
  

 

Abstract— Robotic and prosthetic hand designers are 

challenged to replicate as much functionality of the human hand 

as possible, while minimizing cost and any unnecessary 

complexity. Selecting which aspects of human hand function to 

emulate can be difficult, especially when little data is available 

on unstructured human manipulation behavior. The present 

work analyzes 19 hours of video with over 9000 grasp instances 

from two housekeepers and two machinists to find small sets of 

versatile human grasps. A novel grasp span metric is used to 

evaluate sets of grasps and pick an optimal grasp set which can 

effectively handle as many different objects as possible. The 

results show medium wrap and lateral pinch are both 

important, versatile grasps for basic object handling. The 

results suggest that three-fingertip precision grasps such as 

thumb-2 finger, tripod, or lateral tripod can be used to handle 

dexterous manipulation of a wide range of objects. The 

recommended grasp sets can help aid difficult design decisions 

for robotic and prosthetic hands, as well as suggesting 

important human hand functionality to restore during hand 

surgery or rehabilitate in an impaired hand.  

I. INTRODUCTION 

For robotic and prosthetic hand design, there are a number 

of reasons why the incredibly complex structure of actuators 

and sensors in the human hand cannot or should not be 

copied. Current engineered systems cannot replicate the full 

human capabilities in a similar packaging size, and with 

added complexity comes lower durability and increased cost. 

Furthermore, as evidenced by the widely used single DOF 

split hook [1], even simple, well-designed devices can have 

great utility. A number of simplified hands, such as 

underactuated hands, have been developed to leverage the 

benefits of lower complexity devices (e.g. [2–5]). For the 

design of prosthetic hands, simple designs are even more 

beneficial since many devices are limited to the space distal to 

the wrist, due to the variety of amputation points (e.g. [6], 

[7]), and there is a premium placed on light weight. 

 This work develops the concept of grasp span, a metric 

designed to assess the versatility of a set of grasps to handle a 

wide variety of objects. The concept of grasp span is then 

applied to 19 hours of grasp-object data from four subjects to 

select small sets of versatile grasps to emulate in a simplified 

prosthetic or robotic hand. We hope the resulting grasp sets 

and discussion will help designers to create effective hands 

that can pick up and manipulate a wide variety of objects.  

 
This work was supported in part by the National Science Foundation grant 

IIS-0953856.   

I.M. Bullock, T. Feix, and A. M. Dollar are with the Department of 

Mechanical Engineering & Materials Science, Yale University, New Haven, 
CT, USA (e-mail: {ian.bullock, thomas.feix, aaron.dollar}@yale.edu).  

In this paper, we will first discuss the grasp classification 

used and other related work. We will then describe the 

experimental methodology, as well as the procedure for 

computing grasp span. We then present the grasp-object 

matrix along with the grasp sets which maximize the grasp 

span metric for each profession and overall. We then discuss 

the characteristics and implications of these grasp sets and 

provide recommendations for a final set of grasps to emulate 

in a robotic or prosthetic hand. Finally, we discuss application 

of the results in robotic and medical domains, as well as 

addressing limitations and future work.  

II. BACKGROUND AND RELATED WORK 

Previous grasp studies have primarily focused on hand 

postures used for pre-selected objects, as opposed to 

recording unstructured human manipulation. An early study 

related to prosthetics [8] photographed 12 subjects to 

determine hand prehension shapes used in picking up 27 

objects and the “hold-for-use” posture for 57 objects. Santello 

et al. asked subjects to imagine grasping fifty seven test 

objects while a motion capture system recorded 15 finger 

joint angles [9]. The first two principal components of the 

kinematic hand movements were shown to account for ~80% 

of the variance.  

Cutkosky studied the grasps utilized by machinists using 

single-handed operations in working with metal parts and 

hand tools [10]. Kemp created a wearable system including a 

head-mounted camera and orientation sensors mounted on the 

body to learn body kinematics (not including the hand) and 

record manipulation tasks. A large amount of manipulation 

video was recorded but was never analyzed for details of 

grasp and object type [11]. While these previous efforts have 

helped better understand human grasp behavior, none have 

formally recorded and evaluated grasp type and frequency 

over a large time span of daily use. 

