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Abstract

This paper uses recently established properties of compositions of directed graphs together
with results from the theory of non-homogeneous Markov chains to derive worst case conver-
gence rates for the headings of a group of mobile autonomous agents which arise in connection
with the widely studied Vicsek consensus problem. The paper also uses graph theoretic con-
structions to solve modified versions of the Vicsek problem in which there are measurement
delays, asynchronous events, or a group leader. In all three cases the conditions under which
consensus is achieved prove to be almost the same as the conditions under which consensus is
achieved in the synchronous, delay-free, leaderless case.

1 Introduction

In a recent paper [2] the present authors defined the notion of “ graph composition” and established
a number of basic properties of compositions of directed graphs which are useful in explaining how
a consensus might be reached by a group of mobile autonomous agents in a dynamically changing
environment. The aim of this paper is to use the graph-theoretic findings of [2] to address several
issues related to the well-known Vicsek consensus problem [3] which have either not been considered
before, or have only been partially resolved.

The paper begins with a brief review in Section 2, of the basic leaderless consensus problem
treated in [2, 4, 5]. Section 3 exploits the connection between “neighbor-shared” graphs and the
elegant theory of “scrambling matrices” found in the literature on non-homogeneous Markov chains
[6, 7] to help in the derivation of worst case agent heading convergence rates for the leaderless version
of the Vicsek problem. Section 4 addresses a modified version of the consensus problem in which
integer-valued delays occur in the values of the headings which agents measure. In keeping with

∗A preliminary version of this work can be found in [1]. The research of the first two authors was supported by
the US Army Research Office, the US National Science Foundation and by a gift from the Xerox Corporation. The
research of the third author was supported by National ICT Australia, which is funded by the Australian Governments
Department of Communications, Information Technology and the Arts and the Australian Research Council through
the Backing Australias Ability initiative and the ICT Centre of Excellence Program.
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the overall theme of this paper, the effect of measurement delays is analyzed from a mainly graph
theoretic point of view. This enables us to significantly relax previously derived conditions [8] under
which consensus can be achieved in the face of measurement delays. A comparison is made between
the results of [8] and the main result of this paper on measurement delays, namely Theorem 2. To
model dynamics when delays are present requires a somewhat different type of stochastic “flocking
matrix” than that which is appropriate in the delay-free case. The graphs of the type of matrices
to which we are referring are directed, just as in the delay-free case, but do not have self arcs at
every vertex. As a result, the set of such graphs, denoted by D, is not closed under composition.
The smallest set of directed graphs which contains D and which is closed under composition, is
called the set of “ extended delay graphs.” This class is explicitly characterized. Section 4 then
develops the requisite properties of extended delay graphs needed to prove Theorem 2.

Section 5 considers a modified version of the flocking problem in which each agent independently
updates its heading at times determined by its own clock. It is not assumed that the groups’ clocks
are synchronized together or that the times any one agent updates its heading are evenly spaced. In
this case, the deriving of conditions under which all agents eventually move with the same heading
requires the analysis of the asymptotic behavior of an overall asynchronous process which models
the n-agent system. The analysis is carried out by first embedding this process in a suitably defined
synchronous discrete-time, hybrid dynamical system S. This is accomplished using the concept of
analytic synchronization outlined previously in [9, 10]. This enables us to bring to bear results
derived earlier in [2] to characterize a rich class of system trajectories under which consensus is
achieved.

In section 6 we briefly consider a modified version of the consensus problem for the same group
n agents as before, but now with one of the group’s members {say agent 1} acting as the group’s
leader. The remaining agents, called followers and labelled 2 through n, do not know who the
leader is or even if there is a leader. Accordingly they continue to function as if there was no leader
using the same update rules as are used in the leaderless case. The leader on the other hand, acting
on its own, ignores these update rules and moves with a constant heading. Using the main result on
leaderless consensus summarized in Section 2, we then develop conditions under which all follower
agents eventually move in the same direction as the leader. These conditions correct prior findings
on leader-following in [11] which are in error.

2 Background

As in [2], the system of interest consists of n autonomous agents, labelled 1 through n, all moving in
the plane with the same speed but with different headings. Each agent’s heading is updated using
a simple local rule based on the average of its own heading plus the headings of its “neighbors.”
Agent i’s neighbors at time t, are those agents, including itself, which are either in or on a closed
disk of pre-specified radius ri centered at agent i’s current position. In the sequel Ni(t) denotes the
set of labels of those agents which are neighbors of agent i at time t. Agent i’s heading, written θi,
evolves in discrete-time in accordance with a model of the form

θi(t+ 1) =
1

ni(t)


 ∑

j∈Ni(t)

θj(t)


 (1)
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where t is a discrete-time index taking values in the non-negative integers {0, 1, 2, . . .}, and ni(t) is
the number of neighbors of agent i at time t.

2.1 Neighbor Graph

The explicit form of the update equations determined by (1) depends on the relationships between
neighbors which exist at time t. These relationships can be conveniently described by a directed
graph N(t) with vertex set V = {1, 2, . . . n} and arc set A(N(t)) ⊂ V ×V which is defined in such a
way so that (i, j) is an arc or directed edge from i to j just in case agent i is a neighbor of agent j
at time t. Thus N(t) is a directed graph on n vertices with at most one arc connecting each ordered
pair of distinct vertices and with exactly one self - arc at each vertex. We write Gsa for the set of
all such graphs and G for the set of all directed graphs with vertex set V. It is natural to call a
vertex i a neighbor of vertex j in a graph G ∈ G if (i, j) is and arc in G.

2.2 Heading Update Rule

The set of agent heading update rules defined by (1) can be written in state form. Toward this
end, for each graph N ∈ Gsa define the flocking matrix

F = D−1A′ (2)

where A′ is the transpose of the adjacency matrix of N and D the diagonal matrix whose jth
diagonal element is the in-degree of vertex j within N. Then

θ(t+ 1) = F (t)θ(t), t ∈ {0, 1, 2, . . .} (3)

where θ is the heading vector θ = [ θ1 θ2 . . . θn ]
′ and F (t) is the flocking matrix of the neighbor

graph N(t).

2.3 Leaderless Consensus

To proceed, we need to recall a few definitions from [2]. We call a vertex i of a directed graph G,
a root of G if for each other vertex j of G, there is a path from i to j. Thus i is a root of G, if it is
the root of a directed spanning tree of G. We say that G is rooted at i if i is in fact a root. Thus G

is rooted at i just in case each other vertex of G is reachable from vertex i along a path within the
graph. G is strongly rooted at i if each other vertex of G is reachable from vertex i along a path of
length 1. Thus G is strongly rooted at i if i is a neighbor of every other vertex in the graph. By a
rooted graph G is meant a graph which possesses at least one root. Finally, a strongly rooted graph
is a graph which has at least one vertex at which it is strongly rooted.

By the composition of two directed graphs Gp, Gq with the same vertex set V, we mean that
graph Gq◦Gp with the same vertex set V and arc set defined such that (i, j) is an arc of Gq◦Gp if for
some vertex k, (i, k) is an arc of Gp and (k, j) is an arc of Gq. A finite sequence of directed graphs
G1, G2, . . . ,Gq with the same vertex set is jointly rooted if the composition Gq ◦ Gq−1 ◦ · · · ◦ G1

is rooted. An infinite sequence of graphs G1,G2, . . . , with the same vertex set is repeatedly jointly
rooted by subsequences of length q if there is a positive integer q for which each finite sequence
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Gq(k+1), . . . ,Gqk+1, k ≥ 0, is jointly rooted. The main result on leaderless consensus in [2] is as
follows.

Theorem 1 Let θ(0) be fixed. For any trajectory of the system determined by (1) along which the
sequence of neighbor graphs N(0),N(1), . . . is repeatedly jointly rooted by sequences of length q, there
is a constant θss, depending only on θ(0) for which

lim
t→∞

θ(t) = θss1 (4)

where the limit is approached exponentially fast.

3 Convergence Rates

The aim of this section is to derive a bound on the rate at which θ converges1. There are two
distinct ways to go about this and below we describe both. To do this we will make use of certain
structural properties of the F . As defined, each F is square and non-negative, where by a non-
negative matrix is meant a matrix whose entries are all non-negative. Each F also has the property
that its row sums all equal 1 {i.e., F1 = 1}. Matrices with these two properties are called {row}
stochastic [13]. It is easy to verify that the class of all n × n stochastic matrices is closed under
multiplication. It is worth noting that because the vertices of the graphs in Gsa all have self arcs,
the F also have the property that their diagonal elements are positive.

