experience in the design process, demonstrate the 
connection between engineering science and design early in the 
curriculum, and build student enthusiasm for engineering, 
serving to attract and retain students. Unlike most introductory 
mechanical engineering courses, we cover strength of materials 
and machine elements, material usually presented much later in 
the curriculum, in order to provide tools for the students to 
quantitatively evaluate their designs. By providing just enough 
of this background knowledge to allow for analysis of designs, 
we demonstrate the connection between engineering science 
and design early in curriculum and motivate in-depth coverage 
of these topics in later courses.  

 
INTRODUCTION 

Training engineering students to be good designers is both 
an industry desire and an ABET stipulation [1, 2]. This fact has 
not gone overlooked in the academic community, and has 
frequently been addressed in the literature [3-6]. Curricular 
changes to provide a stronger emphasis on design education are 
happening, if slowly.  

In a typical undergraduate sequence in mechanical 
engineering, students take an introductory design course in their 
first year, in-depth engineering science courses in subsequent 
years, followed by a capstone design course in the final year. 
There are a number of deficiencies with this sequence as it is 
frequently implemented. First, the introductory course is largely 
experiential, providing little training in engineering science and 
often failing to teach the proper engineering design methods [3, 
6]. Students’ lack of knowledge of engineering science 
precludes quantitative analysis of design alternatives, and the 
choice of design solution is based largely on intuition. 
Unsuccessful projects and discouraged students often result. 
Second, the capstone course often becomes the first time 
students connect their knowledge of engineering science to an 
open-ended design problem. A key motivator to retaining the 
material from course work is overlooked until after the fact.  

The laboratories for the course build enthusiasm for 
engineering by incorporating exciting design projects and 
introducing students to some of the most attractive mechanical 
engineering tools. Students learn 3-D solid modeling with CAD 
software, create prototypes from CAD models using manual 
and CNC machining, and reverse engineer common consumer 
products. Using these tools, students build their own hardware 
prototypes for both a cantilever beam catapult and a model all-
terrain-vehicle. These exercises, carefully chosen to reinforce 
the strength of materials and machine elements concepts, 
culminate in design contests that enhance the visibility of 
engineering within the larger university community and 
increase student interest in the field. 

To address these shortcomings, we have redesigned 
Harvard’s introductory mechanical engineering course to 
introduce the principles, practices, and pleasures of mechanical 
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engineering, especially design, in an accessible format. To 
guide the restructuring, we identified the following four 
programmatic goals: 

Work on the design projects is done primarily in the 
weekly laboratory sessions. Laboratory work is structured 
around many of the attractive aspects of mechanical 
engineering such as CAD software, CNC prototyping, reverse 
engineering of everyday consumer products, and experience 
with basic machine tools. Early laboratory sessions are focused 
on providing training and experience with these engineering 
design and fabrication tools. These skills are then tested in the 
two projects. The first, designed to reinforce the lectures on 
strength of materials, revolves around designing and fabricating 
a small, monolithic “catapult.” In the second project, students 
design and build model all-terrain vehicles (ATVs) to compete 
on a carefully designed obstacle course.  

 
o Provide both theoretical and applied experience 

in design process 
o Demonstrate the connection between engineering 

science and design early in curriculum 
o Build enthusiasm for engineering to attract and 

retain students 
o Create visibility of engineering in the university 

community 
 
In order to accomplish these goals, we employ active 

learning techniques to continually engage the students [7, 8]. A 
number of in-class group and individual exercises such as 
dissections of common consumer products [9] and 
brainstorming of design concepts complement lectures. These 
“highly active, low risk” activities make lecture material more 
interesting and appealing, and result in greater student learning 
[10, 11]. Laboratory work, which accounts for a large portion 
of students’ time in the course, allows students to immediately 
apply the concepts presented in lecture and provides hands-on 
experience with the design process through individual and 
group projects [4, 12-14]. 

Laboratory work in the course specifically links the theory 
presented in lecture to its implementation in hardware [5, 13]. 
These labs provide experience with modeling, creativity, 
design, and learning from failure - fundamental objectives of 
instructional laboratories as laid out by Feisel et al. (objectives 
2, 7, 5, and 6, respectively [21]). The content of the labs was 
inspired in part by courses taught by Will Durfee at Minnesota 
[20] and Sheri Sheppard at Stanford [9], and has similarities to 
other courses described in the literature [17, 22, 23]. 