Schlesinger et al. made the first major attempt to organize 

human grasping behavior into distinct categories: cylindrical, 

tip, hook, palmar, spherical, and lateral [12]. In 1956, Napier 

suggested a scheme that would divide grasps into power and 

precision grasps [13]. In studying the grasps required for 

manufacturing tasks, Cutkosky provided a much more 

comprehensive and detailed organization of human grasps 

[10]. For a more comprehensive review of grasp taxonomies, 

please see [14].  
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In this paper we utilize a slightly extended version of the 

taxonomy presented by Feix [15]. This taxonomy is the most 

complete in existence, in the authors’ opinion, but lacks 

non-prehensile grasps, which we have added, specifically the 

platform push (“platform”) from Cutkosky’s taxonomy [10]. 

We kept the original Cutkosky naming for the grasps, such as 

using thumb-n finger instead of the Feix taxonomy’s 

“prismatic n finger.” Feix’s “adduction grip” is simply called 

“adduction.” The final taxonomy used in this paper is given in  

Fig. 1. All of Feix’s grasps were observed in the data set 

except for the distal type, a specialized grasp for scissors. 

Note that no grasps were seen that did not fall into this 

taxonomy, but some license was taken to fit some into it, such 

as with certain compliant objects.  

Though there have been a number of efforts focused on 

classifying types of human grasps, the authors are not aware 

of any studies examining a large set of human grasping data in 

a real life setting, aside from a conference paper presenting 

initial results for our project [16]. The present work differs 

markedly from these previous works, in that it focuses on a 

specific type of grasp-object analysis, while these previous 

works only considered grasping data. A related study looks at 

the how frequently certain high-level manipulation tasks are 

used [17], but uses a very broad classification and a fairly 

small data set.  

III. METHODS 

Two machinists and two housekeepers participated in the 

study discussed in this paper. The first machinist (Machinist 

1) is a 41 year old right-handed male with more than 20 years 

of professional machining experience, and the second -

machinist (Machinist 2) is a 50 year old right-handed male 

with about 30 years of experience. The first housekeeper 

(Housekeeper 1) is a 30 year old right-handed female with 

five years of housekeeping experience, and the second 

housekeeper (Housekeeper 2) is a 20 year old right-handed 

 
Fig. 1.  Modified Feix grasp taxonomy [15]. Note that a few names are used from the Cutkosky taxonomy, such as for the thumb-n finger grasps. The platform 
grasp from the Cutkosky taxonomy is shown, although it does not have a second virtual finger.  
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female with eight months of experience.  

None of the four subjects had any history of injury or any 

disability that would affect grasping and manipulation 

behavior. Machinist 2 did report prior shoulder injury due to 

repetitive overhead reaching, but did not experience any 

issues during the duration of the study.  

The following enrollment criteria were used to screen 

potential subjects for the study: significant experience as 

professionals in their field, of normal physical ability, 

right-handed, able to participate to the extent to generate eight 

hours of useful data, and performing a wide variety of tasks 

representative of their profession during the span of their 

participation. For example, one machinist subject who almost 

entirely used a CNC lathe was excluded in favor of another 

subject who performed a wider variety of manual machining 

tasks on several different machines. Subjects were paid $10 

per hour for participation on top of their normal salary.  

A. Experimental Procedure and Apparatus 

Full details of the experimental protocol can be found in 

[16], but a brief summary follows. Subjects meeting the 

enrollment criteria wore a head-mounted camera that 

recorded their hand use during normal work, for at least eight 

hours per subject. Fig. 2 shows an example image from the 

camera. One of two trained raters then tagged the 

right-handed grasps and objects in the video whenever the 

grasp changed, with inter-rater grasp tag agreement on an 

hour of test data giving Cohen’s        [18]. For this 

study, rarely encountered objects with less than    instances 

were trimmed from the data set. This threshold was chosen to 

ensure a representative distribution of grasps is available for 

each object. Correlations between objects expected to have 

similar or dissimilar grasping patterns were used to confirm 

that the minimum number of instances for each object is 

sufficiently large, and       (Pearson’s R) was often 

observed for similar objects. After trimming, the data set 

contains 9748 grasp instances and 19 hours of data, with 59 

unique objects.  