In the sequel we write M ≥ N whenever M − N is a non-negative matrix. We also write
M > N whenever M −N is a positive matrix where by a positive matrix is meant a matrix with
all positive entries. For any non-negative matrix R of any size, we write ||R|| for the largest
of the row sums of R. Note that ||R|| is the induced infinity norm of R and consequently is sub-
multiplicative. Moreover, ||M1|| ≤ ||M2|| if M1 ≤M2. Observe that for any n×n stochastic matrix
S, ||S|| = 1 because the row sums of a stochastic matrix all equal 1. As in [2] we write bMc and
dMe for the 1×m row vectors whose jth entries are the smallest and largest elements respectively,
of the jth column of M . Note that bMc is the largest 1 ×m non-negative row vector c for which
M − 1c is non-negative and that dMe is the smallest non-negative row vector c for which 1c−M

is non-negative. Note in addition that for any n× n stochastic matrix S, one can write

S = 1bSc+ b|S|c and S = 1dSe − d|S|e (5)

where b|S|c and d|S|eare the non-negative matrices

b|S|c = S − 1bSc and d|S|e = 1dSe − S (6)

respectively. Moreover the row sums of b|S|c are all equal to 1− bSc1 and the row sums of d|S|e are
all equal to dSe1− 1 so

||b|S|c|| = 1− bSc1 and ||d|S|e|| = dSe1− 1 (7)

In the sequel we will also be interested in the matrix

bd|S|ec = b|S|c+ d|S|e (8)

1This section summarizes and extends some of the key findings of [12].
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This matrix satisfies
bd|S|ec = 1(dSe − bSc) (9)

because of (5).

To prove that all θi converge to a common heading, it is necessary to prove that θ converges
to a vector of the form θss1 where 1 is the n × 1 vector of 1’s. It is clear from (3) that θ will
converge to such a vector just in case at t → ∞, the matrix product F (t) · · ·F (0) converges to
a rank one matrix of the form 1c for some n × 1 row vector c. Thus to study how such matrix
products converge it is sufficient to study how products of stochastic matrices of the form Sj · · ·S1
converge as j →∞. As in [2], We say that a matrix product SjSj−1 · · ·S1 converges exponentially
fast at a rate no slower than λ to a matrix of the form 1c if there are non-negative constants b and
λ with λ < 1, such that

||(Sj · · ·S1)− 1c|| ≤ bλj , j ≥ 1 (10)

The following fact is proved in [2].

Proposition 1 If an infinite sequence of stochastic matrices S1, S2, . . . satisfies

||b|Sj · · ·S1|c|| ≤ b̄λj , j ≥ 0 (11)

for some non-negative constants b̄ and λ < 1, then the product SjSj−1 · · ·S1 converges exponentially
fast at a rate no slower than λ to a matrix of the form 1c.

We will exploit this inequality in deriving specific convergence rates.

Any n × n stochastic matrix S determines a directed graph γ(S) with vertex set {1, 2, . . . , n}
and arc set defined is such a way so that (i, j) is an arc of γ(S) from i to j just in case the jith entry
of S is non-zero. Note that the graph of any stochastic matrix with positive diagonal elements must
be in Ssa. Since flocking matrices have this property, their graphs must be in Gsa. It is known [2]
that for set of n× n stochastic matrices S1, S2, . . . , Sp

γ(Sp · · ·S2S1) = γ(Sp) ◦ · · · ◦ γ(S2) ◦ γ(S1) (12)

We will make use of the fact that for any two n× n stochastic matrices S1 and S2,

φ(S2S1) ≥ φ(S2)φ(S1) (13)

where for any non-negative matrix M , φ(M) denotes the smallest non-zero element of M . To prove
that this is so note first that any stochastic matrix S can be written at S = φ(S)S̄ where S̄ is a
non-zero matrix whose non-zero entries are all bounded below by 1; moreover if S = φ̂(S)Ŝ where
φ̂(S) is a number and Ŝ is also a non-zero matrix whose non-zero entries are all bounded below
by 1, then φ(S) ≥ φ̂(S). Accordingly, write Si = φ(Si)S̄i, i ∈ {1, 2} where each S̄i is a non-zero
matrix whose non-zero entries are all bounded below by 1. Since S2S1 = φ(S2)φ(S1)S̄2S̄1 and S2S1
is non-zero, S̄2S̄1 must be non-zero as well. Moreover the nonzero entries of S̄2S̄1 must be bounded
below by 1 because the product of any two n×n matrices with all non-zero entries bounded below
by 1 must be a matrix with the same property. Therefore φ(S2S1) ≥ φ(S2)φ(S1) as claimed. An
important consequence of (13) is that for any set of stochastic matrices S1, S2, . . . , Sm for which
each φ(Si) is bounded below by a positive number b,

φ(Sm · · ·S1) ≥ bm (14)
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Our goal is now to use these facts to derive an explicit convergence rate for the situation considered
by Theorem 1. We will do this in two different ways. The first way is based on properties of
stochastic matrices with strongly rooted graphs.

3.1 Strongly Rooted Graphs

Let F(q) denote the set of all products of q flocking matrices whose corresponding sequences of q
graphs are each jointly rooted. In view of (12), each matrix in F(q) must have a rooted graph in
Gsa. In other words, each matrix in F(q) has a rooted graph and is a product of q flocking matrices.
Since the set of all flocking matrices is finite, so is F(q). It is shown in [2] that the composition
of any set of at least (n − 1)2 rooted graphs in Gsa is strongly rooted. This and (12) imply that
the product of any (n − 1)2 matrices in F(q) must have a strongly rooted graph in Gsa. Thus if
we set m = (n− 1)2, and write (F(q))m for the set of all products of m matrices from F(q), then
each matrix in (F(q))m must have a strongly rooted graph. Moreover, (F(q))m must be a finite
set because F(q) is. It is shown in [2] that convergence of the θi in Theorem 1 occurs at a rate no
slower than

λ =

(
max

S∈(F(q))m
||b|S|c||

) 1
mq

Our goal is to derive an explicit bound for λ.

As a fist step towards this end, let S be any stochastic matrix with a strongly rooted graph.
We claim that

||b|S|c|| ≤ 1− φ(S) (15)

To understand why this is so, note first that because γ(S) is strongly rooted, at least one vertex
- say the kth - must be a root with arcs to each other vertex. This means that the kth column
of S must be positive. Since φ(S) is a lower bound on all nonzero elements in S, the smallest
element in the kth column of S, is bounded below by φ(S). Therefore bSc1 ≥ φ(S). But from (7)
||b|S|c|| = 1− bSc1. This implies that (15) is true.

As a second step, let us note that the definition of a flocking matrix implies that all non-zero
entries are bounded below by 1

n
. In other words, F ∈ F implies that φ(F ) ≥ 1

n
. But the flocking

matrix F = 1
n
11′ is in F and for this matrix φ(F ) = 1

n
. Therefore

min
F∈F

φ(F ) =
1

n
(16)

Now suppose that S ∈ F(q). Thus S is the product of q matrices from F . From this, (14) and
(16) it follows that φ(S) ≥ 1

nq . Therefore

min
S∈F(q)

φ(S) ≥
1

nq
(17)

Next suppose that S ∈ (F(q))m. Thus S is the product of m matrices from F(q). From this,
(14) and (17) it follows that φ(S) ≥ 1

nqm . This and (15) thus imply that ||b|S|c|| ≤ 1− 1
nqm and thus

that

max
S∈(F(q))(n−1)2

||b|S|c|| ≤ 1−
1

nqm
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Therefore, since m = (n− 1)2

λ ≤

(
1−

1

nq(n−1)2

) 1
q(n−1)2

(18)

The derivation of this particular upper bound on the rate at which the θi converge to θss ultimately
depends on two facts established in [2]. First, as we said before, the composition of at most (n−1)2

rooted graphs is strongly rooted. Second, for any infinite sequence of stochastic matrices S1, S2, . . .,
with strongly rooted graphs which come from a compact set Ssr, the product Sj · · ·S1 converges
exponentially fast, as j →∞, to a rank one matrix 1c at a rate no slower than

max
S∈Ssr

||b|S|c||

It turns out that by exploiting two different but corresponding facts about stochastic matrices with
“neighbor-shared” graphs we can obtain a significantly smaller bound than given by (18).