In the following sections we present an overview of the 
course material and a description of the laboratory projects, 
paying particular attention to the description of the final design 
project. We end with a discussion of the lessons we have 
learned from four years of student feedback and subsequent 
course revisions.  

The course is structured around the process of machine 
design, which is an effective motivator for new engineering 
students. We provide a more rigorous introduction to 
engineering design than typical freshman-level design courses 
by introducing technical concepts typically covered much later 
in the curriculum [15]. These concepts are specifically chosen 
because of their exciting content and relevance to the design 
projects undertaken in the course [16]. 

COURSE DESCRIPTION 
Before presenting the specific content, it may be helpful to 

discuss the logistics of the course. Enrollment in the course is 
typically between 20-30 students, and is offered one semester 
per year. The course is very popular as an elective, both for 
other engineering students as well as non-majors. 
Approximately one-third of the enrollment over the past four 
years has been from students in fields other than engineering, 
with a number of students from humanities and social sciences.  

Lecture topics consist of three main areas. The first set of 
topics concerns engineering graphics and computer-aided 
design. Students learn traditional drafting techniques as well as 
professional solid modeling CAD software [17, 18]. The 
second set of topics covers introductory strength of materials 
concepts. We discuss stress and strain due to simple uniaxial, 
torsional, and bending loads. Finally, we introduce interesting 
aspects of machine elements, such as motors, gears, and 
linkages. First-year students do not have the analytical 
background to understand this material in depth, of course, but 
these concepts are addressed later in the curriculum. However, 
with background in these more advanced engineering science 
concepts, we provide just enough knowledge for students to do 
simple quantitative analysis of their machine designs. This 
basic evaluation of design alternatives also motives the 
connection between design and analysis for upper level 
engineering courses.  

Lectures consist of three 50-minute sessions per week, 
with a total of six problem sets assigned to reinforce the theory 
concepts presented. These account for 10% of the semester 
grade. Two one-hour, in-class exams are given, accounting for 
a total of 35% of the grade. Laboratory work, including design 
projects, accounts for the remaining 55% of the semester grade. 
Three-hour lab sessions are held weekly, and often involve pre- 
and/or post-lab exercises. Due to equipment and space 
constraints, lab sections are limited to 7 students, resulting in 3-
4 total sections with a low student-teacher ratio. It is clear that 
the focus of the course centers on the labs and design projects. 

Course material comes from three major engineering 
science areas: engineering graphics and design tools, strength 
of materials, and machine elements (Figs. 1,2). Material in 
these topic areas has been selected to provide students with 
enough background to allow quantitative analysis of their 
concepts for the two design projects. A more thorough 
understanding of the material is left for subsequent advanced 
courses. What follows is a description of the three topic areas, 
the laboratory sessions and teaching methods used to develop 
the desired skill sets, and a detailed description of the final 
design project (Fig. 3).  

Individual and group design exercises play a central role in 
the course. The first day of class is spent teaching design 
methodology [3, 6]. Students later learn first-hand how the 
design process works, including the roles of creativity, decision 
making, and group interaction. Two design projects are 
assigned, both culminating in exciting contests that build 
student enthusiasm [3, 19, 20]. These well-publicized events 
motivate students and enhance the visibility of engineering 
within the larger university community. 
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Engineering Design Tools 
The first third of the course is dedicated to teaching 

students the tools required to effectively communicate and 
carryout their design ideas. In lecture, students are taught 
standard engineering graphics skills such as drawing and 
sketching techniques, orthographic and isometric views and 
projections, and dimensioning practices [18]. We pay particular 
attention to how tolerances and fits add up on parts with 
multiple features.  Laboratory work is designed to give an 
intuitive understanding of how seemingly inconsequential 
differences in dimension result in vastly different interactions 
between two mating parts. 

We also emphasize the importance of good laboratory 
practices, requiring students to maintain a design notebook. 
Students are expected to use their design notebooks for all 
laboratory sessions, group projects, calculations, sketches, and 
meeting notes, and are instructed on how to properly document 
their ideas and format their notebooks. These notebooks are 
periodically collected and graded throughout the course to 
emphasize their importance. 