B. Grasp Spanning Metrics 

The overall process of selecting a small, versatile set of 

grasps using the relationships between grasps and objects in 

the dataset can be broken up into three different steps which 

will be discussed separately. The first part is to estimate how 

well an object is suited to a particular grasp based on the 

available data. The second part is to use these individual 

estimates to estimate the object handling capability of a set of 

grasps, using a grasp span metric. Finally, a versatile grasp 

set can be selected by applying the grasp span metric to all 

possible sets of grasps and choosing the set with the highest 

span score.  

First, we will introduce the concept of a grasp-object matrix 

 . In this matrix, the rows correspond to different grasps, and 

the columns correspond to different objects.  A heat map can 

be used to visualize the grasp-object matrix, as seen in Fig. 3. 

Each individual cell of the heat map shows how much data is 

present for a particular grasp being used for a specific object. 

A column illustrates the grasping pattern for a particular 

object. For example, the first column on the right shows that 

the towel was grasped more with precision disk and power 

sphere grasps, while the light tool grasp was hardly used at all 

for that object. Similarly, rows show the pattern of objects 

grasped by a particular grasp. The top row shows, for 

example, that the medium wrap grasp is used frequently with 

the vacuum and spray bottle objects, but rarely with the 

sponge and hex wrench objects.   

Our goal is for each entry in the matrix,    , to represent 

how suitable the i
th

 grasp is for handling the j
th

 object. This 

data set has durations and number of instances (counts) that 

each grasp is used with each object, which we can use to 

estimate how suitable a grasp is for an object.  

In particular, we assume that if the subjects choose to use a 

particular grasp with a particular object for many instances or 

for a long duration, that grasp is well suited to handling that 

object. First, we calculate each element     by a sum of log 

duration and count measures:  

    
      

    (    )
 

        

    (      )
 (1) 

       and           are the log of the duration and log of the 

counts of each particular grasp-object combination:        

     (       ), and               (         ). 

The logarithm is used to avoid overemphasizing certain 

frequent objects in the data set, such as cleaning tools used by 

the housekeeper. One could introduce weighting factors in 

that sum to change the importance of either duration or 

frequency of a grasp, but we currently choose not to. Now, we 

normalize by dividing by the sum of all the     to get our final 

grasp-object matrix:  

  [   ]  [(
 

∑ ∑      

)    ] (2) 

The dimension of M is determined by the number of grasps 

and objects in the data. For our data, M is a 33x59 matrix, 

since there are 33 grasps and 59 objects. The grasp-object 

matrix for both professions is found by taking the average of 

the normalized matrices for the machinists and housecleaners.  

Having estimated the suitability of each grasp to each 

object, we can move on to assessing the versatility of a set of 

grasps. We first calculate the capability of the grasp set to 

 
Fig. 2.  Head mounted camera image from one of the machinist subjects. 
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handle each object in the data set, to be discussed below. 

Then, the overall grasp span score is calculated as a simple 

sum of the handling capability for each object. Therefore, a 

grasp set with a high span score is a versatile set which is able 

to handle a wide variety of different objects.  

The details of this calculation are as follows: First, for a 

given grasp set    {         }, we create a new matrix 

 ( ) containing only the rows corresponding to each grasp 

in the grasp set. For example, if we have     {        }  

{                                }, with the top six objects 

shown (see upper right corner of Fig. 3):  

 (   )  [
                      
                          
                      

]  

Note that the magnitude of each element is small, since it 

represents a small proportion of the entire matrix of 59 

objects and 33 grasps. Next, we sort each column of the new 

matrix in descending order:  

     (   )  [
                         
                         
                    

]  

The matrix is then premultiplied by a vector of elements of 

a geometric sequence,    [ 
 

 

 

 
 

 

  
], where N is 

the number of rows in Msort:  

      (   )  [ 
 

 

 

 
]     (   )