3.2 Neighbor-Shared Graphs

By a neighbor shared graph is meant any graph with two or more vertices with the property that
each pair of vertices in the graph share a common neighbor. Every neighbor shared graph is rooted
but the converse is false [2]. The convergence rate bounds we are about to derive depend on two
facts. First, the composition of at most (n − 1) rooted graphs is neighbor shared [2]. Second, for
any infinite sequence of stochastic matrices S1, S2, . . ., with neighbor-shared graphs which come
from a compact set Sns, the product Sj · · ·S1 converges exponentially fast, as j → ∞, to a rank
one matrix 1c at a rate no slower than

max
S∈Sns

µ(S)

where µ(S) is a positive number, called a scrambling constant which is defined by the formula

µ(S) = max
i,j

(
1−

n∑

k=1

min{sik, sjk}

)
(19)

In the sequel we will make use of some well known-ideas from the theory of non-homogeneous
Markov chains [6] to explain why this second statement is true.

Scrambling Constants

Let S be any n× n stochastic matrix. Observe that for any non-negative n - vector x, the ith
minus the jth entries of Sx can be written as

n∑

k=1

(sik − sjk)xk =
∑

k∈K

(sik − sjk)xk +
∑

k∈K̄

(sik − sjk)xk

where

K = {k : sik − sjk ≥ 0, k ∈ {1, 2, . . . , n}} and K̄ = {k : sik − sjk < 0, k ∈ {1, 2, . . . , n}}

Therefore
n∑

k=1

(sik − sjk)xk ≤

(
∑

k∈K

(sik − sjk)

)
dxe+


∑

k∈K̄

(sik − sjk)


 bxc
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But ∑

k∈K∪K̄

(sik − sjk) = 0

so ∑

k∈K̄

(sik − sjk) = −
∑

k∈K

(sik − sjk)

Thus
n∑

k=1

(sik − sjk)xk ≤

(
∑

k∈K

(sik − sjk)

)
(dxe − bxc)

Now ∑

k∈K

(sik − sjk) = 1−
∑

k∈K̄

sik −
∑

k∈K

sjk

because the row sums of S are all one. Moreover

sik = min{sik, sjk}, ∈ K̄

sjk = min{sik, sjk}, ∈ K

so
∑

k∈K

(sik − sjk) = 1−
n∑

k=1

min{sik, sjk}

It follows that
n∑

k=1

(sik − sjk)xk ≤

(
1−

n∑

k=1

min{sik, sjk}

)
(dxe − bxc)

Hence with µ as defined by (19),

n∑

k=1

(sik − sjk)xk ≤ µ(S)(dxe − bxc)

Since this holds for all i, j, it must hold for that i and j for which

n∑

k=1

sikxk = dSxe and
n∑

k=1

sjkxk = bSxc

Therefore
dSxe − bSxc ≤ µ(S)(dxe − bxc) (20)

Now let S1 and S2 be any two n × n stochastic matrices and let ei be the ith unit n-vector.
Then from (20),

dS2S1eie − bS2S1eic ≤ µ(S2)(dS1eie − bS1e1c) (21)

Meanwhile, from (9),
bd|S2S1|ecei = 1(dS2S1e − bS2S1c)ei

and
bd|S1|ecei = 1(dS1e − bS1c)ei
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But for any non-negative matrix M , dMeei = dMeie and bMcei = bMeic so

bd|S2S1|ecei = 1(dS2S1eie − bS2S1eic)

and
bd|S1|ecei = 1(dS1eie − bS1eic)

From these expressions and (21) it follows that

bd|S2S1|ecei ≤ µ(S2)bd|S1|ecei

Since this is true for all i, we arrive at the following fact.

Lemma 1 For any two stochastic matrices in S,

bd|S2S1|ec ≤ µ(S2)bd|S1|ec (22)

Note that since the row sums of S all equal 1, µ(S) is non-negative. It is easy to see that µ(S) = 0
just in case all the rows of S are equal. Let us note that for fixed i and j, the kth term in the sum
appearing in (19) will be positive just in case both sik and sjk are positive. It follows that the sum
will be positive if and only if for at least one k, sik and sjk are both positive. Thus µ(S) < 1 if
and only if for each distinct i and j, there is at least one k for which sik and sjk are both positive.
Matrices with this property have been widely studied and are called scrambling matrices [6]. Thus
a stochastic matrix S is a scrambling matrix if and only if µ(S) < 1. It is easy to see that the
definition of a scrambling matrix also implies that S is scrambling if and only if its graph γ(S) is
neighbor-shared.

As before, let Sns be a closed subset consisting of stochastic matrices whose graphs are all
neighbor shared. Then the scrambling constant µ(S) defined in (19) satisfies µ(S) < 1, S ∈ Sns

because each such S is a scrambling matrix. Let

µ̄ = max
S∈Sns

µ(S)

Then µ̄ < 1 because Sns is closed and bounded and because µ(·) is continuous. In view of Lemma
1,

||bd|S2S1|ec|| ≤ µ̄||bd|S1|ec||, S1, S2 ∈ Sns

Hence by induction, for any sequence of matrices S1, S2, . . . in Sns

||bd|Sj · · ·S1|ec|| ≤ µ̄j−1||bd|S1|ec||, Si ∈ Sns

But from (8), b|S|c ≤ bd|S|ec, S ∈ S, so ||b|S|c|| ≤ ||bd|S|ec||, S ∈ S. Therefore for any sequence of
stochastic matrices S1, S2, . . . with neighbor shared graphs

||b|Sj · · ·S1|c|| ≤ µ̄j−1||bd|S1|ec|| (23)

Therefore from Proposition 1, any such product Sj · · ·S1 converges exponentially at a rate no slower
than µ̄ as j →∞. This establishes the validity of the statement about convergence of products of
stochastic matrices made at the beginning of Section 3.2.
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Suppose now that F is a flocking matrix for which γ(F ) is neighbor shared. In view of the
definition of a flocking matrix, any non-zero entry in F must be bounded below by 1

n
. Fix distinct

i and j and suppose that k is a neighbor that i and j share. Then fik and fjk are both non-zero so
min{fik, fjk} ≥

1
n
. This implies that the sum in (19) must be bounded below by 1

n
and consequently

that µ(F ) ≤ 1− 1
n
.

Now let F be that flocking matrix whose graph γ(F ) is such that vertex 1 has no neighbors
other than itself, vertex 2 has every vertex as a neighbor, and vertices 3 through n have only
themselves and agent 1 as neighbors. Since vertex 1 has no neighbors other than itself, f1k = 0 for
all k > 1. Thus for all i, j, it must be true that

∑n
k=1min{fik, fjk} = min{fi1, fj1}. Now vertex 2

has n neighbors, so f2,1 =
1
n
. Thus min{fi1, fj1} attains its lower bound of 1

n
when either i = 2 or

j = 2. It thus follows that with this F , µ(F ) attains its upper bound of 1− 1
n
. We summarize.

Lemma 2 Let Fns be the set of n× n flocking matrices with neighbor shared graphs. Then

max
F∈Fns

µ(F ) = 1−
1

n
(24)

Thus 1 − 1
n
is a tight bound on the convergence rate for an infinite product of flocking matrices

with neighbor shared graphs. In [2] it is shown that

max
F∈Fsr

µ(F ) = 1−
1

n

where Fsr is the set of flocking matrices with strongly rooted graphs. Thus 1 − 1
n
is also a tight

bound on the convergence rate for an infinite product of flocking matrices with strongly rooted
graphs. Of course a strongly rooted graph is a more special type of graph than a neighbor-shared
graph because strongly rooted graph are neighbor shared but not conversely.

We now use the preceding to derive a better convergence rate bound than (18) for the type of
trajectory addressed by Theorem 1. As a first step towards this end we exploit the fact that for
any n× n stochastic scrambling matrix S, the scrambling constant of µ(S) satisfies the inequality

µ(S) ≤ 1− φ(S) (25)

To understand why this is so, assume that S is any given scrambling matrix. Note that for any
distinct i and j, there must be a k for which min{sik, sjk} is non-zero and bounded below by φ(S).
Thus

n∑

k=1

min{sik, sjk} ≥ φ(S)

so

1−
n∑

k=1

min{sik, sjk} ≤ 1− φ(S)

But this holds for all distinct i and j. In view of the definition of µ(S) in (19), (25) must therefore
be true.