In the first of a number of dissection exercises, students 
dissect a videocassette tape as an in-class project, an exercise 
used by Will Durfee in his introductory engineering course at 

Minnesota [20]. Through reverse engineering, students obtain 
an appreciation for the highly varied forms and applications of 
simple machines, practice their sketching and measuring skills, 
and understand the importance of paying close attention to 
detail and careful note taking. A worksheet that accompanies 
the exercise asks questions that cause students to think deeper 
about the function and specifications of components of the 
assembly. Students are asked to estimate the clearance between 
mating parts, describe the function of certain mechanisms, and 
speculate about manufacturing and assembly methods. A take-
home exercise forces the students to “think outside the box” by 
using engineering principles and intuition to come up with 
creative ways to estimate the length and thickness of the tape, 
complete with unit conversions and estimated error bounds. 
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Figure 2: Course chronology with lab and lecture content 
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� Reverse Engineering
� Optimization 
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Mechanical Design Process 

 
 

Figure 1: Course layout with topics of coverage 

The first three laboratory sessions are used to introduce 
students to mechanical fabrication. In the first session, students 
are introduced to proper shop procedure by building a small 
flower vase from acetyl tubes and acrylic plate. The lab begins 
with basic shop safety protocol and the proper use of common 
machine tools such as the drill press, band saw and taps. 
Students then prepare a part layout, designing the shape of the 
base and marking the tapped and through-hole locations on the 
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base and tube. The remainder of the session is spent fabricating, 
assembling, and “finishing” their bud vases. 

The second lab introduces students to milling and drives 
home the importance of accurate measuring, tolerance, fits, and 
dimensioning. The lab begins with instruction in the proper use 
of dial calipers and micrometers. They use these tools to 
accurately measure a small piece of rough-cut aluminum stock, 
paying attention to report their answers to the accuracy 
appropriate for the various instruments. They are then taught 
the basic procedure for use of a three-axis mill machine and are 
instructed to square the sides of the aluminum stock and bring it 
down to a specific dimension within a given tolerance. This 
simple task teaches the basics of milling terminology and 
practice: vice alignment, feeds and speeds, facing off, edge 
finding, and squaring edges, among others. They are then given 
a small steel dowel pin and are instructed to drill and ream 
holes for both a press fit and a clearance fit for the pin. This 
exercise reinforces the importance of careful measurement and 
design of tolerances and fits. Once the dowel pin is press fit 
into the block, the resulting assembly will mate with the 
clearance hole in their classmates’ parts. The end result is a 
long chain of such segments that can rotate relative to one 
another in an interesting fashion, similar to the motion of a 
worm (Fig. 4). 

The third engineering design tools lab is a two-session 
project intended to teach computer-aided design (CAD) and 
computer-aided manufacturing (CAM). Students use 
SolidWorks (SolidWorks Corporation, Concord, MA) to 
construct a model of a block containing required types of 
features that mate with features on their partner’s block (Fig. 
5). Students then use CamWorks (TekSoft CAD/CAM 
Systems, Inc., Scottsdale, AZ), a computerized numerical 
control (CNC) programming software package that integrates 
with SolidWorks, to generate machine code from this model. 
The parts are then CNC-machined from a high-grade machine 
wax (Freeman Manufacturing and Supply Co., Avon, OH), 
allowing for high feed rates and quick fabrication with little 

tooling wear. The labs and associated lectures introduce 
students to the concept of design for manufacturing and design 
of tolerances and fits for assemblies, with the overall goal of 
understanding what features can and can not be machined.  

Figure 3: Integrating knowledge and application: Venn diagram
of lecture and lab topics 
 

 
 

Figure 4: “Worm segment” with relevant features  

 
Strength of Materials 

During the second third of the class, the focus shifts to two 
classic introductory areas in engineering science, namely 
materials science and solid mechanics.  We begin by teaching 
about the relevant materials properties that students must 
understand to compare and contrast materials for specific 
applications.  Materials selection for performance optimization 
is then broadly covered with various added constraints such as 
geometric and cost considerations.  The students are often 
surprised to learn how well natural materials like balsa wood 
can compete with modern hybrid materials such as carbon-fiber 
laminates in weight normalized strength under different loading 
conditions [24].  

Next we cover stress and strain with specific attention 
toward beam bending theory.  Reminding them that this lecture 
material will be essential to the upcoming catapult competition 
helps them to maintain focus.  Lectures focus on loading 
conditions, uniaxial strain, shear forces, and torsion. Most 
importantly for the design project, force-deflection curves, 
potential energy storage in bending beams, and simple failure 
analysis, including fatigue loading and safety factors are 
introduced. More in-depth coverage of solid mechanics is left 
to subsequent courses, as our intent is to provide sufficient 
background for the design problems, and not a comprehensive 
curriculum in strength of materials. 