 [                        ] 
This geometric sequence scaling reflects the intuitive idea 

that each additional grasp that can handle a given object will 

add to the hand’s dexterity in handling that object, but with 

diminishing returns. This sequence weighting emphasizes the 

  
Fig. 3. Normalized grasp-object matrix,  , which shows how strongly each grasp is associated with each object. The top shows the entire matrix, and the 
bottom shows a zoomed in portion for the most common grasps and objects. The value in each cell is normalized to represent the proportion of the data in the 

entire matrix. For example, the upper right cell shows that the medium wrap used with the towel object is 0.3% of the total grasp-object matrix data.  
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ability to grasp a large set of different objects over being able 

to grasp the same object with multiple different grasp types. 

Finally, this resulting vector of the handling scores for each 

object is summed to produce the final grasp span score:  

          ( )  
∑      ( )

∑       
 (3) 

For the example grasp set,            (   )       . Note 

that the grasp span is normalized by dividing by the span of 

the set of all grasps, so           ( )  [   ]. Thus, we 

want to find sets of grasps for which the span is as close to the 

maximum value of 1 as possible.  

Once this grasp span score is defined as an estimate of the 

object handling capability and versatility of a set of grasps, 

we can find an optimal grasp set    which maximizes 

          (  ) by testing all grasp set combinations for a 

given   (number of grasps in the grasp set).   

IV. RESULTS 

A. Versatile Grasp Sets With Maximum Span Score 

Grasp span scores for     grasp are presented in Fig. 4. 

This illustrates the versatility and overall capability of 

individual grasps. Fig. 5 shows the span scores for the best 

grasp sets, as optimized for the data from all subjects. For 

example, the dark blue bar for three grasps indicates that for 

the best combination of three grasps from all the possible 

grasp types gives a span score of just under 0.6. The span 

scores are compared with the average score of all possible 

grasp sets (shown in the light grey colored bar). These span 

scores show asymptotic behavior, with a much sharper 

increase in overall grasp span score when the number of 

grasps is small. This asymptotic behavior is expected from 

the grasp span, since the first few grasps ought to be most 

important in determining the overall functionality of a hand. 

Because of this effect, results only up to five grasps are 

presented below. While the choice of the first two or three 

grasps is quite important, after that it is possible to exchange a 

few different grasps and achieve a very similar span score.  

The versatile grasp sets with maximum score for the 

housekeeper, machinist, and all subjects are shown in Fig. 6, 

7, and 8, respectively. It should be noted that by the 

optimization method used (testing all combinations), it is 

possible for the larger sets of grasps to include grasps not 

present in the smaller sets, depending on the way that the 

object handling capabilities of the grasps complement one 

another. For this data set, this occurs only once in the top five 

grasps – for the five grasp machinist set, tripod and light tool 

are added while lateral tripod is removed.  

B. Grasp Frequency 

While the focus of the present work is on the grasp span 

method, it is worth also considering the overall prevalence of 

each grasp in the data set, as calculated by a mean of the 

duration proportion and frequency of each grasp. This data is 

presented for each subject type in Fig. 9. This figure helps to 

illustrate overall differences in grasping between the subjects 

which can help to explain the different spanning sets for each 

subject type. For example, medium wrap and precision disk 

are used much more by the housekeeper subjects, while tripod 

and lateral pinch are used more by the machinists. This grasp 

frequency data is analyzed in more detail in [16].   

 
Fig. 4. Grasp span calculated for individual grasps. This provides a good indication of the versatility of each individual grasp to handle a wide range of objects. 

Note that the maximum score, 1, is the grasp span for the set of all grasps in the data set.  

 

 
Fig. 5. Span score for the optimal sets of grasps for all subjects, as compared 

to an average score for a random set of grasps.  
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V. DISCUSSION 

The grasp sets for each profession and for the combined 

data will now be discussed in detail, followed by a discussion 

of metric sensitivity.  

A. Housekeeper Grasp Sets 

The housekeeper data involves grasping of cleaning objects 

as well as many other household objects. There is more 

emphasis on power grasping and simple object transport 

motions in the housekeeper data than in the machinist data.  