As before, let F(q) denote the set of products of q flocking matrices F1, F2, . . . Fq from F for
which {γ(F1), γ(F2), . . . , γ(Fq)} is a jointly rooted set. Then as noted before, each matrix in F(q)
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is rooted. Set p = (n − 1) and let (F(q))p now denote the set of all products of p matrices from
F(q). Then each matrix in (F(q))p is neighbor shared. Let S be any such matrix. Then S is a
product of qp flocking matrices. But each such flocking matrix F satisfies (16). Because of this
and (14), it must be true that φ(S) ≥ 1

nqp . Therefore µ(S) ≤ 1− 1
nqp because of (25). Since this is

true for all S ∈ (F(q))p, 1− 1
nqp must be a convergence rate upper bound for all infinite products

of matrices from (F(q))p. Therefore since p = n− 1

(
1−

1

nq(n−1)

) 1
q(n−1)

(26)

must be an upper bound on the convergence rate for all infinite product of flocking matrices
F1, F2, . . . which have the property that the sequences of graphs γ(F1), γ(F2), . . . is repeatedly
jointly rooted by subsequences of length q. Since this is precisely the type of sequence of flocking
matrices which arise under the assumptions of Theorem 1, (26) is a convergence rate bound for the
type of trajectory addressed by the theorem. Note that this convergence rate upper bound is much
smaller {i.e., faster} than that given by (18).We refer the reader to [12] for additional convergence
rate calculations along these lines.

4 Measurement Delays

In this section we consider a modified version of the flocking problem in which integer valued delays
occur in sensing the values of headings which are available to agents. More precisely we suppose
that at each time t ∈ {0, 1, 2, . . .}, the value of neighboring agent j’s headings which agent i may
sense is θj(t− dij(t)) where dij(t) is a delay whose value at t is some integer between 0 and mj − 1;
here mj is a pre-specified positive integer. While well established principles of feedback control
would suggest that delays should be dealt with using dynamic compensation, in this paper we will
consider the situation in which the delayed value of agent j’s heading sensed by agent i at time t
is the value which will be used in the heading update law for agent i. Thus

θi(t+ 1) =
1

ni(t)


 ∑

j∈Ni(t)

θj(t− dij(t))


 (27)

where dij(t) ∈ {0, 1, . . . , (mj − 1)} if j 6= i and dij(t) = 0 if i = j. Our main result is the following
theorem which states in essence that the conclusions of Theorem 1 continue to hold for the update
model described by (27).

Theorem 2 Let θ(0) be fixed. For any trajectory of the system determined by (27) along which
the sequence of neighbor graphs N(0),N(1), . . . is repeatedly jointly rooted, there is a constant θss,
depending only on θ(0) for which

lim
t→∞

θ(t) = θss1 (28)

where the limit is approached exponentially fast.

As noted in the introduction, the consensus problem with measurement delays we’ve been
discussing has been considered previously in [8]. It is possible to compare the hypotheses of Theorem
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2 with the corresponding hypotheses for exponential convergence stated in [8], namely assumptions
2 and 3 of that paper. To do this, let us agree, as before, to say that the union of a set of graphs
Gr1 ,Gr2 , . . . ,Grk

with vertex set V is that graph with vertex set V and arc set consisting of the
union of the arcs of all of the graphs Gr1 ,Gr2 , . . . ,Grk

. Taken together, assumptions 2 and 3 of [8]
are more or less equivalent to assuming that there are finite positive integers q and s such that the
union

G(k)
∆
= N((k + 1)q − 1) ∪ N((k + 1)q − 2) ∪ · · · ∪ N(kq)

is strongly connected and independent of k for k ≥ s. By way of comparison, the hypothesis of
Theorem 2 is equivalent to assuming that there is a finite positive integer q such that the composition

Ḡ(k)
∆
= N((k + 1)q − 1) ◦ N((k + 1)q − 2) ◦ · · · ◦ N(kq)

is rooted for k ≥ 0. The latter assumption is weaker than the former for several reasons. First,
the arc set of G(k) is always a subset of the arc set of Ḡ(k) and in some cases the containment
may be strict. Second, Ḡ(k) is not assumed to be independent of k, even for k sufficiently large,
whereas G(k) is; in other words, Ḡ(k) is not assumed to converge whereas G(k) is. Third, each
G(k) is assumed to be strongly connected whereas each Ḡ(k) need only be rooted; note that a
strongly connected graph is a special type of rooted graph in which every vertex is a root. Perhaps
most important about Theorem 2 and the development which justifies it, is that the underlying
structural properties of the graphs involved required for consensus are explicitly determined.

4.1 State Space System

It is possible to represent the agent system defined by (27) using a state space model similar to the
model discussed earlier for the delay-free case. Towards this end, let Ḡ denote the set of all directed
graphs with vertex set V̄ = V1 ∪ V2 ∪ · · · ∪ Vn where Vi = {vi1 . . . , vimi

}. Here vertex vij labels the
jth possible delay value of agent i, namely j − 1. We sometimes write i for vi1, i ∈ {1, 2, . . . , n},
V for the subset of vertices {v11, v21, . . . , vn1}, and think of vi1 as an alternative label of agent i.

To take account of the fact that each agent can use its own current heading in its update formula
(27), we will utilize those graphs in Ḡ which have self arcs at each vertex in V. We will also require
the arc set of each such graph to have, for i ∈ {1, 2, . . . , n}, an arc from each vertex vij ∈ Vi except
the last, to its successor vi(j+1) ∈ Vi. Finally we stipulate that for each i ∈ {1, 2, . . . , n}, each
vertex vij with j > 1 has in-degree of exactly 1. In the sequel we call any such graph a delay graph
and write D for the subset of all such graphs. Note that unlike the class of graphs Gsa considered
before, there are graphs in D possessing vertices without self-arcs. Nonetheless each vertex of each
graph in D has positive in-degree.

The specific delay graph representing the sensed headings the agents use at time t to update
their own headings according to (27), is that graph D(t) ∈ D whose arc set contains an arc from
vik ∈ Vi to vj1 ∈ V if agent j uses θi(t+ 1− k) to update. There is a simple relationship between
D(t) and the neighbor graph N(t) defined earlier. In particular,

N(t) = Q(D(t)) (29)

where Q(D(t)) is the “quotient graph” of D(t). By the quotient graph of any G ∈ Ḡ, written Q(G),
is meant that directed graph in G with vertex set V whose arc set consists of those arcs (i, j) for

12



which G has an arc from some vertex in Vi to some vertex in Vj . The quotient graph of D(t) thus
models which headings are being used by each agent in updates at time t without describing the
specific delayed headings actually being used.

The set of agent heading update rules defined by (27) can be written in state form. Towards
this end define θ(t) to be that (m1 +m2 + · · · +mi) vector whose first m1 elements are θ1(t) to
θ1(t+1−m1), whose next m2 elements are θ2(t) to θ2(t+1−m2) and so on. Order the vertices of
V̄ as v11, . . . , v1m1 , v21, . . . , v2m2 , . . . , vn1, . . . , vnmn and with respect to this ordering define for each
graph D ∈ D, the flocking matrix

F = D−1A′ (30)

where A′ is the transpose of the adjacency matrix of D and D the diagonal matrix whose ijth
diagonal element is the in-degree of vertex vij within the graph. Then γ(F ) = D and

θ(t+ 1) = F (t)θ(t), t ∈ {0, 1, 2, . . .} (31)

Let F̄ denote the set of all such F . As before our goal is to characterize the sequences of neighbor
graphs mathbbN(0),N(1), . . . for which all entries of θ(t) converge to a common steady state value.

There are a number of similarities and a number of differences between the situation under
consideration here and the delay-free situation considered in [2]. For example, the notion of graph
composition defined earlier can be defined in the obvious way for graphs in Ḡ. On the other
hand, unlike the situation in the delay-free case, the set of graphs used to model the system under
consideration, namely the set of delay graphs D, is not closed under composition except in the
special case when all of the delays are at most 1; i.e., when all of the mi ≤ 2. In order to
characterize the smallest subset of Ḡ containing D which is closed under composition, we will need
several new concepts.