In another in-class activity, we give students an 
opportunity to try out the strength of materials concepts. 
Students are given a bar clamp, ruler, spring scale, and thin 
rectangular bars of aluminum, acrylic, and PVC. At their desks 
with a partner, students use the provided equipment to 
determine the force-deflection curves of these materials, noting 
their different failure modes. Students repeat the exercise with 
different beam lengths, and relate the results to beam-bending 
theory. 

This section of the course focuses on how material 
selection relates to the design process and why certain materials 
are selected given mechanical, manufacturing, and economic 
considerations.  Our objective is to give the students the tools 
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Figure 5: Process for “Perfect Mates” lab 
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they need as designers, requiring that their knowledge must 
work with the specification sheets they will review from 
manufacturers when making their own materials selections later 
in the course. The students need a working knowledge of 
aluminum numbering, steel grades, manufacturing methods and 
heat treatments for metals. They will need to understand the 
physical properties of polymers including yield stress, ultimate 
tensile strength, failure modes, dimensional stability and 
machinability. Most students are already aware of the 
importance of machinability issues after struggling to drill and 
tap brittle acrylic pipe for the first bud vase lab!  
 
Cantilever Catapult Design Project 

To apply material learned in lecture, and to build on 
concepts of engineering design tools, students spend three 
weeks in laboratory on a cantilever design contest.  By applying 
beam-bending theory, students design a small, monolithic 
cantilevered beam device that performs some exciting task. 
Resulting devices are cantilevered beams optimized to store 
and return the most potential energy while meeting other 
constraints related to the design objectives. The initial 
implementation of this project involved designing a catapult to 
throw a small object as far as possible. We found that Tootsie 
Roll candies (Tootsie Roll Industries, Inc., Chicago, Illinois) 
worked well and added another entertaining dimension to the 
contest.  

The first of three laboratory sessions is devoted to working 
through calculations and initial sketches for the catapult.  This 
is one of the first opportunities for students to directly apply 
engineering science theory from the classroom to an open-
ended design problem. Students utilize the material on solid 
mechanics and beam bending theory presented in lecture to 
design a beam that will be able to impart the largest amount of 
kinetic energy on to the projectile while paying attention to the 
object’s trajectory. However, students must pay careful 
attention to design restrictions related to dimensioning and 
material properties. Their device must fit snugly in the launcher 
base we provide as well as be completely contained within a 
specified area of the stock material (Fig. 6). Students must also 
consider mechanical constraints such as the yield strength and 
failure mode of the material. A selection of inexpensive plastic 
materials is provided, including polycarbonate, polyvinyl 
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e, acrylic, high-density polyethylene, and polypropylene, 
which the students must choose based on the provided 
al property data sheets. 
he second week of the design contest is focused on 
ping a fully constrained CAD model in SolidWorks. As 
 previous lab, students use CAM software to translate 
omputer models into G&M code to control 3-axis CNC 
achines. Students then fabricate their catapults using 

machines. This session also serves to reinforce much of 
chining skills learned in earlier labs. 

he final week is left for redesign after careful evaluation 
 performance of initial prototypes. At this point most 
ts opt to create a second part, often of a different 
al. Some of the more competitive students attempt three 
r iterations. The project ends with a class-wide contest 
 each student competes to catapult a projectile as far as 
le, with a small prize going to the winner. 
 order to slightly vary the project from year to year, 
sive contests are designed with different performance 
ives for the beam device. Other implementations of the 
t include the “kung-fu cantilever”, in which students try 
ak as many small “bricks” as possible with their device, 
arnival cantilever”, where the objective is to design a 
er” that can hit a ball to the top of a track and ring the 

his project’s integration of seamless design, analysis, and 
acturing allows students to take part in all steps of the 
 process and results in a rewarding educational 
ence [25]. In addition, the design contest helps to build 
iasm for the course and mechanical engineering in 
l by giving students an open-ended problem where they 
pply theory learned in lecture. It is the first time 
ering students are taken through the design process from 

concept, sketching, solid modeling, prototyping, 
gn, and final evaluation. Furthermore, a class-wide 
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contest breeds competition and excitement, heightening student 
enthusiasm and interest in mechanical engineering and 
strengthening the sense of community among the students. 

Obstacle Course Specifications 
1. Entry Ramp w/ tow load (power spec.)
2. Rubble (clearance spec.) 
3. Tunnel (size spec.) 
4. U-turn (turn radius spec.) 
5. Pipes (stability, durability, size spec.) 
6. Slalom (maneuver spec.) 