The grasp sets with maximum span score for the 

housekeeper data reflects these characteristics of the 

underlying data. Medium wrap is chosen first as a general 

purpose grasp which is especially well suited to larger, 

cylindrical objects. This is followed by power sphere, which 

the housekeeper subjects often use with soft, compliant 

objects. Lateral pinch is third, and is often used with locally 

flat objects or cords. Finally, index finger extension and 

precision disk are the fourth and fifth grasps. Index finger 

extension appears especially suitable for tools, and precision 

disk is used with miscellaneous small or compliant objects.  

B. Machinist Grasp Sets 

The machinist data includes significantly more dexterous 

object handling and thus provides a nice complement to the 

housekeeper data. The machinist data focuses on 

manipulating small parts to be machined, handling various 

small tools such as calipers, files, and hex keys, and turning of 

various knobs on the machine tools used. While the machinist 

data may lack some household objects the dexterous handling 

capabilities should also apply to many everyday objects of 

similar geometry, and the housekeeper data can help to fill in 

this gap.  

The grasp sets chosen for the machinist data reflect the 

higher prevalence of precision manipulation, with only two 

power grasps appearing in the five grasps. Lateral pinch is 

selected first and is commonly used with small knobs and flat 

objects. Next is thumb-2 finger, which is often used with 

 
Fig. 6. Grasp sets for the housekeeper data which maximize grasp span. 

Note the dominance of power and intermediate grasps.  

 

 
Fig. 7. Grasp sets for the machinist data with maximum grasp span. Note 
that in this case, the combination of tripod and light tool is substituted for 
lateral tripod in the five grasp case, instead of simply adding an additional 

grasp to the existing     set.  

 

 
Fig. 8. Grasp sets for the combination of the housekeeper and machinist 

data. Medium wrap and lateral pinch are shown to be particularly important 

grasps overall.  
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small parts and tools. Third is medium wrap, showing that 

this is an important power grasp for both professions. Fourth 

is lateral tripod, which is used for manipulation of small parts, 

tools, and knobs. For the five grasp set, lateral tripod is 

swapped out for tripod and light tool. Tripod serves a similar 

function to lateral tripod, while light tool is used with various 

locally cylindrical objects such as wrenches, machine 

handles, and calipers. Overall, the machinist grasps appear to 

include lateral pinch and medium wrap for larger objects and 

less precise manipulation, whereas thumb-2 finger, lateral 

tripod, and tripod provide versatile object manipulation 

capability. Light tool provides extra power grasp capability, 

especially with certain tools that the machinist uses.  

C. Grasp Sets for Both Professions Combined 

The grasp sets chosen for the data of both professions 

combined follow well from the individual profession grasp 

sets. The top three grasps from each profession show up in the 

top four grasps for the combined data, and tripod is the final 

fifth grasp.  

 The first two grasps for the combined data are medium 

wrap and lateral pinch. These two grasps appeared 

consistently throughout the data analysis process, even when 

various variants of the ultimately chosen grasp span metric 

were used. Overall, these two grasps appear to be very useful, 

versatile grasps which seem to serve a complementary 

function. Medium wrap and lateral pinch are suited to 

different object types, and also grasp mainly along different 

axes relative to the hand. In particular, the main grasping axis 

for the medium wrap (radial-ulnar) is normal to the plane 

lateral pinch grasps can be easily performed in, where the 

thumb pad intersects with the lateral surface of the index 

finger. 

Beyond the basic grasping capabilities of medium wrap and 

lateral tripod, various three-fingertip precision grasps can be 

used to enhance precision manipulation ability. The third 

grasp, thumb-2 finger, and the fifth grasp, tripod, fit this 

category. Looking at the top few grasp sets for each number 

of grasps ( ) suggests that lateral tripod also has similar 

capability to thumb-2 finger and tripod.  

Power sphere (grasp 4) and tripod (grasp 5) can be seen as 

adaptations of medium wrap and thumb-2 finger, 

respectively, with additional finger abduction. This suggests 

that adding abduction capability to a hand is another way to 

enhance its dexterity. Increased finger abduction in the power 

sphere may be especially useful when trying to enclose 

compliant objects of irregular geometry.   