4.2 Hierarchical Graphs

As before, let G be the set of all directed graphs with vertex set V = {1, 2, . . . n}. Let us agree to
say that a rooted graph G ∈ G is a hierarchical graph with hierarchy {v1, v2, . . . , vn} if it is possible
to re-label the vertices in V as v1, v2, . . . vn in such a way so that v1 is a root of G with a self-arc
and for i > 1, vi has a neighbor vj “lower ” in the hierarchy where by lower we mean j < i. It is
clear that any graph in G with a root possessing a self-arc is hierarchical. Note that a graph may
have more than one hierarchy and two graphs with the same hierarchy need not be equal. Note
also that even though rooted graphs with the same hierarchy share a common root, examples show
that the composition of hierarchical graphs in G need not be hierarchical or even rooted. On the
other hand the composition of two rooted graphs in G with the same hierarchy is always a graph
with the same hierarchy. To understand why this is so, consider two graphs G1 and G2 in G with
the same hierarchy {v1, v2, . . . , vn}. Note first that v1 has a self -arc in G2 ◦G1 because v1 has self
arcs in G1 and G2. Next pick any vertex vi in V other than v1. By definition, there must exist
vertex vj lower in the hierarchy than vi such that (vj , vi) is an arc of G2. If vj = v1, then (v1, vi) is
an arc in G2 ◦ G1 because v1 has a self-arc in G1. On the other hand, if vj 6= v1, then there must
exist a vertex vk lower in the hierarchy than vj such that (vk, vj) is an arc of G1. It follows from
the definition of composition that in this case (vk, vi) is an arc in G2 ◦G1. Thus vi has a neighbor
in G2 ◦G1 which is lower in the hierarchy than vi. Since this is true for all vi, G2 ◦G1 must have
the same hierarchy as G1 and G2. This proves the claim that composition of two rooted graphs
with the same hierarchy is a graph with the same hierarchy.
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Our objective is to show that the composition of a sufficiently large number of graphs in G with
the same hierarchy is strongly rooted. Note that the fact that the composition of (n− 1)2 graphs
in Gsa is rooted [2], cannot be used to reach this conclusion because the vi in the graphs under
consideration here do not all necessarily have self-arcs.

As before, let G1 and G2 be two graphs in G with the same hierarchy {v1, v2, . . . , vn}. Let vi be
any vertex in the hierarchy and suppose that vj is a neighbor vertex of vi in G2. If vj = v1, then vi
retains v1 as a neighbor in the composition G2 ◦G1 because v1 has a self-arc in G1. On the other
hand, if vj 6= v1, then vj has a neighboring vertex vk in G1 which is lower in the hierarchy than vj .
Since vk is a neighbor of vi in the composition G2 ◦ G1, we see that in this case vi has acquired a
neighbor in G2 ◦ G1 lower in the hierarchy than a neighbor it had in G2. In summary, any vertex
vi ∈ V either has v1 as neighbor in G2 ◦G1 or has a neighbor in G2 ◦G1 which is at least one vertex
lower in the hierarchy than any neighbor it had in G2.

Now consider three graphs G1,G2,G3 in G with the same hierarchy. By the same reasoning as
above, any vertex vi ∈ V either has v1 as neighbor in G3 ◦G2 ◦G1 or has a neighbor in G3 ◦G2 ◦G1

which is at least one vertex lower in the hierarchy than any neighbor it had in G3 ◦G2. Similarly vi
either has v1 as neighbor in G3 ◦G2 or has a neighbor in G3 ◦G2 which is at least one vertex lower
in the hierarchy than any neighbor it had in G3. Combining these two observations we see that any
vertex vi ∈ V either has v1 as neighbor in G3 ◦G2 ◦G1 or has a neighbor in G3 ◦G2 ◦G1 which is
at least two vertices lower in the hierarchy than any neighbor it had in G3. This clearly generalizes
and so after the composition of m such graphs G1,G2, . . .Gm, vi either has v1 as neighbor in
Gm ◦ · · ·G2 ◦G1 or has a neighbor in Gm ◦ · · ·G2 ◦G1 which is at least m− 1 vertices lower in the
hierarchy than any neighbor it had in Gm. It follows that if m ≥ n, then vi must be a neighbor of
v1. Since this is true for all vertices, we have proved the following.

Proposition 2 Let G1,G2, . . .Gm denote a set of rooted graphs in G which all have the same
hierarchy. If m ≥ n− 1 then Gm ◦ · · ·G2 ◦G1 is strongly rooted.

4.3 The Closure of D

We now return to the study of the graphs in D. As before D is the subset of Ḡ consisting of those
graphs which (i) have self arcs at each vertex in V = {v11, v21, . . . , vn1}, (ii) for each i ∈ {1, 2, . . . , n},
have an arc from each vertex vij ∈ Vi except the last, to its successor vi(j+1) ∈ Vi, and (iii) for each
i ∈ {1, 2, . . . , n}, each vertex vij with j > 1 has in-degree of exactly 1. It can easily be shown by
example that D is not closed under composition. We deal with this problem as follows. First, let
us agree to say that a vertex v in a graph G ∈ Ḡ is a neighbor of a subset of G’s vertices U , if v is
a neighbor of at least one vertex in U . Next, we say that a graph G ∈ Ḡ is an extended delay graph
if for each i ∈ {1, 2, . . . , n}, (i) every neighbor of Vi which is not in Vi is a neighbor of vi1 and (ii)
the subgraph of G induced by Vi has {vi1 . . . , vimi

} as a hierarchy. We write D̄ for the set of all
extended delay graphs in Ḡ. It is easy to see that every delay graph is an extended delay graph.
The converse however is not true. The set of extended delay graphs has the following property.

Proposition 3 D̄ is closed under composition.

In the light of this proposition it is natural to call D̄ the closure of D. To prove the proposition,
we will need the following fact.
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Lemma 3 Let G1,G2, . . . ,Gq be any sequence of q > 1 directed graphs with vertex set V. For
i ∈ {1, 2, . . . , q}, let Ḡi be the subgraph of Gi induced by U ⊂ V. Then Ḡq ◦ · · · ◦ Ḡ2 ◦ Ḡ1 is contained
in the subgraph of Gq ◦ · · · ◦G2 ◦G1 induced by U .

Proof of Lemma 3: It will be enough to prove the lemma for q = 2, since the proof for q > 2 would
then directly follow by induction. Suppose q = 2. Let (i, j) be in A(Ḡ2 ◦ Ḡ1). Then i, j ∈ U and
there exists an integer k ∈ U such that (i, k) ∈ A(Ḡ1) and (k, j) ∈ A(Ḡ2). Therefore (i, k) ∈ A(G1)
and (k, j) ∈ A(G2). Thus (i, j) ∈ A(G2 ◦G1). But i, j ∈ S so (i, j) must be an arc in the subgraph
of G2 ◦G1 induced by U . Since this clearly is true for all arcs in A(Ḡ2 ◦ Ḡ1), the proof is complete.

Proof of Proposition 3: Let G1 and G2 be two extended delay graphs in D̄. It will first be
shown that for each i ∈ {1, 2, . . . , n}, every neighbor of Vi which is not in Vi is a neighbor of
vi1 in G2 ◦ G1 . Fix i ∈ {1, 2, . . . , n} and let v be a neighbor of Vi in G2 ◦ G1 which is not in
Vi. Then (v, k) ∈ A(G2 ◦ G1) for some k ∈ Vi. Thus there is a s ∈ V̄ such that (v, s) ∈ A(G1)
and (s, k) ∈ A(G2). If s 6∈ Vi, then (s, vi1) ∈ A(G2) because G2 is an extended delay graph.
Thus in this case (v, vi1) ∈ A(G2 ◦ G1) because of the definition of composition. If, on the other
hand, s ∈ Vi, then (v, vi1) ∈ A(G1) because G1 is an extended delay graph. Thus in this case
(v, vi1) ∈ A(G2 ◦G1) because vi1 has a self-arc in G2. This proves that every neighbor of Vi which
is not in Vi is a neighbor of vi1 in G2 ◦G1. Since this must be true for each i ∈ {1, 2, . . . , n}, G2 ◦G1

has the first property defining extended delay graphs in D̄.

To establish the second property, we exploit the fact that the composition of two graphs with
the same hierarchy is a graph with the same hierarchy. Thus for any integer i ∈ {1, 2, . . . , n}, the
composition of the subgraphs of G1 and G2 respectively induced by Vi must have the hierarchy
{vi1, vi2, . . . , vimi

}. But by Lemma 3, for any integer i ∈ {1, 2, . . . , n}, the composition of the
subgraphs of G1 and G2 respectively induced by Vi, is contained in the subgraph of the composition
of G1 and G2 induced by Vi. This implies that for i ∈ {1, 2, . . . , n}, the subgraph of the composition
of G1 and G2 induced by Vi has {vi1, vi2, . . . , vimi

} as a hierarchy.