 
Machine Elements 

Building upon students’ understanding of basic 
engineering design tools and strengths of materials, the last 
third of the course focuses on machine elements.  This section 
begins with an introduction to simple machines like the screw, 
gear, axel and wheel.  Emphasis is placed on understanding 
gears, which will be an essential part of the all-terrain vehicle 
project.  The gear lectures link strength of materials topics with 
static loading of gear teeth and axel torques.  A bicycle is used 
to demonstrate gear ratio principles and to examine mechanical 
components in context.  The mechanical disadvantage of 
typical bicycle gear ratios that are optimized for human speed-
torque curves contrasts well the mechanical advantage required 
for most electric motor applications. 

 
Figure 7: ATV lab process: base components, performance 
specifications, solid model, and prototype 

After gears, the next project-based essential knowledge 
topic for the students is small DC motors.  While in lecture, the 
students learn about the electromotive force, commutation, 
windings and efficiency of DC motors. A laboratory series 
begins with dissecting and characterizing an inexpensive 
cordless screwdriver.  The students experimentally measure the 
performance specifications of the screwdriver and then during 
disassembly create a detailed bill of materials.  Certain parts 
must be measured to estimate tolerances used by the 
manufacturer and other parts must be sketched in multiple 
views.   

This dissection exercise also allows students to apply their 
basic knowledge to develop an understanding of more 
complicated mechanisms. A significant challenge for students 
is to investigate and explain how the torque limiter works.  
Students are also fascinated by the how a large gear ratio is 
achieved with the multi-stage planetary gear head. And the 
electrical circuit that provides for forward and reverse direction 
operation of the screwdriver is sufficiently challenging to 
perplex even the brightest students unless they learn to draw an 
electrical schematic.  

We also require students to make observations about 
design for manufacturing and to consider what cost-saving 
measures have been incorporated in the design of the 
screwdriver.  It is astounding how such a complicated machine 
can be manufactured and sold for less than the cost of a 
pepperoni pizza! 

The next laboratory session is devoted to characterizing the 
electromechanical properties of the DC motors, with the 
purpose of producing a motor specification sheet to a level of 
detail similar to those provided by a manufacturer. In the 
process of measuring properties such as the no-load speed, stall 
torque, and voltage and torque constants, students are 
introduced to the use of oscilloscopes, voltmeters, and 
tachometers (by way of an emitter/detector phototransistor 
pair). Since the students are never provided the “true” motor 
specifications, they must rely on their own characterization for 
later use in design. 

As students are introduced to their final design project, 
lectures continue to complete topics in machine elements by 
covering cams and linkages.  In keeping with the vehicle theme 
of the final project, examples are drawn from automotive 
engines, windshield wipers, and steering systems.  Most 

students will not actually use cams and linkages in their final 
design project and so there is no pressure to complete this 
lecture series prior to beginning project design work. To 
complement the early stages of the final design project, 
students are given more elaborate design tools in special 
lectures on brainstorming and prototyping using foam-core 
poster board. 
 
Final Design Project 

The final lab in the course is a culminating event where 
nearly all of the engineering content must be applied in service 
of the underlying programmatic goals of the course. Students 
work in teams of 3 or 4, assigned by the teaching staff to create 
groups with an even distribution of talented and experienced 
students [26, 27]. The groups work to transform the power 
screwdrivers they previously dissected, the motors they 
previously characterized, and some additional parts into an all 
terrain vehicle (ATV) (Fig. 7). The student groups then publicly 
compete with their ATV’s on a challenging obstacle course. 
The design of the ATVs is driven by the performance, design, 
and manufacturing requirements that are outlined for the 
students in detail. Winning designs are creative, well built, 
maneuverable, and have the right balance of speed and torque.  

The essential design challenge of the lab is to use the 
power screwdriver motors with gears, shafts and a 
CAD/CAM/CNC manufactured acetyl chassis to implement 
drive and steering systems. The design process is partially 
constrained by the provided tools, materials and small spending 
budget ($50 per group has worked well). More significant, 
however, are the performance-based design constraints 
enforced by the layout of the obstacle course (Fig. 8). For 
example, the course begins with the requirement that the ATV 
tows a 5-kilogram trailer up a 30-degree incline ramp from the 
floor to the tabletop course. The gear ratio on the motor must be 
sufficiently high to produce enough towing force for the task, 
but an overly high gear ratio would result in a slow drive speed 
once the trailer is unhitched at the top of the ramp. Rather than 
prescribe a specification, we let the students weigh the trailer, 
measure the ramp, and compute an optimal gear ratio based on 
the engineering science they have learned. Students sometimes 
overlook important specifications such as the friction between 
the wheels and the ramp surface or hitch location relative to the 
ATV wheelbase and center of mass. These situations create  
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  Name Objective Performance Specification 