These grasp sets can then be compared with the raw grasp 

frequency data (see Fig. 9). Of the top five selected grasps, 

lateral pinch, medium wrap, and tripod do appear within the 

top five by frequency, though in a different ordering. The 

biggest difference is that precision disk, which was mostly 

associated with a single object, is considered much less 

important using the grasp span metric.  

D. Metric Sensitivity 

The specific choice of metric will affect the final grasp sets. 

Ultimately, log scaling was used to reflect the intuition that 

certain common cleaning objects should be deemphasized to 

improve the score for more versatile grasps, and the 

geometric series weighting reflects the diminishing returns 

for having multiple grasps to handle the same object. 

However, grasp sets were also calculated without log scaling 

and with other weightings, such as a maximum weighting 

which kept only the best grasp score for each object. 

Omitting log scaling has the largest effect on the results. If 

log scaling is not used, medium wrap is still the top overall 

grasp, but grasps such as precision disk that are heavily 

associated with only one or two frequently used cleaning 

objects become highly scored, a result that is likely not 

generally valid.  

Using a maximum weighting, where only the best grasp 

score for each object is kept, has less of an effect, but still 

produces some differences with the chosen geometric series 

weighting. Medium wrap and lateral pinch are still the top 

two grasps for the combined data, but they are followed by 

lateral tripod, precision disk, and light tool.  

Overall, when testing other metrics and weightings, 

medium wrap and lateral pinch showed up quite consistently 

 
Fig. 9. Grasp prevalence data for comparison purposes. The prevalence of each grasp is calculated as the average of the duration proportion and frequency of 

the grasp.  
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in the top three grasps for the overall data, while there was 

more variability in the other grasps selected.  

VI. CONCLUSIONS AND FUTURE WORK 

The general approach of grasp-object span and the specific 

results obtained in this case can be applied both in the robotics 

domain and in medical domains. In the robotics domain, the 

grasp sets described above can be helpful in choosing a 

versatile grasp set to emulate in a robotic or prosthetic hand, 

especially with anthropomorphic designs. Specifically, the 

strongest result, most consistent across variations of the 

chosen metrics, is that both medium wrap and lateral pinch 

appear to be important, versatile grasps that can handle a wide 

range of objects. Precision manipulation ability can be 

effectively added through some sort of three fingertip 

precision grasp, such as the thumb-2 finger grasp. Adding 

finger abduction capability may help access another two 

useful grasps – power sphere and tripod.  

In addition to picking a small set of grasps to emulate in a 

robotic or prosthetic hand design, these grasp sets have 

implications for the medical community. Our results suggest 

that a general purpose power grasp (e.g. medium wrap), a 

lateral pinch, and a precision fingertip grasp are all important 

for versatile object handling in the human hand. Thus, these 

results are an additional data point for making difficult 

decisions either about what hand function to restore in tendon 

transfer surgery or to rehabilitate in an impaired hand.  

Various future work is possible and would address certain 

limitations of the present effort. While our present data set 

does provide information about object transport of household 

objects and various precision manipulation tasks, it could be 

further strengthened and made more general by adding other 

types of subjects. A slightly larger data set would allow an 

even wider range of objects to be considered. The existing 

data could also be used for various other types of analysis. For 

example, clustering and distance metrics based on the objects 

associated with each grasp could be used to understand 

functionally similar groups of grasps. Applying an object 

classification might provide a clearer view of the 

functionality each grasp provides. The idea of grasp span 

could be adapted to a similar concept of task span, where a set 

of grasps is selected and scored based on its involvement in 

effectively completing a wide range of tasks. This would help 

to address one final limitation of the present work – while our 

method should help ensure that some grasp is available to 

handle an object, it does not guarantee that the correct grasp 

will be available to perform a particular task with the object.  

Despite certain limitations of the current work, we 

anticipate that these small, versatile grasp sets found by 

maximizing the grasp span metric will be useful to many 

researchers in the robotics and medical communities. We 

hope that the grasp sets will help in further understanding 

some of the essential functionality of the incredibly complex 

and dexterous human hand.  
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