Our main result regarding extended delay graphs is as follows.

Proposition 4 Let m be the largest integer in the set {m1,m2, . . . ,mn}. The composition of any
set of at least m(n− 1)2 +m− 1 extended delay graphs will be strongly rooted if the quotient graph
of each of the graphs in the composition is rooted.

To prove this proposition we will need several more concepts. Let us agree to say that a extended
delay graph G ∈ D̄ has strongly rooted hierarchies if for each i ∈ V, the subgraph of G induced by
Vi is strongly rooted. Proposition 2 states that a hierarchical graph on mi vertices will be strongly
rooted if it is the composition of at least mi − 1 rooted graphs with the same hierarchy. This and
Lemma 3 imply that the subgraph of the composition of at least mi − 1 extended delay graphs
induced by Vi will be strongly rooted. We are led to the following lemma.

Lemma 4 Any composition of at least m− 1 extended delay graphs in D̄ has strongly rooted hier-
archies.

To proceed we will need one more type of graph which is uniquely determined by a given graph
in Ḡ. By the agent subgraph of G ∈ Ḡ is meant the subgraph of G induced by V. Note that while
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the quotient graph of G describes relations between distinct agent hierarchies, the agent subgraph
of G only captures the relationships between the roots of the hierarchies. Note in addition that
both the agent subgraph of G and the quotient graph of G are graphs in Gsa because all n vertices
of G in V have self arcs.

Lemma 5 Let Gp and Gq be extended delay graphs in D̄. If Gp has a strongly rooted agent subgraph
and Gq has strongly rooted hierarchies, then the composition Gq ◦Gp is strongly rooted.

Proof of Lemma 5: Let vi1 be a root of the agent subgraph of Gp and let vjk be any vertex
in V̄. Then (vi1, vj1) ∈ A(Gp) because the agent subgraph of Gp is strongly rooted. Moreover,
(vj1, vjk) ∈ A(Gq) because Gq has strongly rooted hierarchies. Therefore, in view of the definition
of graph composition (vi1, vjk) ∈ A(Gq ◦ Gp). Since this must be true for every vertex vjk ∈ V̄,
Gq ◦Gp is strongly rooted.

Lemma 6 The agent subgraph of any composition of at least (n− 1)2 extended delay graphs in D̄
will be strongly rooted if the agent subgraph of each of the graphs in the composition is rooted.

Proof of Lemma 6: Let G1,G2, . . . ,Gq be any sequence of q ≥ (n− 1)2 extended delay graphs in
D̄ whose agent subgraphs, Ḡi i ∈ {1, 2, . . . , q}, are all rooted. Since the Ḡi are in Gsa, Proposition
3 of [2] applies and it can therefore be concluded that Ḡq ◦ · · · ◦ Ḡ2 ◦ Ḡ1 is strongly rooted. But
Ḡq ◦ · · · ◦ Ḡ2 ◦ Ḡ1 is contained in the agent subgraph of Gq ◦ · · · ◦ G2 ◦ G1 because of Lemma 3.
Therefore the agent subgraph of Gq ◦ · · · ◦G2 ◦G1 is strongly rooted.

Lemma 7 Let Gp and Gq be extended delay graphs in D̄. If Gp has strongly rooted hierarchies and
Gq has a rooted quotient graph, then the agent subgraph of the composition Gq ◦Gp is rooted.

Proof of Lemma 7: Let (i, j) be any arc in the quotient graph of Gq with i 6= j. This means
that (vik, vjs) ∈ A(Gq) for some vik ∈ Vi and vjs ∈ Vj . Clearly (vi1, vik) ∈ A(Gp) because Gp

has strongly rooted hierarchies. Moreover since i 6= j, vik is a neighbor of Vj which is not in Vj .
From this and the definition of a extended delay graph, it follows that vik is a neighbor of vj1.
Therefore (vik, vj1) ∈ A(Gq). Thus (vi1, vj1) ∈ A(Gq ◦Gp). We have therefore proved that for any
path of length one between any two distinct vertices i, j in the quotient graph of Gq, there is a
corresponding path between vertices vi1 and vj1 in the agent subgraph of Gq ◦ Gp. This implies
that for any path of any length between any two distinct vertices i, j in the quotient graph of Gq,
there is a corresponding path between vertices vi1 and vj1 in the agent subgraph of Gq ◦Gp. Since
by assumption, the quotient graph of Gq is rooted, the agent subgraph of Gq ◦Gp must be rooted
as well.

Proof of Proposition 4: Let G1,G2, . . .Gs be a sequence of at least m(n− 1)2+m− 1 extended
delay graphs with rooted quotient graphs. The graph Gs ◦ · · ·G(m(n−1)2+1) is composed of at least
m−1 extended delay graphs. Therefore Gs ◦ · · ·G(m(n−1)2+1) must have strongly rooted hierarchies
because of Lemma 4. In view of Lemma 5, to complete the proof it is enough to show that
Gm(n−1)2 ◦ · · · ◦G1 has a strongly rooted agent subgraph. But Gm(n−1)2 ◦ · · · ◦G1 is the composition
of (n − 1)2 graphs, each itself a composition of m extended delay graphs with rooted quotient
graphs. In view of Lemma 6, to complete the proof it is enough to show that the agent subgraph
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of any composition of m extended delay graphs is rooted if each quotient graph of each extended
delay graph in the composition is rooted. Let H1,H2, . . . ,Hm be such a family of extended delay
graphs. By assumption, Hm has a rooted quotient graph. In view of Lemma 7, the agent subgraph
of Hm ◦ Hm−1 ◦ · · · ◦ H1 will be rooted if Hm−1 ◦ · · · ◦ H1 has strongly rooted hierarchies. But
Hm−1 ◦ · · · ◦H1 has this property because of Lemma 4.

Finally we will need the following fact.

Proposition 5 Let G1, . . . ,Gr be a sequence of extended delay graphs in D̄. If the composition
Q(Gr) ◦ · · · ◦Q(G1) is rooted then so is the quotient graph Q(Gr ◦ · · · ◦G1).

This proposition is a direct consequence of the following lemma.

Lemma 8 Let Gp,Gq be two extended delay graphs in D̄. For each arc (i, j) in the composition
Q(Gq) ◦Q(Gp), there is a path from i to j in the quotient graph Q(Gq ◦Gp).

Proof of Lemma 8: Fix (i, j) ∈ A(Q(Gq) ◦Q(Gp)). If i = j, then (i, j) ∈ A(Q(Gq ◦Gp)) because
Q(Gq ◦Gp) ∈ Gsa. Thus in this case there is a path of length 1 from i to j in Q(Gq ◦Gp).

Suppose i 6= j. Since (i, j) ∈ A(Q(Gq) ◦ Q(Gp)), there exists an integer k ∈ V such that
(i, k) ∈ A(Q(Gp)) and (k, j) ∈ A(Q(Gq)). Thus there are integers vis, vkt, vku, vjw ∈ V such
that (vis, vkt) ∈ A(Gp) and (vku, vjw) ∈ A(Gq). Since Gp ∈ D̄, Gp has a hierarchy rooted at
vk1. This means that there must be a vertex vkx no higher in this hierarchy than vku such that
(vkx, vku) ∈ A(Gp). Therefore (vkx, vjw) ∈ A(Gq ◦ Gp). If k = i, then (vix, vjw) ∈ A(Gq ◦ Gp) so
(i, j) ∈ A(Q(Gq ◦Gp)). Thus in this case there is a path of length 1 from i to j in Q(Gq ◦Gp).

Suppose k 6= i. Since (vis, vkt) ∈ A(Gp) and Gp ∈ D̄, (vis, vk1) ∈ A(Gp). But Gq must have a
self-arc at vk1 because Gq ∈ D̄. Therefore (vis, vk1) ∈ A(Gq ◦Gp). Moreover there must be a path
in Gq ◦ Gp from vk1 to vkx because vkx is in the hierarchy rooted at vk1. But both (vis, vk1) and
(vkx, vjw) are arcs in Gq ◦ Gp so there must be a path in in Gq ◦ Gp from vis to vjw. This implies
that there must be a path in Q(Gq ◦Gp) from i to j.