Incline Load Pull Go up a ramp onto course towing a 5 kg 
trailer. Unhitch trailer at top. Power, Maneuverability 

Rubble Field Traverse over circuit-board rubble. Clearance 

Tunnel Travel through a “tunnel” that will have a slot 
on the top for the tether. Size, ability to drive straight 

U-turn Change direction on the course. Turning radius 

Bumpy Bridge Climb-up onto the horizontal pipes, drive over 
them, and drop-off the other side. Power, clearance, durability 

Slalom Course Complete the slalom course. Maneuverability 
 

Figure 8: ATV lab obstacle course description with performance specifications 

 
 

ents in the lab when teaching assistants can help 
ts through difficult design changes. 

as a source of design expertise and otherwise not involved in 
the decision-making process [28]. The second checkpoint 
comes closer to the contest deadline, where students must 
demonstrate a working gear train with sufficient time remaining 
to address any serious mechanical issues.  

t theme of the ATV lab is how it builds on 
ired knowledge. This not only applies to the 

ence content, but also to the results of previous 
riments. A good example of this is how the 

rely on the specifications gained from reverse 
e screwdriver and its motor. There is also 
ression in the skills acquired for the computer-
and manufacturing activities. The level of 
he ATV in a SolidWorks assembly is such that 
nd experience is a requirement for success. The 

eir acquired knowledge of manual prototyping, 
 fits, materials properties and mechanics, 
ents, kinematics, fasteners, manufacturing 
ementary circuits and more. A level of 
ll of these areas is required in the context of a 
gn process or the ATV simply will not be 
me and will not work.  

A great deal of spontaneous peer-to-peer instruction of 
course content occurs in the student teams as a result of the 
practical challenges of this project. These types of interactions 
are highly desirable and have been shown to significantly 
increase student learning [27, 29]. Working in groups also 
results in better performance than individual work and builds 
relationships that can help build the community of engineers 
[27]. 

We hold the final competition for the ATV lab in a stadium 
style auditorium with overhead video projected on a screen and 
stage lighting. Advertisements are posted around campus and 
faculty and administrators are encouraged to attend. The 
competition is an opportunity for the engineering students to 
shine! The CAD renderings of the ATVs are projected onto the 
screen as the groups are introduced to a cheering audience. 
Before competing, student groups are required to describe their 
vehicle and justify their design choices to the audience. The 
actual competition naturally develops nail-biting excitement as 
some groups succeed beautifully while others experience 
mechanical failures that they attempt to fix while the clock runs 
down. Point counts are called out as they are accumulated and 
written on the blackboard and a token “grand prize” is awarded 
to the winning team. The excitement of the final competition is 

 prevent complete failure of a specific design 
students along the way, we implement a few 
points throughout the process [28]. The first of 

efore students begin creating the SolidWorks 
 designs, where the teaching staff checks the 
otypes for factors such as stability, ease of 
nd reasonable gear ratio. During these design 
 take a “teacher as manager” approach, acting 
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highly visible (and audible) in the university community and 
has become a talked-about event on the academic calendar. 
This is exactly the sort of publicity that can help to attract 
students to the field. 

“The labs made me want to do [engineering] more.” 
“I now know how to calculate structure values and build 

cool stuff. The course is interesting and engaging and the 
subject is useful and practical.” 

“I would recommend [this course] to any engineer. This is 
what it’s all about. If you don’t like this course, engineering is 
not for you.” 

DISCUSSION 
Engaging students in a project-based machine design 

course early in their undergraduate careers starts them on the 
right track in mechanical engineering. Our course employs 
computer-aided design to reduce the time and training required 
for the students to fully experience the engineering design 
process from conceptualization to function. Students learn how 
the design process works, including the roles of creativity, 
decision-making and group interaction, and a series of design 
contests build student enthusiasm. Through careful selection of 
projects, the course builds sequentially upon accumulating 
knowledge and skills leading to a final integrated design project 
that culminates in a well-publicized competition. As a result of 
these attributes, students receive a more rigorous introduction 
to mechanical engineering design than in typical freshman-level 
design courses while having lots of fun. This is a formula that 
works to attract, retain and educate engineers [3, 16, 30]. 
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