Proof of Proposition 5: To prove the proposition it is enough to show that if Q(Gr)◦ · · · ◦Q(G1)
contains a path from some i ∈ V to some j ∈ V, then Q(Gr ◦ · · · ◦G1) also contains a path from i to
j. As a first step towards this end, we claim that if Gp,Gq are graphs in D̄ for which Q(Gq)◦Q(Gp)
contains a path from u to v, for some u, v ∈ V, then Q(Gq ◦ Gp) also contains a path from u to
v. To prove that this is so, fix u, v ∈ V and Gp,Gq ∈ D̄ and suppose that Q(Gq) ◦Q(Gp) contains
a path from u to v. Then there must be a positive integer s and vertices k1, k2, . . . , ks ending at
ks = v, for which (u, k1), (k1, k2), . . . , (ks−1, ks) are arcs in Q(Gq) ◦Q(Gp). In view of Lemma 8,
there must be paths in Q(Gq ◦Gp) from i to k1, k1 to k2,. . . , and ks−1 to ks. If follows that there
must be a path in Q(Gq ◦Gp) from i to j. Thus the claim is established.

It will now be shown by induction for each s ∈ {2, . . . ,m} that if Q(Gs) ◦ · · · ◦Q(G1) contains
a path from i to some js ∈ V, then Q(Gr ◦ · · · ◦ G1) also contains a path from i to js. In view
of the claim just proved above, the assertion is true if s = 2. Suppose the assertion is true for
all s ∈ {2, 3, . . . , t} where t is some integer in {2, . . . , r − 1}. Suppose that Q(Gt+1) ◦ · · · ◦ Q(G1)
contains a path from i to jt+1. Then there must be an integer k such that Q(Gt) ◦ · · · ◦ Q(G1)
contains a path from i to k and Q(Gt+1) contains a path from k to jt+1. In view of the inductive
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hypothesis, Q(Gt ◦ · · · ◦G1) contains a path from i to k. Therefore Q(Gt+1) ◦Q(Gt ◦ · · · ◦G1) has
a path from i to jt+1. Hence the claim established at the beginning of this proof applies and it can
be concluded that Q(Gt+1 ◦ Gt ◦ · · · ◦ G1) has a path from i to jt+1. Therefore by induction the
aforementioned assertion is true.

4.4 Proof of Convergence

Our aim is to make use of the properties of extended delay graphs just derived to prove Theorem
2. We will also need the following result from [2].

Proposition 6 Let Ssr be any closed set of stochastic matrices which are all of the same size and
whose graphs γ(S), S ∈ Ssr are all strongly rooted. As j → ∞, any product Sj · · ·S1 of matrices
from Ssr converges exponentially fast to a matrix of the form 1c at a rate no slower than λ, where c
is a non-negative row vector depending on the sequence and λ is a non-negative constant less than
1 depending only on Ssr.

Proof of Theorem 2: In view of (31), θ(t) = F (t− 1) · · ·F (0)θ(0). Thus to prove the theorem it
suffices to prove that as t→∞ the matrix product F (t) · · ·F (0) converges exponentially fast to a
matrix of the form 1c .

By hypothesis, the sequence of neighbor graphs N(0),N(1), . . . , is repeatedly jointly rooted
by subsequences of length q. This means that each of the sequences N(kq), . . . ,N((k + 1)q − 1),
k ≥ 0, is jointly rooted. Let D(t) = γ(F (t)), t ≥ 0. In view of (29), N(t) = Q(D(t)), t ≥ 0.
Thus each of the sequences Q(D(kq)), . . . , Q(D((k + 1)q − 1)), k ≥ 0, is jointly rooted, so each
composition Q(D((k + 1)q − 1)) ◦ · · · ◦Q(D(kq)) is a rooted graph. In view of Proposition 5, each
graph Q(D((k + 1)q − 1) ◦ · · · ◦ D(kq)), k ≥ 0 is also rooted.

Set p = (m(n − 1)2 +m − 1)q where m is the largest integer in the set {m1,m2, . . . ,mn}. In
view of Proposition 4, each of the graphs D((k + 1)p − 1) ◦ · · · ◦ D(kp)), k ≥ 0 is strongly rooted.
Let F(p) denote the set of all products of p matrices from F̄ which have the additional property
that each such product has a strongly rooted graph. Then F(p) is finite and therefore compact,
because F̄ is.

For k ≥ 0, define
S(k) = F ((k + 1)p− 1) · · ·F (kp) (32)

In view of (12) and the fact that γ(F (t)) = D(t), t ≥ 0, it must be true that γ(S(k)) = D((k +
1)p − 1) ◦ · · · ◦ D(kp), k ≥ 0. Thus each S(k) has a strongly rooted graph. Moreover, each such
S(k) is the product of p matrices from F̄ . Therefore S(k) ∈ F(p), k ≥ 0. Therefore Proposition
6 applies with Ssr = F(p) so it can be concluded that the matrix product S(k) · · ·S(0) converges
exponentially fast as k →∞ to a matrix of the form 1c as k →∞.

In view of the definition of S(k) it is clear that for any t, there is an integer k(t) and a stochastic
matrix Ŝ(t) composed of the product of at most p− 1 matrices from F̄ such that

F (t) · · ·F (1) = Ŝ(t)S(k(t)) · · ·S(0)

Moreover t 7→ k(t) must be an unbounded, strictly increasing function; because of this the product
S(k(t)) · · ·S(0) must converge exponentially fast as t → ∞ to a limit of the form 1c. Since
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Ŝ(t)1c = 1c, t ≥ 0, the product F (t) · · ·F (1) must also converge exponentially fast as t → ∞ to
the same limit 1c.

5 Asynchronous Flocking

In this section we consider a modified version of the consensus problem treated in [2] in which each
agent independently updates its heading at times determined by its own clock2. We do not assume
that the groups’ clocks are synchronized or that the times any one agent updates its heading are
evenly spaced. Updating of agent i’s heading is done as follows. At its kth sensing event time tik,
agent i senses the headings θj(tik), j ∈ Ni(tik) of its current neighbors {which includes itself} and
from this data computes its kth way-point wi(tik). In the sequel we will consider way point rules
based on averaging. In particular

wi(tik) =
1

ni(tik)


 ∑

j∈Ni(tik)

θj(tik)


 , i{1, 2, . . . , n} (33)

where ni(tik) is the number of neighbor elements in the neighbor index set Ni(tik). Agent i then
changes its heading from θi(tik) to wi(tik) on the interval (tik, ti(k+1)]. In this paper we will consider
the case when each agent updates its headings instantaneously at its own event times, and that
it maintains fixed headings between its event times. More precisely, we will assume that agent i
reaches its kth way-point immediately after its kth event time and that θi(t) is constant on each
continuous-time interval (ti(k−1), tik], k ≥ 1, where ti0 = 0 is agent i’s zeroth event time. In other
words for k ≥ 0, agent i’s heading satisfies

θi(ti(k+1)) =
1

ni(tik)


 ∑

j∈Ni(tik)

θj(tik)


 (34)

θi(t) = θi(tik), ti(k−1) < t ≤ tik, (35)

5.1 Analytic Synchronization

To develop conditions under which all agents eventually move with the same heading requires the
analysis of the asymptotic behavior of the asynchronous process which the 2n heading equations of
the form (34), (35) define. Despite the apparent complexity of this process, it is possible to capture
its salient features using a suitably defined synchronous discrete-time, hybrid dynamical system
S. The sequence of steps involved in defining S has been discussed before and is called analytic
synchronization [9, 10]. Analytic synchronization is applicable to any finite family of continuous
or discrete time dynamical processes {P1,P2, . . . , . . . ,Pn} under the following conditions. First,
each process Pi must be a dynamical system whose inputs consist of functions of the states of the
other processes as well as signals which are exogenous to the entire family. Second, each process
Pi must have associated with it an ordered sequence of event times {ti1, ti2, . . .} defined in such a
way so that the state of Pi at event time ti(ki+1) is uniquely determined by values of the exogenous

2A preliminary version of the material in this section was presented at the 2005 IFAC congress [14]
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signals and states of the Pj , j ∈ {1, 2, . . . , n} at event times tjkj
which occur prior to ti(ki+1) but

in the finite past. Event time sequences for different processes need not be synchronized. Analytic
synchronization is a procedure for creating a single synchronous process for purposes of analysis
which captures the salient features of the original n asynchronously functioning processes. As a
first step, all n event time sequences are merged into a single ordered sequence of event times T .
{This clever idea has been used before in [15] to study the convergence of totally asynchronous
iterative algorithms.} The “synchronized” state of Pi is then defined to be the original state of Pi

at Pi’s event times {ti1, ti2, . . .} plus possibly some additional variables; at values of t ∈ T between
event times tiki

and ti(ki+1), the synchronized state of Pi is taken to be the same as the value of its
original state at time tik. Although it is not always possible to carry out all of these steps, when it
is what ultimately results is a synchronous dynamical system S evolving on the index set of T , with
state composed of the synchronized states of the n individual processes under consideration. We
now use these ideas to develop such a synchronous system S for the asynchronous process under
consideration.

5.2 Definition of S

As a first step, let T denote the set of all event times of all n agents. Relabel the elements of T as
t0, t1, t2, · · · in such a way so that tj < tj+1, j ∈ {1, 2, . . .}. Next define

θ̄i(τ) = θi(tτ ), τ ≥ 0, i ∈ {1, 2, . . . , n} (36)

In view of (34), it must be true that if tτ is an event time of agent i, then

θ̄i(τ
′) =

1

n̄i(τ)


 ∑

j∈N̄i(τ)

θ̄j(τ)




where N̄i(τ) = Ni(tτ ), n̄i(τ) = ni(tτ ) and tτ ′ is the next event time of agent i after tτ . But
θ̄i(τ

′) = θ̄i(τ + 1) because θi(t) is constant for tτ < t ≤ tτ ′ {ca., (35)}. Therefore

θ̄i(τ + 1) =
1

n̄i(τ)


 ∑

j∈N̄i(τ)

θ̄j(τ)


 (37)

if tτ is an event time of agent i. Meanwhile if tτ is not an event time of agent i, then

θ̄i(τ + 1) = θ̄i(τ), (38)

again because θi(t) is constant between event times. Note that if we define N̄i(τ) = {i} and
n̄i(τ) = 1 for every value of τ for which tτ is not an event time of agent i, then (38) can be written
as

θ̄i(τ + 1) =
1

n̄i(τ)


 ∑

j∈N̄i(τ)

θ̄j(τ)


 (39)

Doing this enables us to combine (37) and (39) into a single formula valid for all τ ≥ 0. In other
words, agent i’s heading satisfies

θ̄i(τ + 1) =
1

n̄i(τ)


 ∑

j∈N̄i(τ)

θ̄j(τ)


 , τ ≥ 0 (40)
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where

N̄i(τ) =





Ni(tτ ) if tτ is an event time of agent i

{i} if tτ is not an event time of agent i



 (41)

and n̄i(τ) = 1 if tτ is not an event time of agent i . Thus for all τ , n̄i(τ) is the number of indices
in N̄i(τ). For purposes of analysis, it is useful to interpret (41) as meaning that between agent
i’s event times, its only neighbor is itself. There are n equations of the form in (40) and together
they define a synchronous system S which models the evolutions of the n agents’ headings at event
times.

5.3 State Space Model

As before, we can represent the neighbor relationships associated with (41) using a directed graph
N with vertex set V = {1, 2, . . . n} and arc A(N) ⊂ V × V which is defined in such a way so that
(i, j) is an arc from i to j just in case agent i is a neighbor of agent j. Thus as before, N is a
directed graph on n vertices with at most one arc from any vertex to another and with exactly one
self - arc at each vertex. We continue to write Gsa for the set of all such graphs.

For each graph N ∈ Gsa let F = D−1A′, where A′ is the transpose of the adjacency matrix of
N and D the diagonal matrix whose jth diagonal element is the in-degree of vertex j within the
graph. The set of agent heading update rules defined by (41) can be written in state form as

θ̄(τ + 1) = F (τ)θ̄(τ), τ ∈ {0, 1, 2, . . .} (42)

where θ̄ is the heading vector θ̄ = [ θ̄1 θ̄2 . . . θ̄n ]
′, and F (τ) is the flocking matrix determined

by neighbor graph N(τ) at event time tτ .

Up to this point the development is essentially the same as in the leaderless consensus problem
discussed in Section 2. But when one considers the type of graphs in Gsa which are likely to be
encountered along a given trajectory, things are quite different. Note for example, that the only
vertices of N(τ) which can have more than one incoming arc, are those of agents for whom tτ is an
event time. Thus in the most likely situation when distinct agents have only distinct event times,
there will be at most one vertex in each graph N(τ) which has more than one incoming arc. It is
this situation we want to explore further. Toward this end, let G∗

sa ⊂ Gsa denote the subclass of
all graphs which have at most one vertex with more than one incoming arc. Note that for n > 2,
there is no rooted graph in G∗sa. Nonetheless, in the light of Theorem 1 it is clear that convergence
to a common steady state heading will occur if the infinite sequence of graphs N(0),N(1), . . . is
repeatedly jointly rooted. This of course would require that there exist a jointly rooted sequence
of graphs from G∗sa. We will now explain why such sequences do in fact exist.

Let us agree to call a graph G ∈ Gsa an all neighbor graph centered at v if every vertex of G

is a neighbor of v. Note that every all neighbor graph in Gsa is also in G∗sa. Note also that all
neighbor graphs are maximal in G∗sa with respect to the partial ordering of G∗sa by inclusion. Note
also the composition of any all neighbor graph with itself is itself. On the other hand, because
of the union of two graphs in Gsa is always contained in the composition of the two graphs, the
composition of n all neighbor graphs with distinct centers must be a graph in which each vertex is
a neighbor of every other; i.e., the complete graph. Thus the composition of n all neighbor graphs
with distinct centers is strongly rooted. In summary, the hypothesis of Theorem 1 is not vacuous
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for the asynchronous problem under consideration. When that hypothesis is satisfied, convergence
to a common steady state heading will occur.

6 Leader Following

In this section we consider a modified version of the flocking problem for the same group n agents
as before, but now with one of the group’s members {say agent 1} acting as the group’s leader
[11, 16]. The remaining agents, henceforth called followers and labelled 2 through n, do not know
who the leader is or even if there is a leader. Accordingly they continue to use the same heading
update rule (1) as before. The leader on the other hand, acting on its own, ignores update rule (1)
and moves with a constant heading θ1(0). Thus

θ1(t+ 1) = θ1(t) (43)

The situation just described can be modelled as a state space system

θ(t+ 1) = F (t)θ(t), t ≥ 0 (44)

just as before, except now agent 1 is constrained to have no neighbors other than itself. The neighbor
graphs N which model neighbor relations accordingly all have a distinguished leader vertex which
has no incoming arcs other than its own.

Much like before, our goal here is to show for a large class of switching signals and for any initial
set of follower agent headings, that the headings of all n followers converge to the heading of the
leader. Convergence in the leaderless case under the most general conditions, required the sequence
of neighbor graphs N(0),N(1), . . . encountered along a trajectory to be repeatedly jointly rooted.
For the leader follower case now under consideration, what’s required is exactly the same. However,
since the leader vertex has only one incoming arc which is a self-arc, the only way N(0),N(1), . . .
can be repeatedly jointly rooted, is that the sequence be “rooted at the leader vertex v = 1.” More
precisely, an infinite sequence of graphs G1,G2, in Gsa is repeatedly jointly rooted at v if there is a
positive integer m for which each finite sequence Gm(k−1)+1, . . . ,Gmk, k ≥ 1 is “jointly rooted
at v”; a finite sequence of directed graphs G1, G2, . . . ,Gk is jointly rooted at v if the composition
Gk ◦Gk−1 ◦ · · · ◦G1 is rooted at v. Our main result on discrete-time leader following is next.

Theorem 3 Let θ(0) be fixed. For any trajectory of the system determined by (1) along which the
sequence of neighbor graphs N(0),N(1), . . . is repeatedly jointly rooted at vertex 1, there is a constant
θss, depending only on θ(0) for which

lim
t→∞

θ(t) = θ1(0)1

where the limit is approached exponentially fast.

Proof of Theorem 3: Since any sequence which is repeatedly jointly rooted at v is repeatedly
jointly rooted, Theorem 1 is applicable. Therefore the headings of all n agents converge exponen-
tially fast to a single common steady state heading θss. But since the heading of the leader is fixed,
θss must be the leader’s heading θ1(0).
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7 Concluding Remarks

The main goal of this paper has been to study various versions the flocking problem considered in
[4, 5, 8, 11, 17] and elsewhere, from a single point of view which emphasize the underlying graphical
structures for which consensus can be reached. The paper brings together in one place a number
of results scattered throughout the literature, and at the same time presents new results concerned
with convergence rates, asynchronous operation, sensing delays, as well as graphical interpretations
of several specially structured stochastic matrices appropriate to non-homogeneous Markov chains.
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